JP6858243B2 - 試料容器の容器キャップを識別するためのシステム、方法及び装置 - Google Patents
試料容器の容器キャップを識別するためのシステム、方法及び装置 Download PDFInfo
- Publication number
- JP6858243B2 JP6858243B2 JP2019504121A JP2019504121A JP6858243B2 JP 6858243 B2 JP6858243 B2 JP 6858243B2 JP 2019504121 A JP2019504121 A JP 2019504121A JP 2019504121 A JP2019504121 A JP 2019504121A JP 6858243 B2 JP6858243 B2 JP 6858243B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- container cap
- sample
- different
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 76
- 238000005286 illumination Methods 0.000 claims description 41
- 238000007689 inspection Methods 0.000 claims description 37
- 238000003384 imaging method Methods 0.000 claims description 28
- 238000001228 spectrum Methods 0.000 claims description 18
- 238000012706 support-vector machine Methods 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 270
- 210000002381 plasma Anatomy 0.000 description 38
- 210000002966 serum Anatomy 0.000 description 36
- 230000032258 transport Effects 0.000 description 33
- 239000008280 blood Substances 0.000 description 31
- 210000004369 blood Anatomy 0.000 description 30
- 238000012512 characterization method Methods 0.000 description 27
- 238000012360 testing method Methods 0.000 description 23
- 238000012545 processing Methods 0.000 description 19
- 230000011218 segmentation Effects 0.000 description 18
- 239000003086 colorant Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000000306 component Substances 0.000 description 13
- 238000011002 quantification Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000003556 assay Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000701 coagulant Substances 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 239000003146 anticoagulant agent Substances 0.000 description 4
- 229940127219 anticoagulant drug Drugs 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000003066 decision tree Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012611 container material Substances 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 244000208235 Borassus flabellifer Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010023126 Jaundice Diseases 0.000 description 1
- 239000006125 LAS system Substances 0.000 description 1
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000009582 blood typing Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IRXRGVFLQOSHOH-UHFFFAOYSA-L dipotassium;oxalate Chemical compound [K+].[K+].[O-]C(=O)C([O-])=O IRXRGVFLQOSHOH-UHFFFAOYSA-L 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000001285 laser absorption spectroscopy Methods 0.000 description 1
- 229960001078 lithium Drugs 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001463 polyanetholesulfonic acid sodium salt Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000013106 supervised machine learning method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/586—Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/141—Control of illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/143—Sensing or illuminating at different wavelengths
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/66—Trinkets, e.g. shirt buttons or jewellery items
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/54—Labware with identification means
- B01L3/545—Labware with identification means for laboratory containers
- B01L3/5453—Labware with identification means for laboratory containers for test tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0406—Individual bottles or tubes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10141—Special mode during image acquisition
- G06T2207/10152—Varying illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/16—Image acquisition using multiple overlapping images; Image stitching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Analysis (AREA)
Description
本願は、2016年7月25日提出の米国仮特許出願62/366,350、名称「試料容器キャップを識別するためのシステム、方法及び装置」の優先権を主張し、この米国仮特許出願は、あらゆる目的でここに援用される。
102 試料容器
104 ラック
106,108,110 分析器
121 トラック
122 搬送機器
130 品質チェックモジュール
212T 管
214 容器キャップ
218 ラベル
440 カメラ
515 マルチクラス分類器
Claims (20)
- 管、容器キャップ、及びラベルを少なくとも含む試料容器の前記容器キャップを識別する方法であって、
前記試料容器を撮像位置へ供給し、
複数の異なる公称波長を使用すると共に該公称波長のそれぞれで異なる露光の長さを適用して前記容器キャップの背面照明画像を撮像し、
前記公称波長のそれぞれにおいて前記異なる露光の長さで撮像された複数の画像から、前記公称波長毎に最適露光画素を選択し、該選択した最適露光画素を利用して前記公称波長毎に最適露光の画像データセットを生成し、
該生成した画像データセットの前記最適露光画素を、少なくとも前記管、容器キャップ、及びラベルのうちの1つであるとして分類し、
該分類により前記容器キャップとして分類した最適露光画素と前記公称波長毎の画像データセットとに基づいて前記容器キャップの形状を識別する、ことを含む方法。 - 前記識別した容器キャップの形状に基づいて前記試料容器の容器キャップタイプを識別することをさらに含む、請求項1に記載の方法。
- 前記容器キャップの背面照明画像を撮像するときに、複数の異なる視点から複数の画像を撮ることを含む、請求項1又は2に記載の方法。
- 前記複数の異なる視点として3つ以上の異なる視点を含む、請求項3に記載の方法。
- 前記最適露光画素を分類するときに、複数の訓練セットから生成されたマルチクラス分類器に基づいて分類する、請求項1〜4のいずれか1項に記載の方法。
- 前記マルチクラス分類器がサポートベクターマシンを含む、請求項5に記載の方法。
- 前記複数の異なる公称波長として3つ以上の異なる公称波長を含む、請求項1〜6のいずれか1項に記載の方法。
- 前記複数の異なる公称波長に、赤色、緑色、青色の光スペクトルにおける公称波長を含む、請求項7に記載の方法。
- 前記異なる露光の長さの少なくともいくつかを設定する光の輝度及び持続時間は、背面照明光が前記容器キャップの少なくとも一部を透過するように選択する、請求項1〜8のいずれか1項に記載の方法。
- 管、容器キャップ、及びラベルを少なくとも含む試料容器の前記容器キャップを識別するように構成される品質チェックモジュールであって、
前記試料容器を受け入れるように構成された撮像位置の周辺の複数の視点に配置され、複数の異なる公称波長を使用すると共に該公称波長のそれぞれで異なる露光の長さを適用して前記複数の視点から前記容器キャップの複数の画像を撮像するように構成された、複数のカメラと、
該複数のカメラに接続されたコンピュータとを含み、
前記コンピュータは、
前記公称波長のそれぞれにおいて前記異なる露光の長さで撮像された複数の画像から、前記公称波長毎に最適露光画素を選択し、該選択した最適露光画素を利用して前記公称波長毎に最適露光の画像データセットを生成し、
該生成した画像データセットの前記最適露光画素を、少なくとも前記管、容器キャップ、及びラベルのうちの1つであるとして分類し、
該分類により前記容器キャップとして分類した最適露光画素と前記公称波長毎の画像データセットとに基づいて前記容器キャップの形状を識別するように構成され動作可能である、品質チェックモジュール。 - 前記撮像位置を囲むハウジングを含む、請求項10に記載の品質チェックモジュール。
- 前記撮像位置を囲む背面照明用光源を含む、請求項10又は11に記載の品質チェックモジュール。
- 前記撮像位置を囲む前面照明用光源を含む、請求項10〜12のいずれか1項に記載の品質チェックモジュール。
- 前記撮像位置がトラック上にあり、前記試料容器は、前記トラックを移動可能な搬送機器の置き場で受け入れられるように構成されている、請求項10〜13のいずれか1項に記載の品質チェックモジュール。
- 前記コンピュータは、前記識別した容器キャップの形状に基づいて前記試料容器の容器キャップタイプを識別するようにさらに動作可能である、請求項10〜14のいずれか1項に記載の品質チェックモジュール。
- 前記コンピュータは、前記最適露光画素を分類するときに、複数の訓練セットから生成されたマルチクラス分類器に基づいて分類するように構成される、請求項10〜15のいずれか1項に記載の品質チェックモジュール。
- 前記マルチクラス分類器がサポートベクターマシンを含む、請求項16に記載の品質チェックモジュール。
- 前記複数の異なる公称波長として3つ以上の異なる公称波長を含み、該公称波長として、赤色、緑色、及び青色の光スペクトルにおける公称波長を含む、請求項10〜17のいずれか1項に記載の品質チェックモジュール。
- 前記異なる露光の長さの少なくともいくつかを設定する光の輝度及び持続時間は、前記背面照明用光源による背面照明光が前記容器キャップの少なくとも一部を透過するように選択する、請求項12に記載の品質チェックモジュール。
- トラックと、
該トラックを移動可能であり、管、容器キャップ、及びラベルを少なくとも含む試料容器を搬送するように構成された試料搬送機器と、
前記トラックに配置され、前記容器キャップを識別するように構成された品質チェックモジュールとを含む試料検査装置であって、
前記品質チェックモジュールは、
前記試料容器を受け入れるように構成された撮像位置の周辺の複数の視点に配置され、複数の異なる公称波長を使用すると共に該公称波長のそれぞれで異なる露光の長さを適用して前記複数の視点から前記容器キャップの複数の画像を撮像するように構成された、複数のカメラと、
該複数のカメラに接続されたコンピュータとを含み、
前記コンピュータは、
前記公称波長のそれぞれにおいて前記異なる露光の長さで撮像された複数の画像から、前記公称波長毎に最適露光画素を選択し、該選択した最適露光画素を利用して前記公称波長毎に最適露光の画像データセットを生成し、
該生成した画像データセットの前記最適露光画素を、少なくとも前記管、容器キャップ、及びラベルのうちの1つであるとして分類し、
該分類により前記容器キャップとして分類した最適露光画素と前記公称波長毎の画像データセットとに基づいて前記容器キャップの形状を識別するように構成され動作可能である、試料検査装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662366350P | 2016-07-25 | 2016-07-25 | |
US62/366,350 | 2016-07-25 | ||
USPCT/US2017/014773 | 2017-01-24 | ||
PCT/US2017/014773 WO2017132167A1 (en) | 2016-01-28 | 2017-01-24 | Methods and apparatus adapted to identify a specimen container from multiple lateral views |
PCT/US2017/041226 WO2018022280A1 (en) | 2016-07-25 | 2017-07-07 | Systems, methods and apparatus for identifying a specimen container cap |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019531463A JP2019531463A (ja) | 2019-10-31 |
JP6858243B2 true JP6858243B2 (ja) | 2021-04-14 |
Family
ID=61017188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019504121A Active JP6858243B2 (ja) | 2016-07-25 | 2017-07-07 | 試料容器の容器キャップを識別するためのシステム、方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11035870B2 (ja) |
EP (1) | EP3488249B1 (ja) |
JP (1) | JP6858243B2 (ja) |
CN (1) | CN109477848B (ja) |
WO (1) | WO2018022280A1 (ja) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016133900A1 (en) * | 2015-02-17 | 2016-08-25 | Siemens Healthcare Diagnostics Inc. | Model-based methods and apparatus for classifying an interferent in specimens |
CN108603817B (zh) * | 2016-01-28 | 2022-04-19 | 西门子医疗保健诊断公司 | 适于从多个侧视图标识样本容器的方法和装置 |
CN110023950B (zh) | 2016-10-28 | 2023-08-08 | 拜克门寇尔特公司 | 物质准备评估系统 |
EP3538839B1 (en) * | 2016-11-14 | 2021-09-29 | Siemens Healthcare Diagnostics Inc. | Methods, apparatus, and quality check modules for detecting hemolysis, icterus, lipemia, or normality of a specimen |
IT201700032261A1 (it) * | 2017-03-23 | 2018-09-23 | Antares Vision S R L | Macchina ispezionatrice |
JP6896971B2 (ja) * | 2017-04-13 | 2021-06-30 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | 試料の特性評価中にラベル数を決定するための方法および装置 |
CN110573859B (zh) | 2017-04-13 | 2022-07-26 | 美国西门子医学诊断股份有限公司 | 用于使用卷积神经网络的hiln表征的方法和装置 |
US11538159B2 (en) | 2017-04-13 | 2022-12-27 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for label compensation during specimen characterization |
US11037032B2 (en) * | 2017-10-06 | 2021-06-15 | Wisconsin Alumni Research Foundation | Methods, systems, and media for detecting the presence of an analyte |
JP7324757B2 (ja) | 2018-01-10 | 2023-08-10 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 訓練が低減されたニューラルネットワークを使用したバイオ流体検体の特徴付けのための方法および装置 |
DE102018104640A1 (de) * | 2018-02-28 | 2019-08-29 | Als Automated Lab Solutions Gmbh | Kalibriervorrichtung und Verfahren zur Ermittlung der räumlichen Ausrichtung einer an einer Halterung gehaltenen Kapillare |
ES2939386T3 (es) * | 2018-05-21 | 2023-04-21 | Automatizacion Y Sist De Inspeccion En Linea Global S L | Dispositivo y método para la clasificación de contenedores |
WO2019241134A1 (en) * | 2018-06-15 | 2019-12-19 | Siemens Healthcare Diagnostics Inc. | Specimen container characterization using a single deep neural network in an end-to-end training fashion |
CN112424334B (zh) * | 2018-06-15 | 2024-08-20 | 美国西门子医学诊断股份有限公司 | 利用高级语义分割和对抗训练进行细粒度hil指数确定的方法和设备 |
WO2020061370A1 (en) * | 2018-09-20 | 2020-03-26 | Siemens Healthcare Diagnostics Inc. | Hypothesizing and verification networks and methods for specimen classification |
EP3853583A4 (en) * | 2018-09-20 | 2021-11-24 | Siemens Healthcare Diagnostics, Inc. | VISUALIZATION ANALYSIS AND VISUAL LEARNING PROCESSES |
WO2020061369A1 (en) * | 2018-09-20 | 2020-03-26 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for hiln determination with a deep adaptation network for both serum and plasma samples |
JP7273542B2 (ja) * | 2019-03-01 | 2023-05-15 | 富士レビオ株式会社 | 分析装置、検体前処理装置、訓練装置、プログラム、情報処理方法、学習モデルおよび学習モデルの生成方法 |
JP7474396B2 (ja) * | 2019-04-23 | 2024-04-25 | 株式会社テクノメデイカ | 自動採血管判別装置、該自動採血管判別装置を用いた採血管照合装置、該自動採血管判別装置用の教師データ取得装置を備えた自動採血管準備装置、及び該採血管照合装置を備えた自動採血管準備装置 |
CN110427861A (zh) * | 2019-07-26 | 2019-11-08 | 上海秒针网络科技有限公司 | 容器状态的确定方法及装置 |
JP7462039B2 (ja) * | 2019-10-31 | 2024-04-04 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 試料容器を特性評価するための前景照明の較正を提供する方法および装置 |
EP4052046A4 (en) * | 2019-10-31 | 2022-12-21 | Siemens Healthcare Diagnostics, Inc. | DEVICE AND METHOD FOR IDENTIFYING A PIPE MOUNT TYPE |
EP4051434A4 (en) * | 2019-10-31 | 2022-12-28 | Siemens Healthcare Diagnostics, Inc. | DEVICE AND METHOD FOR TRAINING MODELS OF DIAGNOSTIC ANALYZERS |
CN111582014A (zh) * | 2020-02-29 | 2020-08-25 | 佛山市云米电器科技有限公司 | 容器识别方法、设备及计算机可读存储介质 |
EP3882849A1 (en) * | 2020-03-16 | 2021-09-22 | F. Hoffmann-La Roche AG | Method for determining characteristics of a sample vessel in an in-vitro diagnostics system, analyzing device, and in-vitro diagnostics system |
EP3979131A1 (en) | 2020-10-02 | 2022-04-06 | Roche Diagnostics GmbH | A method for determining at least one state of at least one cavity of a transport interface configured for transporting sample tubes |
JP2023018822A (ja) * | 2021-07-28 | 2023-02-09 | パナソニックIpマネジメント株式会社 | 検査方法および検査装置 |
LU102902B1 (en) * | 2022-01-19 | 2023-07-19 | Stratec Se | Instrument parameter determination based on sample tube identification |
EP4216170A1 (en) | 2022-01-19 | 2023-07-26 | Stratec SE | Instrument parameter determination based on sample tube identification |
TWI804204B (zh) * | 2022-02-21 | 2023-06-01 | 財團法人國家實驗研究院 | 用以提供機器學習判讀一生物樣品的取樣方法與裝置 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09169392A (ja) | 1995-12-20 | 1997-06-30 | Mitsubishi Heavy Ind Ltd | 画像式打栓状態検査装置 |
KR20080108145A (ko) * | 2005-01-24 | 2008-12-11 | 올림푸스 가부시키가이샤 | 생화학 검사 장치 및 생화학 검사 방법 |
EP1846869B1 (en) * | 2005-01-27 | 2011-10-05 | Cambridge Research & Instrumentation, Inc. | Classifying image features |
US8170271B2 (en) * | 2008-06-25 | 2012-05-01 | Jadak Llc | System and method for test tube and cap identification |
JP2010107400A (ja) * | 2008-10-30 | 2010-05-13 | Sysmex Corp | 検体処理システム及び検体容器仕分け装置 |
JP5208868B2 (ja) * | 2008-10-31 | 2013-06-12 | シスメックス株式会社 | 検体処理装置 |
CA2771219C (en) | 2009-08-13 | 2018-12-18 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for ascertaining interferents and physical dimensions in liquid samples and containers to be analyzed by a clinical analyzer |
EP2473102B1 (en) * | 2009-09-04 | 2018-05-23 | The Johns Hopkins University | Multimodal laser speckle imaging |
CA2776527C (en) * | 2009-10-19 | 2014-08-05 | Ventana Medical Systems, Inc. | Imaging system and techniques |
EP2776848B1 (en) * | 2011-11-07 | 2019-12-25 | Beckman Coulter, Inc. | System and method for transporting sample containers |
KR20140091033A (ko) * | 2011-11-07 | 2014-07-18 | 베크만 컬터, 인코포레이티드 | 검체 컨테이너 검출 |
EP2798153B1 (en) * | 2012-01-19 | 2017-12-06 | Halliburton Energy Services, Inc. | Fossil recognition apparatus, systems, and methods |
KR101700022B1 (ko) * | 2012-06-22 | 2017-02-13 | 에프. 호프만-라 로슈 아게 | 체액에서 분석물질을 검출하는 방법 및 디바이스 |
US9952241B2 (en) | 2012-08-20 | 2018-04-24 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for ascertaining specimen and/or sample container characteristics while in transit |
CN104718457B (zh) * | 2012-10-16 | 2017-06-20 | 贝克曼考尔特公司 | 具有剥离结构的滑槽装置 |
WO2014152329A1 (en) | 2013-03-14 | 2014-09-25 | Siemens Healthcare Diagnostics Inc. | Tube tray vision system |
JP2015026910A (ja) * | 2013-07-24 | 2015-02-05 | キヤノン株式会社 | 撮像装置及びその制御方法 |
CN103413286B (zh) * | 2013-08-02 | 2017-05-03 | 北京工业大学 | 一种基于学习的高动态范围与高分辨率图像联合重建方法 |
CN103413285A (zh) * | 2013-08-02 | 2013-11-27 | 北京工业大学 | 基于样本预测的hdr和hr图像重建方法 |
JP2015144339A (ja) * | 2014-01-31 | 2015-08-06 | ソニー株式会社 | 画像処理装置、画像処理方法およびプログラム |
JP6890373B2 (ja) * | 2014-07-10 | 2021-06-18 | アイエムエス ナノファブリケーション ゲーエムベーハー | 畳み込みカーネルを使用する粒子ビーム描画機における結像偏向の補償 |
WO2016014429A1 (en) | 2014-07-21 | 2016-01-28 | Beckman Coulter, Inc. | Methods and systems for tube inspection and liquid level detection |
WO2017132169A1 (en) | 2016-01-28 | 2017-08-03 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for detecting an interferent in a specimen |
EP3408646B1 (en) | 2016-01-28 | 2024-05-29 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for characterizing a specimen container and a specimen |
CN108603817B (zh) * | 2016-01-28 | 2022-04-19 | 西门子医疗保健诊断公司 | 适于从多个侧视图标识样本容器的方法和装置 |
JP6888770B2 (ja) | 2016-01-28 | 2021-06-16 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | 試料内のアーチファクトを分類する方法と装置 |
EP3408641B1 (en) | 2016-01-28 | 2021-05-26 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for multi-view characterization |
CN108770364A (zh) | 2016-01-28 | 2018-11-06 | 西门子医疗保健诊断公司 | 用于使用多个曝光来对样品容器和/或样品进行成像的方法和装置 |
EP3408653B1 (en) | 2016-01-28 | 2024-01-17 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus adapted to quantify a specimen from multiple lateral views |
JP6896971B2 (ja) * | 2017-04-13 | 2021-06-30 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | 試料の特性評価中にラベル数を決定するための方法および装置 |
-
2017
- 2017-07-07 EP EP17834942.9A patent/EP3488249B1/en active Active
- 2017-07-07 JP JP2019504121A patent/JP6858243B2/ja active Active
- 2017-07-07 US US16/320,198 patent/US11035870B2/en active Active
- 2017-07-07 WO PCT/US2017/041226 patent/WO2018022280A1/en unknown
- 2017-07-07 CN CN201780046038.4A patent/CN109477848B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US11035870B2 (en) | 2021-06-15 |
CN109477848A (zh) | 2019-03-15 |
EP3488249B1 (en) | 2024-08-28 |
JP2019531463A (ja) | 2019-10-31 |
EP3488249A1 (en) | 2019-05-29 |
US20190271714A1 (en) | 2019-09-05 |
WO2018022280A1 (en) | 2018-02-01 |
EP3488249A4 (en) | 2019-08-07 |
CN109477848B (zh) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6858243B2 (ja) | 試料容器の容器キャップを識別するためのシステム、方法及び装置 | |
EP3408640B1 (en) | Methods and apparatus adapted to identify a specimen container from multiple lateral views | |
JP6879366B2 (ja) | 試料の溶血、黄疸、脂肪血症、又は正常性を検出する方法、装置及び品質チェックモジュール | |
EP3408641B1 (en) | Methods and apparatus for multi-view characterization | |
US11313869B2 (en) | Methods and apparatus for determining label count during specimen characterization | |
EP3408652B1 (en) | Methods and apparatus for classifying an artifact in a specimen | |
JP6791972B2 (ja) | 試料中のインターフェレントを検出するための方法と装置 | |
JP6870826B2 (ja) | 側方多視点から試料を定量化するように構成された方法及び装置 | |
EP3610270B1 (en) | Methods and apparatus for label compensation during specimen characterization | |
US11927736B2 (en) | Methods and apparatus for fine-grained HIL index determination with advanced semantic segmentation and adversarial training | |
US20210164965A1 (en) | Specimen container characterization using a single deep neural network in an end-to-end training fashion | |
US20210334972A1 (en) | Methods and apparatus for hiln determination with a deep adaptation network for both serum and plasma samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190809 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200901 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6858243 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |