[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6863298B2 - Structure - Google Patents

Structure Download PDF

Info

Publication number
JP6863298B2
JP6863298B2 JP2017567840A JP2017567840A JP6863298B2 JP 6863298 B2 JP6863298 B2 JP 6863298B2 JP 2017567840 A JP2017567840 A JP 2017567840A JP 2017567840 A JP2017567840 A JP 2017567840A JP 6863298 B2 JP6863298 B2 JP 6863298B2
Authority
JP
Japan
Prior art keywords
resin
fiber
reinforcing fibers
reinforcing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017567840A
Other languages
Japanese (ja)
Other versions
JPWO2018117188A1 (en
Inventor
武部 佳樹
佳樹 武部
聖 藤岡
聖 藤岡
本間 雅登
雅登 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018117188A1 publication Critical patent/JPWO2018117188A1/en
Application granted granted Critical
Publication of JP6863298B2 publication Critical patent/JP6863298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2311/00Characterised by the use of homopolymers or copolymers of chloroprene
    • C08J2311/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08J2323/22Copolymers of isobutene; butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2411/00Characterised by the use of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2423/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08J2423/22Copolymers of isobutene; butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、強化繊維、第1の樹脂、及び室温でゴム弾性を示す第2の樹脂から構成される構造体に関するものである。 The present invention relates to a structure composed of a reinforcing fiber, a first resin, and a second resin exhibiting rubber elasticity at room temperature.

近年、自動車、スポーツ製品等の産業用製品については、剛性や軽量性の向上に対する市場要求が年々高まっている。このような要求に応えるべく、剛性や軽量性に優れる繊維強化樹脂は、各種産業用途に幅広く利用されている。これら用途では強化繊維の優れた力学特性を活用した高強度、高剛性部材に適応する製品開発が主であった。一方、繊維強化樹脂においては、近年、用途展開が急速に進んでおり強度や剛性以外にも、柔軟性が必要な用途が着目されている。しかし、このような柔軟性を活かした用途の開発は、成形用副資材としてゴム質重合体に耐熱繊維を含浸せしめた材料などの一部の用途へのみの展開しかされていなかった(特許文献1、2参照)。 In recent years, the market demand for improving rigidity and lightness of industrial products such as automobiles and sports products has been increasing year by year. In order to meet such demands, fiber reinforced resins having excellent rigidity and light weight are widely used in various industrial applications. In these applications, the main focus was on developing products suitable for high-strength, high-rigidity members that utilize the excellent mechanical properties of reinforcing fibers. On the other hand, in fiber reinforced plastics, the development of applications has progressed rapidly in recent years, and applications that require flexibility in addition to strength and rigidity are attracting attention. However, the development of applications utilizing such flexibility has been limited to some applications such as a material in which a rubber polymer is impregnated with heat-resistant fibers as an auxiliary material for molding (Patent Documents). See 1 and 2).

特開平09−277295号公報Japanese Unexamined Patent Publication No. 09-277295 特許第4440963号公報Japanese Patent No. 4440963

しかしながら、自動車内装材や医療用途では、柔軟性や荷重に対する弾性回復力(クッション性)が必要なものの、前述の特許文献1や2に記載の方法では、弾性回復力(クッション性)を満足しながらも、同時に軽量性も有する材料を得ることができない問題があった。 However, although elasticity and elastic recovery force (cushion property) with respect to load are required for automobile interior materials and medical applications, the methods described in Patent Documents 1 and 2 described above satisfy the elastic recovery force (cushion property). However, there is a problem that it is not possible to obtain a material having a light weight at the same time.

そこで本発明は、上記課題に鑑みてなされたものであって、その目的は、柔軟性の指標となる圧縮特性もしくは引張破断伸度及び軽量性に優れる構造体を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a structure having excellent compressive properties or tensile elongation at break and light weight, which is an index of flexibility.

前記課題を解決するための本発明は以下である。
(1) 強化繊維、第1の樹脂、及び室温でゴム弾性を示す第2の樹脂を含む構造体であり、
前記強化繊維が不連続繊維であり、
接触する前記強化繊維間の交点を、前記第1の樹脂及び/又は前記第2の樹脂により被覆してなる、構造体。
The present invention for solving the above problems is as follows.
(1) A structure containing a reinforcing fiber, a first resin, and a second resin exhibiting rubber elasticity at room temperature.
The reinforcing fiber is a discontinuous fiber,
A structure formed by coating the intersections between the reinforcing fibers in contact with the first resin and / or the second resin.

本発明に係る構造体によれば、圧縮特性もしくは引張破断伸度及び軽量性に優れる構造体を提供できる。 According to the structure according to the present invention, it is possible to provide a structure having excellent compressive properties or tensile elongation at break and light weight.

以下、本発明の構造体について説明する。
本発明の構造体は、強化繊維、第1の樹脂、及び室温でゴム弾性を示す第2の樹脂を含む構造体であり、前記強化繊維が不連続繊維であり、接触する前記強化繊維間の交点を、前記第1の樹脂及び/又は前記第2の樹脂により被覆してなる構造体である。このような本発明は、適度な圧縮特性もしくは引張破断伸度と軽量性を有し、かつ取り扱い性に優れる特徴を有する。
Hereinafter, the structure of the present invention will be described.
The structure of the present invention is a structure containing reinforcing fibers, a first resin, and a second resin exhibiting rubber elasticity at room temperature. The reinforcing fibers are discontinuous fibers and are in contact with each other. It is a structure in which the intersection is covered with the first resin and / or the second resin. Such a present invention has features such as appropriate compression characteristics, tensile elongation at break, light weight, and excellent handleability.

〔強化繊維〕
本発明の構造体は、強化繊維を有する。そしてこの強化繊維は、不連続繊維である。さらに不連続繊維は、構造体中において、略モノフィラメント状、且つ、ランダムに分散していることが好ましい。強化繊維を不連続繊維とすることで、シート状の構造体の構造体前駆体ないし構造体を、外力を加えて成形する場合に、複雑形状への賦型が容易となる。また、強化繊維を略モノフィラメント状、且つ、ランダムに分散させることで、構造体中に繊維束として存在する強化繊維が少なくなるため、強化繊維の繊維束端における弱部が極小化でき、優れた補強効率及び信頼性に加えて、等方性も付与される。
[Reinforcing fiber]
The structure of the present invention has reinforcing fibers. And this reinforcing fiber is a discontinuous fiber. Further, the discontinuous fibers are preferably substantially monofilament-like and randomly dispersed in the structure. By using the reinforcing fibers as discontinuous fibers, it becomes easy to mold the structure precursor or structure of the sheet-like structure into a complicated shape when an external force is applied to form the structure precursor or the structure. Further, by dispersing the reinforcing fibers in a substantially monofilament shape and randomly, the number of reinforcing fibers existing as fiber bundles in the structure is reduced, so that the weak portion at the fiber bundle end of the reinforcing fibers can be minimized, which is excellent. In addition to reinforcement efficiency and reliability, isotropic is also imparted.

ここで、略モノフィラメント状とは、強化繊維単糸が500本未満の細繊度ストランドにて存在することを指す。さらに好ましくは、モノフィラメント状に分散していることである。さらに、モノフィラメント状とは、単糸として存在することを指す。さらに好ましくは、モノフィラメント状の単繊維がランダムに分散していることである。 Here, the substantially monofilament form means that the reinforcing fiber single yarn is present in the fineness strands of less than 500 threads. More preferably, it is dispersed in a monofilament form. Further, the monofilament form means that it exists as a single yarn. More preferably, the monofilament-like single fibers are randomly dispersed.

本発明における強化繊維は、不織布状の形態をとることが、強化繊維への第1の樹脂および第2の樹脂の含浸の容易さの観点から好ましい。さらに、強化繊維が不織布状の形態を有していることにより、不織布自体のハンドリング性の容易さに加え、一般的に高粘度とされる熱可塑性樹脂を第1の樹脂及び/又は第2の樹脂として用いた場合においても含浸を容易なものとできるため好ましい。ここで、不織布状の形態とは、強化繊維のストランド及び/又はモノフィラメントが規則性なく面状に分散した形態を指し、チョップドストランドマット、コンティニュアンスストランドマット、抄紙マット、カーディングマット、エアレイドマット等を例示できる(以下、これらをまとめて強化繊維マットと称す)。 The reinforcing fibers in the present invention preferably take a non-woven fabric-like form from the viewpoint of ease of impregnating the reinforcing fibers with the first resin and the second resin. Further, since the reinforcing fiber has a non-woven fabric-like form, in addition to the ease of handling of the non-woven fabric itself, the thermoplastic resin generally having a high viscosity is used as the first resin and / or the second resin. Even when it is used as a resin, it is preferable because it can be easily impregnated. Here, the non-woven fabric-like form refers to a form in which strands and / or monofilaments of reinforcing fibers are dispersed in a plane without regularity, such as chopped strand mat, continuance strand mat, papermaking mat, carding mat, and airlaid mat. (Hereinafter, these are collectively referred to as a reinforcing fiber mat).

構造体中の強化繊維は、質量平均繊維長さが1〜15mmであることが、構造体への強化繊維の補強効率を高めることができ、構造体に優れた力学特性を与えられるため好ましい。強化繊維の質量平均繊維長さが1mm未満である場合、構造体中の空隙を効率よく形成できないため、密度が高くなる場合があり、言い換えれば、同一質量でありながら所望する厚さの構造体を得ることが困難となるので好ましくない。一方、強化繊維の質量平均繊維長さが15mmより長い場合には、構造体中で強化繊維が、自重により屈曲しやすくなり、力学特性の発現を阻害する要因となるので好ましくない。 It is preferable that the reinforcing fibers in the structure have a mass average fiber length of 1 to 15 mm because the efficiency of reinforcing the reinforcing fibers to the structure can be increased and excellent mechanical properties can be given to the structure. If the mass average fiber length of the reinforcing fibers is less than 1 mm, voids in the structure cannot be efficiently formed, so that the density may increase. In other words, a structure having the same mass but a desired thickness. It is not preferable because it becomes difficult to obtain. On the other hand, when the mass average fiber length of the reinforcing fibers is longer than 15 mm, the reinforcing fibers tend to bend in the structure due to their own weight, which is a factor that hinders the development of mechanical properties, which is not preferable.

質量平均繊維長さは、構造体中の樹脂成分を焼失や溶出等の方法により取り除き、残った強化繊維から無作為に400本を選択し、その長さを10μm単位まで測定し、次式により質量平均繊維長さを求めることができる。
質量平均繊維長さ=Σ(Li×Wi/100)
Li:測定した繊維長さ(i=1、2、3、・・・、n)
Wi:繊維長さLiの繊維の質量分率(i=1、2、3、・・・、n)
For the mass average fiber length, the resin component in the structure was removed by burning or elution, 400 fibers were randomly selected from the remaining reinforcing fibers, and the length was measured up to 10 μm, and the length was measured by the following formula. The mass average fiber length can be obtained.
Mass average fiber length = Σ (Li x Wi / 100)
Li: Measured fiber length (i = 1, 2, 3, ..., N)
Wi: Mass fraction of fiber with fiber length Li (i = 1, 2, 3, ..., N)

強化繊維の種類は、PAN系炭素繊維、ピッチ系炭素繊維、ガラス繊維、及びアラミド繊維からなる群より選ばれる少なくとも1種であることが、構造体としたときの力学特性と軽量性のバランスの観点から好ましい。さらに強化繊維は、表面処理が施されているものであってもよい。表面処理としては、導電体として金属の被着処理の他に、カップリング剤による処理、サイジング剤による処理、結束剤による処理、添加剤の付着処理等がある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、軽量化効果の観点から、比強度、比剛性に優れるPAN系、ピッチ系、レーヨン系等の炭素繊維が好ましく用いられる。また、得られる構造体の経済性を高める観点からは、ガラス繊維が好ましく用いられ、とりわけ力学特性と経済性とのバランスから炭素繊維とガラス繊維とを併用することが好ましい。さらに、得られる構造体の衝撃吸収性や賦形性を高める観点からは、アラミド繊維が好ましく用いられ、とりわけ力学特性と衝撃吸収性とのバランスから炭素繊維とアラミド繊維とを併用することが好ましい。また、得られる構造体の導電性を高める観点からは、ニッケルや銅やイッテルビウム等の金属を被覆した強化繊維を用いることもできる。これらの中で、強度と弾性率等の力学特性に優れるPAN系の炭素繊維をより好ましく用いることができる。 The type of reinforcing fiber should be at least one selected from the group consisting of PAN-based carbon fiber, pitch-based carbon fiber, glass fiber, and aramid fiber, in terms of the balance between mechanical properties and lightness when formed into a structure. It is preferable from the viewpoint. Further, the reinforcing fiber may be one that has been surface-treated. The surface treatment includes a treatment with a coupling agent, a treatment with a sizing agent, a treatment with a binding agent, a treatment with an additive, and the like, in addition to the treatment with a metal as a conductor. Further, one type of these reinforcing fibers may be used alone, or two or more types may be used in combination. Among them, PAN-based, pitch-based, rayon-based and other carbon fibers having excellent specific strength and specific rigidity are preferably used from the viewpoint of weight reduction effect. Further, from the viewpoint of enhancing the economic efficiency of the obtained structure, glass fiber is preferably used, and in particular, carbon fiber and glass fiber are preferably used in combination from the viewpoint of the balance between mechanical properties and economic efficiency. Further, from the viewpoint of enhancing the shock absorption and shapeability of the obtained structure, aramid fibers are preferably used, and in particular, carbon fibers and aramid fibers are preferably used in combination from the viewpoint of the balance between mechanical properties and shock absorption. .. Further, from the viewpoint of increasing the conductivity of the obtained structure, reinforcing fibers coated with a metal such as nickel, copper or ytterbium can also be used. Among these, PAN-based carbon fibers having excellent mechanical properties such as strength and elastic modulus can be more preferably used.

強化繊維は、引張破断伸度が1%以上10%以下の範囲内であることが、構造体とした時の構造体の引張破断伸度を1%以上とできることから好ましい。強化繊維の引張破断伸度が1%以上であると、構造体としたときに第2の樹脂のゴム弾性を活用することができ、延性的な構造体とすることができるため好ましい。一方、構造体の引張破断伸度が10%以下であると、構造体自身が柔軟になりすぎることを防ぐことができ、取り扱い性に優れるため好ましい。 It is preferable that the tensile elongation at break of the reinforcing fiber is in the range of 1% or more and 10% or less because the tensile elongation at break of the structure can be 1% or more when the structure is formed. When the tensile elongation at break of the reinforcing fiber is 1% or more, the rubber elasticity of the second resin can be utilized when the structure is formed, and the ductile structure can be formed, which is preferable. On the other hand, when the tensile elongation at break of the structure is 10% or less, it is possible to prevent the structure itself from becoming too flexible, and it is preferable because it is excellent in handleability.

なお、強化繊維の引張破断伸度は、JIS R7606(2000)により求めることができ、引張破断伸度の測定においては、単繊維を複数本束ねた繊維束から強化繊維が構成される場合、その1本(単繊維)を抜き出し測定に供することにより求めることができる。 The tensile elongation at break of the reinforcing fiber can be determined by JIS R7606 (2000), and in the measurement of the tensile elongation at break, when the reinforcing fiber is composed of a fiber bundle in which a plurality of single fibers are bundled, the reinforcing fiber is used. It can be obtained by extracting one fiber (single fiber) and subjecting it to measurement.

〔第1の樹脂〕
本発明の構造体は、第1の樹脂を含む。ここで本発明における第1の樹脂とは、後述する第2の樹脂以外の樹脂、すなわち、室温でゴム弾性を示さない樹脂である。このような第1の樹脂としては、第2の樹脂以外の熱可塑性樹脂や熱硬化性樹脂を例示できる。また、本発明においては、熱硬化性樹脂と熱可塑性樹脂とがブレンドされていてもよい。
[First resin]
The structure of the present invention contains a first resin. Here, the first resin in the present invention is a resin other than the second resin described later, that is, a resin that does not exhibit rubber elasticity at room temperature. Examples of such a first resin include thermoplastic resins and thermosetting resins other than the second resin. Further, in the present invention, the thermosetting resin and the thermoplastic resin may be blended.

第1の樹脂は、不連続繊維である強化繊維を目止めすることで、第2の樹脂と複合化させるときのハンドリング性を向上させる効果を有する。さらには、第2の樹脂と強化繊維の親和性を高める効果を有することもある。 The first resin has an effect of improving the handleability when composited with the second resin by sealing the reinforcing fibers which are discontinuous fibers. Furthermore, it may have the effect of increasing the affinity between the second resin and the reinforcing fiber.

第1の樹脂としては、軟化点又は融点が50℃以上であることが好ましい。第1の樹脂が50℃以上の軟化点又は融点を有することにより、第1の樹脂が付与された強化繊維に、第2の樹脂を含浸させる場合の含浸温度や構造体を成型する場合の成形温度で、第1の樹脂が溶融や消失することがないため、第2の樹脂が架橋反応ないしは加硫反応を示す場合に、その反応を阻害することがない。他方、第2の樹脂が熱可塑性樹脂の場合には、含浸温度にて第1の樹脂が溶融し消失することを低減できる。 The first resin preferably has a softening point or a melting point of 50 ° C. or higher. Since the first resin has a softening point or melting point of 50 ° C. or higher, the impregnation temperature when the reinforcing fiber to which the first resin is applied is impregnated with the second resin and the molding when molding the structure. Since the first resin does not melt or disappear at temperature, when the second resin exhibits a crosslinking reaction or a vulcanization reaction, the reaction is not hindered. On the other hand, when the second resin is a thermoplastic resin, it is possible to reduce the melting and disappearance of the first resin at the impregnation temperature.

第1の樹脂は、前述の強化繊維のハンドリング性を向上させる観点や、第2の樹脂と強化繊維の親和性を向上させる観点から、強化繊維100質量部に対し、5質量部以上25質量部以下の含有量であることが好ましい。強化繊維100質量部に対する第1の樹脂の含有量が5質量部未満であると、強化繊維のハンドリング性が劣り、25質量部を超えると、第2の樹脂を強化繊維に含浸させる場合に第2の樹脂の侵入経路を阻害してしまい、構造体を得ることが困難になる場合がある。第1の樹脂は強化繊維への付与を工業的に容易にする観点から、水溶性やエマルジョンであってもよい。 The first resin is 5 parts by mass or more and 25 parts by mass with respect to 100 parts by mass of the reinforcing fibers from the viewpoint of improving the handleability of the reinforcing fibers and improving the affinity between the second resin and the reinforcing fibers. The content is preferably as follows. If the content of the first resin with respect to 100 parts by mass of the reinforcing fiber is less than 5 parts by mass, the handleability of the reinforcing fiber is poor, and if it exceeds 25 parts by mass, the reinforcing fiber is impregnated with the second resin. It may be difficult to obtain a structure because it obstructs the invasion route of the resin of 2. The first resin may be water-soluble or an emulsion from the viewpoint of industrially facilitating the application to the reinforcing fibers.

〔第2の樹脂〕
本発明の構造体は、第2の樹脂を含む。ここで本発明における第2の樹脂とは、室温でゴム弾性を示す樹脂である。樹脂が室温でゴム弾性を示すとは、室温下にて樹脂を変形させ、変形に要した応力を開放した後に、元の形状に戻る特徴をいう。具体的には、JIS K6400(2012)に記載の1号形ダンベル試験片を伸張した後に、伸張に有した応力を解除する。その後、ほぼ元の長さに弾性的に回復することを指す。ただし、元の長さに完全に回復する必要はなく、伸張前の寸法を100%とした場合に、伸張に有した応力を開放した後の寸法変化が、80%以上120%以下、好ましくは90%以上150%以下を示すものでもよい。なお、室温とは25℃を意味する。
[Second resin]
The structure of the present invention contains a second resin. Here, the second resin in the present invention is a resin that exhibits rubber elasticity at room temperature. The fact that a resin exhibits rubber elasticity at room temperature means that the resin is deformed at room temperature, the stress required for the deformation is released, and then the resin returns to its original shape. Specifically, after stretching the No. 1 dumbbell test piece described in JIS K6400 (2012), the stress held in the stretching is released. After that, it means that it elastically recovers to almost the original length. However, it is not necessary to completely recover to the original length, and when the dimension before stretching is 100%, the dimensional change after releasing the stress held in the stretching is 80% or more and 120% or less, preferably 120% or less. It may indicate 90% or more and 150% or less. The room temperature means 25 ° C.

第2の樹脂は、シリコーンゴム、エチレンプロピレンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、フッ素ゴム、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、及びポリアミド系熱可塑性エラストマーからなる群より選ばれる少なくとも1種を含むことが好ましい。第2の樹脂を用いることで、構造体を圧縮した時のクッション性に優れる。さらに、製造の容易さから、熱硬化性を示す樹脂については、架橋もしくは加硫反応以前では、液状体であることが好ましい。かかる観点から、シリコーンゴム、フッ素ゴムを好ましく用いることができる。さらに、第2の樹脂が熱可塑性樹脂である場合には、溶融温度または軟化温度を有し、フィルム状に成膜できることが、構造体を製造する観点から好ましい。かかる観点から、ポリエステル系熱可塑性エラストマーを好ましく、例示できる。 The second resin is a group consisting of silicone rubber, ethylene propylene rubber, acrylonitrile butadiene rubber, chloroprene rubber, fluororubber, polyolefin-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. It is preferable to contain at least one selected from the above. By using the second resin, the cushioning property when the structure is compressed is excellent. Further, from the viewpoint of ease of production, the thermosetting resin is preferably in a liquid state before the crosslinking or vulcanization reaction. From this point of view, silicone rubber and fluororubber can be preferably used. Further, when the second resin is a thermoplastic resin, it is preferable from the viewpoint of producing a structure that it has a melting temperature or a softening temperature and can form a film. From this point of view, polyester-based thermoplastic elastomers are preferable and can be exemplified.

また、本発明の目的を損なわない範囲で、本発明に係る構造体中の第1の樹脂や第2の樹脂は、エラストマー又はゴム成分等の耐衝撃性向上剤、他の充填材や添加剤を含有してもよい。充填材や添加剤の例としては、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、又は、カップリング剤を例示できる。 Further, as long as the object of the present invention is not impaired, the first resin and the second resin in the structure according to the present invention are impact resistance improvers such as elastomers or rubber components, and other fillers and additives. May be contained. Examples of fillers and additives include inorganic fillers, flame retardants, conductivity-imparting agents, crystal nucleating agents, UV absorbers, antioxidants, anti-vibration agents, antibacterial agents, insect repellents, deodorants, and anti-coloring agents. , Heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents can be exemplified.

本発明の構造体は、接触する強化繊維間の交点(強化繊維間の交点を、以下、交点と記す)を、第1の樹脂及び/又は第2の樹脂が被覆していることが好ましい。 In the structure of the present invention, it is preferable that the intersections between the reinforcing fibers in contact (the intersections between the reinforcing fibers are hereinafter referred to as intersections) are covered with the first resin and / or the second resin.

さらに強化繊維と強化繊維の交点における第1の樹脂及び/又は第2の樹脂の被覆厚みが1μm以上、15μm以下の範囲内にあることが、圧縮時の弾性回復力を発現させる観点から好ましい。第1の樹脂及び/又は第2の樹脂に被覆された交点の被覆状態は、構造体の形状安定性や、圧縮特性の発現の観点から、少なくとも構造体を構成する強化繊維の単繊維同士の交差する点が被覆されていれば十分であるが、さらに好ましい態様とすれば、第1の樹脂及び/又は第2の樹脂は、交点の周囲に、上述の厚みで被覆された状態であることが好ましい。この状態は、強化繊維間の交点の表面が第1の樹脂及び/又は第2の樹脂によって露出していない、言い換えれば、強化繊維が第1の樹脂及び/又は第2の樹脂により電線状の皮膜を形成していることを意味する。このことにより、構造体は、さらに、形状安定性を有すると共に、力学特性の発現を十分なものとする。また、第1の樹脂及び/又は第2の樹脂に被覆された交点の被覆状態は、その強化繊維の全てにおいて被覆されている必要はなく、本発明にかかる構造体の形状安定性や、圧縮弾性率を損なわない範囲内であればよく、接触する強化繊維間が形成する交点の50%以上が被覆されている状態が好ましく、さらに好ましくは、圧縮時の弾性回復力を発現の安定性の観点から80%以上である。 Further, it is preferable that the coating thickness of the first resin and / or the second resin at the intersection of the reinforcing fibers and / or the reinforcing fibers is within the range of 1 μm or more and 15 μm or less from the viewpoint of expressing the elastic recovery force at the time of compression. The coating state of the intersections coated with the first resin and / or the second resin is at least among the single fibers of the reinforcing fibers constituting the structure from the viewpoint of the shape stability of the structure and the development of compression characteristics. It is sufficient if the intersecting points are covered, but in a more preferable embodiment, the first resin and / or the second resin is in a state of being covered with the above-mentioned thickness around the intersections. Is preferable. In this state, the surface of the intersection between the reinforcing fibers is not exposed by the first resin and / or the second resin, in other words, the reinforcing fibers are wire-shaped by the first resin and / or the second resin. It means that a film is formed. As a result, the structure further has shape stability and sufficient expression of mechanical properties. Further, the coating state of the intersections coated with the first resin and / or the second resin does not have to be coated with all of the reinforcing fibers, and the shape stability of the structure according to the present invention and compression It suffices as long as it does not impair the elastic modulus, and it is preferable that 50% or more of the intersections formed between the reinforcing fibers in contact are covered, and more preferably, the elastic recovery force at the time of compression is exhibited. From the viewpoint, it is 80% or more.

ここで、強化繊維と強化繊維の交点を被覆する樹脂は、第1の樹脂または第2の樹脂のいずれか一方だけでもよいし、第1の樹脂と第2の樹脂の両方によって被覆されてもよい。好ましくは、強化繊維は第1の樹脂に被覆された後、第2の樹脂によりさらに被覆されることが、強化繊維の取り扱い性、構造体としたときの圧縮時における弾性回復力が効果的に発現する観点から好ましい。 Here, the resin that coats the intersection of the reinforcing fibers and the reinforcing fibers may be either the first resin or the second resin, or may be coated with both the first resin and the second resin. Good. Preferably, the reinforcing fibers are coated with the first resin and then further coated with the second resin, so that the handleability of the reinforcing fibers and the elastic recovery force at the time of compression when the structure is formed are effective. It is preferable from the viewpoint of expression.

かかる被覆状態は、構造体を小片に切り出し、その断面を走査型電子顕微鏡(SEM)などの高倍率に観察可能な装置を用いることで測定できる。例えば、SEMにより3000倍の倍率で観察、撮影し、得られた画像の強化繊維の断面がカットされた任意の50ヶ所から、強化繊維間の交点に被覆している第1の樹脂及び/又は第2の樹脂の被覆厚さを測定することができる。交点を被覆した第1の樹脂及び/又は第2の樹脂の厚みの代表値としては、かかる50ヶ所の測定結果の算術平均値を用いることにより求まる。測定に際しては、予め第2の樹脂が付与されていない強化繊維(上述の通り第1の樹脂により結合されてなる強化繊維の交点)を上記と同様に観察、撮影し、交点の直径を求めておき、第2の樹脂を付与した後の画像から得られる交点の直径から、前述の交点の直径を差し引いて求めることで、さらに精度の良い測定結果を得ることができる。かかる交点の直径は、観察視野から得られる交点の断面の最大直径を求める。求めた最大直径と直角方向の繊維径を測定し、算術平均としたものを交点ならびに第1の樹脂及び/又は第2の樹脂に被覆された交点の直径とする。 Such a covering state can be measured by cutting the structure into small pieces and using a device such as a scanning electron microscope (SEM) that can observe the cross section at a high magnification. For example, the first resin and / or the first resin covering the intersections between the reinforcing fibers from any 50 places where the cross section of the reinforcing fibers was cut in the image obtained by observing and photographing at a magnification of 3000 times by SEM. The coating thickness of the second resin can be measured. As a representative value of the thickness of the first resin and / or the second resin covering the intersection, it can be obtained by using the arithmetic average value of the measurement results at these 50 points. At the time of measurement, the reinforcing fibers to which the second resin is not applied in advance (the intersections of the reinforcing fibers bonded by the first resin as described above) are observed and photographed in the same manner as above, and the diameter of the intersection is determined. By subtracting the diameter of the above-mentioned intersection from the diameter of the intersection obtained from the image obtained after applying the second resin, a more accurate measurement result can be obtained. For the diameter of such an intersection, the maximum diameter of the cross section of the intersection obtained from the observation field of view is obtained. The fiber diameter in the direction perpendicular to the obtained maximum diameter is measured, and the arithmetic mean is taken as the diameter of the intersection and the diameter of the intersection covered with the first resin and / or the second resin.

かかる被覆割合は、構造体を小片に切り出し、その断面を走査型電子顕微鏡(SEM)などの高倍率に観察可能な装置を用いることで測定できる。例えば、SEMにより1000倍の倍率で観察、撮影し、得られた画像から得られる任意の400ヶ所から、第1の樹脂及び/又は第2の樹脂が被覆している交点の数を測定した交点の数(すなわち、400)で除することにより、第1の樹脂及び/又は第2の樹脂により交点が被覆された被覆割合が算出できる。なお、400ヶ所未満でも被覆割合を得ることは可能であるが、400ヶ所以上とすることにより、測定者間での誤差を小さくすることができるため好ましい。 The coating ratio can be measured by cutting the structure into small pieces and using a device such as a scanning electron microscope (SEM) that can observe the cross section at a high magnification. For example, the number of intersections covered with the first resin and / or the second resin was measured from any 400 points obtained from the obtained image by observing and photographing at a magnification of 1000 times by SEM. By dividing by the number of (that is, 400), the coating ratio in which the intersections are covered with the first resin and / or the second resin can be calculated. Although it is possible to obtain the coating ratio at less than 400 places, it is preferable to set the number at 400 places or more because the error between the measurers can be reduced.

第2の樹脂は、引張破断伸度が200%以上であり、引張破断強度が10MPa以上であることが、構造体の引張破断伸度を1%以上にできることから好ましい。一方、第2の樹脂の引張破断伸度が、200%以上であることにより、第2の樹脂の破断伸度が十分であることから、構造体を脆性的なものとすることを防ぐことができる。第2の樹脂の引張破断伸度は、より好ましくは500%以上である。一方、第2の樹脂の引張破断強度を10MPa以上とすることにより、構造体において所望の圧縮時の弾性回復力を十分なものとできる。第2の樹脂の引張破断強度は、より好ましくは、25MPa以上である。
第2の樹脂の引張破断伸度と引張破断強度は、引張試験(JIS K6400(2012))により求めることができる。
The second resin preferably has a tensile elongation at break of 200% or more and a tensile strength at break of 10 MPa or more because the elongation at break of the structure can be 1% or more. On the other hand, when the tensile elongation at break of the second resin is 200% or more, the elongation at break of the second resin is sufficient, so that it is possible to prevent the structure from becoming brittle. it can. The tensile elongation at break of the second resin is more preferably 500% or more. On the other hand, by setting the tensile breaking strength of the second resin to 10 MPa or more, the elastic recovery force at the time of desired compression in the structure can be made sufficient. The tensile breaking strength of the second resin is more preferably 25 MPa or more.
The tensile elongation at break and the tensile strength at break of the second resin can be determined by a tensile test (JIS K6400 (2012)).

〔構造体〕
本発明における構造体は空隙を有することが好ましく、さらに密度が0.01g/cm以上、1.3g/cm以下であることが好ましい。構造体の密度ρが1.3g/cm以下であることにより、構造体とした場合の質量の増加を防ぎ、軽量性を担保することができるため好ましい。構造体の密度が0.01g/cm以上であることにより、構造体自身の密度には優れ、構造体中の強化繊維と樹脂成分(第1の樹脂および第2の樹脂)の体積割合が少なくなりすぎることを防ぐことができる。そのため、弾性回復力、引張強度のバランスの取れた構造体とすることができるため好ましく、上述の観点から、構造体の密度は0.03g/cm以上であることが好ましく、更に、軽量性と弾性回復力、引張強度のバランスを考慮すると、0.1g/cm以上が好ましい。
〔Structure〕
The structure in the present invention preferably has voids, and the density is preferably 0.01 g / cm 3 or more and 1.3 g / cm 3 or less. When the density ρ of the structure is 1.3 g / cm 3 or less, it is possible to prevent an increase in mass when the structure is formed and to ensure lightness, which is preferable. Since the density of the structure is 0.01 g / cm 3 or more, the density of the structure itself is excellent, and the volume ratio of the reinforcing fibers and the resin components (first resin and second resin) in the structure is high. It is possible to prevent it from becoming too small. Therefore, it is preferable that the structure has a well-balanced elastic resilience and tensile strength. From the above viewpoint, the density of the structure is preferably 0.03 g / cm 3 or more, and the weight is lighter. Considering the balance between elastic resilience and tensile strength, 0.1 g / cm 3 or more is preferable.

本発明の構造体を100体積%とすると、空隙の体積含有率は10体積%以上97体積%以下の範囲内であることが好ましい。空隙の体積含有率が10体積%以上である場合、構造体の軽量性を満足するため好ましい。一方、空隙の体積含有率が97体積%以下である場合には、言い換えれば、強化繊維の周囲に被覆された樹脂成分(第1の樹脂および第2の樹脂)の厚みが十分に確保され、構造体中における強化繊維同士の補強が十分に行われるため、力学特性を向上させることができ好ましい。 Assuming that the structure of the present invention is 100% by volume, the volume content of the voids is preferably in the range of 10% by volume or more and 97% by volume or less. When the volume content of the voids is 10% by volume or more, it is preferable because the lightness of the structure is satisfied. On the other hand, when the volume content of the voids is 97% by volume or less, in other words, the thickness of the resin components (first resin and second resin) coated around the reinforcing fibers is sufficiently secured. Since the reinforcing fibers are sufficiently reinforced in the structure, the mechanical properties can be improved, which is preferable.

ここで空隙とは、樹脂成分(第1の樹脂および第2の樹脂)により被覆された強化繊維が柱状の支持体となり、それが重なり合い、又は、交差することにより形成された空間のことを指す。例えば強化繊維に樹脂成分(第1の樹脂および第2の樹脂)が予め含浸された構造体前駆体を加熱して構造体を得る場合、加熱に伴う樹脂成分(第1の樹脂および第2の樹脂)の溶融又は軟化により、強化繊維が起毛することで空隙が形成される。これは、構造体前駆体において、加圧により圧縮状態とされていた内部の強化繊維が、その弾性率に由来する起毛力によって起毛する性質に基づく。 Here, the void refers to a space formed by the reinforcing fibers coated with the resin components (the first resin and the second resin) forming a columnar support, which are overlapped or intersected with each other. .. For example, when a structure precursor obtained by preliminarily impregnating a reinforcing fiber with a resin component (first resin and second resin) is heated to obtain a structure, the resin component (first resin and second resin) associated with the heating is heated. By melting or softening the resin), the reinforcing fibers are raised to form voids. This is based on the property that in the structure precursor, the internal reinforcing fibers that have been compressed by pressurization are raised by the raising force derived from the elastic modulus.

本発明において体積含有率は、構造体を構成する樹脂(第1の樹脂と第2の樹脂の合計)、強化繊維、及び空隙のそれぞれの体積含有率の合計を100体積%とする。
つまり、樹脂(第1の樹脂と第2の樹脂の合計)、強化繊維、及び空隙の合計を100体積%とした場合、構造体における樹脂(第1の樹脂と第2の樹脂の合計)の体積含有率は、2.5体積%以上85体積%以下の範囲内にあることが好ましい。樹脂(第1の樹脂と第2の樹脂の合計)の体積含有率が2.5体積%以上である場合、構造体中の強化繊維同士を結着し、強化繊維の補強効果を十分なものとすることができるため、構造体の力学特性、とりわけ曲げ特性を満足できるので好ましい。一方、樹脂(第1の樹脂と第2の樹脂の合計)の体積含有率が85体積%以下の場合には、樹脂量が少ないことから、空隙構造をとることが容易となるので好ましい。
In the present invention, the volume content of the resin (total of the first resin and the second resin), the reinforcing fibers, and the voids constituting the structure is 100% by volume.
That is, when the total of the resin (total of the first resin and the second resin), the reinforcing fibers, and the voids is 100% by volume, the resin in the structure (the total of the first resin and the second resin) The volume content is preferably in the range of 2.5% by volume or more and 85% by volume or less. When the volume content of the resin (total of the first resin and the second resin) is 2.5% by volume or more, the reinforcing fibers in the structure are bound to each other, and the reinforcing effect of the reinforcing fibers is sufficient. Therefore, it is preferable because the mechanical properties of the structure, particularly the bending properties, can be satisfied. On the other hand, when the volume content of the resin (total of the first resin and the second resin) is 85% by volume or less, the amount of the resin is small and it becomes easy to form a void structure, which is preferable.

さらに本発明の構造体は、50%圧縮時の弾性回復力が1MPa以上であることが好ましい。ここで、弾性回復力は、JIS K7220(2006)で測定される構造体を厚み方向に50%圧縮した際の圧縮強度である。厚み方向の50%圧縮時の弾性回復力が1MPa以上であることにより、構造体は形状保持性に優れるため、例えば製品として他部材に取り付ける際のハンドリング性に優れる。さらに、実用上、構造体の面内方向を負荷がかかる方向として用いた場合、軽微な荷重には耐えることができ、さらに、一定以上の荷重が加わった場合には変形するため、構造体を製品として用いた場合に、取り付け時における作業者への保護の観点から好ましい。50%圧縮時の弾性回復力は、1MPa以上あれば実用上問題ないが、好ましくは3MPa以上である。 Further, the structure of the present invention preferably has an elastic recovery force of 1 MPa or more when compressed at 50%. Here, the elastic recovery force is the compression strength when the structure measured by JIS K7220 (2006) is compressed by 50% in the thickness direction. Since the elastic recovery force at 50% compression in the thickness direction is 1 MPa or more, the structure is excellent in shape retention, and therefore, for example, it is excellent in handleability when attached to another member as a product. Further, in practice, when the in-plane direction of the structure is used as the direction in which the load is applied, the structure can withstand a slight load and is deformed when a load exceeding a certain level is applied. When used as a product, it is preferable from the viewpoint of protection to workers at the time of installation. If the elastic recovery force at the time of 50% compression is 1 MPa or more, there is no problem in practical use, but it is preferably 3 MPa or more.

さらに、構造体は、引張破断伸度が1%以上20%以下の範囲内であることが好ましい。ここで、引張破断伸度は、JIS K6400(2012)で測定される構造体の繊維配向方向の引張試験において観察される破断時の伸度である。また、繊維配向方向とは強化繊維の長さ方向を意味する。引張破断伸度が1%以上20%以下であることにより、構造体を取り扱う際に屈曲やよれが少なくなりハンドリング性に優れる。構造体の引張破断伸度は、好ましくは3%以上15%以下、さらに好ましくは、5%以上15%以下が取り扱い性の観点から好ましい。 Further, the structure preferably has a tensile elongation at break of 1% or more and 20% or less. Here, the tensile elongation at break is the elongation at break observed in the tensile test in the fiber orientation direction of the structure measured by JIS K6400 (2012). The fiber orientation direction means the length direction of the reinforcing fibers. When the tensile elongation at break is 1% or more and 20% or less, bending and twisting are reduced when handling the structure, and the handleability is excellent. The tensile elongation at break of the structure is preferably 3% or more and 15% or less, more preferably 5% or more and 15% or less from the viewpoint of handleability.

本発明にかかる構造体の製造方法は、マット状の強化繊維(以下、単に強化繊維マットと称す)に予め第1の樹脂を含浸させた第1の構造体前駆体を介して製造することができる。第1の構造体前駆体を製造する方法としては、強化繊維マットと第1の樹脂とを積層し、第1の樹脂を溶融又は第1の樹脂の軟化温度以上に加熱した状態で圧力を付与し、強化繊維マットに第1の樹脂を含浸させる方法を用いることが、製造の容易さの観点から好ましい。他方、第1の樹脂が水溶液やエマルジョンの形態である場合には、強化繊維マットに、カーテンコートやディップ、浸漬などの方法により添加し、水分や溶媒分を乾燥させる方法を採用することもできるが、強化繊維マットに第1の樹脂を付与できる手法であれば、方法によらず採用することができる。 The method for producing a structure according to the present invention can be produced via a first structure precursor in which a mat-like reinforcing fiber (hereinafter, simply referred to as a reinforcing fiber mat) is impregnated with a first resin in advance. it can. As a method for producing the first structure precursor, a reinforcing fiber mat and a first resin are laminated, and pressure is applied in a state where the first resin is melted or heated to a temperature equal to or higher than the softening temperature of the first resin. However, it is preferable to use a method of impregnating the reinforcing fiber mat with the first resin from the viewpoint of ease of production. On the other hand, when the first resin is in the form of an aqueous solution or an emulsion, a method of adding the first resin to the reinforcing fiber mat by a method such as curtain coating, dipping, or dipping to dry the water or solvent can also be adopted. However, any method can be adopted as long as it can apply the first resin to the reinforcing fiber mat.

また、構造体は、第1の構造体前駆体に、第2の樹脂を含浸させた第2の構造体前駆体を介して製造することができる。第1の構造体前駆体への第2の樹脂の付与方法は、第1の構造体前駆体に、第2の樹脂をさらに含浸させることにより行うことができる。例えば、第2の樹脂が熱可塑性を示す場合には、第1の構造体前駆体と第2の樹脂とを積層し、第2の樹脂を溶融又は第2の樹脂の軟化温度以上に加熱した状態で圧力を付与し、第1の構造体前駆体の強化繊維マットに含浸させる方法を用いることが、製造の容易さの観点から好ましい。具体的には、第1の構造体前駆体の厚み方向の両側から第2の樹脂を配置した積層物を加熱、加圧して、溶融含浸させる方法が好ましく例示できる。上記各方法を実現するための設備としては、圧縮成形機やダブルベルトプレスを好適に用いることができる。バッチ式の場合は前者であり、加熱用と冷却用との2機以上を並列した間欠式プレスシステムとすることで生産性の向上が図れる。連続式の場合は後者であり、連続的な加工を容易に行うことができるので連続生産性に優れる。 Further, the structure can be produced via a second structure precursor in which the first structure precursor is impregnated with the second resin. The method of applying the second resin to the first structure precursor can be carried out by further impregnating the first structure precursor with the second resin. For example, when the second resin exhibits thermoplasticity, the first structure precursor and the second resin are laminated, and the second resin is melted or heated to a temperature higher than the softening temperature of the second resin. It is preferable to use a method of applying pressure in the state and impregnating the reinforcing fiber mat of the first structure precursor from the viewpoint of ease of production. Specifically, a method of heating and pressurizing a laminate in which the second resin is arranged from both sides in the thickness direction of the first structure precursor to melt and impregnate the first structure precursor can be preferably exemplified. As the equipment for realizing each of the above methods, a compression molding machine or a double belt press can be preferably used. In the case of the batch type, it is the former, and productivity can be improved by using an intermittent press system in which two or more machines for heating and cooling are arranged in parallel. In the case of the continuous type, it is the latter, and continuous processing can be easily performed, so that continuous productivity is excellent.

また、第2の樹脂が溶媒中に分散している場合や、室温で液状を示す場合には、第1の構造体前駆体に、カーテンコートやディップ、浸漬、真空圧成型などの方法により、第2の樹脂を浸透させ、水分や溶媒分を乾燥させる方法や、第2の樹脂を浸透させた第1の構造体前駆体を第2の樹脂が架橋反応または加硫反応を開始する温度にて加熱することで構造体を得ることができる。 When the second resin is dispersed in a solvent or shows a liquid state at room temperature, the first structure precursor may be coated with a curtain coat, dip, immersed, or vacuum pressure molded. A method in which the second resin is infiltrated to dry the water and solvent, or the first structure precursor in which the second resin is infiltrated is brought to a temperature at which the second resin starts a cross-linking reaction or a vulcanization reaction. The structure can be obtained by heating.

本発明の構造体は、圧縮時の弾性回復力や軽量性の観点から、自動車内外装、電気・電子機器筐体、自転車、スポーツ用品用構造材、航空機内装材、医療機器などの構成部品に好ましく用いられる。なかでも、とりわけ複数の部品から構成されるモジュール部材に好適である。 The structure of the present invention can be used as a component for automobile interior / exterior, electrical / electronic equipment housing, bicycle, sports equipment structural material, aircraft interior material, medical equipment, etc. from the viewpoint of elastic recovery force and light weight during compression. It is preferably used. Among them, it is particularly suitable for a module member composed of a plurality of parts.

以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

(1)構造体における空隙の体積含有率
構造体から縦10mm、横10mmに試験片を切り出し、断面を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製 S−4800型)により観察し、構造体の表面から、等間隔に10箇所を1000倍の倍率で撮影した。それぞれの画像について、画像内の空隙の面積Aを求めた。さらに、空隙の面積Aを画像全体の面積で除算することにより空隙率を算出した。構造体の空隙の体積含有率は、5枚の試験片でそれぞれ10箇所ずつ撮影した合計50箇所の空隙率から算術平均により求めた。
(1) Volume content of voids in the structure A test piece is cut out from the structure to a length of 10 mm and a width of 10 mm, and the cross section is observed with a scanning electron microscope (SEM) (S-4800 type manufactured by Hitachi High-Technologies Corporation). , 10 places were photographed at equal intervals from the surface of the structure at a magnification of 1000 times. For each image to determine the area A a void in the image. Moreover, to calculate the porosity by dividing the area A a void in the area of the entire image. The volume content of the voids in the structure was determined by an arithmetic mean from the void ratios of a total of 50 locations taken at 10 locations each with 5 test pieces.

(2)構造体の密度
構造体から試験片を切り出し、JIS K7222(2005)を参考にして構造体の見かけ密度を測定した。試験片の寸法は縦100mm、横100mmとした。試験片の縦、横、厚みをマイクロメーターで測定し、得られた値より試験片の体積Vを算出した。また、切り出した試験片の質量Mを電子天秤で測定した。得られた質量M及び体積Vを次式に代入することにより構造体の密度ρを算出した。
ρ[g/cm]=10×M[g]/V[mm
(2) Density of the structure A test piece was cut out from the structure, and the apparent density of the structure was measured with reference to JIS K7222 (2005). The dimensions of the test piece were 100 mm in length and 100 mm in width. The length, width, and thickness of the test piece were measured with a micrometer, and the volume V of the test piece was calculated from the obtained values. Moreover, the mass M of the cut-out test piece was measured with an electronic balance. The density ρ of the structure was calculated by substituting the obtained mass M and volume V into the following equation.
ρ [g / cm 3 ] = 10 3 x M [g] / V [mm 3 ]

(3)構造体の50%圧縮時における弾性回復力
構造体から試験片を切り出し、JIS K7220(2006)を参考にして構造体の圧縮特性を測定した。試験片は、縦25±1mm、横25±1mmに切り出した。得られた試験片の圧縮特性は万能試験機を用いて測定した。この時、変形率50%時に到達した最大の力Fと試験片の試験前の底面断面積Aとを用いて、次式より圧縮強さσを算出し、弾性回復力とした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
σ[MPa]=F[N]/A[mm
(3) Elastic recovery force at 50% compression of the structure A test piece was cut out from the structure, and the compression characteristics of the structure were measured with reference to JIS K7220 (2006). The test piece was cut out to a length of 25 ± 1 mm and a width of 25 ± 1 mm. The compression characteristics of the obtained test piece were measured using a universal testing machine. At this time, the compressive strength σ m was calculated from the following equation using the maximum force F m reached when the deformation rate was 50% and the bottom cross-sectional area A 0 of the test piece before the test, and used as the elastic recovery force. As a measuring device, an "Instron (registered trademark)" 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used.
σ m [MPa] = F m [N] / A 0 [mm 2 ]

(4)構造体の引張破断伸度
構造体から試験片を切り出し、JIS K6400(2012)を参考にして構造体の引張特性を測定した。試験片は1号形に切り出した。得られた試験片の引張特性は万能試験機を用いて測定した。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
(4) Tensile elongation at break of the structure A test piece was cut out from the structure, and the tensile characteristics of the structure were measured with reference to JIS K6400 (2012). The test piece was cut into No. 1 form. The tensile properties of the obtained test piece were measured using a universal testing machine. As a measuring device, an "Instron (registered trademark)" 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used.

(5)構造体における樹脂の被覆厚み
構造体を縦10mm、横10mmに試験片を切り出し、断面を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製 S−4800型)により観察し、任意の10箇所を3000倍の倍率で撮影した。得られた画像の強化繊維の交点の断面がカットされた任意の50ヶ所から、強化繊維の交点に被覆している樹脂の被覆厚さを測定し、50箇所の算術平均を樹脂の被覆厚みとした。
(5) Resin coating thickness in the structure A test piece was cut out to a length of 10 mm and a width of 10 mm, and the cross section was observed with a scanning electron microscope (SEM) (S-4800 type manufactured by Hitachi High-Technologies Corporation). Arbitrary 10 points were photographed at a magnification of 3000 times. The coating thickness of the resin covering the intersections of the reinforcing fibers was measured from any 50 points where the cross section of the intersections of the reinforcing fibers of the obtained image was cut, and the arithmetic mean of the 50 points was taken as the coating thickness of the resin. did.

(6)第1の樹脂の強化繊維に対する含有量
第1の樹脂を被覆させる前の強化繊維を縦25±1mm、横25±1mmに切り出し、質量W1を測定した。その後、第1の樹脂を含有させた強化繊維の質量W2を測定した。次式により第1の樹脂の含有量Wrを算出し、強化繊維100質量部あたりの量を算出した。
第1の樹脂の強化繊維に対する含有量Wr(質量)=W2−W1
(6) Content of First Resin with respect to Reinforcing Fiber The reinforcing fiber before coating the first resin was cut into a length of 25 ± 1 mm and a width of 25 ± 1 mm, and the mass W1 was measured. Then, the mass W2 of the reinforcing fiber containing the first resin was measured. The content Wr of the first resin was calculated by the following formula, and the amount per 100 parts by mass of the reinforcing fiber was calculated.
Content of the first resin with respect to the reinforcing fiber Wr (mass) = W2-W1

(7)第1の樹脂の軟化点又は融点
融点は示差走査熱量計(DSC)により評価を行った。密閉型サンプル容器に5mgの試料を詰め、昇温速度10℃/分で30℃の温度から300℃の温度まで昇温し、評価した。評価装置には、PerkinElmer社製PyrislDSCを用いた。
また融点の評価が困難なもの(融点が存在しない場合)については、ビカット軟化温度をISO306(2004)(錘10N使用)に準拠して評価し、軟化点とした。
(7) Softening point or melting point of the first resin The melting point was evaluated by a differential scanning calorimeter (DSC). A 5 mg sample was packed in a closed sample container, and the temperature was raised from 30 ° C. to 300 ° C. at a heating rate of 10 ° C./min for evaluation. A Pyrisl DSC manufactured by PerkinElmer was used as the evaluation device.
For those for which it is difficult to evaluate the melting point (when the melting point does not exist), the Vicat softening temperature was evaluated in accordance with ISO306 (2004) (using a weight of 10N) and used as a softening point.

(8)第2の樹脂の引張特性
JIS K6400(2012)に記載の方法を参考にし、引張試験を行い、引張破断伸度、引張破断強度を評価した。得られた試験片の引張特性は万能試験機を用いて測定した。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
第2の樹脂のゴム弾性の有無については、同試験において、(試験片の長さを基準の100%として)200%伸張時に応力を開放し、形状が150%以下に戻るか否かを目視にて確認した。150%以下に戻る場合は「有」、150%を超える場合もしくは、破断する場合は「無」とした。
なお、試験片は1号形ダンベル試験片形状を作製して試験に供した。試験片の作製は、熱可塑性を示す第2の樹脂については、射出成型により試験片を作製した。また、室温にて液状の性質を示す第2の樹脂については、1号形ダンベル試験片と同型状の凹部を有する金型に第2の樹脂を流し込み、金型を閉じた後、架橋ないしは硬化する温度/時間にて硬化させることで、試験片を作製した。
(8) Tensile Properties of Second Resin A tensile test was conducted with reference to the method described in JIS K6400 (2012), and tensile elongation at break and tensile strength at break were evaluated. The tensile properties of the obtained test piece were measured using a universal testing machine. As a measuring device, an "Instron (registered trademark)" 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used.
Regarding the presence or absence of rubber elasticity of the second resin, in the same test, the stress is released at the time of 200% elongation (using the length of the test piece as the standard 100%), and it is visually observed whether the shape returns to 150% or less. Confirmed at. When it returns to 150% or less, it is evaluated as "Yes", and when it exceeds 150% or it breaks, it is evaluated as "No".
As the test piece, a No. 1 dumbbell test piece shape was prepared and used for the test. As for the preparation of the test piece, the test piece was prepared by injection molding for the second resin exhibiting thermoplasticity. Regarding the second resin, which exhibits liquid properties at room temperature, the second resin is poured into a mold having a recess having the same shape as the No. 1 dumbbell test piece, the mold is closed, and then cross-linking or curing is performed. A test piece was prepared by curing at a temperature / time of

(9)構造体における強化繊維の体積含有率Vf
構造体の質量Wsを測定した後、構造体を空気中500℃で30分間加熱して樹脂成分を焼き飛ばし、残った強化繊維の質量Wfを測定し、次式により算出した。このとき、強化繊維および樹脂の密度は、JIS Z8807(2012)の液中ひょう量法に従って測定した結果を用いる。
Vf(体積%)=(Wf/ρf)/{Wf/ρf+(Ws−Wf)/ρr}×100
ρf:強化繊維の密度(g/cm
ρr:樹脂の密度(g/cm
(9) Volume content of reinforcing fibers in the structure Vf
After measuring the mass Ws of the structure, the structure was heated in air at 500 ° C. for 30 minutes to burn off the resin component, and the mass Wf of the remaining reinforcing fibers was measured and calculated by the following formula. At this time, the densities of the reinforcing fibers and the resin are measured according to the in-liquid weighing method of JIS Z8807 (2012).
Vf (volume%) = (Wf / ρf) / {Wf / ρf + (Ws-Wf) / ρr} × 100
ρf: Density of reinforcing fibers (g / cm 3 )
ρr: Resin density (g / cm 3 )

(10)第1の樹脂の体積含有率
強化繊維と第1の樹脂のみからなる構造体の前駆体を作製し、(1)と同様の方法により求めた前駆体における空隙の体積含有率、強化繊維の体積含有率の値を用いて、下式により第1の樹脂の体積含有率を求めた。
第1の樹脂のVr1(体積%)=100−(Vf+Va)
Vf:強化繊維の体積含有率(体積%)
Va:空隙の体積含有率(体積%)
Vr1:第1の樹脂の体積含有率(体積%)
(10) Volume Content of First Resin A precursor of a structure composed of only reinforcing fibers and the first resin was prepared, and the volume content of voids in the precursor obtained by the same method as in (1) was reinforced. Using the value of the volume content of the fiber, the volume content of the first resin was determined by the following formula.
Vr1 (volume%) of the first resin = 100- (Vf + Va)
Vf: Volume fraction of reinforcing fiber (volume%)
Va: Volume fraction of voids (volume%)
Vr1: Volume fraction of the first resin (volume%)

(11)第2の樹脂の体積含有率
(1)、(9)、(10)より求めた構造体における空隙の体積含有率、強化繊維の体積含有率、および第1の樹脂の体積含有率との値を用いて、下式により樹脂の体積含有率を求めた。
第2の樹脂のVr2(体積%)=100−(Vf+Va+Vr1)
Vf:強化繊維の体積含有率(体積%)
Va:空隙の体積含有率(体積%)
Vr1:第1の樹脂の体積含有率(体積%)
(11) Volume content of the second resin The volume content of the voids in the structure obtained from (1), (9), and (10), the volume content of the reinforcing fibers, and the volume content of the first resin. Using the value of, the volume content of the resin was determined by the following formula.
Vr2 (volume%) of the second resin = 100- (Vf + Va + Vr1)
Vf: Volume fraction of reinforcing fiber (volume%)
Va: Volume fraction of voids (volume%)
Vr1: Volume fraction of the first resin (volume%)

(12)構造体における樹脂の被覆割合
構造体を縦10mm、横10mmに試験片を切り出し、断面を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製 S−4800型)により観察し、任意の10箇所を1000倍の倍率で撮影した。得られた画像から強化繊維の交点について、任意の40ヶ所から、強化繊維の交点の個数および、強化繊維の交点に被覆している樹脂の被覆箇所の個数を測定し、下式により樹脂の被覆割合(%)とした。
樹脂の被覆割合(%)=(C2/C1)×100
C1:測定した交点の個数(個)
C2:C1の内、樹脂が被覆している交点の個数(個)
(12) Resin coating ratio in the structure A test piece was cut out to a length of 10 mm and a width of 10 mm, and the cross section was observed with a scanning electron microscope (SEM) (S-4800 type manufactured by Hitachi High-Technologies Corporation). Arbitrary 10 points were photographed at a magnification of 1000 times. Regarding the intersections of the reinforcing fibers from the obtained image, the number of the intersections of the reinforcing fibers and the number of the resin-coated points coated on the intersections of the reinforcing fibers were measured from any 40 points, and the resin was coated by the following formula. The ratio (%) was used.
Resin coating ratio (%) = (C2 / C1) x 100
C1: Number of measured intersections (pieces)
C2: Number of intersections covered with resin in C1 (pieces)

下記の実施例および比較例において以下の材料を使用した。
[炭素繊維]
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、及び表面酸化処理を行い、総単糸数12,000本の連続炭素繊維を得た。この連続炭素繊維の特性は次に示す通りであった。
比重:1.8
引張強度:4600MPa
引張弾性率:220GPa
引張破断伸度:2.1%
The following materials were used in the following examples and comparative examples.
[Carbon fiber]
A copolymer containing polyacrylonitrile as a main component was spun, fired, and surface-oxidized to obtain continuous carbon fibers having a total number of single yarns of 12,000. The characteristics of this continuous carbon fiber were as shown below.
Specific gravity: 1.8
Tensile strength: 4600 MPa
Tensile modulus: 220 GPa
Tensile elongation at break: 2.1%

[アラミド繊維]
アラミド繊維(東レ・デュポン(株)製“ケブラー”(登録商標)29)を用いた。
比重:1.44
引張強度:2900MPa
引張弾性率:70GPa
引張破断伸度:3.6%
[Aramid fiber]
Aramid fiber (“Kevlar” (registered trademark) 29 manufactured by Toray DuPont Co., Ltd.) was used.
Specific gravity: 1.44
Tensile strength: 2900 MPa
Tensile modulus: 70 GPa
Tensile fracture elongation: 3.6%

[ポリアミド]
第1の樹脂として、水溶性ポリアミド樹脂(東レ(株)“AQナイロン”(登録商標)P−70)を用いた。
軟化点:85℃
[polyamide]
As the first resin, a water-soluble polyamide resin (Toray Industries, Inc. "AQ Nylon" (registered trademark) P-70) was used.
Softening point: 85 ° C

[ポリウレタン]
第1の樹脂として、ポリウレタン水分散体(第一工業製薬(株)“スーパーフレックス”(登録商標)150)を用いた。
軟化点:195℃
融点:212℃
[Polyurethane]
As the first resin, a polyurethane aqueous dispersion (Daiichi Kogyo Seiyaku Co., Ltd. "Superflex" (registered trademark) 150) was used.
Softening point: 195 ° C
Melting point: 212 ° C

[ポリエステル樹脂]
ポリエステル樹脂(東レ(株)製“ハイトレル”(登録商標)SB754)からなる目付121g/mの樹脂フィルムを作製し、第2の樹脂として用いた。得られた樹脂フィルムの特性を表1に示す。
[Polyester resin]
A resin film having a basis weight of 121 g / m 2 made of a polyester resin (“Hitrel” (registered trademark) SB754 manufactured by Toray Industries, Inc.) was prepared and used as the second resin. The characteristics of the obtained resin film are shown in Table 1.

[シリコーンゴム]
シリコーンゴム(東レ・ダウコーニングシリコーン(株)製 RBL−9200−40)を用いた。本シリコーンゴムのA剤(主剤)とB剤(硬化剤)を1:1の混合比にて混合して、124g/mとなるよう量を採取し、攪拌することでシリコーンゴムを作製し、第2の樹脂として用いた。シリコーンゴムの特性を表1に示す。
[silicone rubber]
Silicone rubber (RBL-9200-40 manufactured by Toray Dow Corning Silicone Co., Ltd.) was used. A silicone rubber is prepared by mixing the A agent (main agent) and the B agent (curing agent) of this silicone rubber at a mixing ratio of 1: 1 and collecting an amount so as to be 124 g / m 2 and stirring. , Used as a second resin. The characteristics of silicone rubber are shown in Table 1.

[エポキシ樹脂]
エポキシ樹脂(ジャパンエポキシレジン(株)“エピコート”(登録商標)828:30質量部、“エピコート”(登録商標)1001:35質量部、“エピコート”(登録商標)154:35質量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)“ビニレック”(登録商標)K)5質量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)DICY7)3.5質量部と、硬化促進剤4,4−メチレンビス(フェニルジメチルウレア)(ピイ・ティ・アイジャパン(株)“オミキュア”(登録商標)52)7質量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。これからナイフコーターを用いて目付132g/mの樹脂フィルムを作製し、第2の樹脂として使用した。得られた樹脂フィルムの特性を表1に示す。
[Epoxy resin]
Epoxy resin (Japan Epoxy Resin Co., Ltd. "Epicoat" (registered trademark) 828:30 parts by mass, "Epicoat" (registered trademark) 1001:35 parts by mass, "Epicoat" (registered trademark) 154:35 parts by mass) After 5 parts by mass of the thermoplastic resin polyvinylformal (Chisso Co., Ltd. "Vinirec" (registered trademark) K) is heat-kneaded with a kneader to uniformly dissolve the polyvinylformal, the curing agent disiandiamide (Japan Epoxy Resin Co., Ltd. DICY7) ) 3.5 parts by mass and 7 parts by mass of the curing accelerator 4,4-methylenebis (phenyldimethylurea) (PIT I Japan Co., Ltd. "Omicure" (registered trademark) 52) are kneaded with a kneader. An uncured epoxy resin composition was prepared. From this, a resin film having a basis weight of 132 g / m 2 was prepared using a knife coater and used as a second resin. The characteristics of the obtained resin film are shown in Table 1.

(実施例1)
強化繊維として炭素繊維を用い、カートリッジカッターで6mmにカットし、チョップド炭素繊維を得た。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))とからなる濃度0.1質量%の分散液を作製し、この分散液とチョップド炭素繊維とを用いて、強化繊維マットを製造した。製造装置は、分散槽としての容器下部に開口コックを有する直径1000mmの円筒形状の容器、分散槽と抄紙槽とを接続する直線状の輸送部(傾斜角30°)を備えている。分散槽の上面の開口部には撹拌機が付属し、開口部からチョップド炭素繊維及び分散液(分散媒体)を投入可能である。抄紙槽は、底部に幅500mmの抄紙面を有するメッシュコンベアを備え、炭素繊維基材(抄紙基材)を運搬可能なコンベアをメッシュコンベアに接続している。抄紙は分散液中の炭素繊維濃度を0.05質量%として行った。抄紙した強化繊維マットは200℃の乾燥炉で30分間乾燥し、強化繊維マットを得た。得られた目付は50g/mであった。
(Example 1)
Carbon fiber was used as the reinforcing fiber and cut to 6 mm with a cartridge cutter to obtain chopped carbon fiber. A dispersion liquid having a concentration of 0.1% by mass consisting of water and a surfactant (polyoxyethylene lauryl ether (trade name) manufactured by Nakaraitex Co., Ltd.) was prepared, and this dispersion liquid and chopped carbon fiber were used. , Manufactured reinforced fiber mat. The manufacturing apparatus includes a cylindrical container having a diameter of 1000 mm having an opening cock at the bottom of the container as a dispersion tank, and a linear transport portion (inclination angle of 30 °) connecting the dispersion tank and the paper making tank. A stirrer is attached to the opening on the upper surface of the dispersion tank, and chopped carbon fibers and a dispersion liquid (dispersion medium) can be charged through the opening. The papermaking tank is provided with a mesh conveyor having a papermaking surface having a width of 500 mm at the bottom, and a conveyor capable of transporting a carbon fiber base material (papermaking base material) is connected to the mesh conveyor. Papermaking was carried out with the carbon fiber concentration in the dispersion liquid being 0.05% by mass. The paper-made reinforcing fiber mat was dried in a drying oven at 200 ° C. for 30 minutes to obtain a reinforcing fiber mat. The basis weight obtained was 50 g / m 2 .

第1の樹脂としてポリアミドを、1質量%になるように水に溶解させた。このポリアミド水溶液を、上記で得た強化繊維マットに対して付与した。110℃に温度調節された熱風オーブンに投入し、2時間乾燥させて第1の構造体前駆体を得た。得られた第1の構造体前駆体のポリアミドの付着率は、強化繊維マット100質量部に対して10質量部であった。
第1の構造体前駆体に第2の樹脂としてポリエステル樹脂を、[第2の樹脂/第1の構造体前駆体/第2の樹脂/第1の構造体前駆体/第2の樹脂/第1の構造体前駆体/第2の樹脂/第1の構造体前駆体/第1の構造体前駆体/第2の樹脂/第1の構造体前駆体/第2の樹脂/第1の構造体前駆体/第2の樹脂/第1の構造体前駆体/第2の樹脂]の順番に配置した積層物を作製した。次いで、以下の工程(1)〜(5)を経ることにより構造体を得た。特性を表2に示す。
(1)積層物を200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)次いで、120秒間保持した後、3MPaの圧力を付与してさらに60秒間保持する。
(3)工程(2)の後、金型キャビティを開放し、その末端に金属スペーサーを挿入し、構造体を得る際の厚みが3.4mmとなるように調整する。
(4)その後、再度、金型キャビティを締結し、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(5)金型を開いて構造体を取り出す。
Polyamide as the first resin was dissolved in water so as to be 1% by mass. This polyamide aqueous solution was applied to the reinforcing fiber mat obtained above. It was placed in a hot air oven whose temperature was controlled to 110 ° C. and dried for 2 hours to obtain a first structure precursor. The adhesion rate of the polyamide of the obtained first structure precursor was 10 parts by mass with respect to 100 parts by mass of the reinforcing fiber mat.
A polyester resin is used as the second resin in the first structure precursor, and [second resin / first structure precursor / second resin / first structure precursor / second resin / first 1 structure precursor / 2nd resin / 1st structure precursor / 1st structure precursor / 2nd resin / 1st structure precursor / 2nd resin / 1st structure A laminate was prepared in which the body precursor / second resin / first structure precursor / second resin] was arranged in this order. Then, a structure was obtained by going through the following steps (1) to (5). The characteristics are shown in Table 2.
(1) The laminate is placed in a press molding die cavity preheated to 200 ° C., and the die is closed.
(2) Next, after holding for 120 seconds, a pressure of 3 MPa is applied to hold for another 60 seconds.
(3) After the step (2), the mold cavity is opened, a metal spacer is inserted at the end thereof, and the thickness at the time of obtaining the structure is adjusted to 3.4 mm.
(4) After that, the mold cavity is fastened again, and the cavity temperature is cooled to 50 ° C. while maintaining the pressure.
(5) Open the mold and take out the structure.

(実施例2)
第1の樹脂の含有量を8質量部に代えた以外は、実施例1と同様の積層物を得、次いで、以下の工程(1)〜(4)を経ることにより構造体を得た。特性を表2に示す。
(1)積層物を200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)次いで、3MPaの圧力を付与してさらに120秒間保持する。
(3)その後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(4)金型を開いて構造体を取り出す。
(Example 2)
A laminate similar to that in Example 1 was obtained except that the content of the first resin was changed to 8 parts by mass, and then a structure was obtained by going through the following steps (1) to (4). The characteristics are shown in Table 2.
(1) The laminate is placed in a press molding die cavity preheated to 200 ° C., and the die is closed.
(2) Next, a pressure of 3 MPa is applied and the mixture is held for another 120 seconds.
(3) After that, the cavity temperature is cooled to 50 ° C. while maintaining the pressure.
(4) Open the mold and take out the structure.

(実施例3)
第1の樹脂をポリアミドからポリウレタンとし、第1の樹脂の含有量を10質量部に代えるとともに、構造体中における強化繊維の質量割合を55質量%に代えた以外は、実施例1と同様の積層物を得、次いで、以下の工程(1)〜(5)を経ることにより構造体を得た。特性を表2に示す。
(1)積層物を200℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)次いで、120秒間保持した後、3MPaの圧力を付与してさらに60秒間保持する。
(3)工程(2)の後、金型キャビティを開放し、その末端に金属スペーサーを挿入し、構造体を得る際の厚みが5.9mmとなるように調整する。
(4)その後、再度、金型キャビティを締結し、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(5)金型を開いて構造体を取り出す。
(Example 3)
The same as in Example 1 except that the first resin was changed from polyamide to polyurethane, the content of the first resin was changed to 10 parts by mass, and the mass ratio of the reinforcing fibers in the structure was changed to 55% by mass. A laminate was obtained, and then a structure was obtained by going through the following steps (1) to (5). The characteristics are shown in Table 2.
(1) The laminate is placed in a press molding die cavity preheated to 200 ° C., and the die is closed.
(2) Next, after holding for 120 seconds, a pressure of 3 MPa is applied to hold for another 60 seconds.
(3) After the step (2), the mold cavity is opened, a metal spacer is inserted at the end thereof, and the thickness at the time of obtaining the structure is adjusted to 5.9 mm.
(4) After that, the mold cavity is fastened again, and the cavity temperature is cooled to 50 ° C. while maintaining the pressure.
(5) Open the mold and take out the structure.

(実施例4)
実施例4では、第2の樹脂をポリエステル樹脂からシリコーンゴムに変更した。実施例1で使用した第1の構造体前駆体を8枚積層したものをステンレス製容器に収め、シリコーンゴムを流し込み、第1の構造体前駆体にシリコーンゴムが含浸するまでハンドローラーにてしごくことで積層物を作製した。次いで、以下の工程(1)〜(4)を経ることにより構造体を得た。特性を表2に示す。
(1)積層物を150℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)次いで、3MPaの圧力を付与してさらに60分間保持する。
(3)その後、圧力を保持した状態でキャビティ温度を30℃まで冷却する。
(4)金型を開いて構造体を取り出す。
(Example 4)
In Example 4, the second resin was changed from polyester resin to silicone rubber. A stack of eight first structure precursors used in Example 1 is placed in a stainless steel container, silicone rubber is poured into the container, and the first structure precursor is squeezed with a hand roller until the silicone rubber is impregnated. This produced a laminate. Then, a structure was obtained by going through the following steps (1) to (4). The characteristics are shown in Table 2.
(1) The laminate is placed in a press molding die cavity preheated to 150 ° C., and the die is closed.
(2) Next, a pressure of 3 MPa is applied and the mixture is held for another 60 minutes.
(3) After that, the cavity temperature is cooled to 30 ° C. while maintaining the pressure.
(4) Open the mold and take out the structure.

(実施例5)
実施例4と同様に積層物を得た。次いで、以下の工程(1)〜(4)を経ることにより構造体を得た。特性を表2に示す。
(1)積層物を150℃に予熱したプレス成形用金型キャビティ内に配置する。
(2)次いで、金型キャビティの末端に金属スペーサーを挿入し、構造体を得る際の厚みが3.3mmとなるように調整し、金型を閉じた後、10分間保持する。
(3)その後、圧力を保持した状態でキャビティ温度を30℃まで冷却する。
(4)金型を開いて構造体を取り出す。
(Example 5)
A laminate was obtained in the same manner as in Example 4. Then, a structure was obtained by going through the following steps (1) to (4). The characteristics are shown in Table 2.
(1) The laminate is placed in a press molding die cavity preheated to 150 ° C.
(2) Next, a metal spacer is inserted into the end of the mold cavity, adjusted so that the thickness when obtaining the structure is 3.3 mm, and the mold is closed and held for 10 minutes.
(3) After that, the cavity temperature is cooled to 30 ° C. while maintaining the pressure.
(4) Open the mold and take out the structure.

(実施例6)
実施例1と同様にして第1の構造体前駆体を得た。第2の樹脂の量を構造体中における強化繊維の質量割合が55質量%になるように調製して積層体を得た以外は、実施例1と同様にして構造体を得た。特性を表2に示す。
(Example 6)
A first structure precursor was obtained in the same manner as in Example 1. A structure was obtained in the same manner as in Example 1 except that the amount of the second resin was adjusted so that the mass ratio of the reinforcing fibers in the structure was 55% by mass to obtain a laminate. The characteristics are shown in Table 2.

(実施例7)
強化繊維を炭素繊維からアラミド繊維に代え、第1の樹脂をポリアミドからポリウレタンに代え、構造体中におけるアラミド繊維の質量割合を25質量%に代えた以外は、実施例1と同様に構造体を得た。特性を表2に示す。
(Example 7)
The structure was the same as in Example 1, except that the reinforcing fibers were changed from carbon fibers to aramid fibers, the first resin was changed from polyamide to polyurethane, and the mass ratio of the aramid fibers in the structure was changed to 25% by mass. Obtained. The characteristics are shown in Table 2.

(実施例8)
強化繊維を炭素繊維からアラミド繊維に代え、第1の樹脂をポリアミドからポリウレタンとし、第1の樹脂の含有量を10質量部に代えるとともに、構造体中におけるアラミド繊維の質量割合を25質量%に代えた以外は、実施例2と同様に構造体を得た。特性を表2に示す。
(Example 8)
The reinforcing fiber was changed from carbon fiber to aramid fiber, the first resin was changed from polyamide to polyurethane, the content of the first resin was changed to 10 parts by mass, and the mass ratio of aramid fiber in the structure was changed to 25% by mass. A structure was obtained in the same manner as in Example 2 except that it was replaced. The characteristics are shown in Table 2.

(比較例1)
第1の樹脂の含有量を8質量部に代え、第2の樹脂をポリエステル樹脂からエポキシ樹脂に代えた以外は、実施例1と同様の積層物を得、次いで、以下の工程(1)〜(4)を経ることにより構造体を得た。特性を表3に示す。
(1)積層物を150℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)次いで、3MPaの圧力を付与してさらに10分間保持する。
(3)その後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(4)金型を開いて構造体を取り出す。
(Comparative Example 1)
A laminate similar to that of Example 1 was obtained except that the content of the first resin was replaced with 8 parts by mass and the second resin was replaced with an epoxy resin, and then the following steps (1) to A structure was obtained by going through (4). The characteristics are shown in Table 3.
(1) The laminate is placed in a press molding die cavity preheated to 150 ° C., and the die is closed.
(2) Next, a pressure of 3 MPa is applied and the mixture is held for another 10 minutes.
(3) After that, the cavity temperature is cooled to 50 ° C. while maintaining the pressure.
(4) Open the mold and take out the structure.

(比較例2)
第1の樹脂をポリアミドからポリウレタンに代え、強化繊維に対する含有量を30質量部に調製し、積層物とした。次いで、以下の工程(1)〜(4)を経ることにより構造体を得た。特性を表3に示す。
(1)積層物を150℃に予熱したプレス成形用金型キャビティ内に配置する。
(2)次いで、金型キャビティの末端に金属スペーサーを挿入し、構造体を得る際の厚みが1.5mmとなるように調整し、金型を閉じた後、10分間保持する。
(3)その後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(4)金型を開いて構造体を取り出す。
(Comparative Example 2)
The first resin was replaced with polyurethane from polyamide, and the content with respect to the reinforcing fibers was adjusted to 30 parts by mass to prepare a laminate. Then, a structure was obtained by going through the following steps (1) to (4). The characteristics are shown in Table 3.
(1) The laminate is placed in a press molding die cavity preheated to 150 ° C.
(2) Next, a metal spacer is inserted into the end of the mold cavity, the thickness when obtaining the structure is adjusted to 1.5 mm, and the mold is closed and held for 10 minutes.
(3) After that, the cavity temperature is cooled to 50 ° C. while maintaining the pressure.
(4) Open the mold and take out the structure.

(比較例3)
強化繊維を炭素繊維からアラミド繊維に代え、第1の樹脂を用いず、第2の樹脂にエポキシ樹脂を用いて積層物を作製した。次いで、以下の工程(1)〜(4)を経ることにより構造体を得た。特性を表3に示す。
(1)積層物を150℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(2)次いで、3MPaの圧力を付与してさらに10分間保持する。
(3)その後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(4)金型を開いて構造体を取り出す。
(Comparative Example 3)
A laminate was prepared by replacing the reinforcing fibers with carbon fibers and using aramid fibers and using an epoxy resin as the second resin without using the first resin. Then, a structure was obtained by going through the following steps (1) to (4). The characteristics are shown in Table 3.
(1) The laminate is placed in a press molding die cavity preheated to 150 ° C., and the die is closed.
(2) Next, a pressure of 3 MPa is applied and the mixture is held for another 10 minutes.
(3) After that, the cavity temperature is cooled to 50 ° C. while maintaining the pressure.
(4) Open the mold and take out the structure.

〔検討〕
本実施例1、3、5〜7により、強化繊維、第1の樹脂、及び室温でゴム弾性を示す第2の樹脂から構成される構造体であり、前記強化繊維として不連続繊維を使用し、第1の樹脂で結合された強化繊維間の交点を、第2の樹脂により被覆してなる構造体は、いずれも50%圧縮時における弾性回復力が、1MPa以上、引張伸度が1%以上となる結果を得た。また、空隙率が小さいことにより50%圧縮時の弾性回復力が測定できない実施例2、4、8においても、比較例1、3との対比から、引張破断伸度に優れることがわかり、優れた柔軟性と軽量性を両立していることがわかった。また、実施例1〜8と比較例3との対比により、強化繊維が第1の樹脂で被覆されていることで、強化繊維からなるマットが搬送中もばらけることもなく取り扱いに優れていることが確認できた。また、比較例1および3においては、第2の樹脂を、室温でゴム弾性を有しないエポキシ樹脂にしたため、50%圧縮時の弾性回復力を示すことはなかった。また、比較例1は引張伸度が1%以上となったが、空隙を有さない構造体であったことから、強化繊維の引張伸度が反映されたものと考えられた。さらに、実施例3、実施例7によれば、強化繊維の種類を変更しても、引張破断伸度が適切な構造体を得ることができた。以上の結果から、本発明の範囲における構造体は、優れた圧縮特性、引張特性を有することが明確である。
〔Consideration〕
According to Examples 1, 3, 5 to 7, the structure is composed of a reinforcing fiber, a first resin, and a second resin exhibiting rubber elasticity at room temperature, and discontinuous fibers are used as the reinforcing fibers. The structures in which the intersections between the reinforcing fibers bonded with the first resin are coated with the second resin have an elastic recovery force of 1 MPa or more and a tensile elongation of 1% at the time of 50% compression. The above results were obtained. Further, even in Examples 2, 4 and 8 in which the elastic recovery force at the time of 50% compression cannot be measured due to the small porosity, it is found from the comparison with Comparative Examples 1 and 3 that the tensile elongation at break is excellent, which is excellent. It was found that both flexibility and lightness were achieved. Further, in comparison with Examples 1 to 8 and Comparative Example 3, since the reinforcing fibers are coated with the first resin, the mat made of the reinforcing fibers does not come apart during transportation and is excellent in handling. I was able to confirm that. Further, in Comparative Examples 1 and 3, since the second resin was an epoxy resin having no rubber elasticity at room temperature, it did not show the elastic recovery force at the time of 50% compression. Further, in Comparative Example 1, the tensile elongation was 1% or more, but since it was a structure having no voids, it was considered that the tensile elongation of the reinforcing fibers was reflected. Further, according to Examples 3 and 7, a structure having an appropriate tensile elongation at break could be obtained even if the type of the reinforcing fiber was changed. From the above results, it is clear that the structure within the scope of the present invention has excellent compressive and tensile properties.

Figure 0006863298
Figure 0006863298

Figure 0006863298
Figure 0006863298

Figure 0006863298
Figure 0006863298

本発明によれば、圧縮時の弾性回復力もしくは引張破断伸度に代表される柔軟性および軽量性に優れた構造体を提供することができる。 According to the present invention, it is possible to provide a structure having excellent flexibility and light weight represented by elastic recovery force at the time of compression or tensile elongation at break.

Claims (11)

強化繊維、第1の樹脂、及び室温でゴム弾性を示す第2の樹脂を含む構造体であり、
前記強化繊維が不連続繊維であり、
接触する前記強化繊維間の交点を、前記第1の樹脂及び/又は前記第2の樹脂により被覆してなり、前記構造体の50%圧縮時の弾性回復力が1MPa以上である、構造体。
A structure containing a reinforcing fiber, a first resin, and a second resin exhibiting rubber elasticity at room temperature.
The reinforcing fiber is a discontinuous fiber,
The intersection between the reinforcing fibers in contact, the Ri first name resin and / or coated by the second resin, elastic recovery force at 50% compression of the structure Ru der least 1 MPa, structure body.
前記構造体は空隙を有し、前記構造体の密度が0.01g/cm以上1.3g/cm以下である、請求項1に記載の構造体。 The structure according to claim 1, wherein the structure has voids and the density of the structure is 0.01 g / cm 3 or more and 1.3 g / cm 3 or less. 前記構造体中の前記空隙の体積含有率が、10体積%以上97体積%以下の範囲内である、請求項2に記載の構造体。 The structure according to claim 2, wherein the volume content of the voids in the structure is in the range of 10% by volume or more and 97% by volume or less. 前記構造体は、引張破断伸度が1%以上20%以下の範囲内である、請求項1〜のいずれかに記載の構造体。 The structure according to any one of claims 1 to 3 , wherein the structure has a tensile elongation at break of 1% or more and 20% or less. 前記強化繊維は、引張破断伸度が1%以上10%以下の範囲内である、請求項1〜のいずれかに記載の構造体。 The structure according to any one of claims 1 to 4 , wherein the reinforcing fiber has a tensile elongation at break of 1% or more and 10% or less. 前記強化繊維が、PAN系炭素繊維、ピッチ系炭素繊維、ガラス繊維、及びアラミド繊維からなる群より選ばれる少なくとも1種を含む、請求項1〜のいずれかに記載の構造体。 The structure according to any one of claims 1 to 5 , wherein the reinforcing fiber contains at least one selected from the group consisting of PAN-based carbon fiber, pitch-based carbon fiber, glass fiber, and aramid fiber. 前記強化繊維間の交点を被覆する前記第1の樹脂及び/又は第2の樹脂の被覆厚みが1μm以上15μm以下の範囲内にある、請求項1〜のいずれかに記載の構造体。 The structure according to any one of claims 1 to 6 , wherein the coating thickness of the first resin and / or the second resin that covers the intersections between the reinforcing fibers is in the range of 1 μm or more and 15 μm or less. 前記第2の樹脂は、引張破断伸度が200%以上で、引張破断強度が10MPa以上である、請求項1〜のいずれかに記載の構造体。 The structure according to any one of claims 1 to 7 , wherein the second resin has a tensile elongation at break of 200% or more and a tensile strength at break of 10 MPa or more. 前記第2の樹脂が、シリコーンゴム、エチレンプロピレンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、フッ素ゴム、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、及びポリアミド系熱可塑性エラストマーからなる群より選ばれる少なくとも1種を含む、請求項1〜のいずれかに記載の構造体。 The second resin is composed of silicone rubber, ethylene propylene rubber, acrylonitrile butadiene rubber, chloroprene rubber, fluororubber, polyolefin-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. The structure according to any one of claims 1 to 8 , which comprises at least one selected from the group. 前記第1の樹脂の軟化点又は融点が50℃以上である、請求項1〜のいずれかに記載の構造体。 The structure according to any one of claims 1 to 9 , wherein the first resin has a softening point or a melting point of 50 ° C. or higher. 前記第1の樹脂が、前記強化繊維100質量部に対し、5質量部以上25質量部以下である、請求項1〜1のいずれかに記載の構造体。 The first resin relative to the reinforcing fibers to 100 parts by mass, not more than 5 parts by mass or more 25 parts by mass, the structure of any of claims 1 to 1 0.
JP2017567840A 2016-12-22 2017-12-20 Structure Active JP6863298B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016248750 2016-12-22
JP2016248750 2016-12-22
PCT/JP2017/045807 WO2018117188A1 (en) 2016-12-22 2017-12-20 Structure body

Publications (2)

Publication Number Publication Date
JPWO2018117188A1 JPWO2018117188A1 (en) 2019-10-31
JP6863298B2 true JP6863298B2 (en) 2021-04-21

Family

ID=62626493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017567840A Active JP6863298B2 (en) 2016-12-22 2017-12-20 Structure

Country Status (7)

Country Link
US (1) US11312825B2 (en)
EP (1) EP3560984B1 (en)
JP (1) JP6863298B2 (en)
KR (1) KR20190098972A (en)
CN (1) CN110099949B (en)
TW (1) TWI760407B (en)
WO (1) WO2018117188A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367883B1 (en) 2021-11-29 2023-10-24 東レ株式会社 porous body

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL262963A (en) * 1958-10-16 1900-01-01
JPS5936133B2 (en) * 1979-08-10 1984-09-01 山内ゴム工業株式会社 Polyurethane rubber roll and its manufacturing method
JPS61100446A (en) * 1984-10-22 1986-05-19 東洋紡績株式会社 Flexible printed wiring board
JPS6360743A (en) * 1986-09-02 1988-03-16 東レ株式会社 Light-weight composite material
JPH03213337A (en) * 1990-01-19 1991-09-18 Mitsubishi Heavy Ind Ltd Sealing material made of nonwoven fabric
AU643014B2 (en) * 1990-07-31 1993-11-04 Kimberly-Clark Worldwide, Inc. Elastomeric saturated nonwoven material
JPH04334439A (en) * 1991-05-10 1992-11-20 Teijin Ltd Manufacture of lightweight composite formed matter
JPH05163658A (en) * 1991-12-16 1993-06-29 Teijin Ltd Cushion structure and its use
JP2773006B2 (en) * 1992-04-10 1998-07-09 嘉一 山口 Cushion material and manufacturing method thereof
JPH08109566A (en) * 1994-10-07 1996-04-30 Nitto Boseki Co Ltd Nonwoven fabric as unidirectional reinforcing material and its production
JPH09277295A (en) 1996-04-19 1997-10-28 Mitsubishi Gas Chem Co Inc Cushion material for molding laminated sheet
JPH10100324A (en) * 1996-09-26 1998-04-21 Teijin Ltd Rubber composite
JP3645679B2 (en) * 1997-01-16 2005-05-11 株式会社クラレ Method for manufacturing a laminate
US6204209B1 (en) 1998-04-10 2001-03-20 Johnson Controls Technology Company Acoustical composite headliner
JP2003169725A (en) * 2001-12-07 2003-06-17 Koichi Iwata Seat and vehicle seat
JP2004217829A (en) * 2003-01-16 2004-08-05 Jfe Chemical Corp Stampable sheet, method for producing the same, mat and expansion molding
US20080115871A1 (en) * 2006-11-16 2008-05-22 Paul Harry Sandstrom Tire having a sidewall component containing a dispersion of adhesive coated short carbon fiber reinforcement
JP4440963B2 (en) * 2007-12-07 2010-03-24 ヤマウチ株式会社 Cushioning material for hot press and method for producing laminated board
TW201343733A (en) * 2012-02-29 2013-11-01 Oji Holdings Corp Composite material for molding a fiber-reinforced plastic and fiber-reinforced plastic molded bodies
JP6060256B2 (en) * 2013-05-15 2017-01-11 帝人株式会社 Manufacturing method of composite material
PT3040195T (en) * 2013-08-30 2020-01-13 Toray Industries Sandwich structure and integrated molded article using same, as well as production methods therefor
JP6303849B2 (en) * 2014-06-16 2018-04-04 東レ株式会社 FIBER-REINFORCED RESIN SHEET, INTEGRATED MOLDED ARTICLE AND METHOD FOR PRODUCING THEM

Also Published As

Publication number Publication date
JPWO2018117188A1 (en) 2019-10-31
EP3560984B1 (en) 2023-10-04
CN110099949A (en) 2019-08-06
TW201831314A (en) 2018-09-01
TWI760407B (en) 2022-04-11
CN110099949B (en) 2022-03-08
US20200087471A1 (en) 2020-03-19
EP3560984A1 (en) 2019-10-30
EP3560984A4 (en) 2020-07-15
KR20190098972A (en) 2019-08-23
WO2018117188A1 (en) 2018-06-28
US11312825B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP6481778B2 (en) Composite structure and manufacturing method thereof
US20170260657A1 (en) Method for manufacturing commingled yarn, commingled yarn, wind-up article, and, woven fabric
WO2017110532A1 (en) Structure
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
JP6087545B2 (en) Fiber reinforced plastic molding substrate
JP6453575B2 (en) Fiber reinforced resin composition
JP6822120B2 (en) Sound insulation structure
JP6863298B2 (en) Structure
EP3815894B1 (en) Laminated body
JP2014050982A (en) Fiber reinforced plastic molding substrate
WO2021106649A1 (en) Fiber-reinforced composite material and sandwich structure
JP2006144168A (en) Carbon fiber bundle
JP6711876B2 (en) Fiber reinforced resin composition
JP6046425B2 (en) Fiber reinforced plastic molding substrate and impact resistant fiber reinforced plastic
JP6123965B1 (en) Structure
WO2021106650A1 (en) Fiber-reinforced composite material and sandwich structure
JP2014062143A (en) Fiber-reinforced plastic
JP6880706B2 (en) Aircraft structure
JP2014051554A (en) Fiber reinforced plastic molding substrate
WO2023095786A1 (en) Prepreg, preform, and fiber-reinforced resin molded article
JP2023142070A (en) Fiber-reinforced composite material and manufacturing method
CN118076475A (en) Porous body
WO2023053834A1 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member
CN115135474A (en) Sheet molding compound and method for producing molded article

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6863298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151