[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6864513B2 - Composite sintered body - Google Patents

Composite sintered body Download PDF

Info

Publication number
JP6864513B2
JP6864513B2 JP2017056128A JP2017056128A JP6864513B2 JP 6864513 B2 JP6864513 B2 JP 6864513B2 JP 2017056128 A JP2017056128 A JP 2017056128A JP 2017056128 A JP2017056128 A JP 2017056128A JP 6864513 B2 JP6864513 B2 JP 6864513B2
Authority
JP
Japan
Prior art keywords
sintered body
less
composite sintered
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017056128A
Other languages
Japanese (ja)
Other versions
JP2018158863A (en
Inventor
剛春 永田
剛春 永田
稔男 田中
稔男 田中
光永 敏勝
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2017056128A priority Critical patent/JP6864513B2/en
Publication of JP2018158863A publication Critical patent/JP2018158863A/en
Application granted granted Critical
Publication of JP6864513B2 publication Critical patent/JP6864513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description


本発明は、窒化ホウ素とサイアロンと焼結助剤とを焼結してなる、高精度で微細な機械加工が可能な複合焼結体に関する。また本発明は、前記複合焼結体の製造方法に関する。

The present invention relates to a composite sintered body capable of high-precision and fine machining, which is obtained by sintering boron nitride, sialon, and a sintering aid. The present invention also relates to a method for producing the composite sintered body.

窒化ホウ素焼結体は優れた耐熱性、耐熱衝撃性、耐食性、電気絶縁性の他に、優れた機械加工性を合わせ持ったマシナブルセラミックスである。しかしながら、窒化ホウ素自体は代表的な難焼結性で、高密度の焼結体を得ることが困難であり、またそのC軸方向に層間剥離する摺動性材料でもあるため、強度が低いという欠点があった。この欠点を解決するため、他のセラミックスと組み合わせて使用する技術が多数提供されており、窒化珪素、窒化アルミニウム、ジルコニア、等各種セラミックスとの複合材料が開発され、鉄鋼分野、半導体製造装置分野等で実績がある他、半導体のウェハープロセスの検査工程で使用するプローブカードの触針(プローブともいう)を固定するプロ−ブガイド(プローブ案内ともいう)用の部材(即ちプローブ案内部材)等の様な、高精度で微細な機械加工が求められる分野でも利用されている。 Boron nitride sintered body is a machinable ceramic having excellent machinability in addition to excellent heat resistance, heat impact resistance, corrosion resistance, and electrical insulation. However, boron nitride itself is a typical difficult-to-sinter property, and it is difficult to obtain a high-density sintered body, and it is also a slidable material that delaminates in the C-axis direction, so its strength is low. There was a drawback. In order to solve this drawback, many technologies for use in combination with other ceramics have been provided, and composite materials with various ceramics such as silicon nitride, aluminum nitride, and zirconia have been developed, and the fields of steel, semiconductor manufacturing equipment, etc. In addition to having a proven track record in semiconductors, such as a probe guide (also called a probe guide) member (that is, a probe guide member) for fixing the stylus (also called a probe) of a probe card used in the inspection process of a semiconductor wafer process. It is also used in fields where high-precision and fine machining is required.

なお前記プロ−ブカ−ドとは、半導体検査装置と、その被検体であるICやLSI等の半導体チップ上の、微細な電極とを接続し通電検査するためのユニットである。前記プローブはプローブ案内部材に開けられた細穴に、プローブの先端が半導体チップの電極の位置に合うよう剣山状に配置し固定された構造を持つ。このプローブ案内部材には、熱膨張係数が半導体チップの素材であるシリコンに近いこと、加工性が良好で例えばドリル刃に代表される加工工具に与える摩耗や損傷が少ないこと、但し強度も高く、例えばプローブ案内部材に開けた穴と穴の間の壁が破損しないこと等が要求される。プローブ案内部材の熱膨張率がシリコンから離れていると、通電検査時の発熱や加熱下での測定時に寸法に差が出るため、プローブ先端と半導体チップの電極との位置合わせが困難になり、半導体の検査ができなくなる。 The probe card is a unit for connecting a semiconductor inspection device and a fine electrode on a semiconductor chip such as an IC or LSI, which is a subject thereof, for energization inspection. The probe has a structure in which the tip of the probe is arranged and fixed in a sword-shaped shape so as to match the position of the electrode of the semiconductor chip in a small hole formed in the probe guide member. This probe guide member has a coefficient of thermal expansion close to that of silicon, which is the material of semiconductor chips, has good workability, and has less wear and damage to machining tools such as drill blades, but has high strength. For example, it is required that the hole made in the probe guide member and the wall between the holes are not damaged. If the coefficient of thermal expansion of the probe guide member is far from that of silicon, heat generation during energization inspection and dimensional differences during measurement under heating make it difficult to align the probe tip with the electrodes of the semiconductor chip. Semiconductor inspection becomes impossible.

近年、半導体の集積度は飛躍的に高くなり、回路パターン及び端子部も小型狭ピッチ化が進んでおり、これを検査する装置も対応を迫られており、プローブカードのプローブの更なる狭ピッチ化、多ピン化が求められている。このため、高精度で微細な加工を施すことができるプローブ案内部材がますます必要となり、即ち従来よりも加工性が良好で例えばドリル刃に代表される加工工具に与える摩耗や損傷が少ない、高精度で微細な機械加工が可能なプローブ案内用の部材が望まれている。プローブ案内部材としては、例えば窒化ホウ素とジルコニアや窒化ケイ素とを組み合わせた素材が知られているが、高精度の細穴加工に対応できるものはなかった。(特許文献1、特許文献2) In recent years, the degree of integration of semiconductors has increased dramatically, and circuit patterns and terminals have become smaller and narrower in pitch, and devices for inspecting these have also been required to support them. It is required to have more pins and more pins. For this reason, a probe guide member capable of performing fine machining with high accuracy is increasingly required, that is, the workability is better than before, and there is less wear and damage to a machining tool represented by a drill blade, for example. A member for probe guidance capable of accurate and fine machining is desired. As a probe guide member, for example, a material in which boron nitride is combined with zirconia or silicon nitride is known, but none of them can be used for high-precision fine hole drilling. (Patent Document 1, Patent Document 2)

特開2001−354480号公報Japanese Unexamined Patent Publication No. 2001-354480 特開2003−286076号公報Japanese Unexamined Patent Publication No. 2003-286076

本発明の目的は、高精度で微細な機械加工を施すことが可能であり、かつ加工工具に与える摩耗や損傷が少なく、例えば半導体素子の検査工程で使用するプローブカード用のプローブ案内部材として好適な、窒化ホウ素と、サイアロンと、焼結助剤とを含んでなる複合焼結体、及びその製造方法を提供することである。 An object of the present invention is that it is possible to perform fine machining with high accuracy, and there is little wear or damage to the machining tool, and it is suitable as a probe guide member for a probe card used in, for example, an inspection process of a semiconductor element. It is an object of the present invention to provide a composite sintered body containing boron nitride, sialon, and a sintering aid, and a method for producing the same.

(1)即ち本発明は、窒化ホウ素40質量部以上60質量部以下と、下記の式1(但し式1において、Zは0.2以上、1.5以下)で示されるサイアロン25質量部以上58質量部以下と、焼結助剤を2質量部以上15質量部以下とを含んでなる、相対密度が90%以上の複合焼結体であって、前記複合焼結体の蛍光X線の強度測定において、窒化ホウ素に係るものとしてホウ素(B)の蛍光X線の強度の変動係数が3.0以下、かつサイアロンに係るものとしてシリコン(Si)の蛍光X線の強度の変動係数が0.8以下、JIS R1601:2008に準拠して測定した3点曲げ強度が250MPa以上である複合焼結体である。
Si6−ZAl8−Z (式1)
(2)本発明の複合焼結体は、JIS R1618:2002に準拠して測定した25℃以上600℃以下の温度範囲における熱膨張係数が1×10−6/℃以上3×10−6/℃以下であり、JIS Z2246:2000に準拠して測定したショア硬度が55以上75以下である、前記(1)記載の複合焼結体であることが好ましい。
(3)本発明の前記(1)または(2)記載の複合焼結体は、プローブ案内部材用の材料として好ましく用いることができる。
(4)また本発明は、比表面積20m/g以上かつGI値が8以上の六方晶窒化ホウ素粉末と、比表面積6m/g以上のサイアロン粉末、及び/または比表面積6m/g以上の、窒化ケイ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、酸化ケイ素粉末からなる群から選ばれる少なくとも2種類以上の粉末と、焼結助剤粉末とを混合して、複合焼結体の原料混合粉末を得る工程、前記原料混合粉末を保持温度1510℃以上1780℃以下、保持圧力10MPaG以上50MPaG以下、保持時間1時間以上5時間以下の条件で加圧焼結する工程を含む、前記(1)〜(3)いずれか1項記載の複合焼結体の製造方法である。
(1) That is, in the present invention, 40 parts by mass or more and 60 parts by mass or less of boron nitride and 25 parts by mass or more of sialon represented by the following formula 1 (however, in formula 1, Z is 0.2 or more and 1.5 or less). A composite sintered body having a relative density of 90% or more and containing 58 parts by mass or less and 2 parts by mass or more and 15 parts by mass or less of a sintering aid, and the fluorescent X-ray of the composite sintered body. In the intensity measurement, the fluctuation coefficient of the fluorescent X-ray intensity of boron (B) is 3.0 or less as related to boron nitride, and the fluctuation coefficient of the fluorescent X-ray intensity of silicon (Si) is 0 as related to sialon. It is a composite sintered body having a three-point bending strength of 250 MPa or more measured in accordance with JIS R1601: 2008, which is 0.8 or less.
Si 6-Z Al Z O Z N 8-Z (Equation 1)
(2) The composite sintered body of the present invention has a coefficient of thermal expansion of 1 × 10 -6 / ° C. or more and 3 × 10 -6 / in a temperature range of 25 ° C. or more and 600 ° C. or less measured in accordance with JIS R1618: 2002. The composite sintered body according to (1) above, which is below ° C. and has a shore hardness of 55 or more and 75 or less measured in accordance with JIS Z2246: 2000, is preferable.
(3) The composite sintered body according to the above (1) or (2) of the present invention can be preferably used as a material for a probe guide member.
(4) The present invention includes a surface area of 20 m 2 / g or more and GI value is 8 or more hexagonal boron nitride powder ratio specific surface area of 6 m 2 / g or more sialon powder, and / or a specific surface area of 6 m 2 / g or more At least two or more kinds of powders selected from the group consisting of silicon nitride powder, aluminum nitride powder, aluminum oxide powder, and silicon oxide powder, and a sintering aid powder are mixed to form a raw material mixed powder of a composite sintered body. (1) to the above, which comprises a step of obtaining the raw material mixed powder under the conditions of a holding temperature of 1510 ° C. or higher and 1780 ° C. or lower, a holding pressure of 10 MPaG or higher and 50 MPaG or lower, and a holding time of 1 hour or more and 5 hours or less. (3) The method for producing a composite sintered body according to any one of the above.

本発明の実施により、高精度で微細な機械加工を施すことが可能で、加工工具に与える損傷摩耗が少なく、半導体素子の検査工程で使用するプローブ案内部材の用途として好適な、窒化ホウ素、サイアロン、焼結助剤を焼結して含む複合焼結体を得ることができる。 By implementing the present invention, it is possible to perform fine machining with high precision, there is little damage and wear to the machining tool, and boron nitride and sialon are suitable for use as probe guide members used in the inspection process of semiconductor elements. , A composite sintered body containing a sintering aid can be obtained by sintering.

本発明の複合焼結体は、窒化ホウ素40質量部以上60質量部以下と、下記の式1(但し式1において、Zは0.2以上、1.5以下)で示されるサイアロン25質量部以上58質量部以下と、焼結助剤を2質量部以上15質量部以下とを含んでなる、相対密度が90%以上の複合焼結体であって、前記複合焼結体の蛍光X線の強度度測定において、窒化ホウ素に係るものとしてホウ素(B)の蛍光X線の強度の変動係数が3.0以下、かつサイアロンに係るものとしてシリコン(Si)の蛍光X線の強度の変動係数が0.8以下、JIS R1601:2008に準拠して測定した3点曲げ強度が250MPa以上である複合焼結体である。 The composite sintered body of the present invention has 40 parts by mass or more and 60 parts by mass or less of boron nitride and 25 parts by mass of sialon represented by the following formula 1 (however, in formula 1, Z is 0.2 or more and 1.5 or less). A composite sintered body having a relative density of 90% or more and containing 58 parts by mass or more and 2 parts by mass or more and 15 parts by mass or less of a sintering aid, and fluorescent X-rays of the composite sintered body. In the intensity measurement of, the fluctuation coefficient of the fluorescence X-ray intensity of boron (B) as related to boron nitride is 3.0 or less, and the fluctuation coefficient of the fluorescence X-ray intensity of silicon (Si) as related to Sialon. Is 0.8 or less, and the three-point bending strength measured in accordance with JIS R1601: 2008 is 250 MPa or more.

前記窒化ホウ素は本発明の複合焼結体の原料のひとつでもあるが、原料としての窒化ホウ素は粉末状であり、JIS R1626:1996に従い、BET法で測定したその比表面積は、粉体の混合性の観点から20m/g以上、また結晶性を示す指標であるGI値が8以上である、低結晶性の六方晶窒化ホウ素である。ハンドリング性の観点からは、前記比表面積は200m/g以下であることが好ましい。なお前記GI値(GI:Graphitization Index)は黒鉛化指数ともいい、X線回折測定により得られる、窒化ホウ素の(100)面、(101)面及び(102)面のピークの面積比、GI=[面積{(100)+(101)}]/[面積(102)]の計算式によって求めることができる(J.Thomas.et.al, J.Am.Che.Soc.84,4619(1962))。高精度で微細な機械加工性を実現するためには、複合焼結体中の窒化ホウ素とサイアロンが微細かつ均一に高分散する必要がある。複合焼結体内の窒化ホウ素が大きいと、機械加工の際に割れや欠け等が発生しやすくなる。原料の六方晶窒化ホウ素に結晶性が高い粉末を用いた場合、焼結体内に板状の粗大窒化ホウ素粒子が残留し、さらに粒子間の空隙も大きくなりやすい。このため原料六方晶窒化ホウ素として、GI値が8以上の低結晶性の粉末を用いることが必要となる。 The boron nitride is also one of the raw materials of the composite sintered body of the present invention, but the boron nitride as a raw material is in the form of powder, and its specific surface area measured by the BET method according to JIS R1626: 1996 is a mixture of powders. It is a low-crystalline hexagonal boron nitride having a GI value of 8 or more, which is an index showing crystallinity, and 20 m 2 / g or more from the viewpoint of properties. From the viewpoint of handleability, the specific surface area is preferably 200 m 2 / g or less. The GI value (GI: Glycemic Index) is also referred to as a graphitization index, and the area ratio of the peaks of the (100), (101), and (102) planes of boron nitride obtained by X-ray diffraction measurement, GI = It can be obtained by the formula of [Area {(100) + (101)}] / [Area (102)] (J. Thomas. Et. Al, J. Am. Che. Soc. 84, 4619 (1962)). ). In order to realize high-precision and fine machinability, it is necessary that boron nitride and sialon in the composite sintered body are finely and uniformly highly dispersed. If the boron nitride in the composite sintered body is large, cracks and chips are likely to occur during machining. When a highly crystalline powder is used as the raw material hexagonal boron nitride, plate-shaped coarse boron nitride particles remain in the sintered body, and the voids between the particles tend to increase. Therefore, it is necessary to use a low crystalline powder having a GI value of 8 or more as the raw material hexagonal boron nitride.

本発明の複合焼結体100質量部中において、窒化ホウ素が占める割合は40質量部以上60質量部以下、好ましくは41質量部以上59質量部以下、より好ましくは42質量部以上58質量部以下である。窒化ホウ素の割合が40質量部未満であると、複合焼結体の硬度が高くなりすぎ、例えば加工工具の寿命を著しく低下させてしまう傾向がある。また、窒化ホウ素の割合が60質量部を超えると、機械的強度が不足するため、機械加工に耐えられずに本発明の複合焼結体を用いた部材に割れや欠けが発生する。なお窒化ホウ素に関しては、保存中にまたは加熱により酸化ホウ素を形成して揮発することが知られているが、その揮発分による複合焼結体の組成の差異は実用上問題にならない程度(通常約1%程度)である。このため、本願含め当該技術分野においては、複合焼結体中の窒化ホウ素、サイアロン、焼結助剤の質量部比率は、その原料の配合比を以って表している。 Boron nitride accounts for 40 parts by mass or more and 60 parts by mass or less, preferably 41 parts by mass or more and 59 parts by mass or less, and more preferably 42 parts by mass or more and 58 parts by mass or less in 100 parts by mass of the composite sintered body of the present invention. Is. If the proportion of boron nitride is less than 40 parts by mass, the hardness of the composite sintered body becomes too high, and for example, the life of the processing tool tends to be significantly shortened. On the other hand, if the proportion of boron nitride exceeds 60 parts by mass, the mechanical strength is insufficient, so that the member cannot withstand machining and the member using the composite sintered body of the present invention is cracked or chipped. It is known that boron nitride forms and volatilizes boron oxide during storage or by heating, but the difference in the composition of the composite sintered body due to the volatile content does not pose a practical problem (usually about about). About 1%). Therefore, in the technical fields including the present application, the mass ratio of boron nitride, sialon, and the sintering aid in the composite sintered body is represented by the blending ratio of the raw materials.

前記サイアロンも、(式1)で示される本発明の複合焼結体を構成する成分要素のひとつであり原料のひとつでもあるが、本発明の複合焼結体を得るに当たり、その原料として前記サイアロンの粉末を用いてもよく、または、焼結の結果として(式1)の化学組成を有するサイアロンを生成するような窒化珪素(Si)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、酸化珪素(SiO)の少なくとも2種類以上を予め含めて組み合わせたもの(まとめてサイアロン原料群という)、もしくは、前記原料としてのサイアロンと前記サイアロン原料群との混合物でも良い。これらサイアロンを生成する原料(原料としてのサイアロン、やサイアロン原料群)の、JIS R1626:1996に従ってBET法で測定した比表面積も、それぞれ粉体の混合性の観点から6.0m/g以上200m/g以下であることが好ましい。 The sialon is also one of the component elements and one of the raw materials constituting the composite sintered body of the present invention represented by (Formula 1), but in obtaining the composite sintered body of the present invention, the sialon is used as the raw material. Silicon Nitride (Si 3 N 4 ), Aluminum Nitride (Al N), Aluminum Oxide (Al 2 ), which may produce the sialon having the chemical composition of (Equation 1) as a result of sintering. O 3 ), a combination of at least two or more types of silicon oxide (SiO 2 ) in advance (collectively referred to as a sialon raw material group), or a mixture of sialon as the raw material and the sialon raw material group may be used. The specific surface areas of these raw materials for producing sialon (sialon as a raw material and the sialon raw material group) measured by the BET method according to JIS R1626: 1996 are also 6.0 m 2 / g or more and 200 m from the viewpoint of powder mixability. It is preferably 2 / g or less.

本発明の複合焼結体100質量部中において、サイアロンの割合は25質量部以上58質量部以下、好ましくは26質量部以上57質量部以下、より好ましくは27質量部以上56質量部以下である。サイアロンの割合が25質量部未満であると、本発明で規定する曲げ強度の不足、即ち機械的強度が不足するため、機械加工に耐えられずに本発明の複合焼結体を用いた部材に割れや欠けが発生する。また、サイアロンの割合が60質量部を超えると、複合焼結体のショア硬度が高くなりすぎ、例えば加工工具の寿命を著しく低下させてしまう傾向がある。 The proportion of sialon in 100 parts by mass of the composite sintered body of the present invention is 25 parts by mass or more and 58 parts by mass or less, preferably 26 parts by mass or more and 57 parts by mass or less, and more preferably 27 parts by mass or more and 56 parts by mass or less. .. If the proportion of sialon is less than 25 parts by mass, the bending strength specified in the present invention is insufficient, that is, the mechanical strength is insufficient. Cracks and chips occur. On the other hand, if the proportion of sialon exceeds 60 parts by mass, the shore hardness of the composite sintered body becomes too high, and for example, the life of the processing tool tends to be significantly shortened.

本発明の複合焼結体においては、前記サイアロンの組成に係る(式1)のZの値は、0.2以上1.5以下であり、好ましくは0.2以上1.0以下、より好ましくは0.3以上0.9以下である。Zの値が0.2未満では、本発明の複合焼結体の機械加工において、例えば加工工具が摩耗しやすくなるほど硬度を増すため実用性が損なわれる。また、Zの値が1.5を超えると複合焼結体において、本発明で規定する曲げ強度250MPaを下回るが、これはサイアロン粒子が大きく成長して部分的な強度が低下するためであると推定され、例えば厚さ1mmの板状とした本発明の複合焼結体に、直径40μmの丸穴を中心間距離60μmピッチの間隔で多数穿つような、高精度で微細な機械加工はできなくなる。なお前記サイアロンの組成に係る(式1)のZの値は、X線回折測定によるデータを基にして、サイアロンの格子定数とZの値との対応関係から求めることができる。 In the composite sintered body of the present invention, the Z value of (Formula 1) relating to the composition of the sialon is 0.2 or more and 1.5 or less, preferably 0.2 or more and 1.0 or less, more preferably. Is 0.3 or more and 0.9 or less. If the value of Z is less than 0.2, in the machining of the composite sintered body of the present invention, for example, the hardness increases as the machining tool becomes more easily worn, which impairs practicality. Further, when the value of Z exceeds 1.5, the bending strength of the composite sintered body falls below 250 MPa specified in the present invention because the sialon particles grow large and the partial strength decreases. Presumed, for example, it becomes impossible to perform high-precision and fine machining such as drilling a large number of round holes having a diameter of 40 μm at intervals of 60 μm pitch in a plate-shaped composite sintered body having a thickness of 1 mm. .. The Z value of (Equation 1) related to the composition of Sialon can be obtained from the correspondence between the lattice constant of Sialon and the Z value based on the data obtained by the X-ray diffraction measurement.

本発明の複合焼結体で使用できる焼結助剤の種類には特に限定はないが、希土類酸化物や酸化アルミニウム(アルミナ、Al)、酸化マグネシウム(マグネシア、MgO)やこれらの複合酸化物などを好ましく用いることができる。なお、酸化アルミニウムは前記サイアロン原料群の成分としても好ましく用いられる原料でもあるため、焼結助剤としての効果を持たせるため別に加える酸化アルミニウムについては、本発明ではアルミナと表記する。焼結助剤は化学的、物理的特性が安定した焼結体を得る観点から、好ましくは希土類酸化物を用いることができ、より具体的には酸化イットリウム(イットリア、Y)を効果的に使用することができる。 Although there is no particular limitation on the kind of sintering aid can be used in the composite sintered body of the present invention, rare earth oxides or aluminum oxide (alumina, Al 2 O 3), magnesium oxide (magnesia, MgO) and these combined Oxides and the like can be preferably used. Since aluminum oxide is also a raw material preferably used as a component of the Sialon raw material group, aluminum oxide added separately to have an effect as a sintering aid is referred to as alumina in the present invention. The sintering aid chemical, from the viewpoint of physical properties to obtain a stable sintered body can preferably be used a rare earth oxide, more particularly yttrium oxide (yttria, Y 2 O 3) the effect Can be used as a target.

本発明の複合焼結体100質量部中において、焼結助剤の割合は2質量部以上15質量部以下、さらに好ましい範囲は3質量部以上14質量部以下、より好ましくは3質量部以上12質量部以下である。焼結助剤の割合が2質量部未満の場合は、高密度で高い強度の複合焼結体を得ることは難しく、機械加工により割れや欠けが発生する。焼結助剤の割合が15質量部を超える場合、焼結体中の結晶粒径が大きくなり、同様に強度の低下や高精度で微細な機械加工性に劣ることになる。 In 100 parts by mass of the composite sintered body of the present invention, the ratio of the sintering aid is 2 parts by mass or more and 15 parts by mass or less, and a more preferable range is 3 parts by mass or more and 14 parts by mass or less, more preferably 3 parts by mass or more and 12 parts by mass. It is less than a part by mass. When the ratio of the sintering aid is less than 2 parts by mass, it is difficult to obtain a high-density and high-strength composite sintered body, and cracks and chips occur due to machining. When the ratio of the sintering aid exceeds 15 parts by mass, the crystal grain size in the sintered body becomes large, and similarly, the strength is lowered and the high precision and fine machinability is inferior.

なお本発明の複合焼結体においては、その機械加工性や用途の使用目的に支障が生じない限り、不可避的に混入する微量不純物元素は含まれていてよい。但し本発明の複合焼結体は、高精度で微細な加工を必要とするプローブ案内部材用の材料として好ましく用いられ、電気的特性(例えば電気絶縁性)も求められることから、各原料中の金属不純物はなるべく含まないこと好ましい。 The composite sintered body of the present invention may contain trace impurity elements that are inevitably mixed as long as the machinability and the intended use of the intended use are not hindered. However, the composite sintered body of the present invention is preferably used as a material for a probe guide member that requires high precision and fine processing, and is also required to have electrical characteristics (for example, electrical insulation). It is preferable that metal impurities are not contained as much as possible.

本発明の複合焼結体を製造する方法は、原料としての六方晶窒化ホウ素の粉末と、原料としてのサイアロン及び/またはサイアロン原料群、さらに焼結助剤とを混合して、複合焼結体の原料混合粉末を得る工程、前記原料混合粉末を保持温度1510℃以上1780℃以下、保持圧力10MPaG以上50MPaG以下、保持時間1時間以上5時間以下の条件で加圧焼結する工程を含む、製造方法である。 In the method for producing a composite sintered body of the present invention, a hexagonal boron nitride powder as a raw material, sialon and / or a sialon raw material group as a raw material, and a sintering aid are mixed to form a composite sintered body. The production includes a step of obtaining the raw material mixed powder, and a step of pressure sintering the raw material mixed powder under the conditions of a holding temperature of 1510 ° C. or higher and 1780 ° C. or lower, a holding pressure of 10 MPaG or higher and 50 MPaG or lower, and a holding time of 1 hour or more and 5 hours or less. The method.

なお、前記原料混合粉末を得る工程における混合方式には特に限定はなく、原料のみをそのまま混合する乾式方式であっても、原料に液体成分を加えて混合する湿式方式であっても特に制限はない。湿式方式の場合、溶媒としては例えばエタノールが好ましく用いられる。さらに混合装置も公知の装置を用いることが可能であり、例えばボールミルが好ましく用いられる。 The mixing method in the step of obtaining the raw material mixed powder is not particularly limited, and there is no particular limitation on whether it is a dry method in which only the raw materials are mixed as they are or a wet method in which a liquid component is added to the raw materials and mixed. Absent. In the case of the wet method, for example, ethanol is preferably used as the solvent. Further, a known device can be used as the mixing device, and for example, a ball mill is preferably used.

本発明の複合焼結体の製造方法では、加圧焼結することが必要であるが、焼結装置自体の方式や種類には特に限定はなく、セラミックス製造の分野で一般に用いられる装置を採用することができる。加圧焼結の方法としては、さらに例えばホットプレス焼結、放電プラズマ焼結、超高圧焼結、ガス圧縮による熱間等方加圧焼結などを挙げることができる。 In the method for producing a composite sintered body of the present invention, it is necessary to perform pressure sintering, but the method and type of the sintering apparatus itself are not particularly limited, and an apparatus generally used in the field of ceramics production is adopted. can do. Examples of the pressure sintering method include hot press sintering, discharge plasma sintering, ultra-high pressure sintering, and hot isotropic pressure sintering by gas compression.

加圧焼結する際に使用する容器や型の材質や形状に関しては、特に得られる本発明の複合焼結体の組成に影響を及ぼしたり、また焼結が行われている環境中において容器や型の変質、変形や破損などが起きなければ特に限定はない。この点を考慮すると、黒鉛製の容器や型が好ましく用いられる。 Regarding the material and shape of the container and mold used for pressure sintering, the composition of the composite sintered body of the present invention obtained in particular is affected, and the container and the container and the shape are subjected to sintering. There is no particular limitation as long as the mold does not deteriorate, deform or break. Considering this point, a graphite container or mold is preferably used.

加圧焼結を実施する際の焼結温度は、1510℃以上1780℃以下、好ましくは1520℃以上1760℃以下であり、さらにより好ましくは1540℃以上1740℃以下の範囲である。焼結温度が1510℃未満では、十分に焼結が進行した焼結体が得られず、焼結体の相対密度が90%未満となり、3点曲げ強度も本発明で規定する250MPa未満の低いものとなる。一方、1780℃を超えた場合にも、本発明で規定する3点曲げ強度は250MPa未満の低いものとなるが、これは複合焼結体内において窒化ホウ素、サイアロン結晶相の成長が進んだ結果と推定され、その結果、加工時に割れや欠けが生じたり、ドリル刃の破損が起こる傾向が高まる。 The sintering temperature at the time of performing pressure sintering is 1510 ° C. or higher and 1780 ° C. or lower, preferably 1520 ° C. or higher and 1760 ° C. or lower, and even more preferably 1540 ° C. or higher and 1740 ° C. or lower. If the sintering temperature is less than 1510 ° C., a sintered body that has been sufficiently sintered cannot be obtained, the relative density of the sintered body is less than 90%, and the three-point bending strength is also low, less than 250 MPa specified in the present invention. It becomes a thing. On the other hand, even when the temperature exceeds 1780 ° C., the three-point bending strength specified in the present invention is as low as less than 250 MPa, which is a result of the progress of growth of the boron nitride and sialon crystal phases in the composite sintered body. It is presumed that, as a result, there is an increased tendency for cracks and chips to occur during machining and for the drill bit to be damaged.

また加圧焼成する場合にかける圧力は、10MPa以上50MPa以下、好ましくは11MPa以上45MPa以下、さらにより好ましくは13MPa以上40MPa以下の範囲である。圧力10MPa未満では、十分に焼結した密度の焼結体が得られず、複合焼結体の相対密度は90%未満となり、また3点曲げ強度も250MPa未満の低いものとなる。一方、50MPaを超える圧力がかけられるような装置は設備が大きくなり、コスト的に不利となる。 The pressure applied during pressure firing is in the range of 10 MPa or more and 50 MPa or less, preferably 11 MPa or more and 45 MPa or less, and even more preferably 13 MPa or more and 40 MPa or less. If the pressure is less than 10 MPa, a sintered body having a sufficiently sintered density cannot be obtained, the relative density of the composite sintered body is less than 90%, and the three-point bending strength is also as low as less than 250 MPa. On the other hand, a device to which a pressure exceeding 50 MPa is applied has a large equipment, which is disadvantageous in terms of cost.

また加圧焼成の焼結時間(加圧保持時間も含む)は1時間以上5時間以下、好ましくは1.5時間以上4.5時間以下、さらにより好ましくは1.5時間以上4時間以下の範囲である。保持時間1時間未満では、焼結体内の特性の分布が大きくなり易いという問題があり、全体の強度が低下し、本発明で規定する3点曲げ強度は250MPa未満の低いものとなる。但し保持時間が5時間を超えると、複合焼結体内において窒化ホウ素、サイアロン結晶相の成長が過剰に進むため、その結果、複合焼結体に割れや欠けが生じたり、加工工具に与える摩耗や損傷が増える傾向がある。 The sintering time (including the pressurization holding time) of the pressure firing is 1 hour or more and 5 hours or less, preferably 1.5 hours or more and 4.5 hours or less, and even more preferably 1.5 hours or more and 4 hours or less. The range. If the holding time is less than 1 hour, there is a problem that the distribution of the characteristics in the sintered body tends to be large, the overall strength is lowered, and the three-point bending strength specified in the present invention is as low as less than 250 MPa. However, if the holding time exceeds 5 hours, the growth of the boron nitride and sialon crystal phases will proceed excessively in the composite sintered body, and as a result, the composite sintered body will be cracked or chipped, and wear on the processing tool will occur. Damage tends to increase.

本発明の複合焼結体の理論密度に対する相対密度は90%である。相対密度90%以上になると、複合焼結体内に連通する細孔が殆どなくなり、高精度で微細な機械加工を施しても大きな欠陥が生じ難い。なお前記相対密度は、複合焼結体の見かけ密度を、その理論密度で除した値(但し100倍した%表示)である。また前記複合焼結体の理論密度は、複合焼結体中の窒化ホウ素、サイアロン、焼結助剤の質量割合に拠って、各成分の真密度を按分して求めた値(即ち各成分の真密度の加重平均値)である。前記複合焼結体の見かけ密度は、アルキメデス法を適用した測定装置を用い、JIS R 1634:1998に準拠して得ることができる。 The relative density of the composite sintered body of the present invention with respect to the theoretical density is 90%. When the relative density is 90% or more, there are almost no pores communicating with the composite sintered body, and even if high-precision and fine machining is performed, large defects are unlikely to occur. The relative density is a value obtained by dividing the apparent density of the composite sintered body by its theoretical density (however, it is expressed as a percentage multiplied by 100). The theoretical density of the composite sintered body is a value obtained by proportionally dividing the true density of each component (that is, of each component) based on the mass ratio of boron nitride, sialon, and the sintering aid in the composite sintered body. The weighted average value of the true density). The apparent density of the composite sintered body can be obtained in accordance with JIS R 1634: 1998 using a measuring device to which the Archimedes method is applied.

本発明の複合焼結体においては、窒化ホウ素に係るものとしてホウ素(B)の蛍光X線の強度の変動係数が3.0以下、かつサイアロンに係るものとしてシリコン(Si)の蛍光X線の強度の変動係数が0.8以下である。前記窒化ホウ素に係るホウ素(B)の変動係数が3.0を超える、またはサイアロンに係るシリコン(Si)変動係数が0.8を超えることは、複合焼結体内の窒化ホウ素またはサイアロンの各結晶相の偏在が大きくなるため、高精度で微細な機械加工は困難になる。なお本発明において、前記蛍光X線の強度の変動係数は、蛍光X線分析装置にて複合焼結体の表面10ヶ所のホウ素(B)およびシリコン(Si)について固有の蛍光X線(Kα線)の強度(単位:kcps)を測定し、それらの平均値と標準偏差から求めた値である。 In the composite sintered body of the present invention, the coefficient of variation of the fluorescent X-ray intensity of boron (B) is 3.0 or less as related to boron nitride, and the fluorescent X-ray of silicon (Si) is related to Sialon. The coefficient of variation of intensity is 0.8 or less. When the coefficient of variation of boron (B) related to boron nitride exceeds 3.0 or the coefficient of variation of silicon (Si) related to sialon exceeds 0.8, each crystal of boron nitride or sialon in the composite sintered body. Since the uneven distribution of phases becomes large, it becomes difficult to perform high-precision and fine machining. In the present invention, the coefficient of variation of the intensity of the fluorescent X-ray is a fluorescent X-ray (Kα ray) peculiar to boron (B) and silicon (Si) at 10 locations on the surface of the composite sintered body by a fluorescent X-ray analyzer. ) Is measured, and is a value obtained from their average value and standard deviation.

本発明の複合焼結体においては、高精度で微細な機械加工が施されることを前提としているため、JIS R1601:2008に準拠して測定した3点曲げ強度が250MPa以上であることが必要である。3点曲げ強度が少なくとも250MPa以上はないと、複合焼結体を機械加工した際に割れや欠けが生じる。 Since the composite sintered body of the present invention is premised on being subjected to high-precision and fine machining, it is necessary that the three-point bending strength measured in accordance with JIS R1601: 2008 is 250 MPa or more. Is. If the three-point bending strength is not at least 250 MPa or more, cracks and chips will occur when the composite sintered body is machined.

本発明の複合焼結体においては、前記の通り3点曲げ強度が250MPa以上であることが必要であるが、さらにJIS Z2246:2000に準拠して測定したショア硬度が55以上75であることが好ましい。硬度が本発明で規定するように適度な範囲にないと、即ち十分な曲げ強度は備えていても、硬すぎて加工工具の損傷が増える傾向がある。 In the composite sintered body of the present invention, it is necessary that the three-point bending strength is 250 MPa or more as described above, but the shore hardness measured in accordance with JIS Z2246: 2000 is 55 or more and 75. preferable. The hardness is not in an appropriate range as specified in the present invention, that is, even if it has sufficient bending strength, it tends to be too hard and damage to the machining tool increases.

本発明の複合焼結体は、例えばシリコンウェハ上に形成されている半導体素子の検査装置に用いるプローブカード向けの材料、即ち微細な電気回路の間隔に合わせて、プローブ先端を圧接するための基板であるプローブ案内部材用として好ましい材料である。従って、複合焼結体の熱膨張係数も高純度シリコンの熱膨張係数に近いことが好ましく、具体的には25℃以上600℃以下の温度範囲における熱膨張係数が1×10−6/℃以上3×10−6/℃以下であることが好ましい。なお、前記熱膨張係数はJIS R1618:2002に示されている方法に準拠して測定した値である。 The composite sintered body of the present invention is, for example, a material for a probe card used in an inspection device for a semiconductor element formed on a silicon wafer, that is, a substrate for press-welding the probe tip according to the interval of a fine electric circuit. It is a preferable material for a probe guide member. Therefore, the coefficient of thermal expansion of the composite sintered body is preferably close to the coefficient of thermal expansion of high-purity silicon, and specifically, the coefficient of thermal expansion in the temperature range of 25 ° C. or higher and 600 ° C. or lower is 1 × 10-6 / ° C. or higher. It is preferably 3 × 10 -6 / ° C or lower. The coefficient of thermal expansion is a value measured according to the method shown in JIS R1618: 2002.

本発明の複合焼結体は、微細な機械加工、例えば厚さ1mmの板状とした本発明の複合焼結体に、直径40μmの丸穴を中心間距離60μmピッチの間隔で多数穿つような機械加工を受ける用途にも好ましく用いられることを目的しているが、加工中または加工後の機械的強度が不十分であると、割れや欠けなどの欠陥が発生する。そのため、本発明の複合焼結体では、3点曲げ強度が250MPa以上であり、ショア硬度が55以上75以下であることが好ましい。なお前記の3点曲げ強度は、JIS R1601:2008示されている方法に準拠して測定した値であり、また前記のショア硬度は、JIS Z2246:2000示されている方法に準拠して測定した値である。 The composite sintered body of the present invention is finely machined, for example, a large number of round holes having a diameter of 40 μm are perforated at intervals of 60 μm pitch between centers in a plate-shaped composite sintered body having a thickness of 1 mm. It is intended to be preferably used for applications subject to machining, but if the mechanical strength during or after machining is insufficient, defects such as cracks and chips occur. Therefore, in the composite sintered body of the present invention, it is preferable that the three-point bending strength is 250 MPa or more and the shore hardness is 55 or more and 75 or less. The three-point bending strength is a value measured according to the method shown in JIS R1601: 2008, and the shore hardness is measured according to the method shown in JIS Z2246: 2000. The value.

本発明の複合焼結体が、本発明の課題を解決しているか否を確認する方法としては、例えば薄板状とした複合焼結体に多数の穴を実際に開け、その加工精度、複合焼結体の割れや欠けの発生状況を観察して評価する方法が適しており、実用に近い評価ができる。 As a method of confirming whether or not the composite sintered body of the present invention solves the problem of the present invention, for example, a large number of holes are actually made in the composite sintered body in the form of a thin plate, and the processing accuracy and the composite firing thereof are obtained. The method of observing and evaluating the occurrence of cracks and chips in the body is suitable, and the evaluation is close to practical use.

例えばプローブ案内部材の細穴は、直径40〜100μmの場合が多いが、更に小さいものもある。一つの部品に500〜20,000個の穴の加工が施される。この場合、高精度で微細な機械加工精度が達成できたか否かの判定には、実際に加工して開けた穴そのものの形状、即ち設定した穴径とのズレや真円度や、穴位置の精度が目安となり、また穴と穴の間の壁に割れや欠けなどの破損の有無等が判断基準となる。 For example, the small hole of the probe guide member often has a diameter of 40 to 100 μm, but there are also smaller holes. One part is machined with 500 to 20,000 holes. In this case, in order to determine whether or not high-precision and fine machining accuracy has been achieved, the shape of the hole itself that was actually machined, that is, the deviation from the set hole diameter, the roundness, and the hole position The accuracy of the above is a guide, and the presence or absence of damage such as cracks or chips in the wall between the holes is a criterion.

以下に、本発明の複合焼結体に係る実施例および比較例を示すが、即ち複合焼結体の製造方法を具体的に示し、また実際にプローブ案内部材として加工したときの評価結果を示すが、本発明はこの説明内容に限定されるものではない。 Examples and comparative examples of the composite sintered body of the present invention are shown below, that is, the manufacturing method of the composite sintered body is specifically shown, and the evaluation results when actually processed as a probe guide member are shown. However, the present invention is not limited to this description.

(実施例1の複合焼結体)
本発明の複合焼結体の原料粉末として、表1に示したとおり、六方晶窒化ホウ素粉末(GI値:15、比表面積:41m/g)の48質量部と、サイアロン粉末((式1)のZは0.5、比表面積:15m/g、)の46質量部と、焼結助剤であるアルミナ粉末(比表面積:14m/g、純度:99.99質量%以上)の1.5質量部、及びイットリア粉末(純度:99質量%、平均粒径:0.4μm)の4.5質量部とを、溶媒にエタノ−ルを使用したボ−ルミルにて十分に湿式混合した後、これを真空乾燥して複合焼結体の原料混合粉末を得た。前記原料混合粉末を内径80mmφの黒鉛製ダイスに充填し、焼結温度:1710℃、焼結圧力30MPa、焼結時間を3時間の条件でホットプレスした後、ダイスから取り出して、実施例1の複合焼結体を得た。
(Composite sintered body of Example 1)
As the raw material powder of the composite sintered body of the present invention, as shown in Table 1, 48 parts by mass of hexagonal boron nitride powder (GI value: 15, specific surface area: 41 m 2 / g) and sialon powder ((Formula 1). ) Is 0.5, specific surface area: 15 m 2 / g,) and 46 parts by mass of) and alumina powder (specific surface area: 14 m 2 / g, purity: 99.99% by mass or more) as a sintering aid. 1.5 parts by mass and 4.5 parts by mass of Itria powder (purity: 99% by mass, average particle size: 0.4 μm) are sufficiently wet-mixed with a ball mill using etanol as a solvent. Then, this was vacuum-dried to obtain a raw material mixed powder of the composite sintered body. The raw material mixed powder is filled in a graphite die having an inner diameter of 80 mmφ, hot-pressed under the conditions of a sintering temperature of 1710 ° C., a sintering pressure of 30 MPa, and a sintering time of 3 hours, and then taken out from the die to be taken out from the die. A composite sintered body was obtained.

(相対密度の測定)
前記実施例1の複合焼結体については、外形を1mm程度研削し、アルキメデス法にてその見かけ密度を測定した。さらに前記見かけ密度を、表1に示した複合焼結体の各成分の質量比率に沿って求めた複合焼結体の理論密度で除すことにより、相対密度を算出(表記は%表示)した。この結果は表3に示した。
(Measurement of relative density)
The outer shape of the composite sintered body of Example 1 was ground by about 1 mm, and its apparent density was measured by the Archimedes method. Further, the relative density was calculated by dividing the apparent density by the theoretical density of the composite sintered body obtained according to the mass ratio of each component of the composite sintered body shown in Table 1 (notation is expressed in%). .. The results are shown in Table 3.

(変動係数の測定)
前記の複合焼結体から、幅40mm×厚さ3mm×長さ40mmに切り出し加工した試験片を作製し、蛍光X線分析装置(ZSX−PrimusII、RIGAKU社製)にて、試験片の表面10ヶ所の蛍光X線(Kα線)の強度(単位:kcps)を測定し、平均値と標準偏差より変動係数を求めた。この結果は表3に示した。
(Measurement of coefficient of variation)
A test piece cut out to a width of 40 mm, a thickness of 3 mm, and a length of 40 mm was prepared from the composite sintered body, and the surface 10 of the test piece was prepared by a fluorescent X-ray analyzer (ZSX-PrimusII, manufactured by RIGAKU). The intensity (unit: kcps) of fluorescent X-rays (Kα rays) at one location was measured, and the coefficient of variation was calculated from the average value and standard deviation. The results are shown in Table 3.

(3点曲げ強度の測定)
前記の複合焼結体から、幅4mm×厚さ3mm×長さ40mmに切り出し加工した試験片を用いて、JIS R1601:2008に準じ3点曲げ強度を測定した。この結果は表3に示した。
(Measurement of 3-point bending strength)
The three-point bending strength was measured according to JIS R1601: 2008 using a test piece cut out from the composite sintered body to a width of 4 mm, a thickness of 3 mm, and a length of 40 mm. The results are shown in Table 3.

(熱膨張係数の測定)
前記の複合焼結体から、幅4mm×厚さ4mm×長さ20mmの試験片を切り出し加工し、熱膨張測定装置(TMA8301、RIGAKU社製)を用いて、25℃〜600℃の熱膨張係数を測定した。この結果は表3に示した。
(Measurement of coefficient of thermal expansion)
A test piece having a width of 4 mm, a thickness of 4 mm, and a length of 20 mm is cut out from the composite sintered body, and a coefficient of thermal expansion of 25 ° C. to 600 ° C. is used using a thermal expansion measuring device (TMA8301, manufactured by RIGAKU). Was measured. The results are shown in Table 3.

(機械加工による評価)
前記の複合焼結体から、幅40mm×厚さ1mm×長さ40mmに切り出し加工した試験片を作製し、直径40μmの超硬マイクロドリル刃(以下ドリル刃という)を装着したマシニングセンターを用いて、回転数15,000rpmにて穴加工を乾式で行った。前記の試験片には60μmピッチ(穴−穴の隔壁設定値20μm、深さ200μm)の穴を合計400個開けて、穴径と穴位置をCNC光学測定器を用いて測定した。穴径と位置が±4μmの規格に入っているものを合格(○表示)とし、規格外を不合格(×表示)とした。また穴と穴の間の壁に割れや欠けの無いものを合格(○表示)し、割れや欠けが発生した場合を不合格(×表示)と判定した。また1本のドリル刃で400個の穴を全て加工できたものを合格(○表示)とし、ドリル刃の破損等で加工できなかったものを不合格(×表示)とした。これらの結果を表3に示す。なお壁の割れや欠けが発生したり、ドリル刃の破損が生じ場合には、穴径と穴位置の精度の評価はしなかった。
(Evaluation by machining)
A test piece cut out from the composite sintered body to a width of 40 mm, a thickness of 1 mm, and a length of 40 mm was prepared, and a machining center equipped with a cemented carbide microdrill blade (hereinafter referred to as a drill blade) having a diameter of 40 μm was used. Drilling was performed dry at a rotation speed of 15,000 rpm. A total of 400 holes with a pitch of 60 μm (hole-hole partition wall set value 20 μm, depth 200 μm) were drilled in the test piece, and the hole diameter and hole position were measured using a CNC optical measuring instrument. Those whose hole diameter and position were within the standard of ± 4 μm were regarded as acceptable (○ indication), and those outside the standard were rejected (× indication). In addition, those with no cracks or chips on the wall between holes were accepted (marked with ○), and those with cracks or chips were judged to be rejected (displayed with ×). In addition, those that could process all 400 holes with one drill blade were evaluated as acceptable (indicated by ○), and those that could not be processed due to damage to the drill blade were evaluated as rejected (indicated by ×). These results are shown in Table 3. The accuracy of the hole diameter and hole position was not evaluated when the wall was cracked or chipped or the drill blade was damaged.

(実施例2〜16、比較例1〜14)
複合焼結体の原料混合粉末の配合、焼結温度、焼結圧力、焼結時間を表1〜表4に示した配合、焼結条件に変え、それ以外の原料混合粉末の混合条件、焼結に用いた装置等は実施例1と同様にして、実施例2〜16、比較例1〜14の複合焼結体を作製した。またそれらの各種評価は、実施例1と同様に実施し、実施例1の結果と併せて表3と表4に示した。
(Examples 2 to 16, Comparative Examples 1 to 14)
The compounding of the raw material mixed powder of the composite sintered body, the sintering temperature, the sintering pressure, and the sintering time are changed to the compounding and sintering conditions shown in Tables 1 to 4, and the mixing conditions of the other raw material mixed powders and baking are changed. The apparatus and the like used for the conclusion were the same as in Example 1, and the composite sintered bodies of Examples 2 to 16 and Comparative Examples 1 to 14 were prepared. Further, these various evaluations were carried out in the same manner as in Example 1, and are shown in Tables 3 and 4 together with the results of Example 1.

(比較例15)
複合焼結体の原料混合粉末の配合、焼結温度、焼結圧力、焼結条件を表2に示した配合、焼結条件に変え、また原料混合粉末の混合を乾式振動ミルにて実施した点を除いて実施例1と同様にしてセラミックス焼結体の作成し評価した。得られた各焼結体の評価結果は表4に示した。
(Comparative Example 15)
The blending of the raw material mixed powder of the composite sintered body, the sintering temperature, the sintering pressure, and the sintering conditions were changed to the blending and the sintering conditions shown in Table 2, and the raw material mixed powder was mixed by a dry vibration mill. A ceramic sintered body was prepared and evaluated in the same manner as in Example 1 except for the points. The evaluation results of each of the obtained sintered bodies are shown in Table 4.

Figure 0006864513
Figure 0006864513

Figure 0006864513
Figure 0006864513

Figure 0006864513
Figure 0006864513

Figure 0006864513
Figure 0006864513

表1及び表3に示される、本発明の規定を満たす実施例1〜15の複合焼結体、即ち窒化ホウ素40質量部以上60質量部以下と、下記の式1(但し式1において、Zは0.2以上、1.5以下)で示されるサイアロン25質量部以上58質量部以下と、焼結助剤を2質量部以上15質量部以下とを含んでなる合計100質量部の、相対密度が90%以上の複合焼結体であって、前記複合焼結体の蛍光X線の強度測定において、窒化ホウ素に係るものとしてホウ素(B)の蛍光X線の強度の変動係数が3.0以下、かつサイアロンに係るものとしてシリコン(Si)の蛍光X線の強度の変動係数が0.8以下、JIS R1601:2008に準拠して測定した3点曲げ強度が250MPa以上である複合焼結体は、いずれも良好な評価結果を得ており、本発明の目的が達成されていることが示された。
Si6−ZAl8−Z (式1)
The composite sintered body of Examples 1 to 15 showing the provisions of the present invention shown in Tables 1 and 3, that is, 40 parts by mass or more and 60 parts by mass or less of boron nitride, and the following formula 1 (however, in formula 1, Z Is 0.2 or more and 1.5 or less), and a total of 100 parts by mass including 25 parts by mass or more and 58 parts by mass or less of Sialon and 2 parts by mass or more and 15 parts by mass or less of the sintering aid is relative. In the measurement of the intensity of the fluorescent X-ray of the composite sintered body having a density of 90% or more, the fluctuation coefficient of the intensity of the fluorescent X-ray of boron (B) is 3. Composite sintering with 0 or less, a fluctuation coefficient of fluorescent X-ray intensity of silicon (Si) of 0.8 or less as related to Sialon, and a 3-point bending intensity of 250 MPa or more measured in accordance with JIS R1601: 2008. All of the bodies obtained good evaluation results, indicating that the object of the present invention was achieved.
Si 6-Z Al Z O Z N 8-Z (Equation 1)

Claims (4)

窒化ホウ素40質量部以上60質量部以下と、下記の式1(但し式1において、Zは0.2以上、1.5以下)で示されるサイアロン25質量部以上58質量部以下と、焼結助剤を2質量部以上15質量部以下とを含んでなる、相対密度が90%以上の複合焼結体であって、前記複合焼結体の蛍光X線の強度測定において、窒化ホウ素に係るものとしてホウ素(B)の蛍光X線の強度の変動係数が3.0以下、かつサイアロンに係るものとしてシリコン(Si)の蛍光X線の強度の変動係数が0.8以下、JIS R1601:2008に準拠して測定した3点曲げ強度が250MPa以上である複合焼結体。
Si6−ZAl8−Z (式1)
Sintered with 40 parts by mass or more and 60 parts by mass or less of boron nitride and 25 parts by mass or more and 58 parts by mass or less of Sialon represented by the following formula 1 (however, in formula 1, Z is 0.2 or more and 1.5 or less). A composite sintered body containing 2 parts by mass or more and 15 parts by mass or less of an auxiliary agent and having a relative density of 90% or more. The fluctuation coefficient of the fluorescent X-ray intensity of boron (B) is 3.0 or less, and the fluctuation coefficient of the fluorescent X-ray intensity of silicon (Si) related to Sialon is 0.8 or less, JIS R1601: 2008. A composite sintered body having a three-point bending strength of 250 MPa or more measured in accordance with the above.
Si 6-Z Al Z O Z N 8-Z (Equation 1)
JIS R1618:2002に準拠して測定した25℃以上600℃以下の温度範囲における熱膨張係数が1×10−6/℃以上3×10−6/℃以下であり、JIS Z2246:2000に準拠して測定したショア硬度が55以上75以下である、請求項1記載の複合焼結体。 The coefficient of thermal expansion in the temperature range of 25 ° C or higher and 600 ° C or lower measured according to JIS R1618: 2002 is 1 × 10-6 / ° C or higher and 3 × 10-6 / ° C or lower, and conforms to JIS Z2246: 2000. The composite sintered body according to claim 1, wherein the shore hardness measured as described above is 55 or more and 75 or less. プローブ案内部材用の材料である、請求項1または2記載の複合焼結体。 The composite sintered body according to claim 1 or 2, which is a material for a probe guide member. 比表面積20m/g以上かつGI値が8以上の六方晶窒化ホウ素粉末と、比表面積6m/g以上のサイアロン粉末、及び/または比表面積6m/g以上の、窒化ケイ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、酸化ケイ素粉末からなる群から選ばれる少なくとも2種類以上の粉末と、焼結助剤粉末とを混合して、複合焼結体の原料混合粉末を得る工程、前記原料混合粉末を保持温度1510℃以上1780℃以下、保持圧力10MPaG以上50MPaG以下、保持時間1時間以上5時間以下の条件で加圧焼結する工程を含む、請求項1〜3いずれか1項記載の複合焼結体の製造方法。 Hexagonal boron nitride powder with a specific surface area of 20 m 2 / g or more and a GI value of 8 or more, Sialon powder with a specific surface area of 6 m 2 / g or more, and / or silicon nitride powder or aluminum nitride with a specific surface area of 6 m 2 / g or more. A step of mixing at least two or more kinds of powders selected from the group consisting of powders, aluminum oxide powders, and silicon oxide powders with a sintering aid powder to obtain a raw material mixed powder of a composite sintered body, the raw material mixed powder. The composite baking according to any one of claims 1 to 3, which includes a step of pressure sintering under the conditions of a holding temperature of 1510 ° C. or higher and 1780 ° C. or lower, a holding pressure of 10 MPaG or higher and 50 MPaG or lower, and a holding time of 1 hour or more and 5 hours or less. How to make a body.
JP2017056128A 2017-03-22 2017-03-22 Composite sintered body Active JP6864513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056128A JP6864513B2 (en) 2017-03-22 2017-03-22 Composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056128A JP6864513B2 (en) 2017-03-22 2017-03-22 Composite sintered body

Publications (2)

Publication Number Publication Date
JP2018158863A JP2018158863A (en) 2018-10-11
JP6864513B2 true JP6864513B2 (en) 2021-04-28

Family

ID=63795390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056128A Active JP6864513B2 (en) 2017-03-22 2017-03-22 Composite sintered body

Country Status (1)

Country Link
JP (1) JP6864513B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177361A (en) * 1989-12-05 1991-08-01 Ube Ind Ltd Production of beta-sialon-boron nitride-based conjugate sintered compact
JP3189273B2 (en) * 1989-12-28 2001-07-16 富士ゼロックス株式会社 Facsimile machine
JP2766445B2 (en) * 1993-03-11 1998-06-18 品川白煉瓦株式会社 Sialon composite sintered body and method for producing the same
JP2009209005A (en) * 2008-03-05 2009-09-17 Denki Kagaku Kogyo Kk Probe guiding member
EP2767524B1 (en) * 2011-10-11 2016-12-07 Hitachi Metals, Ltd. Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP6698395B2 (en) * 2016-03-24 2020-05-27 デンカ株式会社 Probe guide member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018158863A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP4971194B2 (en) Sialon ceramic and manufacturing method thereof
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
CN103269817B (en) Based on the ceramic material of silicon aluminum oxygen nitrogen polymerization material, the coated cutting tool be made up of this material and manufacture method thereof
JP6961008B2 (en) Probe guide parts, probe cards and sockets for package inspection
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
CN104884410A (en) Sintered sialon object and cutting insert
JP5087339B2 (en) Method for producing free-cutting ceramics
JP6864513B2 (en) Composite sintered body
JP6698395B2 (en) Probe guide member and manufacturing method thereof
JP2009209005A (en) Probe guiding member
JP4089261B2 (en) Free-cutting ceramics, manufacturing method thereof, and probe guide parts
TWI759081B (en) Machinable ceramic composite and method for preparing the same
WO2021206148A1 (en) Ceramic, probe-guiding part, probe card and socket for inspecting package
KR102328802B1 (en) SiAlON composite and cutting tools made thereof
JP2010180105A (en) Probe guiding member
JP2009167503A (en) Fine-grained cemented carbide
JP2008024530A (en) Free-cutting ceramic sintered compact and probe guiding component
EP3218323B1 (en) Ceramic material and cutting tools made thereof
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JP2000169216A (en) Reference device
JP2010083749A (en) Free-cutting ceramic composite material
JP4936724B2 (en) Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member
JP2007230788A (en) Silicon nitride sintered compact
Arabi et al. Investigation of the Physical and Mechanical Properties of Silicon Carbide Prepared on an Industrial Scale
KR20210101839A (en) Micro machinable ceramic and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200323

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6864513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250