JP6872169B2 - Exhaust gas treatment equipment and exhaust gas treatment method - Google Patents
Exhaust gas treatment equipment and exhaust gas treatment method Download PDFInfo
- Publication number
- JP6872169B2 JP6872169B2 JP2017071913A JP2017071913A JP6872169B2 JP 6872169 B2 JP6872169 B2 JP 6872169B2 JP 2017071913 A JP2017071913 A JP 2017071913A JP 2017071913 A JP2017071913 A JP 2017071913A JP 6872169 B2 JP6872169 B2 JP 6872169B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- mercury concentration
- activated carbon
- amount
- mercury
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treating Waste Gases (AREA)
Description
本発明は、廃棄物焼却施設、セメント製造工場、火力発電所、非鉄金属製錬工場等の各種工場から排出される水銀を含む排ガスの処理装置及び排ガス処理方法に関する。 The present invention relates to a treatment device for exhaust gas containing mercury emitted from various factories such as a waste incinerator, a cement manufacturing factory, a thermal power plant, and a non-ferrous metal smelting factory, and an exhaust gas treatment method.
セメントキルン炉、非鉄金属製錬炉から排出される排ガスや、水銀を含んだ廃棄物が廃棄物焼却炉で焼却され排出される排ガス中に水銀が含まれることがあり、そのまま大気に放出されると、大気汚染を引き起こし問題となる。そこで、排ガス中の水銀を除去することが求められている。 Exhaust gas emitted from cement kiln furnaces and non-ferrous metal smelting furnaces and waste containing mercury may be contained in the exhaust gas emitted by incinerators in waste incinerators, and are released to the atmosphere as they are. It causes air pollution and becomes a problem. Therefore, it is required to remove mercury in the exhaust gas.
さらに、「水銀に関する水俣条約」が2013年に採択され、世界的な水銀管理強化の動きが進行している。この条約発効後、水銀排出規制対象施設に対して水銀の排出を抑制する対策が検討されている。水銀排出規制対象施設としては、石炭火力発電所、石炭焚きボイラ、非鉄金属製錬施設、廃棄物焼却施設、セメント製造施設が挙げられる。かかる状況において、これらの施設から排出される排ガス中の水銀を効率的に除去する処理方法の要望が高まっている。 Furthermore, the "Minamata Convention on Mercury" was adopted in 2013, and movements to strengthen mercury management worldwide are underway. After the entry into force of this treaty, measures to curb mercury emissions have been considered for facilities subject to mercury emission regulations. Facilities subject to mercury emission control include coal-fired power plants, coal-fired boilers, non-ferrous metal smelting facilities, waste incinerator facilities, and cement manufacturing facilities. Under such circumstances, there is an increasing demand for a treatment method for efficiently removing mercury in the exhaust gas emitted from these facilities.
例えば、廃棄物焼却炉やボイラ火炉から排出される排ガス中の水銀の一般的な除去方法としては、排ガス中のダストを除塵するバグフィルタや電気集塵機へ排ガスを導くダクト内へ、バグフィルタ等に対して上流側位置で粉粒状の活性炭を吹き込み、該活性炭に水銀を吸着させ、この水銀を吸着した活性炭をダストとともにバグフィルタ等で集塵して排ガスから除去する方法が知られている。 For example, as a general method for removing mercury in exhaust gas discharged from a waste incinerator or a boiler furnace, a bug filter for removing dust in the exhaust gas, a duct for guiding the exhaust gas to an electrostatic precipitator, a bug filter, etc. On the other hand, there is known a method in which powdered and granular activated carbon is blown at an upstream position, mercury is adsorbed on the activated carbon, and the activated carbon adsorbing the mercury is collected together with dust by a bag filter or the like and removed from the exhaust gas.
焼却炉で焼却処理される廃棄物の種類や、セメントキルン炉、非鉄金属製錬炉で製錬される原料の種類によっては、排ガス中の水銀濃度が一時的に高くなるような変動が生じる場合がある。この場合においても煙突から排出する排ガス中の水銀濃度を低く維持するためには、ダクトへ吹き込む活性炭の供給量を常時多量に吹き込む必要がある。 Depending on the type of waste incinerated in the incinerator and the type of raw material smelted in the cement kiln furnace and non-ferrous metal smelting furnace, the mercury concentration in the exhaust gas may fluctuate to temporarily increase. There is. Even in this case, in order to keep the mercury concentration in the exhaust gas discharged from the chimney low, it is necessary to constantly blow a large amount of activated carbon to be blown into the duct.
このように、一時的に高くなる水銀濃度を想定して活性炭を常時多量にダクト内へ供給すると、上述の一時的な時間帯を除いた多くの時間帯で活性炭を過度に供給する結果となってしまい、活性炭の使用量が多大となり、排ガス処理費用が嵩むという問題や、集塵したダスト等の量が多大となり、除塵処理費用が嵩むという問題が生じる。そこで、特許文献1では、炉から排出され水銀を含む排ガスを導く排ガス流路に、排ガスを除塵処理する集塵装置と、排ガス流路へ活性炭を吹き込む活性炭供給装置とを備え、炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を測定する上流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、制御装置が、上流側水銀濃度計による水銀濃度測定値に基づき、集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することとする排ガス処理装置が開示されている。この特許文献1の排ガス処理装置によると、炉よりも下流側で集塵装置よりも上流側で、水銀濃度を水銀濃度計で測定し、その測定値に基づき活性炭供給量を調整して集塵装置の下流側での排ガス中の水銀濃度を許容される設定値以下とする。炉からの排ガス中の水銀濃度が変動した場合に、排ガスの集塵装置への流入前に水銀濃度を測定しその測定値に基づき、速やかに活性炭供給量を適正量に調整することができ、水銀濃度の変動に対して遅れが生じることなく確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下とすることができるとともに、活性炭の供給量を常時多量に吹き込む必要がないため、活性炭の使用量を低減して運転費用を削減できる。
In this way, if a large amount of activated carbon is constantly supplied into the duct assuming a temporarily high mercury concentration, the result is that the activated carbon is excessively supplied in many time zones other than the above-mentioned temporary time zone. This causes a problem that the amount of activated carbon used becomes large and the exhaust gas treatment cost increases, and a problem that the amount of dust collected becomes large and the dust removal treatment cost increases. Therefore, in
複数の各炉に対応して複数の排ガス流路を備える施設に、特許文献1の排ガス処理装置を適用しようとすると、それぞれの排ガス流路に付設する排ガス処理装置毎に水銀濃度計を設置する必要がある。集塵装置の上流側に設置する水銀濃度計は、ダストを含む排ガスを測定するため、ダストを濾過して水銀濃度測定センサ部に排ガスを導入するようにフィルタ機構が備えられていて高価格であり、かかる水銀濃度計を複数備えることとなるので、排ガス処理装置の設備費用が嵩むという問題が生じる。
When the exhaust gas treatment device of
本発明は、このような事情に鑑み、複数の炉を備える施設において、排ガス中の水銀を確実に吸着除去し、排ガス中の水銀濃度が変動してもこれに適切な活性炭量で活性炭を供給するとともに、設備費用の高騰を抑制する排ガス処理装置及び排ガス処理方法を提供することを課題とする。 In view of such circumstances, the present invention reliably adsorbs and removes mercury in the exhaust gas in a facility provided with a plurality of furnaces, and supplies activated carbon with an appropriate amount of activated carbon even if the mercury concentration in the exhaust gas fluctuates. At the same time, it is an object to provide an exhaust gas treatment device and an exhaust gas treatment method that suppress the rise in equipment cost.
本発明によると、上述の課題は、次の排ガス処理装置さらには排ガス処理方法により解決される。 According to the present invention, the above-mentioned problems are solved by the following exhaust gas treatment device and further exhaust gas treatment method.
[排ガス処理装置]
本発明における排ガス処理装置は、次の第一発明、第二発明そして第三発明のごとく構成され、いずれによっても上述の課題は解決される。
[Exhaust gas treatment equipment]
The exhaust gas treatment device in the present invention is configured as the following first invention, second invention and third invention, and the above-mentioned problems are solved by any of them.
<第一発明>
複数の炉から排出され水銀を含む排ガスを処理するために、各炉から排出される排ガスを導くそれぞれの排ガス流路に、該排ガスを除塵処理する集塵装置と、集塵装置の上流側で各排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を測定する水銀濃度測定装置と、複数の活性炭供給装置の活性炭供給量を制御する制御装置とを備え、
制御装置は、活性炭供給量を水銀濃度測定装置による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。
<First invention>
In order to treat the exhaust gas containing mercury discharged from multiple furnaces, in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, a dust collector that removes the exhaust gas and an upstream side of the dust collector In an exhaust gas treatment device provided with an activated carbon supply device that blows activated carbon into each exhaust gas flow path.
A mercury concentration measuring device that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path at a position downstream of the furnace and upstream of the dust collector in each exhaust gas flow path, and activated carbon of multiple activated carbon supply devices. Equipped with a control device to control the supply amount
The control device controls the amount of activated carbon supplied so that the concentration of activated carbon in the exhaust gas on the downstream side of the dust collector is equal to or less than the set value based on the value measured by the mercury concentration measuring device. An exhaust gas treatment device characterized by.
<第二発明>
複数の炉から排出され水銀を含む排ガスを処理するために、各炉から排出される排ガスを導くそれぞれの排ガス流路に、該排ガスを除塵処理する集塵装置と、集塵装置の上流側で各排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計とを有する水銀濃度測定装置と、複数の活性炭供給装置の活性炭供給量を制御する制御装置とを備え、制御装置は、活性炭供給量を上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。
<Second invention>
In order to treat the exhaust gas containing mercury discharged from multiple furnaces, in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, a dust collector that removes the exhaust gas and an upstream side of the dust collector In an exhaust gas treatment device provided with an activated carbon supply device that blows activated carbon into each exhaust gas flow path.
An upstream mercury concentration meter that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path at the position downstream of the furnace and upstream side of the dust collector in each exhaust gas flow path, and in each exhaust gas flow path. The control device includes a mercury concentration measuring device having a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector, and a control device that controls the amount of activated carbon supplied by a plurality of activated carbon supply devices. , The amount of activated carbon supplied is set to the set value or less in the exhaust gas on the downstream side of the dust collector based on the mercury concentration measurement value by the upstream mercury concentration meter and the mercury concentration measurement value by the downstream mercury concentration meter. An exhaust gas treatment device characterized by controlling the amount of activated carbon supplied.
<第三発明>
複数の炉から排出され水銀を含む排ガスを処理するために、各炉から排出される排ガスを導くそれぞれの排ガス流路に、該排ガスを除塵処理する集塵装置と、集塵装置の上流側で各排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、複数の活性炭供給装置の活性炭供給量を制御する制御装置とを備え、制御装置は、上流側水銀濃度計による水銀濃度測定値に基づき活性炭供給量を制御する第一の制御と、下流側水銀濃度計による水銀濃度測定値に基づき、それぞれの集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御する第二の制御を行うことを特徴とする排ガス処理装置。
<Third invention>
In order to treat the exhaust gas containing mercury discharged from multiple furnaces, in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, a dust collector that removes the exhaust gas and an upstream side of the dust collector In an exhaust gas treatment device provided with an activated carbon supply device that blows activated carbon into each exhaust gas flow path.
An upstream mercury concentration meter that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path at the position downstream of the furnace and upstream side of the dust collector in each exhaust gas flow path, and in each exhaust gas flow path. It is equipped with a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector and a control device that controls the amount of activated carbon supplied by multiple activated carbon supply devices. Based on the first control that controls the amount of activated carbon supplied based on the measured value of mercury concentration and the value measured by the downstream mercury concentration meter, the concentration of mercury in the exhaust gas on the downstream side of each dust collector is less than or equal to the set value. An exhaust gas treatment device characterized in that a second control for controlling the amount of activated carbon supplied is performed.
第一ないし第三発明においては、制御装置は、活性炭供給量を所定の最小値以上に維持するように制御することが好ましい。所定の最小値を保つようにすることで、集塵装置のバグフィルタには、活性炭の吸着層が常に形成されているようになるので、高濃度の水銀を含む排ガスが排出された際にも、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とすることができる。 In the first to third inventions, it is preferable that the control device controls the amount of activated carbon supplied so as to maintain a predetermined minimum value or more. By maintaining a predetermined minimum value, an adsorption layer of activated carbon is always formed on the bag filter of the dust collector, so that even when exhaust gas containing a high concentration of mercury is discharged. By the adsorption removal action by the above-mentioned adsorption layer formed in advance and the adsorption removal action by the activated carbon blown at that time, mercury can be quickly and surely adsorbed and removed, and the mercury concentration of the exhaust gas after dust collection is sufficiently low. can do.
第一ないし第三発明においては、制御装置は、水銀濃度測定装置による水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することが好ましい。時間平均としてはさほど水銀濃度が高くないにも拘らず一時的に急激に水銀濃度が高くなったときに、この高い水銀濃度に合せて多量の活性炭を供給すると、その後の時間にわたり過剰に活性炭を供給してしまう結果になる。このような過剰な供給となることを、上記活性炭供給量を所定の最大値に保つように制御することにより防止できる。 In the first to third inventions, it is preferable that the control device is controlled so that the amount of activated charcoal supplied is maintained at a predetermined maximum value when the mercury concentration measured value by the mercury concentration measuring device is equal to or higher than a predetermined mercury concentration. When the mercury concentration rises temporarily and suddenly even though the mercury concentration is not so high as an hourly average, if a large amount of activated carbon is supplied in accordance with this high mercury concentration, the activated carbon will be excessively generated over the subsequent time. The result is that it will be supplied. Such an excessive supply can be prevented by controlling the amount of the activated carbon supply to be maintained at a predetermined maximum value.
また、第一ないし第三発明において、活性炭供給量の最小値から最大値へ向けた増大に関しては、制御装置は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達した後に、水銀濃度測定値の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、水銀濃度測定値が上記第二の所定水銀濃度に達した後には、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることができる。 Further, in the first to third inventions, regarding the increase from the minimum value to the maximum value of the activated coal supply amount, the control device starts from the value where the measured mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value. In the range until the first predetermined mercury concentration is reached, the activated charcoal is supplied under the predetermined minimum value of the activated charcoal supply amount, and after the mercury concentration measurement value reaches the first predetermined mercury concentration, the mercury The amount of activated charcoal supplied is linearly increased from a predetermined minimum value as the measured concentration value increases, and when the measured mercury concentration reaches the second predetermined mercury concentration, the amount of activated charcoal supplied is supplied at a predetermined maximum value. After the mercury concentration measurement value reaches the second predetermined mercury concentration, the amount of activated charcoal can be kept constant at the predetermined maximum value with respect to the increase in the mercury concentration measurement value.
さらに、第一ないし第三発明において、活性炭供給量の最小値から最大値に向けた増大に関しては、制御装置は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値で第一の供給量とする活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達したときに、階段状に活性炭供給量を所定の第二の供給量にまで増大させ、水銀濃度測定値が第二の所定水銀濃度に達するまでの範囲には、活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、水銀濃度測定値の増加にしたがって、階段状に活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることもできる。 Further, in the first to third inventions, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control device starts from the value where the measured value of the mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value. In the range until the first predetermined mercury concentration is reached, the activated carbon is supplied under the activated carbon supply amount which is the first supply amount at the predetermined minimum value, and the measured mercury concentration is the above-mentioned first predetermined mercury. When the concentration is reached, the amount of activated carbon supplied is stepwise increased to a predetermined second supply amount, and the amount of activated carbon supplied is increased to the range until the measured mercury concentration reaches the second predetermined mercury concentration. Keep constant at the second supply amount, and increase the activated carbon supply amount to the predetermined third supply amount when the mercury concentration measurement value reaches the second predetermined mercury concentration. The amount of activated carbon supplied is repeatedly increased in a stepwise manner as the amount of activated carbon is increased, and after the amount of activated carbon supplied is increased to a predetermined maximum value, the activated carbon is activated at the predetermined maximum value with respect to the increase in the measured mercury concentration value. It is also possible to keep the supply constant.
上述のように、排ガス中の水銀濃度測定値に基づき、活性炭供給量を最小値から最大値へ向けて増大させることにより、活性炭供給装置の供給量調整機構にとって不具合が生じることもなく、活性炭供給量を円滑に制御することができる。 As described above, by increasing the amount of activated carbon supplied from the minimum value to the maximum value based on the measured value of mercury concentration in the exhaust gas, the activated carbon supply does not cause any trouble in the supply amount adjustment mechanism of the activated carbon supply device. The amount can be controlled smoothly.
[排ガス処理方法]
本発明における排ガス処理方法は、次の第四発明、第五発明そして第六発明のごとく構成され、いずれによっても上述の課題は解決される。
[Exhaust gas treatment method]
The exhaust gas treatment method in the present invention is configured as the following fourth invention, fifth invention and sixth invention, and the above-mentioned problems are solved by any of them.
<第四発明>
複数の炉から排出され水銀を含む排ガスを処理するために、各炉から排出される排ガスを導くそれぞれの排ガス流路で該排ガスを集塵装置により除塵処理し、集塵装置の上流側で各排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で複数の排ガス流路から採取した排ガスの合流物の水銀濃度を水銀濃度測定装置で測定し、複数の活性炭供給装置の活性炭供給量を制御装置で制御することとし、
制御装置により、活性炭供給量を水銀濃度測定装置による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
<Fourth invention>
In order to treat the exhaust gas containing mercury discharged from a plurality of furnaces, the exhaust gas is dust-removed by a dust collector in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, and each is discharged on the upstream side of the dust collector. In the exhaust gas treatment method in which activated carbon is blown into the exhaust gas flow path from the activated carbon supply device,
The mercury concentration of the confluence of exhaust gas collected from multiple exhaust gas channels is measured by a mercury concentration measuring device at the position downstream of the furnace and upstream of the dust collector in each exhaust gas channel, and multiple activated carbon supply devices. It was decided that the amount of activated carbon supplied would be controlled by a control device.
The control device controls the amount of activated carbon supplied so that the concentration of activated carbon in the exhaust gas on the downstream side of the dust collector is equal to or less than the set value based on the value measured by the mercury concentration measuring device. An exhaust gas treatment method characterized by.
<第五発明>
複数の炉から排出され水銀を含む排ガスを処理するために、各炉から排出される排ガスを導くそれぞれの排ガス流路で該排ガスを集塵装置により除塵処理し、集塵装置の上流側で各排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で複数の排ガス流路から採取した排ガスの合流物の水銀濃度を測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計を有する水銀濃度測定装置により水銀濃度を測定し、
複数の活性炭供給装置の活性炭供給量を制御することとし、
制御装置により、活性炭供給量を上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
<Fifth invention>
In order to treat the exhaust gas containing mercury discharged from a plurality of furnaces, the exhaust gas is dust-removed by a dust collector in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, and each is discharged on the upstream side of the dust collector. In the exhaust gas treatment method in which activated carbon is blown into the exhaust gas flow path from the activated carbon supply device,
An upstream mercury concentration meter that measures the mercury concentration of the confluence of exhaust gas collected from multiple exhaust gas channels at a position downstream of the furnace and upstream of the dust collector in each exhaust gas flow path, and each exhaust gas flow. The mercury concentration is measured by a mercury concentration measuring device having a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector on the road.
It was decided to control the amount of activated carbon supplied by multiple activated carbon supply devices.
With the control device, the amount of activated carbon supplied is set based on the mercury concentration measurement value by the upstream mercury concentration meter and the mercury concentration measurement value by the downstream mercury concentration meter, and the mercury concentration in the exhaust gas on the downstream side of the dust collector is set. An exhaust gas treatment method characterized by controlling the amount of activated carbon supplied as follows.
<第六発明>
複数の炉から排出され水銀を含む排ガスを処理するために、各炉から排出される排ガスを導くそれぞれの排ガス流路で該排ガスを集塵装置により除塵処理し、集塵装置の上流側で各排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で複数の排ガス流路から採取した排ガスの合流物の水銀濃度を測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計を有する水銀濃度測定装置により水銀濃度を測定し、
複数の活性炭供給装置の活性炭供給量を制御することとし、
制御装置により、上流側水銀濃度計による水銀濃度測定値に基づき活性炭供給量を制御するとともに、下流側水銀濃度計による水銀濃度測定値に基づき、それぞれの集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
<Sixth invention>
In order to treat the exhaust gas containing mercury discharged from a plurality of furnaces, the exhaust gas is dust-removed by a dust collector in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, and each is discharged on the upstream side of the dust collector. In the exhaust gas treatment method in which activated carbon is blown into the exhaust gas flow path from the activated carbon supply device,
An upstream mercury concentration meter that measures the mercury concentration of the confluence of exhaust gas collected from multiple exhaust gas channels at a position downstream of the furnace and upstream of the dust collector in each exhaust gas flow path, and each exhaust gas flow. The mercury concentration is measured by a mercury concentration measuring device having a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector on the road.
It was decided to control the amount of activated carbon supplied by multiple activated carbon supply devices.
The control device controls the amount of activated coal supplied based on the mercury concentration measured by the upstream mercury concentration meter, and in the exhaust gas on the downstream side of each dust collector based on the mercury concentration measured by the downstream mercury concentration meter. An exhaust gas treatment method characterized in that the amount of activated carbon supplied is controlled so that the mercury concentration is equal to or less than a set value.
第四ないし第六発明においては、制御工程は、活性炭供給量を所定の最小値以上に維持するように制御することが好ましい。所定の最小値を保つようにすることで、集塵装置のバグフィルタには、活性炭の吸着層が常に形成されているようになるので、濃度の高い高濃度の水銀を含む排ガスが排出された際にも、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とすることができる。 In the fourth to sixth inventions, it is preferable that the control step is controlled so as to maintain the amount of activated carbon supplied to a predetermined minimum value or more. By maintaining a predetermined minimum value, an adsorption layer of activated carbon is always formed on the bag filter of the dust collector, so that exhaust gas containing a high concentration of mercury is discharged. In this case, mercury can be quickly and surely adsorbed and removed by the adsorption removal action by the above-mentioned adsorption layer formed in advance and the adsorption removal action by the activated carbon blown at that time, and the mercury concentration of the exhaust gas after dust collection can be sufficiently reduced. It can be low concentration.
第四ないし第六発明においては、制御工程は、水銀濃度測定装置による水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することが好ましい。時間平均としてはさほど水銀濃度が高くないにも拘らず一時的に急激に水銀濃度が高くなったときに、この高い水銀濃度に合せて多量の活性炭を供給すると、その後の時間にわたり過剰に活性炭を供給してしまう結果になる。このような過剰な供給となることを、上記活性炭供給量を所定の最大値に保つように制御することにより防止できる。 In the fourth to sixth inventions, it is preferable that the control step is controlled so that the amount of activated charcoal supplied is maintained at a predetermined maximum value when the mercury concentration measured value by the mercury concentration measuring device is equal to or higher than a predetermined mercury concentration. When the mercury concentration rises temporarily and suddenly even though the mercury concentration is not so high as an hourly average, if a large amount of activated carbon is supplied in accordance with this high mercury concentration, the activated carbon will be excessively generated over the subsequent time. The result is that it will be supplied. Such an excessive supply can be prevented by controlling the amount of the activated carbon supply to be maintained at a predetermined maximum value.
また、第四ないし第六発明において、活性炭供給量の最小値から最大値へ向けた増大に関しては、制御工程は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達した後に、水銀濃度測定値の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、水銀濃度測定値が上記第二の所定水銀濃度に達した後には、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることができる。 Further, in the fourth to sixth inventions, regarding the increase from the minimum value to the maximum value of the activated coal supply amount, the control step starts from the value where the measured mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value. In the range until the first predetermined mercury concentration is reached, the activated charcoal is supplied under the predetermined minimum value of the activated charcoal supply amount, and after the mercury concentration measurement value reaches the first predetermined mercury concentration, the mercury The amount of activated charcoal supplied is linearly increased from a predetermined minimum value as the measured concentration value increases, and when the measured mercury concentration reaches the second predetermined mercury concentration, the amount of activated charcoal supplied is supplied at a predetermined maximum value. After the mercury concentration measurement value reaches the second predetermined mercury concentration, the amount of activated charcoal can be kept constant at the predetermined maximum value with respect to the increase in the mercury concentration measurement value.
さらに、第四ないし第六発明において、活性炭供給量の最小値から最大値に向けた増大に関しては、制御工程は、排ガスの水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値で第一の供給量とする活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達したときに、階段状に活性炭供給量を所定の第二の供給量にまで増大させ、水銀濃度測定値が第二の所定水銀濃度に達するまでの範囲には、活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、水銀濃度測定値の増加にしたがって、階段状に活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることもできる。 Further, in the fourth to sixth inventions, regarding the increase from the minimum value to the maximum value of the activated coal supply amount, the control step starts from the value where the measured mercury concentration of the exhaust gas is zero or less than the measurable limit minimum value. In the range until the first predetermined mercury concentration is reached, the activated charcoal is supplied under the activated charcoal supply amount which is the first supply amount at the predetermined minimum value, and the measured mercury concentration is the first predetermined mercury concentration. When the amount reaches, the amount of activated charcoal supply is increased stepwise to a predetermined second supply amount, and the amount of activated charcoal supply is increased to the range until the measured mercury concentration reaches the second predetermined mercury concentration. In addition, when the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated charcoal supply amount is increased to the predetermined third supply amount. The amount of activated charcoal supplied is repeatedly increased in a stepwise manner as the amount increases, and after the amount of activated charcoal supply is increased to a predetermined maximum value, the activated charcoal is supplied at the predetermined maximum value with respect to the increase in the measured mercury concentration. You can also try to keep the amount constant.
上述のように、排ガスの水銀濃度測定値に基づき、活性炭供給量の最小値から最大値へ向けて増大させることにより、活性炭供給装置の供給量調整機構にとって不具合が生じることもなく、活性炭供給量を円滑に制御することができる。 As described above, by increasing the activated carbon supply amount from the minimum value to the maximum value based on the measured value of the mercury concentration of the exhaust gas, the activated carbon supply amount does not cause a problem for the supply amount adjustment mechanism of the activated carbon supply device. Can be controlled smoothly.
このような本発明によれば、第一発明そして第四発明では、炉よりも下流側で集塵装置よりも上流側で、水銀濃度を水銀濃度計で測定し、その測定値に基づき活性炭供給量を調整して集塵装置の下流側での排ガス中の水銀濃度を許容される設定値以下とする。炉からの排ガス中の水銀濃度が変動した場合に、排ガスの集塵装置への流入前に水銀濃度を測定しその測定値に基づき、速やかに活性炭供給量を適正量に調整することができ、水銀濃度の変動に対して遅れが生じることなく確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下とすることができる。 According to the present invention as described above, in the first invention and the fourth invention, the mercury concentration is measured by a mercury concentration meter on the downstream side of the furnace and on the upstream side of the dust collector, and the activated charcoal is supplied based on the measured value. Adjust the amount so that the mercury concentration in the exhaust gas on the downstream side of the dust collector is below the allowable set value. When the mercury concentration in the exhaust gas from the furnace fluctuates, the mercury concentration can be measured before the exhaust gas flows into the dust collector, and the amount of activated charcoal supplied can be quickly adjusted to an appropriate amount based on the measured value. The mercury concentration in the exhaust gas discharged from the chimney can be surely set to an allowable set value or less without delaying the fluctuation of the mercury concentration.
しかも、第一発明そして第四発明では、複数のそれぞれの排ガス流路の排ガスを採取してそれらを合流物として、この合流物の水銀濃度を測定することとしているので、排ガス流路が複数でも水銀濃度測定装置は一つで済む。測定された合流物の水銀濃度は、複数の排ガス流路における排ガスの水銀濃度の平均値ということになるが、活性炭供給量をこの平均値に見合った活性炭供給量よりも高めに設定しておけば、どの排ガス流路に対しても十分に対応できる。水銀濃度測定装置は、ダストを含む排ガスの水銀濃度を測定できるようにダストを除塵するフィルタを備えており高価なので、上述のように、排ガス流路が複数でも水銀濃度測定装置が一つで済むということは、各排ガス流路に水銀濃度測定装置を備える場合にくらべ、設備コストが低減され経済的に有利である。 Moreover, in the first invention and the fourth invention, the exhaust gas from each of the plurality of exhaust gas channels is collected and used as a confluence to measure the mercury concentration of the confluence, so that even if there are a plurality of exhaust gas channels. Only one mercury concentration measuring device is required. The measured mercury concentration of the confluence is the average value of the mercury concentration of the exhaust gas in multiple exhaust gas channels, but the activated carbon supply amount should be set higher than the activated carbon supply amount commensurate with this average value. For example, it can sufficiently handle any exhaust gas flow path. Since the mercury concentration measuring device is equipped with a filter for removing dust so that the mercury concentration of the exhaust gas including dust can be measured and is expensive, as described above, even if there are a plurality of exhaust gas channels, only one mercury concentration measuring device is required. This means that the equipment cost is reduced and it is economically advantageous as compared with the case where each exhaust gas flow path is provided with a mercury concentration measuring device.
第二発明、第三発明、第五発明そして第六発明では、複数のそれぞれの排ガス流路について炉の下流側で集塵装置よりも上流側で採取した排ガスの合流物の水銀濃度を、上流側水銀濃度計で測定するとともに、集塵装置の下流側でも各排ガス流路について個別に水銀濃度を下流側水銀濃度計で測定し、これらの二つの測定値に基づき活性炭供給量を調整して集塵装置の下流側での水銀濃度を設定値以下とする。このように、それぞれの排ガス流路における炉の下流側で集塵装置よりも上流側で採取した排ガスの合流物の水銀濃度測定値に基づき、活性炭供給量のベース値を定める第一の制御を速やかに行い、さらに、集塵装置の下流側での水銀濃度測定値に基づき、各排ガス流路に対し個別に活性炭供給量を上記ベース値に対して増減して調整するように、活性炭供給量を補完して第二の制御を行う。このようにすることにより、水銀濃度の変動に対して遅れが生じることなくしかも、より確実に煙突から排出される排ガス中の水銀濃度を設定値以下にできる。集塵装置の下流側での水銀濃度測定に基づき各排ガス流路に対し個別に、活性炭供給量を補完するように活性炭を供給するので、合流物の水銀濃度の測定に基づく制御を行う第一そして第四発明では水銀濃度が低い排ガス流路に対して設定される活性炭供給量が高めとされることにくらべて低く抑制できる。 In the second invention, the third invention, the fifth invention and the sixth invention, the mercury concentration of the confluence of the exhaust gas collected on the downstream side of the furnace on the downstream side of the dust collector and on the upstream side of the dust collector for each of the plurality of exhaust gas channels is increased upstream. In addition to measuring with the side mercury concentration meter, measure the mercury concentration individually for each exhaust gas flow path on the downstream side of the dust collector with the downstream mercury concentration meter, and adjust the amount of activated charcoal supply based on these two measured values. Set the mercury concentration on the downstream side of the dust collector to the set value or less. In this way, the first control that determines the base value of the amount of activated carbon supplied is performed based on the measured mercury concentration of the confluence of exhaust gas collected on the downstream side of the furnace on the downstream side of the exhaust gas flow path and on the upstream side of the dust collector. The amount of activated carbon supplied is adjusted promptly, and the amount of activated carbon supplied to each exhaust gas flow path is individually increased or decreased from the above base value based on the measured value of mercury concentration on the downstream side of the dust collector. Is complemented to perform the second control. By doing so, it is possible to more reliably reduce the mercury concentration in the exhaust gas discharged from the chimney to the set value or less without causing a delay with respect to the fluctuation of the mercury concentration. Since activated carbon is individually supplied to each exhaust gas flow path based on the measurement of the mercury concentration on the downstream side of the dust collector so as to complement the amount of activated carbon supplied, control based on the measurement of the mercury concentration of the confluent is performed. Further, in the fourth invention, the amount of activated carbon supplied to the exhaust gas flow path having a low mercury concentration can be suppressed to be lower than that set to a higher amount.
このように本発明によれば、複数の炉のそれぞれに設けられた排ガス流路における排ガス中の水銀濃度を集塵装置の上流側で測定し、あるいは集塵装置の上流側そして下流側で測定して、水銀濃度測定値にもとづき吹き込む活性炭の供給量を調整するので、煙突から排出される排ガス中水銀濃度は確実に所定値以下となり、しかも活性炭は過不足なく供給されることとなり、活性炭の使用量を抑制できるとともに、排ガス処理費用の低減化を図れる。しかも、本発明では、集塵装置の上流側での水銀濃度の測定は、複数の排ガス流路から採取された排ガスの合流物について一つの水銀濃度測定装置で行うこととしたので、各排ガス流路に水銀濃度測定装置を設ける場合にくらべ、設備コストが低減されて、経済的に有利となる。 As described above, according to the present invention, the mercury concentration in the exhaust gas in the exhaust gas flow path provided in each of the plurality of furnaces is measured on the upstream side of the dust collector, or on the upstream side and the downstream side of the dust collector. Then, since the amount of activated carbon to be blown in is adjusted based on the measured value of the mercury concentration, the concentration of mercury in the exhaust gas discharged from the chimney is surely below the predetermined value, and the activated carbon is supplied in just proportion. The amount used can be reduced and the exhaust gas treatment cost can be reduced. Moreover, in the present invention, the mercury concentration on the upstream side of the dust collector is measured by one mercury concentration measuring device for the confluence of exhaust gas collected from a plurality of exhaust gas channels. Compared with the case where the mercury concentration measuring device is provided on the road, the equipment cost is reduced, which is economically advantageous.
以下、添付図面にもとづき、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
以下に示される本実施形態では、水銀を含む排ガスを排出する炉として、廃棄物を焼却する焼却炉について説明しているが、本発明は、これに限らず、セメントキルン炉、非鉄金属製錬炉等の各種炉から排出される水銀を含む排ガスの処理装置及び処理方法として用いることができる。 In the present embodiment shown below, an incinerator that incinerates waste is described as a furnace that emits exhaust gas containing mercury, but the present invention is not limited to this, and the present invention is not limited to this, and a cement kiln furnace and non-ferrous metal smelting are described. It can be used as a treatment device and a treatment method for exhaust gas containing mercury discharged from various furnaces such as a furnace.
廃棄物を焼却する焼却炉からの排ガスに対して、集塵のために設置したバグフィルタの上流位置で排ガス流路へ活性炭を吹き込むことで、バグフィルタの下流側での水銀濃度を極低濃度レベルに抑制することが可能であるが、従来は廃棄物の種類や量の変動により、焼却炉からの排ガス中の水銀濃度が変動しバグフィルタの下流側において一時的に水銀濃度が上昇する場合に備え、活性炭を常時、多量に吹き込む必要があり、排ガス処理費用が嵩むことになっている。そこで、本実施形態では、水銀濃度計により水銀濃度を測定し、測定された水銀濃度にもとづき、過不足ない活性炭量を排ガス流路へ吹き込むこととしている。水銀濃度計は、連続的に測定する形式が好ましい。 For the exhaust gas from the incinerator that incinerates waste, activated carbon is blown into the exhaust gas flow path at the upstream position of the bug filter installed for dust collection, so that the mercury concentration on the downstream side of the bug filter is extremely low. Although it is possible to control the level, conventionally, when the mercury concentration in the exhaust gas from the incinerator fluctuates due to fluctuations in the type and amount of waste, the mercury concentration temporarily rises on the downstream side of the bag filter. In preparation for this, it is necessary to inject a large amount of activated carbon at all times, which increases the cost of exhaust gas treatment. Therefore, in the present embodiment, the mercury concentration is measured by a mercury concentration meter, and the amount of activated carbon in excess or deficiency is blown into the exhaust gas flow path based on the measured mercury concentration. The mercury densitometer is preferably in the form of continuous measurement.
<第一実施形態>
本実施形態装置の概要構成を示す図1において、二つの焼却炉1A;1Bのそれぞれから排出される排ガスを別途の経路で煙突4A;4Bまで導く二つの排ガス流路A;Bが設けられている。本実施形態では、二つの焼却炉1A;1Bに対応して二つの排ガス流路A;Bが設けられている例を示しているが、本発明では、これに限定されず、三つ以上の焼却炉に対応して三つ以上の排ガス流路が設けられていることとしてもよい。図1において、二つの排ガス流路A;Bのそれぞれに対応して設けられている諸装置には、数字符号にそれぞれA;B符号を付し、両排ガス流路A;Bに対して共通して設けられている諸装置には、数字符号のみを付すものとする。
<First Embodiment>
In FIG. 1 showing an outline configuration of the apparatus of the present embodiment, two exhaust gas flow paths A; B are provided to guide the exhaust gas discharged from each of the two
上記二つの排ガス流路A;Bのそれぞれには、それらの上流側(図にて左側)から下流側に向け、焼却炉1A;1B、ボイラ2A;2B、集塵装置としてバグフィルタ3A;3Bそして煙突4A;4Bが設けられている。上記排ガス流路A;Bのボイラ2A;2Bとバグフィルタ3A;3Bの間には、管路の側方に、活性炭供給装置5A;5Bが設けられていて、バグフィルタ3A;3Bの上流側に接続されている。
Each of the above two exhaust gas flow paths A; B has an
図1においては、二つの排ガス流路A;Bには、排ガス中の水銀濃度を測定するために排ガスを採取する採取管6A;6Bがボイラ2A;2Bとバグフィルタ3A;3Bの間で接続されており、両採取管6A;6Bは合流するよう接続されていて、採取された両排ガス流路A;Bからの排ガスが合流物をなすようになっている。上記両採取管6A;6Bの合流位置に接続して水銀濃度測定装置7の検出部7−1が配設されている。水銀濃度測定装置7は排ガスの合流物の水銀濃度を測定し、制御装置8へ合流物の水銀濃度測定値を送るように該制御装置8に接続されており、該制御装置8は上記活性炭供給装置5A;5Bに接続されていて両活性炭供給装置5A;5Bへ活性炭供給指令信号を発する。該制御装置8は水銀濃度測定装置7から受けた排ガス合流物の水銀濃度測定値に基づき、バグフィルタ3A;3Bよりも下流位置での水銀濃度を予め定められた所定水銀濃度値以下とするように、活性炭供給装置5A;5Bを制御する。
In FIG. 1, in two exhaust gas flow paths A; B, a
本実施形態では、図1に見られるように、排ガス流路A;Bにおける焼却炉1A;1Bの下流側かつバグフィルタ3A;3Bよりも上流側であって、活性炭供給装置5A;5Bによる活性炭吹込み位置よりも上流側の位置から排ガスを採取する採取管6A;6Bが接続されており、水銀濃度測定装置7は採取管6A;6Bの合流位置での排ガス合流物の水銀濃度を測定するように配設されている。本実施形態では、制御装置8によりこの排ガス合流物の水銀濃度および活性炭供給量と、バグフィルタ3A;3Bよりも下流位置での水銀濃度との関係が蓄積されたデータにもとづき把握されている。したがって、活性炭吹込み位置よりも上流側の位置で採取する排ガスの合流物の水銀濃度を測定しその水銀濃度測定値と活性炭供給量とから、バグフィルタ3A;3Bの下流での水銀濃度を推定できる。すなわち、制御装置8によって上記活性炭吹込み位置よりも上流側の位置で採取する排ガスの合流物の水銀濃度測定値に基づき、バグフィルタ3A;3Bの下流での水銀濃度を推定し、その推定水銀濃度を予め定める所定水銀濃度値以下とするために必要な活性炭供給量を求めることができ、活性炭供給装置3の活性炭供給量を制御する。その結果としてバグフィルタ3A;3Bの下流での水銀濃度を所定水銀濃度値以下としている。
In the present embodiment, as seen in FIG. 1, the activated carbon by the activated
上記活性炭供給装置5A;5Bは、図示はしないが、具体的には、例えば活性炭を収容するホッパと、該ホッパの下部出口に設けられたロータリ形式の切出し部材と、さらにその下方に設けられたバルブまたはダンパとを有している。かかる活性炭供給装置5A;5Bでは、制御装置8からの指令信号を受けて、切出し部材のロータリの回転数、バルブの開度及びダンパが開度のうち少なくとも一つが調整され活性炭が調整された供給量のもとで上記排ガス流路A;Bへ供給される。
Although not shown, the activated
かかる本実施形態では、焼却炉1A;1Bからの排ガス中の水銀濃度に変動があった場合、焼却炉1A;1Bの下流側かつ活性炭供給装置5A;5Bによる活性炭吹込み位置よりも上流側の位置で採取する排ガスの合流物の水銀濃度を水銀濃度測定装置7が測定して、この水銀濃度の変動を検知するため、速やかに活性炭供給量を調整する対応ができるので、タイムラグがなく、煙突内の排ガス中の水銀濃度を確実に設定値以下に維持することができる。
In this embodiment, when the mercury concentration in the exhaust gas from the
このような本実施形態において、排ガス流路Aにおける焼却炉1Aからの排ガスと、排ガス流路Bにおける焼却炉1Bから排ガスとにおいて、排ガス中の水銀濃度が異なる場合、両方の排ガス流路A;Bから採取管6A;6Bにより排ガスの一部が採取され合流して合流物となった状態で、検出部7−1で検出された合流物について水銀濃度測定装置7により水銀濃度が測定される。測定された水銀濃度は、両方の排ガス流路A,Bにおける排ガスの水銀濃度の平均値となる。本実施形態では、制御装置8においては、この平均値に相当する水銀濃度に対して必要な活性炭供給量にくらべ高めの活性炭供給量が設定されている。すなわち、各排ガス流路A;Bにおける排ガスの水銀濃度のバラツキをそれらの実績から予想した高い方の水銀濃度に対して適切な活性炭供給量に設定されている。したがって、活性炭供給装置5A;5Bからは、上記平均値よりも低い水銀濃度の一方の排ガス流路AもしくはBに対しては、多少過剰に活性炭が供給されることとなる。
In such an embodiment, when the mercury concentration in the exhaust gas is different between the exhaust gas from the
かくして、水銀が活性炭により吸着された状態でバグフィルタ3A;3Bで除去され、排ガスは無害化された状態で煙突4A;4Bから大気へ放出される。
Thus, the mercury is removed by the
<第二実施形態>
図2に示される本実施形態は、前出の第一実施形態に比し、水銀濃度測定装置が別位置で測定する第一水銀濃度計と第二水銀濃度計から成っている点で特徴がある。すなわち、本実施形態では、活性炭供給装置5A;5Bによる活性炭吹込み位置よりも上流側の位置から採取された排ガスの合流物の水銀濃度を測定する第一実施形態の水銀濃度測定装置に対応する第一水銀濃度計7に加え、バグフィルタ3A;3Bの下流側であるバグフィルタ3A;3Bの出口又は煙突4A;4Bにて排ガス中の水銀濃度を測定する第二水銀濃度計9A;9Bも設けられている。第一水銀濃度計7は二つの排ガス流路A;Bから排ガスを採取して合流させた排ガスの合流物に対して一つだけ設けられているが、第二水銀濃度計は二つの排ガス流路A;Bに対してそれぞれ設けられている。上記第二水銀濃度計9A;9Bの測定値は出力信号として制御装置8へ送られるようになっている。本実施形態は、この第二水銀濃度計に関する点以外は第一実施形態と同じである。したがって、図2では、図1の第一実施形態における部位と共通な部位について同一符号を付すことで、その説明は省略する。
<Second embodiment>
Compared to the first embodiment described above, the present embodiment shown in FIG. 2 is characterized in that the mercury concentration measuring device consists of a first mercury concentration meter and a second mercury concentration meter that measure at different positions. is there. That is, the present embodiment corresponds to the mercury concentration measuring device of the first embodiment for measuring the mercury concentration of the confluence of exhaust gas collected from a position upstream of the activated carbon blowing position by the activated
本実施形態では、図2に見られるように、既述の第一実施形態での活性炭供給装置5A;5Bによる活性炭吹込み位置よりも上流側の位置から採取された排ガスの合流物の水銀濃度を測定する第一水銀濃度計7に加え、一方の排ガス流路Aにおけるバグフィルタ3Aの出口に第二水銀濃度計9Aが設けられ、そして他方の排ガス流路Bにおけるバグフィルタ3Bの出口にもう一つの第二水銀濃度計9Bが設けられている。第一実施形態と同様に、活性炭供給装置5A;5Bによる活性炭吹込み位置よりも上流側の位置から採取された排ガスの合流物の水銀濃度を測定する第一水銀濃度計7による測定値に基づいて、第一の制御として、活性炭供給量のベース値を制御することに加え、本実施形態では、さらにバグフィルタ3A;3Bの出口における第二水銀濃度計9A;9Bによる測定値に基づき、第一水銀濃度計7による測定値に基づく第一の制御を補完するようにして、第二の制御として活性炭供給量を増減するように制御する。第二水銀濃度計9A;9Bは、二つの排ガス流路A;Bに対してそれぞれ専用に設けられているので、制御装置8は二つの活性炭供給装置5A;5Bに対して別途の指令信号を発し、活性炭供給装置5A;5Bのそれぞれから排ガス流路A;Bに適切な補完量で活性炭が供給される。
In this embodiment, as seen in FIG. 2, the mercury concentration of the confluence of exhaust gas collected from a position upstream of the activated carbon blowing position by the activated
第一実施形態では、両方の排ガス流路A、Bから採取した排ガスの一部の合流物の水銀濃度が測定され、測定された水銀濃度は、両方の排ガス流路A,Bにおける排ガスの水銀濃度の平均値となっており、制御装置8において、この平均値に相当する水銀濃度に対して必要な活性炭供給量にくらべ高めの活性炭供給量が設定されていて、活性炭供給装置5A;5Bからは、上記平均値よりも低い水銀濃度の一方の排ガス流路AもしくはBに対しては、多少過剰に活性炭が供給されることとなる。第二実施形態では、バグフィルタ3A;3Bの出口における第二水銀濃度計9A;9Bによる測定値に基づき、第一水銀濃度計7による測定値に基づく第一の制御を補完するようにして、第二の制御として活性炭供給装置5A;5Bの活性炭供給量を別個に増減するように制御するので、活性炭供給装置5A;5Bのそれぞれから排ガス流路A;Bに適切な補完量で活性炭が供給され、過剰に活性炭を供給することがなく、活性炭使用量を適切にすることができる。
In the first embodiment, the mercury concentration of a part of the confluence of the exhaust gas collected from both the exhaust gas channels A and B is measured, and the measured mercury concentration is the mercury of the exhaust gas in both the exhaust gas channels A and B. It is an average value of the concentration, and the
第二水銀濃度計9A;9Bは、図2にて、それぞれの検出部9A−1,9B−1を排ガス流路A;Bに直接配設した例を示したが、これに限定されず、排ガス流路A;Bから第一水銀濃度計7の場合と同様な採取管を設け、各採取管にそれぞれ検出部9A−1,9B−1を配設することとしてもよい。
The second
本実施形態において、活性炭供給装置5A;5Bによる活性炭吹込み位置よりも上流側の位置から採取された排ガスの合流物の水銀濃度を測定する第一水銀濃度計7による水銀濃度測定値が短時間で増加する現象(水銀濃度測定値ピークという)が検出されてから、バグフィルタ3A;3Bの出口において、第二水銀濃度計9A;9Bによる水銀濃度測定値ピークが検出されるまではタイムラグがあるので、活性炭供給装置3による活性炭吹込み位置よりも上流側の水銀濃度測定値ピークが検出されなくなったときでもバグフィルタ3A;3Bの出口において水銀濃度測定値ピークが検出される可能性がある。そこで、第二水銀濃度計9A;9Bを設置しバグフィルタ3A;3Bの出口の水銀濃度測定値に基づき活性炭供給量を制御することによって、第一水銀濃度計7の測定値に基づく制御を補完して、煙突内の排ガス中の水銀濃度をさらに確実に設定値以下にまで下げることができる。
In the present embodiment, the mercury concentration measurement value by the first mercury concentration meter 7 for measuring the mercury concentration of the confluence of the exhaust gas collected from the position upstream of the activation charcoal injection position by the activated
本発明の実施の形態では、制御装置は、水銀濃度計による水銀濃度測定値と活性炭供給量との予め定める対応関係に基づき、活性炭供給量を制御するようにしてもよい。予め定める水銀濃度測定値と活性炭供給量との対応関係としては、種々の形態を適用することができる。 In the embodiment of the present invention, the control device may control the activated carbon supply amount based on a predetermined correspondence between the mercury concentration measurement value by the mercury concentration meter and the activated carbon supply amount. Various forms can be applied as the correspondence between the predetermined mercury concentration measurement value and the amount of activated carbon supplied.
予め定める水銀濃度測定値と活性炭供給量との対応関係としては、水銀濃度測定装置により測定した排ガス中水銀濃度の増加にしたがって、活性炭供給量を、所定の最小値から始まり次第に増加して所定の最大値とする対応関係の形態にしてもよい。活性炭供給量の所定の最小値としては、焼却炉1から排ガスが排出されている運転中は排ガス中の水銀濃度が極めて低い場合にも、最低限としてこの最小値の供給量で常時活性炭を吹き込むことにより、煙突内の排ガス中の水銀濃度を設定値以下に確実に維持できるようにする活性炭供給量の値を定める。排ガス中水銀濃度測定値の増加にしたがって、活性炭供給量を所定の最小値から次第に増加させ、排ガス中水銀濃度に対して適正な量の活性炭を供給する。活性炭供給量を所定の最小値から次第に増大させる対応関係の形態では、水銀濃度の増加にしたがって、活性炭供給量を直線的に増大させてもよいし、複数段階に分けて階段状に増大させるようにしてもよく、種々の対応関係の形態を採用できる。活性炭の供給量を調整する手段として、活性炭供給装置のロータリバルブ形式である場合には切出し部材のロータリの回転数、バルブの開度及びダンパの開度などを単独で又は組み合わせて調整することを行うが、これらの調整機構の調整範囲や調整の特性(例えば供給量の増減が連続的に可能、又は段階的に可能等)に適した対応関係の形態を採用することが好ましい。
As for the correspondence between the predetermined mercury concentration measurement value and the activated carbon supply amount, the activated carbon supply amount is gradually increased starting from a predetermined minimum value as the mercury concentration in the exhaust gas measured by the mercury concentration measuring device increases. It may be in the form of a correspondence relationship with the maximum value. As a predetermined minimum value of the amount of activated carbon supplied, even if the concentration of mercury in the exhaust gas is extremely low during operation when the exhaust gas is discharged from the
水銀濃度測定値と活性炭供給量との対応関係の各種形態の例を図3に示す。 FIG. 3 shows examples of various forms of the correspondence between the measured mercury concentration and the amount of activated carbon supplied.
図3(A)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、予め定める所定水銀濃度までの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、さらに、排ガス中水銀濃度の増加に対して、活性炭供給量をその所定の最大値で一定に保つ形態である。水銀濃度の測定値が所定水銀濃度より低い場合には活性炭供給量を所定の最小値とし、所定水銀濃度より高い場合には活性炭供給量を所定の最大値とする対応関係の形態であり、簡単な制御機構で活性炭供給量を制御することができる。 In the form shown in FIG. 3 (A), the measured value of the mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value, and the activated carbon supply amount having a predetermined minimum value is in the range from a predetermined mercury concentration to a predetermined value. When the measured value of the mercury concentration reaches the above-mentioned predetermined mercury concentration, the amount of activated carbon supplied is increased stepwise to the predetermined maximum value, and the mercury concentration in the exhaust gas is further increased. On the other hand, it is a form in which the amount of activated carbon supplied is kept constant at the predetermined maximum value. When the measured value of the mercury concentration is lower than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined minimum value, and when the mercury concentration is higher than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum value. The amount of activated carbon supplied can be controlled by a flexible control mechanism.
図3(B)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量(第一の供給量)のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の第二の供給量にまで増大させ、排ガス中水銀濃度の増加に対して活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、排ガス中水銀濃度の増加にしたがって、細かい階段状で活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。排ガス中水銀濃度の増加にしたがって、活性炭供給量を所定の最小値から所定の最大値にまで階段状で増大させることにより、排ガス中水銀濃度に対して活性炭の供給をより適正な量で供給するように制御することができる。 In the form shown in FIG. 3B, the measured value of the mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value, and the range from reaching the first predetermined mercury concentration is a predetermined minimum value. Activated charcoal is supplied based on the activated charcoal supply amount (first supply amount), and when the measured value of the mercury concentration reaches the above-mentioned first predetermined mercury concentration, the activated charcoal supply amount is set in a stepwise manner to the predetermined second predetermined mercury concentration. When the supply amount is increased, the activated charcoal supply amount is kept constant at the second supply amount in response to the increase in the mercury concentration in the exhaust gas, and the measured value of the mercury concentration reaches the second predetermined mercury concentration. In order to increase the amount of activated charcoal supply to a predetermined third supply amount, the amount of activated charcoal supply is repeatedly increased in a fine stepwise manner as the mercury concentration in the exhaust gas increases, and the amount of activated charcoal supply is increased to a predetermined maximum value. After increasing to, the amount of activated coal supplied is kept constant at a predetermined maximum value against an increase in the mercury concentration in the exhaust gas. By increasing the amount of activated carbon supplied stepwise from a predetermined minimum value to a predetermined maximum value as the mercury concentration in the exhaust gas increases, the supply of activated carbon is supplied in a more appropriate amount with respect to the mercury concentration in the exhaust gas. Can be controlled as
図3(C)に示す形態は、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させる形態である。また、図3(D)に示す形態は、排ガス中水銀濃度の測定値が所定水銀濃度に達するまでの範囲には、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記所定の排ガス中水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図3(C)、(D)に示す形態では、排ガス中水銀濃度の増加にしたがって、所定の最小値から連続的に活性炭供給量を増大させることにより、排ガス中水銀濃度に対してきめ細かく適正量で活性炭を供給するように制御することができる。 The form shown in FIG. 3C is a form in which the amount of activated carbon supplied is linearly increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases. Further, in the form shown in FIG. 3D, activated carbon is linearly supplied from a predetermined minimum value as the mercury concentration in the exhaust gas increases within the range until the measured value of the mercury concentration in the exhaust gas reaches the predetermined mercury concentration. The amount was increased, and when the measured value of the mercury concentration reached the mercury concentration in the predetermined exhaust gas, the activated carbon supply amount was set to the predetermined maximum value, and the activated carbon supply amount was increased to the predetermined maximum value. After that, the amount of activated carbon supplied is kept constant at a predetermined maximum value against an increase in the concentration of mercury in the exhaust gas. In the modes shown in FIGS. 3C and 3D, the amount of activated carbon supplied is continuously increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases, so that the amount is finely adjusted with respect to the mercury concentration in the exhaust gas. Can be controlled to supply activated carbon at.
図3(E)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図3(E)に示す形態は、図3(A)と(C)に示す形態を組み合わせた形態であり、それぞれの形態の特徴、効果を併せもつ。 In the form shown in FIG. 3 (E), the range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable limit minimum value to reaching the first predetermined mercury concentration is a predetermined minimum value. Activated carbon is supplied based on the amount of activated carbon supplied, and after the measured value of the mercury concentration reaches the above-mentioned first predetermined mercury concentration, the amount of activated carbon supplied linearly from the predetermined minimum value as the mercury concentration in the exhaust gas increases. When the measured value of the mercury concentration reaches the second predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum value, and after the activated carbon supply amount is increased to the predetermined maximum value, , It is a form in which the amount of activated carbon supplied is kept constant at a predetermined maximum value against an increase in the concentration of mercury in the exhaust gas. The form shown in FIG. 3 (E) is a combination of the forms shown in FIGS. 3 (A) and 3 (C), and has the characteristics and effects of each form.
図3(F)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量(第一の供給量)のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中水銀濃度の増加にしたがって、第一の供給量から直線的に活性炭供給量を増大させ、第二の所定水銀濃度に対応する第二の供給量にまで増大させ、その後排ガス中水銀濃度の増加に対して活性炭供給量を第二の供給量で一定に保ち、さらに、第三の所定水銀濃度に達したときに、第二の供給量から直線的に活性炭供給量を増大させ、第四の所定水銀濃度に対応する第三の供給量にまで増大させ、その後排ガス中水銀濃度の増加に対して活性炭供給量を第三の供給量で一定に保ち、このような排ガス中水銀濃度の増加に対して活性炭供給量を一定に保つことと増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図3(F)に示す形態は、図3(B)と(D)に示す形態を組み合わせた形態であり、それぞれの形態の特徴、効果を併せもつ。 In the form shown in FIG. 3 (F), the range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable limit minimum value to reaching the first predetermined mercury concentration is a predetermined minimum value. Activated charcoal is supplied based on the amount of activated charcoal supplied (first supply amount), and after the measured value of mercury concentration reaches the above-mentioned first predetermined mercury concentration, the first supply is made as the mercury concentration in the exhaust gas increases. The amount of activated charcoal supply is linearly increased from the amount, and the amount is increased to the second supply amount corresponding to the second predetermined mercury concentration, and then the activated charcoal supply amount is increased to the second supply amount in response to the increase in mercury concentration in the exhaust gas. When the third predetermined mercury concentration is reached, the activated coal supply amount is linearly increased from the second supply amount to reach the third supply amount corresponding to the fourth predetermined mercury concentration. After that, the amount of activated charcoal supplied was kept constant at the third supply amount in response to the increase in mercury concentration in exhaust gas, and the amount of activated charcoal supplied was kept constant and increased in response to such an increase in mercury concentration in exhaust gas. After repeatedly increasing the amount of activated charcoal supply to a predetermined maximum value, the activated charcoal supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The form shown in FIG. 3 (F) is a combination of the forms shown in FIGS. 3 (B) and 3 (D), and has the characteristics and effects of each form.
図3(G)に示す形態は、排ガス中水銀濃度の測定値が所定水銀濃度に達するまでの間、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。排ガス中水銀濃度の測定値が比較的中程度の所定の値より低い場合には、排ガス中水銀濃度の増加にしたがって、所定の最小値から連続的に活性炭供給量を増大させることにより、排ガス中水銀濃度に対してきめ細かく適正量で活性炭を供給するように制御することができ、排ガス中水銀濃度の測定値が比較的中程度の所定水銀濃度より高い場合には、活性炭供給量を所定の最大値とすることとする対応関係であり、活性炭の供給量を調整する複数の手段を有効に利用して活性炭供給量を適切量で制御することができる。 In the form shown in FIG. 3 (G), the amount of activated carbon supplied is linearly increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases until the measured value of the mercury concentration in the exhaust gas reaches the predetermined mercury concentration. When the measured value of the mercury concentration reaches the above-mentioned predetermined mercury concentration, the activated carbon supply amount is increased to the predetermined maximum value in a stepwise manner, and after the activated carbon supply amount is increased to the predetermined maximum value, the exhaust gas is exhausted. It is a form in which the amount of activated carbon supplied is kept constant at a predetermined maximum value with respect to an increase in the concentration of medium mercury. When the measured value of the mercury concentration in the exhaust gas is lower than the predetermined value, which is relatively medium, the amount of activated carbon supplied in the exhaust gas is continuously increased from the predetermined minimum value as the mercury concentration in the exhaust gas increases. It is possible to finely control the supply of activated carbon in an appropriate amount with respect to the mercury concentration, and when the measured value of the mercury concentration in the exhaust gas is higher than the predetermined mercury concentration, which is relatively medium, the amount of activated carbon supplied is set to the specified maximum. It is a correspondence relationship to be set as a value, and the activated carbon supply amount can be controlled by an appropriate amount by effectively utilizing a plurality of means for adjusting the activated carbon supply amount.
図3(H)に示す形態は、排ガス中水銀濃度の測定値が第一の所定水銀濃度に達するまでの間、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記第一の所定水銀濃度に達したときに、活性炭供給量を所定の第一の供給量とし、水銀濃度の測定値が第二の所定水銀濃度に達するまでの間、活性炭供給量を所定の第一の供給量で一定に保ち、水銀濃度の測定値が上記第二の所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図3(H)に示す形態は、図3(G)に示す形態に、排ガス中水銀濃度の測定値が比較的中程度の所定の範囲(第一の所定水銀濃度から第二の所定銀濃度までの範囲)では、活性炭供給量を第一の所定供給量で一定に保つことを組み合わせた形態であり、活性炭の供給をより適正な量で供給するように制御することができる。 In the form shown in FIG. 3H, the amount of activated charcoal supplied linearly from a predetermined minimum value as the mercury concentration in the exhaust gas increases until the measured value of the mercury concentration in the exhaust gas reaches the first predetermined mercury concentration. When the measured value of the mercury concentration reaches the first predetermined mercury concentration, the activated charcoal supply amount is set as the predetermined first supply amount, and the measured value of the mercury concentration reaches the second predetermined mercury concentration. Until then, the amount of activated charcoal supply is kept constant at a predetermined first supply amount, and when the measured value of mercury concentration reaches the above-mentioned second predetermined mercury concentration, the amount of activated charcoal supply is stepped up to a predetermined maximum value. After increasing the amount of activated charcoal supply to a predetermined maximum value, the amount of activated charcoal supply is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The form shown in FIG. 3 (H) has a predetermined range in which the measured value of the mercury concentration in the exhaust gas is relatively medium (from the first predetermined mercury concentration to the second predetermined silver concentration) in the form shown in FIG. 3 (G). In the range up to), it is a form in which the amount of activated carbon supplied is kept constant at the first predetermined supply amount, and the supply of activated carbon can be controlled to be supplied in a more appropriate amount.
また、制御装置は、水銀濃度計による水銀濃度測定値と活性炭供給量とを予め定める対応関係に基づき活性炭供給量を制御する場合に、予め定める水銀濃度測定値と活性炭供給量との対応関係の形態として、測定した排ガス中水銀濃度が零又は水銀濃度計の測定可能な限界最小値未満又は予め定める所定値より低い場合には、活性炭の供給を行わず、排ガス中水銀濃度が零又は測定可能な限界最小値又は予め定めた所定値より高い場合には、排ガス中水銀濃度の増加にしたがって、活性炭供給量を次第に増加させる対応関係の形態としてもよい。また、排ガス中水銀濃度の増加にしたがって、活性炭供給量を増加させる際に、直線的に増加させてもよいし、階段状に増加させてもよい。 Further, when the control device controls the activated coal supply amount based on the correspondence relationship between the mercury concentration measured value by the mercury concentration meter and the activated charcoal supply amount, the correspondence relationship between the predetermined mercury concentration measured value and the activated charcoal supply amount is determined. As a form, when the measured mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value of the mercury concentration meter or lower than the predetermined value set in advance, the activated charcoal is not supplied and the mercury concentration in the exhaust gas is zero or measurable. When the limit is higher than the minimum value or a predetermined value set in advance, the amount of activated charcoal supplied may be gradually increased as the concentration of mercury in the exhaust gas increases. Further, when the amount of activated carbon supplied is increased according to the increase in the mercury concentration in the exhaust gas, it may be increased linearly or stepwise.
また、上記対応関係の他の形態としては、測定した排ガス中水銀濃度が零又は水銀濃度計の測定可能な限界最小値未満又は予め定める第一の所定水銀濃度より低い場合には、活性炭の供給を行わず、排ガス中水銀濃度が零又は測定可能な限界最小値又は予め定める第一の所定水銀濃度より高く、予め定める第二の所定水銀濃度より低い範囲で、排ガス中水銀濃度の増加にしたがって、活性炭供給量を次第に増加させ、排ガス中水銀濃度の測定値が上記第二の所定水銀濃度より高い範囲で、活性炭供給量を所定の供給量として一定に保つ対応関係の形態としてもよい。また、排ガス中水銀濃度の増加にしたがって、活性炭供給量を増加させる際に、直線的に増加させてもよいし、階段状に増加させてもよい。 In addition, as another form of the above correspondence, when the measured mercury concentration in the exhaust gas is zero or less than the measurable limit minimum value of the mercury concentration meter or lower than the predetermined first predetermined mercury concentration, the activated charcoal is supplied. As the mercury concentration in the exhaust gas increases, the mercury concentration in the exhaust gas is zero, the minimum measurable value, or higher than the predetermined first predetermined mercury concentration and lower than the predetermined second predetermined mercury concentration. , The amount of activated charcoal supplied may be gradually increased, and the amount of activated charcoal supplied may be kept constant as a predetermined amount within a range in which the measured value of the mercury concentration in the exhaust gas is higher than the above-mentioned second predetermined mercury concentration. Further, when the amount of activated carbon supplied is increased according to the increase in the mercury concentration in the exhaust gas, it may be increased linearly or stepwise.
本発明において、排ガス中の水銀濃度と活性炭供給量とを予め定める対応関係にもとづいて、活性炭供給量を制御する場合、その最小値から最大値までの活性炭供給量の増大について種々の形態をとれることは図3にて説明したとおりであるが、所定の最小値そして所定の最大値をどのようにして定めるか、その一例として図3(E)の形態で活性炭供給量を増大する場合について次に説明する。すなわち、水銀濃度測定値と活性炭供給量との対応関係が次に示す形態である。排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。 In the present invention, when the activated carbon supply amount is controlled based on a predetermined correspondence relationship between the mercury concentration in the exhaust gas and the activated carbon supply amount, various forms can be taken for increasing the activated carbon supply amount from the minimum value to the maximum value. This is as explained in FIG. 3, but as an example of how to determine the predetermined minimum value and the predetermined maximum value, the case where the activated carbon supply amount is increased in the form of FIG. 3 (E) is as follows. Explain to. That is, the correspondence between the measured mercury concentration and the amount of activated carbon supplied is shown below. In the range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable limit minimum value to the first predetermined mercury concentration, the activated charcoal is supplied under the predetermined minimum value of the activated charcoal supply amount. Then, after the measured value of the mercury concentration reaches the first predetermined mercury concentration, the amount of activated charcoal supplied is linearly increased from the predetermined minimum value as the mercury concentration in the exhaust gas increases, and the measured value of the mercury concentration is increased. When the second predetermined mercury concentration is reached, the activated charcoal supply amount is set to the predetermined maximum value, and after the activated charcoal supply amount is increased to the predetermined maximum value, the mercury concentration in the exhaust gas is increased. It is a form in which the amount of activated coal supplied is kept constant at the predetermined maximum value.
発明者等は図1に示す排ガス処理装置を用いて、水銀を含む排ガスの処理を行う際の上記所定の最小値と所定の最大値を定めるための諸条件を検討した。その検討に際しては、集塵装置入口(上流側)での排ガス中の水銀濃度を測定し、この水銀濃度測定値と集塵装置の下流側での排ガス中の水銀濃度の設定値との比率(上流側水銀濃度比率)を20倍〜200倍となる範囲で変えた場合について、活性炭による水銀吸着除去プロセスをシミュレーションして活性炭供給量の所定の最小値と所定の最大値の適切な範囲を求めた。上記上流側水銀濃度比率は20倍〜200倍の間を複数の段階に区分して、各区分の範囲において、所定の最小値と所定の最大値についての適切な範囲を求めた。得られた結果は表1に示すとおりである。 The inventors have examined various conditions for determining the above-mentioned predetermined minimum value and predetermined maximum value when treating exhaust gas containing mercury by using the exhaust gas treatment apparatus shown in FIG. In the examination, the mercury concentration in the exhaust gas at the inlet (upstream side) of the dust collector was measured, and the ratio of this mercury concentration measurement value to the set value of the mercury concentration in the exhaust gas on the downstream side of the dust collector ( When the upstream mercury concentration ratio) is changed in the range of 20 to 200 times, the mercury adsorption removal process using activated carbon is simulated to obtain an appropriate range of the predetermined minimum value and the predetermined maximum value of the activated carbon supply amount. It was. The upstream mercury concentration ratio was divided into a plurality of stages between 20 times and 200 times, and an appropriate range for a predetermined minimum value and a predetermined maximum value was determined in the range of each category. The results obtained are shown in Table 1.
表1において、例えば上記上流側水銀濃度比率が100倍以上120倍未満の範囲となる水銀を含む排ガスが炉から排出されると予測される場合には、処理排ガス流量に対する活性炭吹込み重量として定められる活性炭供給量の所定の最小値を60〜200mg/Nm3と設定し、活性炭供給量の所定の最大値を300〜1000mg/Nm3と設定する。 In Table 1, for example, when it is predicted that the exhaust gas containing mercury whose upstream mercury concentration ratio is in the range of 100 times or more and less than 120 times is discharged from the furnace, it is defined as the activated carbon injection weight with respect to the treated exhaust gas flow rate. is a predetermined minimum value of the activated carbon supply amount is set to 60~200mg / Nm 3, to set a predetermined maximum value of the activated carbon supply amount and 300~1000mg / Nm 3.
この表1において、上記上流側水銀濃度比率の各区分範囲について、所定の最小値の下限は排ガス中の水銀濃度測定値が低い場合または集塵装置の下流側での水銀濃度設定値が高い場合に対応し、所定の最小値の上限は排ガス中の水銀濃度測定値が高い場合または集塵装置の下流側での水銀濃度設定値が低い場合に対応する。 In Table 1, for each category range of the upstream mercury concentration ratio, the lower limit of the predetermined minimum value is when the measured mercury concentration in the exhaust gas is low or when the mercury concentration set value on the downstream side of the dust collector is high. The upper limit of the predetermined minimum value corresponds to the case where the measured mercury concentration in the exhaust gas is high or the mercury concentration set value on the downstream side of the dust collector is low.
また、表1において、上記上流側水銀濃度比率の各区分範囲について、所定の最大値の下限は排ガス中の水銀濃度測定値が低い場合または集塵装置の下流側での水銀濃度設定値が高い場合に対応し、所定の最大値の上限は排ガス中の水銀濃度測定値が高い場合または集塵装置の下流側での水銀濃度設定値が低い場合に対応する。 Further, in Table 1, for each category range of the upstream mercury concentration ratio, the lower limit of the predetermined maximum value is when the measured mercury concentration in the exhaust gas is low or the mercury concentration set value on the downstream side of the dust collector is high. Corresponding to the case, the upper limit of the predetermined maximum value corresponds to the case where the measured mercury concentration in the exhaust gas is high or the mercury concentration set value on the downstream side of the dust collector is low.
このようにして、活性炭供給量の所定の最小値を設定することにより、集塵装置のバグフィルタに活性炭を付着させ吸着層を予め十分に形成しておくことになり、高濃度の水銀を含む排ガスが排出された際に速やかに、既に形成されている活性炭吸着層とその際に吹き込まれる活性炭により水銀を吸着除去でき、水銀濃度を十分に低濃度にまで低下させることができる。 By setting a predetermined minimum value of the amount of activated carbon supplied in this way, the activated carbon is adhered to the bag filter of the dust collector and the adsorption layer is sufficiently formed in advance, and contains a high concentration of mercury. When the exhaust gas is discharged, the activated carbon adsorbed layer already formed and the activated carbon blown at that time can adsorb and remove mercury, and the mercury concentration can be lowered to a sufficiently low concentration.
また、活性炭供給量の所定の最大値を定めることにより、活性炭の過剰供給を行わないようにして高濃度の水銀を十分に吸着除去できる。 Further, by setting a predetermined maximum value of the amount of activated carbon supplied, it is possible to sufficiently adsorb and remove high-concentration mercury without excessive supply of activated carbon.
以下、本発明についての実施例を比較例とともに説明する。 Hereinafter, examples of the present invention will be described together with comparative examples.
[比較例]
後述する図1に示す排ガス処理装置を用いた実施例に対する比較例について、実施例と異なる構成について説明する。二つの焼却炉のそれぞれから排出される排ガスをそれぞれの経路で煙突まで導く二つの排ガス流路が設けられ、廃棄物焼却炉から排出される排ガスは、煙突からの排ガス量がそれぞれ10,000Nm3/hであり、煙突内の排ガス中水銀濃度を1時間平均値で50μg/Nm3以下とするように、それぞれの排ガス流路に設けられた活性炭供給装置から常時一定量である供給量0.5kg/hで活性炭を吹込んでいる。定常時のバグフィルタ上流部の排ガス中の水銀濃度は100μg/Nm3である。それぞれの排ガス流路のバグフィルタ上流位置に水銀濃度計をそれぞれ設置して、水銀濃度計による水銀濃度測定値が500μg/Nm3以上に増加した場合、図4に示すバグフィルタ上流水銀濃度と活性炭供給量の対応関係に基づき、水銀濃度測定値の上昇に伴って、活性炭供給量をステップ状に増加して供給するように制御する。
[Comparison example]
A configuration different from that of the example will be described with respect to a comparative example with respect to the example using the exhaust gas treatment apparatus shown in FIG. 1 to be described later. Two exhaust gas channels are provided to guide the exhaust gas discharged from each of the two incinerators to the chimney by each route, and the amount of exhaust gas discharged from the waste incinerator is 10,000 Nm 3 each from the chimney. The amount of supply is always constant from the activated carbon supply device provided in each exhaust gas flow path so that the concentration of mercury in the exhaust gas in the chimney is 50 μg / Nm 3 or less on average for one hour. Activated carbon is blown at 5 kg / h. The mercury concentration in the exhaust gas upstream of the bug filter at regular times is 100 μg / Nm 3 . When a mercury concentration meter is installed upstream of the bag filter in each exhaust gas flow path and the mercury concentration measured by the mercury concentration meter increases to 500 μg / Nm 3 or more, the mercury concentration upstream of the bag filter and activated charcoal shown in FIG. Based on the correspondence between the supply amounts, the amount of activated charcoal supplied is controlled to be increased in steps as the measured mercury concentration increases.
供給されるごみ性状の変動によって、バグフィルタ上流位置での排ガス中の水銀濃度が1,600μg/Nm3まで上昇したが、煙突における排ガス中の水銀濃度は50μg/Nm3以下に抑えられた。供給されるごみ性状の変動によって排ガス中の水銀濃度が変動し、その変動に対する活性炭供給量の制御を行った期間において、バグフィルタ上流位置での水銀濃度測定値が500μg/Nm3を超えてから500μg/Nm3未満に下がるまでに供給した活性炭量は0.33kgであった。 By variations in the dust properties supplied, although the mercury concentration in the exhaust gas in the bag filter upstream position rose to 1,600μg / Nm 3, the mercury concentration in the exhaust gas in the chimney it was kept below 50 [mu] g / Nm 3. The mercury concentration in the exhaust gas fluctuates due to fluctuations in the properties of the supplied waste, and after the measured value of mercury concentration at the upstream position of the bag filter exceeds 500 μg / Nm 3 during the period when the amount of activated carbon supplied in response to the fluctuation is controlled. The amount of activated carbon supplied before the temperature dropped to less than 500 μg / Nm 3 was 0.33 kg.
[実施例1]
実施例1では図1に示す排ガス処理装置を用いて、水銀を含む排ガスの水銀の除去処理を行い、効果を確認した。それぞれの排ガス流路のバグフィルタ上流位置から採取した排ガスの合流物の水銀濃度を1台の水銀濃度計で測定し、図5に示されている排ガス合流物水銀濃度と活性炭供給量の対応関係に基づき活性炭供給量を増加して供給するように制御する。水銀濃度測定値が300μg/Nm3未満の時には活性炭供給量を0.5kg/hとし、水銀濃度測定値が300μg/Nm3以上の場合には水銀濃度測定値の上昇に伴って、活性炭供給量をステップ状に増加させ、最大値として5kg/hとするようにしている。それぞれの排ガス流路において定常時のバグフィルタ上流部の排ガス中の水銀濃度は100μg/Nm3であるが、一方の排ガス流路におけるバグフィルタ上流部の排ガス中の水銀濃度が500μg/Nm3まで上昇すると、合流物の水銀濃度計測定値は300μg/Nm3を示すため、図5に示すように水銀濃度測定値が300μg/Nm3以上の場合に活性炭供給量を増加して供給するように制御する。
[Example 1]
In Example 1, the exhaust gas treatment apparatus shown in FIG. 1 was used to remove mercury from exhaust gas containing mercury, and the effect was confirmed. The mercury concentration of the exhaust gas confluent collected from the upstream position of the bug filter of each exhaust gas flow path is measured with one mercury concentration meter, and the correspondence between the exhaust gas confluence mercury concentration and the amount of activated carbon supplied shown in FIG. The amount of activated carbon supplied is controlled to be increased based on the above. When the measured mercury concentration value is less than 300 μg / Nm 3, the amount of activated charcoal supplied is 0.5 kg / h, and when the measured value of mercury concentration is 300 μg / Nm 3 or more, the amount of activated charcoal supplied increases as the measured value of mercury concentration increases. Is increased in steps so that the maximum value is 5 kg / h. In each exhaust gas flow path, the mercury concentration in the exhaust gas upstream of the bug filter at steady time is 100 μg / Nm 3 , but the mercury concentration in the exhaust gas upstream of the bag filter in one exhaust gas flow path is up to 500 μg / Nm 3. When it rises, the measured value of the mercury concentration meter of the confluence shows 300 μg / Nm 3 , so as shown in FIG. 5, when the measured value of mercury concentration is 300 μg / Nm 3 or more, the amount of activated carbon supplied is controlled to be increased. To do.
供給されるごみ性状の変動によって、それぞれの排ガス流路のバグフィルタ上流位置から採取した排ガスの合流物の水銀濃度の測定値が1,600μg/Nm3まで上昇したが、煙突における水銀濃度の最大値を50μg/Nm3以下に抑えることができた。供給されるごみ性状の変動によって比較例の場合と同様な排ガス中の水銀濃度の変動が生じる際に、その変動に対する活性炭供給量の制御を行った期間において、合流物の水銀濃度測定値が300μg/Nm3を超えてから、300μg/Nm3未満に下がるまでに供給した活性炭量は0.56kgであった。比較例では水銀濃度計を2台必要としていることに対して、水銀濃度計を1台として設備費用を低減することができた。 Due to fluctuations in the properties of the supplied waste, the measured mercury concentration of the confluence of exhaust gas collected from the upstream position of the bag filter in each exhaust gas flow path increased to 1,600 μg / Nm 3 , but the maximum mercury concentration in the chimney. The value could be suppressed to 50 μg / Nm 3 or less. When the mercury concentration in the exhaust gas fluctuates due to fluctuations in the properties of the supplied waste, the measured mercury concentration of the confluent is 300 μg during the period when the amount of activated carbon supplied is controlled for the fluctuation. / Nm 3 from beyond activated carbon amount supplied to the down to less than 300 [mu] g / Nm 3 was 0.56 kg. In the comparative example, two mercury densitometers were required, but one mercury densitometer was used to reduce the equipment cost.
[実施例2]
実施例2では図2に示す排ガス処理装置を用いて、水銀を含む排ガスの水銀の除去処理を行い、効果を確認した。それぞれの排ガス流路のバグフィルタ上流位置から採取した排ガスの合流物の水銀濃度を1台の第一水銀濃度計で測定し、図5に示されている水銀濃度測定値と活性炭供給量の対応関係に基づき活性炭供給量を増加して供給するように第一の制御として制御する。第一の制御を実施例1と同様に行い、さらに、それぞれのバグフィルタの下流側位置にて排ガス中の水銀濃度を測定する第二水銀濃度計も設け、第二水銀濃度計による測定値に基づき、第一水銀濃度計による水銀濃度測定値に基づく第一の制御を補完するようにして、第二の制御として活性炭供給量を増減するように制御する。
[Example 2]
In Example 2, the exhaust gas treatment apparatus shown in FIG. 2 was used to remove mercury from the exhaust gas containing mercury, and the effect was confirmed. The mercury concentration of the confluence of exhaust gas collected from the upstream position of the bug filter in each exhaust gas flow path is measured with one first mercury concentration meter, and the correspondence between the measured mercury concentration value shown in FIG. 5 and the amount of activated carbon supplied. The first control is to increase the amount of activated carbon supplied based on the relationship. The first control is performed in the same manner as in the first embodiment, and a second mercury densitometer for measuring the mercury concentration in the exhaust gas is also provided at the downstream position of each bag filter, and the measured value by the second mercury densitometer is used. Based on this, the first control based on the mercury concentration measurement value by the first mercury concentration meter is complemented, and the second control is to increase or decrease the amount of activated carbon supplied.
供給されるごみ性状の変動によって、それぞれの排ガス流路のバグフィルタ上流位置から採取した排ガスの合流物の水銀濃度の測定値が1,600μg/Nm3まで上昇したが、煙突における水銀濃度の最大値を50μg/Nm3以下に抑えることができた。供給されるごみ性状の変動によって比較例の場合と同様な排ガス中の水銀濃度の変動が生じる際に、その変動に対する活性炭供給量の制御を行った期間において、合流物の水銀濃度測定値が300μg/Nm3を超えてから、300μg/Nm3未満に下がるまでに供給した活性炭量は0.46kgであり、実施例1よりも活性炭供給量を低減させることができた。比較例では水銀濃度計を2台必要としていることに対して、水銀濃度計を1台として設備費用を低減することができた。 Due to fluctuations in the properties of the supplied waste, the measured mercury concentration of the confluence of exhaust gas collected from the upstream position of the bag filter in each exhaust gas flow path increased to 1,600 μg / Nm 3 , but the maximum mercury concentration in the chimney. The value could be suppressed to 50 μg / Nm 3 or less. When the mercury concentration in the exhaust gas fluctuates due to fluctuations in the properties of the supplied waste, the measured mercury concentration of the confluent is 300 μg during the period in which the amount of activated carbon supplied is controlled for the fluctuation. The amount of activated carbon supplied from the time when it exceeded / Nm 3 to the time when it decreased to less than 300 μg / Nm 3 was 0.46 kg, and the amount of activated carbon supplied could be reduced as compared with Example 1. In the comparative example, two mercury densitometers were required, but one mercury densitometer was used to reduce the equipment cost.
1A;1B 炉(焼却炉)
3A;3B 集塵装置(バグフィルタ)
5A;5B 活性炭供給装置
7 水銀濃度測定装置(第一水銀濃度計)
8 制御装置
9A;9B 第二水銀濃度計
1A; 1B furnace (incinerator)
3A; 3B dust collector (bug filter)
5A; 5B Activated carbon supply device 7 Mercury concentration measuring device (first mercury concentration meter)
8
Claims (14)
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を活性炭の吹込み位置よりも上流側で測定する水銀濃度測定装置と、複数の活性炭供給装置の活性炭供給量を制御する制御装置とを備え、
制御装置は、活性炭供給量を水銀濃度測定装置による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。 In order to treat the exhaust gas containing mercury discharged from multiple furnaces, in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, a dust collector that removes the exhaust gas and an upstream side of the dust collector In an exhaust gas treatment device provided with an activated carbon supply device that blows activated carbon into each exhaust gas flow path.
Mercury concentration measurement that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path on the downstream side of the furnace and on the upstream side of the dust collector in each exhaust gas flow path on the upstream side of the activated carbon injection position. It is equipped with a device and a control device for controlling the amount of activated carbon supplied by a plurality of activated carbon supply devices.
The control device controls the amount of activated carbon supplied so that the concentration of activated carbon in the exhaust gas on the downstream side of the dust collector is equal to or less than the set value based on the value measured by the mercury concentration measuring device. An exhaust gas treatment device characterized by.
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を活性炭の吹込み位置よりも上流側で測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計とを有する水銀濃度測定装置と、活性炭供給装置の活性炭供給量を制御する制御装置とを備え、
制御装置は、活性炭供給量を上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。 In order to treat the exhaust gas containing mercury discharged from multiple furnaces, in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, a dust collector that removes the exhaust gas and an upstream side of the dust collector In an exhaust gas treatment device provided with an activated carbon supply device that blows activated carbon into each exhaust gas flow path.
Upstream mercury that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path on the downstream side of the furnace and on the upstream side of the dust collector in each exhaust gas flow path on the upstream side of the activated carbon injection position. A mercury concentration measuring device having a densitometer and a downstream mercury concentration meter for measuring the mercury concentration in the exhaust gas on the downstream side of the dust collector in each exhaust gas flow path, and a control for controlling the activated carbon supply amount of the activated carbon supply device. Equipped with equipment,
The control device sets the mercury concentration in the exhaust gas on the downstream side of the dust collector based on the mercury concentration measurement value by the upstream mercury concentration meter and the mercury concentration measurement value by the downstream mercury concentration meter for the amount of activated carbon supplied. An exhaust gas treatment device characterized by controlling the amount of activated carbon supplied as follows.
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を活性炭の吹込み位置よりも上流側で測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、複数の活性炭供給装置の活性炭供給量を制御する制御装置とを備え、
制御装置は、上流側水銀濃度計による水銀濃度測定値に基づき活性炭供給量を制御する第一の制御と、下流側水銀濃度計による水銀濃度測定値に基づき、それぞれの集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御する第二の制御を行うことを特徴とする排ガス処理装置。 In order to treat the exhaust gas containing mercury discharged from multiple furnaces, in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, a dust collector that removes the exhaust gas and an upstream side of the dust collector In an exhaust gas treatment device provided with an activated carbon supply device that blows activated carbon into each exhaust gas flow path.
Upstream mercury that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path on the downstream side of the furnace and on the upstream side of the dust collector in each exhaust gas flow path on the upstream side of the activated carbon injection position. It is equipped with a densitometer, a downstream mercury densitometer that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector in each exhaust gas flow path, and a control device that controls the amount of activated carbon supplied by a plurality of activated carbon supply devices.
The control device is the first control that controls the amount of activated carbon supplied based on the mercury concentration measurement value by the upstream mercury concentration meter, and the control device on the downstream side of each dust collector based on the mercury concentration measurement value by the downstream mercury concentration meter. An exhaust gas treatment device characterized in that a second control for controlling the amount of activated carbon supplied is performed so that the mercury concentration in the exhaust gas of the above is less than or equal to a set value.
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を活性炭の吹込み位置よりも上流側で水銀濃度測定装置により測定し、複数の活性炭供給装置の活性炭供給量を制御装置で制御することとし、
制御装置により、活性炭供給量を水銀濃度測定装置による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。 In order to treat the exhaust gas containing mercury discharged from a plurality of furnaces, the exhaust gas is dust-removed by a dust collector in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, and each is discharged on the upstream side of the dust collector. In the exhaust gas treatment method in which activated carbon is blown into the exhaust gas flow path from the activated carbon supply device,
The mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path at the position downstream of the furnace and upstream side of the dust collector in each exhaust gas flow path is measured by the mercury concentration measuring device on the upstream side of the activated carbon injection position. It was decided to measure and control the amount of activated carbon supplied by multiple activated carbon supply devices with a control device.
The control device controls the amount of activated carbon supplied so that the concentration of activated carbon in the exhaust gas on the downstream side of the dust collector is equal to or less than the set value based on the value measured by the mercury concentration measuring device. An exhaust gas treatment method characterized by.
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を活性炭の吹込み位置よりも上流側で測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計を有する水銀濃度測定装置により水銀濃度を測定し、
複数の活性炭供給装置の活性炭供給量を制御することとし、
制御装置により、活性炭供給量を上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。 In order to treat the exhaust gas containing mercury discharged from a plurality of furnaces, the exhaust gas is dust-removed by a dust collector in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, and each is discharged on the upstream side of the dust collector. In the exhaust gas treatment method in which activated carbon is blown into the exhaust gas flow path from the activated carbon supply device,
Upstream mercury that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path on the downstream side of the furnace and on the upstream side of the dust collector in each exhaust gas flow path on the upstream side of the injection position of the activated charcoal. The mercury concentration is measured by a densitometer and a mercury concentration measuring device having a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector in each exhaust gas flow path.
It was decided to control the amount of activated carbon supplied by multiple activated carbon supply devices.
With the control device, the amount of activated carbon supplied is set based on the mercury concentration measurement value by the upstream mercury concentration meter and the mercury concentration measurement value by the downstream mercury concentration meter, and the mercury concentration in the exhaust gas on the downstream side of the dust collector is set. An exhaust gas treatment method characterized by controlling the amount of activated carbon supplied as follows.
それぞれの排ガス流路における炉の下流側でかつ集塵装置の上流側の位置で排ガス流路から採取した排ガスの合流物の水銀濃度を活性炭の吹込み位置よりも上流側で測定する上流側水銀濃度計と、それぞれの排ガス流路における集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計を有する水銀濃度測定装置により水銀濃度を測定し、
複数の活性炭供給装置の活性炭供給量を制御することとし、
制御装置により、上流側水銀濃度計による水銀濃度測定値に基づき活性炭供給量を制御する第一の制御を行い、下流側水銀濃度計による水銀濃度測定値に基づき、それぞれの集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御
する第二の制御を行うことを特徴とする排ガス処理方法。
In order to treat the exhaust gas containing mercury discharged from a plurality of furnaces, the exhaust gas is dust-removed by a dust collector in each exhaust gas flow path that guides the exhaust gas discharged from each furnace, and each is discharged on the upstream side of the dust collector. In the exhaust gas treatment method in which activated carbon is blown into the exhaust gas flow path from the activated carbon supply device,
Upstream mercury that measures the mercury concentration of the confluence of exhaust gas collected from the exhaust gas flow path on the downstream side of the furnace and on the upstream side of the dust collector in each exhaust gas flow path on the upstream side of the injection position of the activated charcoal. The mercury concentration is measured by a densitometer and a mercury concentration measuring device having a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas on the downstream side of the dust collector in each exhaust gas flow path.
It was decided to control the amount of activated carbon supplied by multiple activated carbon supply devices.
The control device performs the first control to control the amount of activated charcoal supply based on the mercury concentration measurement value by the upstream mercury concentration meter, and the downstream side of each dust collector based on the mercury concentration measurement value by the downstream mercury concentration meter. A method for treating an exhaust gas, which comprises performing a second control for controlling the amount of activated coal supplied so that the mercury concentration in the exhaust gas in the above is less than or equal to a set value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017071913A JP6872169B2 (en) | 2017-03-31 | 2017-03-31 | Exhaust gas treatment equipment and exhaust gas treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017071913A JP6872169B2 (en) | 2017-03-31 | 2017-03-31 | Exhaust gas treatment equipment and exhaust gas treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018171585A JP2018171585A (en) | 2018-11-08 |
JP6872169B2 true JP6872169B2 (en) | 2021-05-19 |
Family
ID=64106925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017071913A Active JP6872169B2 (en) | 2017-03-31 | 2017-03-31 | Exhaust gas treatment equipment and exhaust gas treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6872169B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7203711B2 (en) * | 2019-10-04 | 2023-01-13 | 日立造船株式会社 | Exhaust gas treatment device and exhaust gas treatment method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001198434A (en) * | 2000-01-18 | 2001-07-24 | Mitsubishi Heavy Ind Ltd | Method for treating mercury in exhaust gas and treatment system of exhaust gas |
DE10233173B4 (en) * | 2002-07-22 | 2006-03-23 | Bayer Industry Services Gmbh & Co. Ohg | Method for separating mercury from flue gases |
CA2839338C (en) * | 2011-02-01 | 2017-05-16 | Shaw Environmental & Infrastructure, Inc. | Emission control system |
US10722865B2 (en) * | 2011-10-28 | 2020-07-28 | Ada Carbon Solutions, Llc | Multi-functional composition of matter for removal of mercury from high temperature flue gas streams |
WO2013082157A1 (en) * | 2011-11-28 | 2013-06-06 | Ada Carbon Solutions, Llc | Multi-functional composition for rapid removal of mercury from a flue gas |
JP6194840B2 (en) * | 2014-03-31 | 2017-09-13 | Jfeエンジニアリング株式会社 | Exhaust gas treatment apparatus and method |
JP6315275B2 (en) * | 2014-11-18 | 2018-04-25 | Jfeエンジニアリング株式会社 | Exhaust gas treatment apparatus and exhaust gas treatment method |
SG11201706561SA (en) * | 2015-02-18 | 2017-09-28 | Jfe Eng Corp | Apparatus for treatment of waste gas and method for treating the same |
WO2016136714A1 (en) * | 2015-02-24 | 2016-09-01 | 日立造船株式会社 | Apparatus for processing flue gas |
-
2017
- 2017-03-31 JP JP2017071913A patent/JP6872169B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018171585A (en) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6070971B1 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP6194840B2 (en) | Exhaust gas treatment apparatus and method | |
AU738245B2 (en) | Enhanced control of mercury in a wet scrubber through reduced oxidation air flow | |
JP6872169B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
JP6315275B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
WO2012071126A2 (en) | System and method of managing energy utilized in a flue gas processing system | |
JP7047488B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
CN112105442B (en) | Exhaust gas mercury removal system | |
JP7047487B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
JP6703748B2 (en) | Exhaust gas treatment device and exhaust gas treatment method | |
JP6539885B1 (en) | Exhaust gas mercury removal system | |
JP2019063765A (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP4045176B2 (en) | Purification equipment for contaminated soil | |
US10449487B2 (en) | Mercury control in a seawater flue gas desulfurization system | |
JP7299721B2 (en) | Exhaust gas treatment system and exhaust gas treatment method | |
JP6411397B2 (en) | Filter device, incineration facility, adjustment method of filter cloth passing gas amount | |
CN114364449B (en) | Exhaust gas treatment device and exhaust gas treatment method | |
JP7264372B2 (en) | Waste incineration system | |
KR102672978B1 (en) | A system to reduce air pollution generated in print offices and method for operating the same | |
JPH1073238A (en) | Method and device for heating air for combustion system | |
JP2019171302A (en) | Sludge incineration equipment and sludge incineration method | |
JP2010227747A (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
KR101225791B1 (en) | Processing device of exhaust gas for absorbing column | |
JP2002089819A (en) | Combustion control method and combustion control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6872169 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |