[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6856995B2 - An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head - Google Patents

An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head Download PDF

Info

Publication number
JP6856995B2
JP6856995B2 JP2016180854A JP2016180854A JP6856995B2 JP 6856995 B2 JP6856995 B2 JP 6856995B2 JP 2016180854 A JP2016180854 A JP 2016180854A JP 2016180854 A JP2016180854 A JP 2016180854A JP 6856995 B2 JP6856995 B2 JP 6856995B2
Authority
JP
Japan
Prior art keywords
ultrasonic
conduit
pair
ultrasonic sensor
sensor head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016180854A
Other languages
Japanese (ja)
Other versions
JP2018044893A (en
Inventor
浩司 大塚
浩司 大塚
祐 船橋
祐 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Saginomiya Seisakusho Inc
Original Assignee
JMS Co Ltd
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd, Saginomiya Seisakusho Inc filed Critical JMS Co Ltd
Priority to JP2016180854A priority Critical patent/JP6856995B2/en
Priority to PCT/JP2017/032152 priority patent/WO2018051865A1/en
Priority to CN201780055414.6A priority patent/CN109716123B/en
Publication of JP2018044893A publication Critical patent/JP2018044893A/en
Application granted granted Critical
Publication of JP6856995B2 publication Critical patent/JP6856995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

本発明は、導管を流れる液体中の気泡を検出するために用いられる超音波センサヘッド及び該超音波センサヘッドを備える超音波検出器に関する。 The present invention relates to an ultrasonic sensor head used for detecting air bubbles in a liquid flowing through a conduit and an ultrasonic detector including the ultrasonic sensor head.

従来、医療施設において、輸液・輸血等を行う際に誤って患者の体内に空気(気泡)を注入しないように、気泡を検出する気泡検出器が利用されている。このような気泡検出器は、透明でない薬液や血液にも適用可能なように、検出手段の1つとして超音波が利用されてきた。 Conventionally, in medical facilities, a bubble detector that detects bubbles has been used so as not to accidentally inject air (bubbles) into the patient's body when performing infusion, blood transfusion, or the like. Ultrasonic waves have been used as one of the detection means for such bubble detectors so that they can be applied to non-transparent chemicals and blood.

例えば、微小気泡を検出する超音波検出器として、液体が流れる導管を挟んで対向して配置される一対の超音波センサヘッドにおいて、センサヘッドの送受信面を液体の流れ方向の幅を狭くした帯状に形成する技術が提案されている(特許文献1参照)。このように構成することで、従来のセンサヘッドの送受信面が縦横同等の幅に形成される構成に比べ、超音波が伝達される面積が小さくなり、微小気泡による超音波の強度が減少する割合が大きくなるため、微小気泡の検出感度を高められる。 For example, as an ultrasonic detector for detecting microbubbles, in a pair of ultrasonic sensor heads arranged to face each other across a conduit through which a liquid flows, a strip-shaped sensor head transmission / reception surface having a narrow width in the liquid flow direction. (See Patent Document 1). With this configuration, the area through which ultrasonic waves are transmitted becomes smaller and the intensity of ultrasonic waves due to microbubbles decreases, compared to the conventional configuration in which the transmitting and receiving surfaces of the sensor head are formed to have the same width in the vertical and horizontal directions. Therefore, the detection sensitivity of minute bubbles can be improved.

実公平5−29717号公報Jitsufuku No. 5-29717

上述のように、センサヘッドの送受信面について液体の流れ方向の幅を狭く形成して、気泡の検出感度を高感度にした場合、送受信面が小さいため伝達される超音波が弱く受信電圧が小さくなり、気泡の有無判定の電圧差も小さい。そのため、導管の材質や種類、導管とセンサヘッドとの接触状態、温度や湿度等の周囲環境の変化によって受信電圧が変化したり不安定となったりして、誤検知を発生させやすい。
このような誤検知を発生させないために、一般的に、超音波検出器には、ハードウェアにおいては複雑な回路設計が、ソフトウェアにおいてはアルゴリズムの工夫等が必要となる。
As described above, when the width of the transmission / reception surface of the sensor head is narrowed in the liquid flow direction to increase the sensitivity of bubble detection, the transmitted ultrasonic waves are weak and the reception voltage is small because the transmission / reception surface is small. Therefore, the voltage difference for determining the presence or absence of air bubbles is also small. Therefore, the received voltage changes or becomes unstable due to changes in the material and type of the conduit, the contact state between the conduit and the sensor head, and the ambient environment such as temperature and humidity, and erroneous detection is likely to occur.
In order to prevent such false detections from occurring, it is generally necessary for an ultrasonic detector to have a complicated circuit design in hardware and to devise an algorithm in software.

従って、本発明は、気泡の検出感度が高く、誤検知が少ない超音波センサヘッド及び該超音波センサヘッドを備える超音波検出器を提供することを目的とする。 Therefore, an object of the present invention is to provide an ultrasonic sensor head having high bubble detection sensitivity and less false detection, and an ultrasonic detector including the ultrasonic sensor head.

本発明は、液体が流れる導管を挟んで対向配置され、超音波を送受信可能な一対の超音波センサヘッドであって、前記一対の超音波センサヘッドの一方は、前記導管に面する第1の振動面を備え、前記一対の超音波センサヘッドの他方は、前記導管に面する第2の振動面を備え、前記液体の流れ方向について、前記第2の振動面の幅は、前記第1の振動面の幅よりも小さく、前記第1の振動面及び前記第2の振動面のいずれか一方が超音波の送信面として用いられ、他方が超音波の受信面として用いられる一対の超音波センサヘッドに関する。 The present invention is a pair of ultrasonic sensor heads that are arranged to face each other with a conduit through which a liquid flows and can transmit and receive ultrasonic waves, and one of the pair of ultrasonic sensor heads faces the conduit. The other of the pair of ultrasonic sensor heads is provided with a vibration surface, and the other of the pair of ultrasonic sensor heads is provided with a second vibration surface facing the conduit, and the width of the second vibration surface is the width of the first vibration surface in the flow direction of the liquid. A pair of ultrasonic sensors that are smaller than the width of the vibrating surface and one of the first vibrating surface and the second vibrating surface is used as an ultrasonic transmitting surface and the other is used as an ultrasonic receiving surface. Regarding the head.

また、前記第1の振動面が超音波の送信面として用いられ、前記第2の振動面が超音波の受信面として用いられることが好ましい。 Further, it is preferable that the first vibrating surface is used as an ultrasonic wave transmitting surface and the second vibrating surface is used as an ultrasonic wave receiving surface.

また、前記一対の超音波センサヘッドは、前記第1の振動面及び前記第2の振動面において前記導管と接触するように配置され、前記第1の振動面は、前記液体の流れ方向に垂直な面で切った断面形状が凹曲線状又は凸曲線状に形成されることが好ましい。 Further, the pair of ultrasonic sensor heads are arranged so as to be in contact with the conduit on the first vibration surface and the second vibration surface, and the first vibration surface is perpendicular to the flow direction of the liquid. It is preferable that the cross-sectional shape cut by the surface is formed into a concave curve or a convex curve.

また、前記導管は可撓性を備えており、前記第2の振動面は、前記超音波の送受信方向及び前記液体の流れ方向に平行な面で切った断面形状が凸曲線状又は直線状に形成されることが好ましい。 Further, the conduit has flexibility, and the second vibration surface has a convex curve or a straight cross-sectional shape cut by a surface parallel to the ultrasonic wave transmission / reception direction and the liquid flow direction. It is preferably formed.

また、本発明は、上述のいずれかの一対の超音波センサヘッドを備え、前記導管を流れる液体中の気泡を検出する超音波検出器に関する。 The present invention also relates to an ultrasonic detector provided with any of the above-mentioned pair of ultrasonic sensor heads and detecting bubbles in a liquid flowing through the duct.

本発明によれば、気泡の検出感度が高く、誤検知が少ない超音波センサヘッド及び該超音波センサヘッドを備える超音波検出器を提供できる。 According to the present invention, it is possible to provide an ultrasonic sensor head having high bubble detection sensitivity and less false detection, and an ultrasonic detector including the ultrasonic sensor head.

本発明の超音波センサヘッドの実施形態を示す構成図であり、導管を挟んで対向配置される一対の超音波センサヘッドを示す図である。It is a block diagram which shows the embodiment of the ultrasonic sensor head of this invention, and is the figure which shows the pair of ultrasonic sensor heads which are arranged facing each other across a conduit. 図1AのY−Y断面図である。It is a YY cross-sectional view of FIG. 1A. 本発明の超音波センサヘッドの実施形態を示す構成図であり、第1のセンサヘッドを第1の振動面側から見た図である。It is a block diagram which shows the embodiment of the ultrasonic sensor head of this invention, and is the figure which looked at the 1st sensor head from the 1st vibration surface side. 本発明の超音波センサヘッドの実施形態を示す構成図であり、第2のセンサヘッドを第2の振動面側から見た図である。It is a block diagram which shows the embodiment of the ultrasonic sensor head of this invention, and is the figure which looked at the 2nd sensor head from the 2nd vibration surface side. 本発明の超音波センサヘッドの第1実施形態を示す図であり、導管を挟んで対向配置される一対の超音波センサヘッド1Aを示す図である。It is a figure which shows the 1st Embodiment of the ultrasonic sensor head of this invention, and is the figure which shows the pair of ultrasonic sensor heads 1A which are arranged facing each other across a conduit. 図2AのY−Y断面図である。FIG. 2 is a sectional view taken along line YY of FIG. 2A. 本発明の超音波センサヘッドの第1実施形態を示す図であり、第1のセンサヘッドを第1の振動面側から見た図である。It is a figure which shows the 1st Embodiment of the ultrasonic sensor head of this invention, and is the figure which looked at the 1st sensor head from the 1st vibration surface side. 本発明の超音波センサヘッドの第1実施形態を示す図であり、第2のセンサヘッドを第2の振動面側から見た図である。It is a figure which shows the 1st Embodiment of the ultrasonic sensor head of this invention, and is the figure which looked at the 2nd sensor head from the 2nd vibration surface side. 本発明の超音波センサヘッドの第2実施形態を示す図であり、導管を挟んで対向配置される一対の超音波センサヘッド1Bを示す図である。It is a figure which shows the 2nd Embodiment of the ultrasonic sensor head of this invention, and is the figure which shows the pair of ultrasonic sensor heads 1B which are arranged facing each other across a conduit. 図3AのY−Y断面図である。FIG. 3A is a sectional view taken along line YY of FIG. 3A. 本発明の超音波センサヘッドの第2実施形態を示す図であり、第1のセンサヘッドを第1の振動面側から見た図である。It is a figure which shows the 2nd Embodiment of the ultrasonic sensor head of this invention, and is the figure which looked at the 1st sensor head from the 1st vibration surface side. 本発明の超音波センサヘッドの第2実施形態を示す図であり、第2のセンサヘッドを第2の振動面側から見た図である。It is a figure which shows the 2nd Embodiment of the ultrasonic sensor head of this invention, and is the figure which looked at the 2nd sensor head from the 2nd vibration surface side. 本発明の第2実施形態において、第2の振動面211B(送信面)からの送信波の指向性が高い場合の微小気泡の投影面を説明する図である。It is a figure explaining the projection surface of the microbubbles when the directivity of the transmission wave from the 2nd vibration surface 211B (transmission surface) is high in the 2nd Embodiment of this invention. 本発明の第2実施形態において、第2の振動面211B(送信面)からの送信波の指向性が低い場合の微小気泡の投影面を説明する図である。It is a figure explaining the projection surface of the microbubbles when the directivity of the transmitted wave from the 2nd vibration surface 211B (transmission surface) is low in the 2nd Embodiment of this invention. 本発明の超音波センサヘッドの変形例を示す図であり、導管を挟んで対向配置される一対の超音波センサヘッド1Cを示す図である。It is a figure which shows the modification of the ultrasonic sensor head of this invention, and is the figure which shows the pair of ultrasonic sensor heads 1C which are arranged facing each other across a conduit. 図5AのY−Y断面図である。5A is a cross-sectional view taken along the line YY of FIG. 5A.

以下、本発明の一対の超音波センサヘッドの実施形態について図1A〜図1Dを参照して説明する。
一対の超音波センサヘッド1は、第1のセンサヘッド10と、第2のセンサヘッド20と、を含んで構成され、導管30を挟んで対向して配置される。
Hereinafter, embodiments of the pair of ultrasonic sensor heads of the present invention will be described with reference to FIGS. 1A to 1D.
The pair of ultrasonic sensor heads 1 includes a first sensor head 10 and a second sensor head 20, and are arranged so as to face each other with the conduit 30 interposed therebetween.

第1のセンサヘッド10は、第1の振動面111が形成された超音波伝達体110と、電気信号と振動とを変換する超音波振動子120と、を備える。
第2のセンサヘッド20は、第2の振動面211が形成された超音波伝達体210と、電気信号と振動とを変換する超音波振動子220と、を備える。
The first sensor head 10 includes an ultrasonic transmitter 110 on which a first vibration surface 111 is formed, and an ultrasonic vibrator 120 that converts an electric signal and vibration.
The second sensor head 20 includes an ultrasonic transmitter 210 on which a second vibration surface 211 is formed, and an ultrasonic vibrator 220 that converts an electric signal and vibration.

超音波伝達体110及び210は、超音波振動子(120、220)と振動面(111、211)との間で超音波を伝達する。超音波伝達体110,210は、アクリル、硬質ポリ塩化ビニル、変性ポリフェニレンエーテル等の樹脂により形成される。本実施形態では、超音波伝達体110,210は、アクリル樹脂により形成される。
また、超音波伝達体110及び210は、単に超音波を伝達するだけでなく、例えば後述の第1実施形態及び第2実施形態で説明するように、振動面を凹曲面状又は凸曲面状とすることで、超音波を集束又は拡散させる音響レンズとして機能させることも可能である。
The ultrasonic transmitters 110 and 210 transmit ultrasonic waves between the ultrasonic transducers (120, 220) and the vibrating surfaces (111, 211). The ultrasonic transmitters 110 and 210 are formed of a resin such as acrylic, hard polyvinyl chloride, or modified polyphenylene ether. In this embodiment, the ultrasonic transmitters 110 and 210 are made of acrylic resin.
Further, the ultrasonic transmitters 110 and 210 not only transmit ultrasonic waves, but also have a vibrating surface having a concave curved surface shape or a convex curved surface shape, for example, as described in the first embodiment and the second embodiment described later. By doing so, it is possible to function as an acoustic lens that focuses or diffuses ultrasonic waves.

第1の振動面111及び第2の振動面211は、それぞれ導管30の側面に面するように超音波伝達体110及び210に形成されており、導管30に接触して超音波を伝達する。第1の振動面111は、図1Cに示すように円形に形成され、第2の振動面211は、図1Dに示すように矩形状に形成される。 The first vibrating surface 111 and the second vibrating surface 211 are formed on the ultrasonic transmitters 110 and 210 so as to face the side surfaces of the conduit 30, respectively, and come into contact with the conduit 30 to transmit ultrasonic waves. The first vibrating surface 111 is formed in a circular shape as shown in FIG. 1C, and the second vibrating surface 211 is formed in a rectangular shape as shown in FIG. 1D.

図1C及び図1Dに示すように、液体の流れ方向(y方向)について、第2の振動面211の幅w2は、第1の振動面111の幅w1よりも小さく形成される。具体的には幅w1に対する幅w2の割合は、0.1〜0.7程度であることが望ましい。割合が0.1より大きいと、第2の振動面211の面積が大きくなって超音波の送受信の強度が大きくなり、受信電圧が安定しやすいため好ましい。また、割合が0.7より小さいと、幅w2が小さくなって微小気泡を検出可能な感度を得られるため好ましい。
また、第1のセンサヘッド10及び第2のセンサヘッド20を対向して配置する際に、液体の流れ方向(y方向)について、送信面及び受信面のいずれか一方が広いので、精密な位置合わせを行わなくても、確実に送受信が可能となる。
As shown in FIGS. 1C and 1D, the width w2 of the second vibrating surface 211 is formed smaller than the width w1 of the first vibrating surface 111 in the liquid flow direction (y direction). Specifically, the ratio of the width w2 to the width w1 is preferably about 0.1 to 0.7. When the ratio is larger than 0.1, the area of the second vibrating surface 211 becomes large, the intensity of ultrasonic wave transmission / reception becomes large, and the reception voltage is easily stabilized, which is preferable. Further, when the ratio is smaller than 0.7, the width w2 becomes small and the sensitivity for detecting minute bubbles can be obtained, which is preferable.
Further, when the first sensor head 10 and the second sensor head 20 are arranged so as to face each other, one of the transmitting surface and the receiving surface is wide in the liquid flow direction (y direction), so that the position is precise. Transmission and reception can be reliably performed without matching.

図1B〜図1Dに示すように、液体の流れ方向(y方向)及び超音波の送信方向(x方向)に垂直なz方向について、一例として、第1の振動面111の幅h1及び第2の振動面211の幅h2は同等の大きさを有するように構成した。
その幅h1及び幅h2について、粘性が小さい液体中の気泡を検出する場合は、可撓性を有する導管30が第1の振動面111及び第2の振動面211で挟まれた状態において、少なくとも導管30のz方向の内径と同等の幅であることが望ましい。このように構成すれば、超音波はz方向について導管30内の大部分を透過するので、気泡の検出漏れを少なくできる。
また、粘性の大きい液体中の気泡は、導管30の中央部を通りやすくなる。よって、粘性の大きい液体中の気泡を検出する場合は、導管30の中央部を超音波が透過するように、幅h1及び幅h2は、少なくとも導管30の内径の半分程度の大きさとすればよい。ただし、実用的には、安全性を再優先し、幅h1及び幅h2は、導管30のz方向の内径と同等の幅とすることが好ましい。
As shown in FIGS. 1B to 1D, the widths h1 and the second of the first vibrating surface 111 are taken as an example for the z direction perpendicular to the liquid flow direction (y direction) and the ultrasonic wave transmission direction (x direction). The width h2 of the vibrating surface 211 of the above is configured to have the same size.
When detecting air bubbles in a liquid having a low viscosity with respect to the width h1 and the width h2, at least in a state where the flexible conduit 30 is sandwiched between the first vibrating surface 111 and the second vibrating surface 211. It is desirable that the width is equivalent to the inner diameter of the conduit 30 in the z direction. With this configuration, the ultrasonic waves pass through most of the inside of the conduit 30 in the z direction, so that the detection omission of bubbles can be reduced.
In addition, air bubbles in the highly viscous liquid easily pass through the central portion of the conduit 30. Therefore, when detecting bubbles in a highly viscous liquid, the widths h1 and h2 may be at least about half the inner diameter of the conduit 30 so that ultrasonic waves can pass through the central portion of the conduit 30. .. However, practically, it is preferable that the width h1 and the width h2 have the same width as the inner diameter of the conduit 30 in the z direction, giving priority to safety again.

超音波振動子120及び220としては、円板状の圧電素子が用いられ、その両面にそれぞれ不図示の電極が取り付けられており、入力された電気信号を機械的振動に変換し、また、伝達された機械的振動を電気信号に変換して出力することができる。超音波振動子120及び220は、超音波伝達体110及び210の内部にそれぞれ埋め込まれて配置される。圧電素子の材料としては、チタン酸ジルコン酸鉛等の圧電セラミックス、酸化亜鉛等の圧電薄膜、フッ化ビニリデン等の圧電高分子膜等が適用可能である。本実施形態では、圧電素子の材料としてチタン酸ジルコン酸鉛を用い、電極として銀と白金を用いた。 Disc-shaped piezoelectric elements are used as the ultrasonic vibrators 120 and 220, and electrodes (not shown) are attached to both sides thereof, and the input electric signal is converted into mechanical vibration and transmitted. The generated mechanical vibration can be converted into an electric signal and output. The ultrasonic vibrators 120 and 220 are embedded and arranged inside the ultrasonic transmitters 110 and 210, respectively. As the material of the piezoelectric element, piezoelectric ceramics such as lead zirconate titanate, piezoelectric thin films such as zinc oxide, and piezoelectric polymer films such as vinylidene fluoride can be applied. In this embodiment, lead zirconate titanate was used as the material of the piezoelectric element, and silver and platinum were used as the electrodes.

導管30は、軟質塩化ビニル(PVC)、シリコン(Si)等の可撓性のチューブで形成され、例えば、医療用のチューブとしては、外径が5.5〜6.5mm、内径が3.5〜4.5mmのもの等が用いられる。 The conduit 30 is formed of a flexible tube such as soft vinyl chloride (PVC) or silicon (Si). For example, as a medical tube, the outer diameter is 5.5 to 6.5 mm and the inner diameter is 3. Those having a diameter of 5 to 4.5 mm are used.

以上、説明した一対の超音波センサヘッド1を構成する第1のセンサヘッド10及び第2のセンサヘッド20は、超音波検出器の送信ヘッド及び受信ヘッドとしてそれぞれ用いることができる。
次に、第1のセンサヘッドを送信ヘッドとして用い、第2のセンサヘッドを受信ヘッドとして用いる構成を第1実施形態において説明し、第2のセンサヘッドを送信ヘッドとして用い、第1のセンサヘッドを受信ヘッドとして用いる構成を第2実施形態において説明する。
The first sensor head 10 and the second sensor head 20 constituting the pair of ultrasonic sensor heads 1 described above can be used as a transmission head and a reception head of the ultrasonic detector, respectively.
Next, a configuration in which the first sensor head is used as the transmitting head and the second sensor head is used as the receiving head will be described in the first embodiment, and the second sensor head is used as the transmitting head and the first sensor head is used. Will be described in the second embodiment.

<第1実施形態>
図2を参照して、本発明の第1実施形態について説明する。図1と同様の構成については同じ符号を付して説明を省略する。
図2Aは、導管を挟んで対向配置される一対の超音波センサヘッド1Aを示し、図2Bは、図2AのY−Y断面図である。
<First Embodiment>
The first embodiment of the present invention will be described with reference to FIG. The same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
FIG. 2A shows a pair of ultrasonic sensor heads 1A arranged to face each other with the conduit in between, and FIG. 2B is a YY cross-sectional view of FIG. 2A.

一対の超音波センサヘッド1Aは、送信ヘッドとしての第1のセンサヘッド10Aと、受信ヘッドとしての第2のセンサヘッド20Aと、を含んで構成され、導管30としてのチューブ(外径5.5mm、内径3.5mm)を挟んで対向して配置される。 The pair of ultrasonic sensor heads 1A includes a first sensor head 10A as a transmitting head and a second sensor head 20A as a receiving head, and is a tube (outer diameter 5.5 mm) as a conduit 30. , Inner diameter 3.5 mm) are placed opposite each other.

第1のセンサヘッド10Aは、送信面となる第1の振動面111Aが形成された超音波伝達体110Aと、電気信号と振動とを変換する超音波振動子120と、を備える。
第2のセンサヘッド20Aは、受信面となる第2の振動面211Aが形成された超音波伝達体210Aと、電気信号と振動とを変換する超音波振動子220と、を備える。
超音波伝達体110A及び210Aは、それぞれの振動面の形状が異なる以外は、超音波伝達体110及び210と同様に構成される。
The first sensor head 10A includes an ultrasonic transmitter 110A on which a first vibration surface 111A serving as a transmission surface is formed, and an ultrasonic vibrator 120 that converts an electric signal and vibration.
The second sensor head 20A includes an ultrasonic transmitter 210A on which a second vibration surface 211A serving as a receiving surface is formed, and an ultrasonic vibrator 220 that converts an electric signal and vibration.
The ultrasonic transmitters 110A and 210A are configured in the same manner as the ultrasonic transmitters 110 and 210, except that the shapes of the vibration surfaces are different from each other.

第1の振動面111Aは、図2Bに示すように超音波伝達体110Aに凹曲面状に形成され、x方向から見た投影面は、直径6.9mm(=h1A=w1A)の円形である。より詳しく述べると、第1の振動面111Aは、液体の流れ方向(y方向)に垂直な面で切った断面形状が導管30の側面に沿うように凹曲線状に形成される。このように構成することで、導管30の側面と第1の振動面111Aとの密着性が向上するので、導管30内の液体に効率良く超音波を伝達することができる。
また、導管30の側面と第1の振動面111Aとの接触面積を大きくできるので、導管30内の液体に効率良く超音波を伝達することができるとともに超音波の指向性が向上する。さらに、凹曲面状に形成された第1の振動面111Aにおけるレンズ効果により超音波が集束しやすくなる。よって、超音波の送信強度を向上させることができる。
As shown in FIG. 2B, the first vibration surface 111A is formed on the ultrasonic transmitter 110A in a concave curved surface shape, and the projection surface viewed from the x direction is a circle with a diameter of 6.9 mm (= h1A = w1A). .. More specifically, the first vibration surface 111A is formed in a concave curved shape so that the cross-sectional shape cut by the surface perpendicular to the liquid flow direction (y direction) is along the side surface of the conduit 30. With this configuration, the adhesion between the side surface of the conduit 30 and the first vibrating surface 111A is improved, so that ultrasonic waves can be efficiently transmitted to the liquid in the conduit 30.
Further, since the contact area between the side surface of the conduit 30 and the first vibrating surface 111A can be increased, ultrasonic waves can be efficiently transmitted to the liquid in the conduit 30 and the directivity of the ultrasonic waves is improved. Further, the lens effect on the first vibrating surface 111A formed in a concave curved surface makes it easier for ultrasonic waves to be focused. Therefore, the transmission intensity of ultrasonic waves can be improved.

第2の振動面211Aは、図2A及び図2Bに示すように、超音波伝達体210Aに凸曲面状に形成され、−x方向から見た投影面は、幅w2A=1.4mm、幅h2A=6.9mmの矩形状である。より詳しく述べると、第2の振動面211Aは、図2Aに示すように、超音波の送受信方向(x方向)及び液体の流れ方向(y方向)に平行な面(xy平面)で切った断面形状が可撓性を備える導管30の側面に対して凸曲線状に形成される。このように構成することで、導管30の側面と第2の振動面211Aとの密着性が向上するので、液体を透過した超音波を効率良く伝達することができる。よって、受信強度を向上させることができる。 As shown in FIGS. 2A and 2B, the second vibration surface 211A is formed on the ultrasonic transmitter 210A in a convex curved surface shape, and the projection surface viewed from the −x direction has a width w2A = 1.4 mm and a width h2A. = 6.9 mm rectangular shape. More specifically, as shown in FIG. 2A, the second vibration surface 211A is a cross section cut along a plane (xy plane) parallel to the ultrasonic transmission / reception direction (x direction) and the liquid flow direction (y direction). The shape is formed in a convex curve with respect to the side surface of the conduit 30 having flexibility. With such a configuration, the adhesion between the side surface of the conduit 30 and the second vibrating surface 211A is improved, so that ultrasonic waves transmitted through the liquid can be efficiently transmitted. Therefore, the reception strength can be improved.

また、液体の流れ方向(y方向)について、第2の振動面211A(受信面)の幅w2Aが小さいので、受信面における微小気泡の投影面に占める割合が増加する。よって、液体を透過する超音波が微小気泡で反射して受信面に到達する超音波が減衰する割合が大きくなり、微小気泡を高感度で検出できる。 Further, since the width w2A of the second vibration surface 211A (reception surface) is small in the liquid flow direction (y direction), the proportion of the microbubbles on the projection surface on the reception surface increases. Therefore, the ultrasonic waves that pass through the liquid are reflected by the fine bubbles and the ultrasonic waves that reach the receiving surface are attenuated at a large rate, and the fine bubbles can be detected with high sensitivity.

第1実施形態に係る一対の超音波センサヘッド1Aによれば、以下のような効果が奏される。 According to the pair of ultrasonic sensor heads 1A according to the first embodiment, the following effects are achieved.

(1)液体の流れ方向(y方向)について、第2の振動面211A(受信面)の幅w2Aは、第1の振動面111A(送信面)の幅w1Aよりも小さい。このように構成することで、第1のセンサヘッド10A(送信ヘッド)及び第2のセンサヘッド20A(受信ヘッド)を対向して配置する際に、液体の流れ方向(y方向)について、送信面が広いので、送信面と受信面との精密な位置合わせを行わなくても、送信波が受信面を外れないように送受信が可能となる。よって、超音波の送受信の強度を強くすることができ、超音波検出器に一対の超音波センサヘッド1Aを適用したときに受信ヘッドからの受信電圧が安定する。 (1) With respect to the liquid flow direction (y direction), the width w2A of the second vibrating surface 211A (receiving surface) is smaller than the width w1A of the first vibrating surface 111A (transmitting surface). With this configuration, when the first sensor head 10A (transmission head) and the second sensor head 20A (reception head) are arranged to face each other, the transmission surface is arranged in the liquid flow direction (y direction). Therefore, it is possible to transmit and receive waves so that the transmitted wave does not deviate from the receiving surface without precisely aligning the transmitting surface and the receiving surface. Therefore, the intensity of transmitting and receiving ultrasonic waves can be increased, and the receiving voltage from the receiving head becomes stable when the pair of ultrasonic sensor heads 1A is applied to the ultrasonic detector.

(2)液体の流れ方向(y方向)について第2の振動面211A(受信面)の幅w2Aが小さいので、受信面における微小気泡の投影面に占める割合が大きい。よって、液体を透過する超音波が微小気泡で反射して受信面に到達する超音波が減衰する割合が大きいので、微小気泡を高感度で検出できる。 (2) Regarding the liquid flow direction (y direction) Since the width w2A of the second vibration surface 211A (reception surface) is small, the proportion of the microbubbles on the projection surface on the reception surface is large. Therefore, since the ultrasonic waves that pass through the liquid are reflected by the minute bubbles and the ultrasonic waves that reach the receiving surface are attenuated at a large rate, the fine bubbles can be detected with high sensitivity.

(3)第1の振動面111A(送信面)は、液体の流れ方向(y方向)に垂直な面で切った断面形状が導管30の側面に沿うように凹曲線状に形成される。このように構成することで、導管30の側面と送信面との密着性が向上し、さらに両者の接触面積を大きくできるので、導管30内の液体に効率良く超音波を伝達することができる。また、送信面が大きいため超音波の指向性が向上する。また、送信面が凹曲面状に形成されるので、そのレンズ効果により超音波が集束し、さらに指向性が向上する。よって、超音波の送信強度を上げることができ、超音波検出器における出力電圧が安定する。 (3) The first vibration surface 111A (transmission surface) is formed in a concave curved shape so that the cross-sectional shape cut by a surface perpendicular to the liquid flow direction (y direction) is along the side surface of the conduit 30. With this configuration, the adhesion between the side surface of the conduit 30 and the transmission surface can be improved, and the contact area between the two can be increased, so that ultrasonic waves can be efficiently transmitted to the liquid in the conduit 30. Moreover, since the transmitting surface is large, the directivity of ultrasonic waves is improved. Further, since the transmitting surface is formed in a concave curved surface shape, the ultrasonic waves are focused by the lens effect, and the directivity is further improved. Therefore, the transmission intensity of ultrasonic waves can be increased, and the output voltage in the ultrasonic detector becomes stable.

(4)導管30が可撓性を備えており、第2の振動面211A(受信面)は、超音波の送受信方向(x方向)及び液体の流れ方向(y方向)に平行な面(xy平面)で切った断面形状が凸曲線状に形成される。このように構成することで、導管30の側面と受信面との密着性が向上するので、液体を透過した超音波を効率良く伝達することができる。よって、受信強度を上げることができ、超音波検出器における出力電圧が安定する。
また、液体の流れ方向(y方向)についての受信面の幅w2Aが小さいので、受信面における微小気泡の投影面に占める割合が増加する。よって、液体を透過する超音波が微小気泡で反射して受信面に到達する超音波が減衰する割合が大きくなり、微小気泡を高感度で検出できる。
(4) The conduit 30 has flexibility, and the second vibration surface 211A (reception surface) is a surface (xy) parallel to the ultrasonic wave transmission / reception direction (x direction) and the liquid flow direction (y direction). The cross-sectional shape cut by (planar) is formed into a convex curve. With such a configuration, the adhesion between the side surface of the conduit 30 and the receiving surface is improved, so that ultrasonic waves transmitted through the liquid can be efficiently transmitted. Therefore, the reception intensity can be increased and the output voltage in the ultrasonic detector becomes stable.
Further, since the width w2A of the receiving surface in the liquid flow direction (y direction) is small, the proportion of the microbubbles on the projection surface on the receiving surface increases. Therefore, the ultrasonic waves that pass through the liquid are reflected by the fine bubbles and the ultrasonic waves that reach the receiving surface are attenuated at a large rate, and the fine bubbles can be detected with high sensitivity.

<第2実施形態>
図3及び図4を参照して、本発明の第2実施形態について説明する。図1及び図2と同様の構成については同じ符号を付して説明を省略する。
図3Aは、導管を挟んで対向配置される一対の超音波センサヘッド1Bを示し、図3Bは、図3AのY−Y断面図である。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIGS. 3 and 4. The same components as those in FIGS. 1 and 2 are designated by the same reference numerals, and the description thereof will be omitted.
FIG. 3A shows a pair of ultrasonic sensor heads 1B arranged to face each other with the conduit in between, and FIG. 3B is a YY cross-sectional view of FIG. 3A.

一対の超音波センサヘッド1Bは、送信ヘッドとしての第2のセンサヘッド20B(20A)と、受信ヘッドとしての第1のセンサヘッド10B(10A)と、を含んで構成され、導管30としてのチューブ(外径5.5mm、内径3.5mm)を挟んで対向して配置される。 The pair of ultrasonic sensor heads 1B includes a second sensor head 20B (20A) as a transmitting head and a first sensor head 10B (10A) as a receiving head, and is a tube as a conduit 30. (Outer diameter 5.5 mm, inner diameter 3.5 mm) are arranged so as to face each other.

第2実施形態においては、第1実施形態で送信ヘッドとして用いた第1のセンサヘッド10Aを受信ヘッド(第1のセンサヘッド10B)として用い、第1実施形態で受信ヘッドとして用いた第2のセンサヘッド20Aを送信ヘッド(第2のセンサヘッド20B)として用いた点で、第1の実施形態と異なる。各振動面の形状等は、第1の実施形態と同様であるので説明を省略する。 In the second embodiment, the first sensor head 10A used as the transmission head in the first embodiment is used as the receiving head (first sensor head 10B), and the second sensor head 10A used as the receiving head in the first embodiment. It differs from the first embodiment in that the sensor head 20A is used as the transmission head (second sensor head 20B). Since the shape and the like of each vibrating surface are the same as those in the first embodiment, the description thereof will be omitted.

第2の振動面211B(211A)は、図3A及び図3Bに示すように、超音波伝達体210B(210A)に凸曲面状に形成される。より詳しく述べると、第2の振動面211B(211A)は、図3Aに示すように、超音波の送受信方向(x方向)及び液体の流れ方向(y方向)に平行な面(xy平面)で切った断面形状が可撓性を備える導管30の側面に対して凸曲線状に形成される。このように構成することで、導管30の側面と第2の振動面211B(211A)との密着性が向上するので、導管30内の液体に効率良く超音波を伝達することができる。よって、送信強度を上げることができる。 As shown in FIGS. 3A and 3B, the second vibration surface 211B (211A) is formed on the ultrasonic transmitter 210B (210A) in a convex curved surface shape. More specifically, as shown in FIG. 3A, the second vibration surface 211B (211A) is a plane (xy plane) parallel to the ultrasonic transmission / reception direction (x direction) and the liquid flow direction (y direction). The cut cross-sectional shape is formed in a convex curve with respect to the side surface of the flexible conduit 30. With this configuration, the adhesion between the side surface of the conduit 30 and the second vibrating surface 211B (211A) is improved, so that ultrasonic waves can be efficiently transmitted to the liquid in the conduit 30. Therefore, the transmission strength can be increased.

第1の振動面111B(111A)は、図3Bに示すように超音波伝達体110Bに凹曲面状に形成される。より詳しく述べると、第1の振動面111B(111A)は、液体の流れ方向(y方向)に垂直な面で切った断面形状が導管30の側面に沿うように凹曲線状に形成される。このように構成することで、導管30の側面と第1の振動面111B(111A)との密着性が向上するので、導管30内の液体を透過した超音波を効率良く伝達することができる。よって、受信強度を上げることができる。 The first vibrating surface 111B (111A) is formed on the ultrasonic transmitter 110B in a concave curved surface shape as shown in FIG. 3B. More specifically, the first vibrating surface 111B (111A) is formed in a concave curved shape so that the cross-sectional shape cut by the surface perpendicular to the liquid flow direction (y direction) is along the side surface of the conduit 30. With such a configuration, the adhesion between the side surface of the conduit 30 and the first vibrating surface 111B (111A) is improved, so that the ultrasonic waves transmitted through the liquid in the conduit 30 can be efficiently transmitted. Therefore, the reception strength can be increased.

第2実施形態において、微小気泡を高感度に検出する仕組みについて、図4を参照して説明する。図4Aは、第2の振動面211B(送信面)からの送信波の指向性が高い場合の微小気泡の投影面を説明する図であり、図4Bは、第2の振動面211B(送信面)からの送信波の指向性が低い場合の微小気泡の投影面を説明する図である。 In the second embodiment, a mechanism for detecting microbubbles with high sensitivity will be described with reference to FIG. FIG. 4A is a diagram illustrating a projection surface of microbubbles when the directivity of the transmitted wave from the second vibration surface 211B (transmission surface) is high, and FIG. 4B is a diagram showing a second vibration surface 211B (transmission surface). It is a figure explaining the projection plane of the microbubbles when the directivity of the transmitted wave from) is low.

図4Aに示すように、送信面から送信される超音波が指向性の高いものである場合、受信面の一部分(斜線部分P)において、送信波を受信する。このような場合、受信面全体における微小気泡の投影面は、割合が極僅かであると考えられるが、受信面において送信波を受ける斜線部分Pに関しては、微小気泡の投影面が占める割合は、検出可能な程度に大きいと言える。よって、液体を透過する超音波が微小気泡で反射すると、受信面のうち送信波を受ける斜線部分Pに到達する超音波が減衰する割合が大きくなるので、微小気泡を高感度で検出できる。 As shown in FIG. 4A, when the ultrasonic wave transmitted from the transmission side is of high directivity, in a portion of the receiving surface (hatched portion P A), to receive transmission waves. In this case, the projection surface of the microbubbles in the entire receiving surface, the proportion is considered to be negligible, with respect to the hatched portions P A which receives the transmission wave at the receiving side, the ratio of the projection surface of the microbubbles occupied , It can be said that it is large enough to be detected. Therefore, the ultrasonic waves transmitted through the liquid is reflected by microbubbles, the ultrasonic wave reaches the hatched portion P A which receives the transmission wave of the reception surface is the ratio of attenuation is large, it can detect microbubbles with high sensitivity.

送信面から送信される超音波が指向性の低いものである場合、例えば、送信面の幅w2が小さいことに起因して送信波の指向性が低下する場合や、送信面が凸曲面状に形成されるので、そのレンズ効果により超音波が拡散しやすくなる場合が考えられる。
図4Bに示すように、送信面から送信される超音波が指向性の低いものである場合、受信面の大部分(斜線部分P)において、送信波を受信する。受信面は、送信面よりも液体の流れ方向(y方向)についての幅が広いため、液体を透過した超音波は、y方向に沿って拡散しても受信面うち斜線部分Pにおいて受信が可能である。また、微小気泡が存在する場合、受信面において微小気泡は超音波の拡散に伴ってy方向に拡大して投影される。よって、液体を透過する超音波が微小気泡で反射すると、受信面のうち送信波を受ける斜線部分Pに到達するy方向に拡散した超音波が減衰する割合が大きくなるので、微小気泡を高感度で検出できる。
When the ultrasonic wave transmitted from the transmitting surface has low directivity, for example, when the directivity of the transmitted wave is lowered due to the small width w2 B of the transmitting surface, or when the transmitting surface has a convex curved surface shape. Since it is formed in, it is conceivable that the ultrasonic wave may be easily diffused due to the lens effect.
As shown in FIG. 4B, when the ultrasonic wave transmitted from the transmitting side is low in directivity, in most receiving surface (hatched portion P B), receives the transmission wave. Receiving surface, since wider width for the liquid in the flow direction (y-direction) than the transmission surface, ultrasonic waves transmitted through the liquid is received by the receiving surface of which the hatched portion P B be spread along the y-direction It is possible. Further, when microbubbles are present, the microbubbles are enlarged and projected in the y direction with the diffusion of ultrasonic waves on the receiving surface. Therefore, the ultrasonic waves transmitted through the liquid is reflected by microbubbles, since ultrasonic waves spread in the y-direction to reach the hatched portion P B which receives the transmission wave of the reception surface proportion to attenuation increases, high microbubbles It can be detected by sensitivity.

第2実施形態に係る一対の超音波センサヘッド1Bによれば、以下のような効果が奏される。 According to the pair of ultrasonic sensor heads 1B according to the second embodiment, the following effects are obtained.

(5)液体の流れ方向(y方向)について、第1の振動面111B(受信面)の幅w1Bは、第2の振動面211B(送信面)の幅w2Bよりも小さい。このように構成することで、第2のセンサヘッド20B(送信ヘッド)及び第1のセンサヘッド10B(受信ヘッド)を対向して配置する際に、液体の流れ方向(y方向)について、受信面が広いので、送信面と受信面との精密な位置合わせを行わなくても、送信波が受信面を外れないように送受信が可能となる。よって、超音波の送受信の強度を強くすることができ、超音波検出器に一対の超音波センサヘッド1Bを適用したときに受信ヘッドからの受信電圧が安定する。 (5) With respect to the liquid flow direction (y direction), the width w1B of the first vibrating surface 111B (reception surface) is smaller than the width w2B of the second vibrating surface 211B (transmission surface). With this configuration, when the second sensor head 20B (transmission head) and the first sensor head 10B (reception head) are arranged to face each other, the reception surface is arranged in the liquid flow direction (y direction). Therefore, it is possible to transmit and receive waves so that the transmitted wave does not deviate from the receiving surface without precisely aligning the transmitting surface and the receiving surface. Therefore, the intensity of ultrasonic wave transmission / reception can be increased, and the reception voltage from the reception head becomes stable when the pair of ultrasonic sensor heads 1B are applied to the ultrasonic wave detector.

(6)第1の振動面111B(受信面)は、液体の流れ方向(y方向)に垂直な面で切った断面形状が導管30の側面に沿うように凹曲線状に形成される。このように構成することで、導管30の側面と送信面との密着性が向上するため、導管30内の液体を透過した超音波を効率良く伝達することができる。よって、超音波の受信強度を上げることができ、超音波検出器における出力電圧が安定する。 (6) The first vibration surface 111B (reception surface) is formed in a concave curved shape so that the cross-sectional shape cut by a surface perpendicular to the liquid flow direction (y direction) is along the side surface of the conduit 30. With such a configuration, the adhesion between the side surface of the conduit 30 and the transmitting surface is improved, so that the ultrasonic waves transmitted through the liquid in the conduit 30 can be efficiently transmitted. Therefore, the reception intensity of ultrasonic waves can be increased, and the output voltage in the ultrasonic detector becomes stable.

(7)導管30が可撓性を備えており、第2の振動面211B(送信面)は、超音波の送受信方向(x方向)及び液体の流れ方向(y方向)に平行な面(xy平面)で切った断面形状が凸曲線状に形成される。このように構成することで、導管30の側面と受信面との密着性が向上するので、導管30内の液体に効率良く超音波を伝達することができる。よって、送信強度を上げることができ、気泡検出器における出力電圧が安定する。 (7) The conduit 30 has flexibility, and the second vibration surface 211B (transmission surface) is a surface (xy) parallel to the ultrasonic transmission / reception direction (x direction) and the liquid flow direction (y direction). The cross-sectional shape cut by (planar) is formed into a convex curve. With this configuration, the adhesion between the side surface of the conduit 30 and the receiving surface is improved, so that ultrasonic waves can be efficiently transmitted to the liquid in the conduit 30. Therefore, the transmission intensity can be increased and the output voltage in the bubble detector becomes stable.

(8)液体の流れ方向(y方向)について、第1の振動面111B(受信面)の幅w1Bは、第2の振動面211(送信面)の幅w2Bよりも小さい。このように構成することで、送信面からの送信される超音波の指向性が高い場合には、液体を透過する超音波が微小気泡で反射すると、受信面のうち送信波を受ける一部分(斜線部分P)に到達する超音波が減衰する割合が大きくなるので、微小気泡を高感度で検出できる。
また、超音波の指向性が低い場合には、液体を透過する超音波が微小気泡で反射すると、受信面のうち送信波を受ける大部分(斜線部分P)に到達するy方向に拡散した超音波が減衰する割合が大きくなるので、微小気泡を高感度で検出できる。
(8) With respect to the liquid flow direction (y direction), the width w1B of the first vibrating surface 111B (receiving surface) is smaller than the width w2B of the second vibrating surface 211 (transmitting surface). With this configuration, when the directivity of the ultrasonic waves transmitted from the transmitting surface is high, when the ultrasonic waves passing through the liquid are reflected by minute bubbles, a part of the receiving surface that receives the transmitted waves (diagonal line). since ultrasonic waves reaching the portion P a) the rate of attenuation is large, it can detect microbubbles with high sensitivity.
Further, when the directivity of the ultrasonic waves is low, the ultrasonic waves transmitted through the liquid is reflected by microbubbles and diffused in the y-direction to reach the most receiving transmission waves of the receiving surface (hatched portion P B) Since the rate at which ultrasonic waves are attenuated increases, minute bubbles can be detected with high sensitivity.

以下、実施例により本発明をさらに詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。
上述の第1実施形態及び第2実施形態で説明した一対の超音波センサヘッド、及び従来技術の構成に対応する超音波センサヘッドを用いて、気泡検出実験を行った。気泡検出実験は、不図示の血液透析装置を用いて行った。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to such examples.
A bubble detection experiment was performed using the pair of ultrasonic sensor heads described in the first and second embodiments described above and the ultrasonic sensor heads corresponding to the configurations of the prior art. The bubble detection experiment was performed using a hemodialysis machine (not shown).

[実施例1]
血液透析装置は、導管30として可撓性を有するチューブと、第1実施形態で説明した超音波センサヘッド1Aを有する超音波検出器と、を含んで構成される。チューブは、外径が5.5mm、内径が3.5mmの可撓性を有する塩化ビニル製のものを用意した。血液や薬液の代わりとして、チューブ内に体液と同程度の温度に加温された約36℃の水を250mL/分の流速で流した。
チューブを挟持するように一対の超音波センサヘッド1Aを対向配置して取り付けた。チューブ内に水を流した状態でマイクロシリンジを用いて0.3μLの微小気泡(気泡の直径約0.83mm)を単発注入し、血液透析装置にて、気泡の検知率と電圧の変化を確認する気泡検出実験を行った。これを30回繰り返して、気泡検知率及び電圧の安定性を評価した。
[Example 1]
The hemodialysis apparatus includes a tube having flexibility as a conduit 30 and an ultrasonic detector having an ultrasonic sensor head 1A described in the first embodiment. A flexible vinyl chloride tube having an outer diameter of 5.5 mm and an inner diameter of 3.5 mm was prepared. As a substitute for blood or a drug solution, water at about 36 ° C. heated to a temperature similar to that of body fluid was flowed into a tube at a flow rate of 250 mL / min.
A pair of ultrasonic sensor heads 1A were arranged and attached so as to sandwich the tube. With water flowing through the tube, use a microsyringe to inject 0.3 μL of microbubbles (bubble diameter of about 0.83 mm) in a single shot, and check the bubble detection rate and voltage changes with a hemodialysis machine. A bubble detection experiment was conducted. This was repeated 30 times to evaluate the bubble detection rate and the voltage stability.

[実施例2]
超音波センサヘッドとして、第2実施形態で説明した一対の超音波センサヘッド1Bを用いて、実施例1と同様に気泡検出実験を行った。
[Example 2]
Using the pair of ultrasonic sensor heads 1B described in the second embodiment as the ultrasonic sensor heads, a bubble detection experiment was performed in the same manner as in Example 1.

[比較例1]
超音波センサヘッドとして、第1実施形態で説明した第1のセンサヘッド10Aの2つで構成される一対の超音波センサヘッドを用いて、実施例1と同様に気泡検出実験を行った。
[Comparative Example 1]
As the ultrasonic sensor head, a bubble detection experiment was conducted in the same manner as in Example 1 using a pair of ultrasonic sensor heads composed of the first sensor head 10A described in the first embodiment.

[比較例2]
超音波センサヘッドとして、第1実施形態で説明した第2のセンサヘッド20Aの2つで構成される一対の超音波センサヘッドを用いて、実施例1と同様に気泡検出実験を行った。
実施例1、2、及び比較例1、2の実験結果を表1に示す。
[Comparative Example 2]
As the ultrasonic sensor head, a bubble detection experiment was conducted in the same manner as in Example 1 using a pair of ultrasonic sensor heads composed of the second sensor head 20A described in the first embodiment.
The experimental results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 0006856995
Figure 0006856995

表1に示すように、比較例1に比べて実施例1及び2は、気泡検知率が大幅に向上した。なお、本実施例における気泡検出実験は、粘性の小さい水を用いて行ったため、気泡検知率が93%及び87%となったが、水に比べて粘性の大きい輸液に用いる液体や血液においては、微小気泡はチューブの中央部を通過しやすいため、検知率は100%になると推測される。
また比較例2に比べて、実施例1及び2は、受信電圧変化が±0.1Vで安定した結果となったので、本発明の一対の超音波センサヘッドを備える超音波検出器は、誤検知の発生を抑制できる。よって、誤検知を発生させないために必要なハードウェアにおける複雑な回路設計や、ソフトウェアにおけるアルゴリズムの工夫等を行わなくてもよく、超音波検出器の構成を簡易化できる。
As shown in Table 1, the bubble detection rate was significantly improved in Examples 1 and 2 as compared with Comparative Example 1. Since the bubble detection experiment in this example was performed using water having a low viscosity, the bubble detection rate was 93% and 87%, but in the liquid or blood used for the infusion solution having a viscosity higher than that of water. Since microbubbles easily pass through the central part of the tube, the detection rate is estimated to be 100%.
Further, as compared with Comparative Example 2, in Examples 1 and 2, the change in the received voltage was stable at ± 0.1 V, so that the ultrasonic detector provided with the pair of ultrasonic sensor heads of the present invention was erroneous. The occurrence of detection can be suppressed. Therefore, it is not necessary to perform complicated circuit design in hardware and devise of algorithms in software, which are necessary to prevent false detection, and the configuration of the ultrasonic detector can be simplified.

以上、本発明の一対の超音波センサヘッド1及び超音波検出器の好ましい一実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
例えば、実施形態における第1の振動面111について、一例として円形状のものを示したが、楕円状や矩形状としてもよい。
Although the preferred embodiment of the pair of ultrasonic sensor heads 1 and the ultrasonic detector of the present invention has been described above, the present invention is not limited to the above-described embodiment and can be changed as appropriate.
For example, although the first vibrating surface 111 in the embodiment is shown in a circular shape as an example, it may be in an elliptical shape or a rectangular shape.

また、第1実施形態及び第2実施形態では、第1の振動面を、超音波伝達体に凹曲面状に形成したが、これに限らない。即ち、図5A及び図5Bに示すように、第1の振動面111Cを、超音波伝達体110Cに凸曲面状に形成してもよい。
また、第1実施形態では、第2の振動面を、超音波伝達体に凸曲面状に形成したが、これに限らない。即ち、図5A及び図5Bに示すように、第2の振動面211Cを、超音波伝達体210Cに平面状(直線状)に形成してもよい。
Further, in the first embodiment and the second embodiment, the first vibration surface is formed on the ultrasonic wave transmitter in a concave curved surface shape, but the present invention is not limited to this. That is, as shown in FIGS. 5A and 5B, the first vibration surface 111C may be formed on the ultrasonic transmitter 110C in a convex curved surface shape.
Further, in the first embodiment, the second vibration surface is formed on the ultrasonic transmitter in a convex curved surface shape, but the present invention is not limited to this. That is, as shown in FIGS. 5A and 5B, the second vibration surface 211C may be formed on the ultrasonic transmitter 210C in a planar shape (straight line).

また、第1及び第2実施形態では、超音波センサヘッドが振動面で導管と接触して超音波と伝達する接触式による構成を示したが、非接触式の超音波センサヘッドにも本発明の概念は適用可能である。 Further, in the first and second embodiments, the structure of the contact type in which the ultrasonic sensor head contacts the conduit on the vibration surface and transmits the ultrasonic wave is shown, but the present invention also applies to the non-contact type ultrasonic sensor head. The concept of is applicable.

また、第1及び第2実施形態では、導管として可撓性を備えるチューブを一例として示したがこれに限らない。導管としては、医療用や工業用の樹脂製のチューブに限らず金属チューブ、配管等にも本発明の概念は適用可能である。 Further, in the first and second embodiments, a tube having flexibility as a conduit is shown as an example, but the present invention is not limited to this. As the conduit, the concept of the present invention can be applied not only to medical and industrial resin tubes but also to metal tubes, pipes and the like.

また、本発明の超音波センサヘッドを備える超音波検出器を適用可能な一例として、血液透析装置を示したが、これに限らない。気泡の存在が問題となる血液回路や輸液回路に接続される医療機器等に適用可能であり、また、医療分野以外においても、気泡を検出する必要がある分野に広く適用可能である。 Further, as an example to which the ultrasonic detector provided with the ultrasonic sensor head of the present invention can be applied, a hemodialysis apparatus is shown, but the present invention is not limited to this. It can be applied to medical devices connected to blood circuits and infusion circuits where the presence of bubbles is a problem, and it can be widely applied to fields other than the medical field where it is necessary to detect bubbles.

1 一対の超音波センサヘッド
10 第1のセンサヘッド
20 第2のセンサヘッド
30 導管(チューブ)
110、210 超音波伝達体
111 第1の振動面
120、220 超音波振動子
211 第2の振動面
1 Pair of ultrasonic sensor heads 10 First sensor head 20 Second sensor head 30 Conduit (tube)
110, 210 Ultrasonic transmitter 111 First vibrating surface 120, 220 Ultrasonic oscillator 211 Second vibrating surface

Claims (5)

液体が流れる導管を挟んで対向配置され、超音波を送受信可能な一対の超音波センサヘッドであって、
前記一対の超音波センサヘッドの一方は、前記導管に面する第1の振動面を備え、
前記一対の超音波センサヘッドの他方は、前記導管に面する第2の振動面を備え、
前記第1の振動面は、超音波の送受信方向から見て円形状又は楕円形状であり、
前記第2の振動面は、超音波の送受信方向から見て矩形状であり、
前記液体の流れ方向について、前記第2の振動面の幅は、前記第1の振動面の幅よりも小さく、
前記第1の振動面及び前記第2の振動面のいずれか一方が超音波の送信面として用いられ、他方が超音波の受信面として用いられる一対の超音波センサヘッド。
A pair of ultrasonic sensor heads that are arranged facing each other across a conduit through which a liquid flows and can transmit and receive ultrasonic waves.
One of the pair of ultrasonic sensor heads comprises a first vibrating surface facing the conduit.
The other of the pair of ultrasonic sensor heads comprises a second vibrating surface facing the conduit.
The first vibration surface has a circular shape or an elliptical shape when viewed from the direction of transmitting and receiving ultrasonic waves.
The second vibration surface has a rectangular shape when viewed from the direction of transmitting and receiving ultrasonic waves.
With respect to the flow direction of the liquid, the width of the second vibrating surface is smaller than the width of the first vibrating surface.
A pair of ultrasonic sensor heads in which one of the first vibrating surface and the second vibrating surface is used as an ultrasonic transmitting surface and the other is used as an ultrasonic receiving surface.
前記第1の振動面が超音波の送信面として用いられ、前記第2の振動面が超音波の受信面として用いられる請求項1に記載の一対の超音波センサヘッド。 The pair of ultrasonic sensor heads according to claim 1, wherein the first vibrating surface is used as an ultrasonic wave transmitting surface, and the second vibrating surface is used as an ultrasonic wave receiving surface. 前記一対の超音波センサヘッドは、前記第1の振動面及び前記第2の振動面において前記導管と接触するように配置され、
前記第1の振動面は、前記液体の流れ方向に垂直な面で切った断面形状が凹曲線状又は凸曲線状に形成される請求項1又は2に記載の一対の超音波センサヘッド。
The pair of ultrasonic sensor heads are arranged so as to be in contact with the conduit on the first vibrating surface and the second vibrating surface.
The pair of ultrasonic sensor heads according to claim 1 or 2, wherein the first vibration surface is formed into a concave curve or a convex curve in a cross-sectional shape cut by a surface perpendicular to the flow direction of the liquid.
前記導管は可撓性を備えており、
前記第2の振動面は、前記超音波の送受信方向及び前記液体の流れ方向に平行な面で切った断面形状が凸曲線状又は直線状に形成される請求項3に記載の一対の超音波センサヘッド。
The conduit is flexible and
The pair of ultrasonic waves according to claim 3, wherein the second vibration surface has a convex curve or a linear cross-sectional shape cut by a surface parallel to the transmission / reception direction of the ultrasonic waves and the flow direction of the liquid. The sensor head.
請求項1〜4のいずれかに記載の一対の超音波センサヘッドを備え、
前記導管を流れる液体中の気泡を検出する超音波検出器。
The pair of ultrasonic sensor heads according to any one of claims 1 to 4 is provided.
An ultrasonic detector that detects air bubbles in a liquid flowing through the duct.
JP2016180854A 2016-09-15 2016-09-15 An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head Active JP6856995B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016180854A JP6856995B2 (en) 2016-09-15 2016-09-15 An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head
PCT/JP2017/032152 WO2018051865A1 (en) 2016-09-15 2017-09-06 Ultrasonic sensor head and ultrasonic detector having said ultrasonic sensor head
CN201780055414.6A CN109716123B (en) 2016-09-15 2017-09-06 Ultrasonic sensing head and ultrasonic detector with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180854A JP6856995B2 (en) 2016-09-15 2016-09-15 An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head

Publications (2)

Publication Number Publication Date
JP2018044893A JP2018044893A (en) 2018-03-22
JP6856995B2 true JP6856995B2 (en) 2021-04-14

Family

ID=61619498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180854A Active JP6856995B2 (en) 2016-09-15 2016-09-15 An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head

Country Status (3)

Country Link
JP (1) JP6856995B2 (en)
CN (1) CN109716123B (en)
WO (1) WO2018051865A1 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3141576A1 (en) * 1981-10-20 1983-05-05 Siemens AG, 1000 Berlin und 8000 München Method of detecting gas bubbles in a liquid medium and device for performing said method
US4607520A (en) * 1984-01-09 1986-08-26 Introtek Corporation Method and apparatus for detecting discontinuities in a fluid stream
JPH01198560A (en) * 1988-02-03 1989-08-10 Meteku:Kk Detector for detecting pressure of pipe transport fluid and air bubble contained therein
JPH03107758A (en) * 1989-09-21 1991-05-08 Terumo Corp Air bubble detection sensor
JPH03107756A (en) * 1989-09-21 1991-05-08 Terumo Corp Air bubble detection sensor
DE4013402C2 (en) * 1990-04-26 1994-03-24 Infurex Ag Cham Method and device for detecting gas bubbles in a line filled with liquid, in particular a flexible, tubular line or a container
JPH0529717Y2 (en) * 1990-11-06 1993-07-29
AU2817895A (en) * 1994-06-07 1996-01-04 Trustees Of Boston University Acoustic detection of particles
JP3447387B2 (en) * 1994-10-05 2003-09-16 テルモ株式会社 Ultrasonic bubble detector
JPH11137678A (en) * 1997-11-12 1999-05-25 Terumo Corp Transfusion pump
JPH11319081A (en) * 1998-02-13 1999-11-24 Toray Ind Inc Ultrasonic bubble detector and ultrasonic bubble detection device using the same and artificial dialyzer
JP2003014703A (en) * 2001-07-04 2003-01-15 Sanshin Denshi:Kk Ultrasonic air-bubble detector
JP4147583B2 (en) * 2003-04-25 2008-09-10 株式会社ジェイ・エム・エス Bubble detection device
JP4352825B2 (en) * 2003-09-11 2009-10-28 株式会社ジェイ・エム・エス Bubble amount detection system and medical device equipped with the bubble amount detection system
US7661293B2 (en) * 2007-02-06 2010-02-16 Cosense, Inc. Ultrasonic system for detecting and quantifying of air bubbles/particles in a flowing liquid
US8091442B1 (en) * 2008-04-19 2012-01-10 Cosense, Inc. Positive tube retention arrangement
CN101653627A (en) * 2009-08-04 2010-02-24 四川南格尔生物医学股份有限公司 Digital medical ultrasonic bubble detector
KR101521683B1 (en) * 2012-06-11 2015-05-21 강영훈 The infusion pump equipped with the air and drop sensors with digital output

Also Published As

Publication number Publication date
CN109716123A (en) 2019-05-03
CN109716123B (en) 2023-02-28
WO2018051865A1 (en) 2018-03-22
JP2018044893A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP3749260B2 (en) Device for controlling the flow of liquid in a line, in particular a peristaltic pump
US7360448B2 (en) Ultrasonic flow sensor having reflecting interface
RU2466359C2 (en) Measuring system for determining and/or monitoring flow of measured medium through measuring tube
JP4782745B2 (en) Surgical cassette and surgical system including the surgical cassette
US20170154619A1 (en) Acoustical lens and ultrasound transducer probe
JP6856995B2 (en) An ultrasonic sensor head and an ultrasonic detector including the ultrasonic sensor head
KR101117203B1 (en) Continuous wave type Doppler ultrasonic transducer and method for manufacturing the same
JPH07322392A (en) Ultrasonic sensor element and medical pump system provided with the same
US9131920B2 (en) Ultrasonic probe and ultrasonic image diagnostic device
JP2002333434A (en) Bubble detection method and device
JPH03107756A (en) Air bubble detection sensor
JP7327122B2 (en) ultrasound device
WO2013059136A1 (en) Air-in -line detector
JP2005189002A (en) Flow rate measurement system
JP3447387B2 (en) Ultrasonic bubble detector
JPH0529717Y2 (en)
JP2014153128A (en) Manometer, level meter, and alarm system
US10551355B2 (en) Probe and subject information obtaining apparatus using the same
JP6200246B2 (en) Probe
JP2010213766A (en) Ultrasonic probe and ultrasonic diagnosis apparatus
JP6930347B2 (en) Blood circuit and extracorporeal circulation device including the blood circuit
KR20190026567A (en) Ultrasonic flow rate measuring device and ultrasonic flow rate measuring method
JP7182883B2 (en) ASSEMBLY FOR DETECTING GAS CONTAINED IN LIQUIDS
JP4399334B2 (en) Ultrafiltration measurement system
KR20170078398A (en) Method of Manufacturing an Ultrasonic Sensor and An Ultrasonic Sensor Thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210319

R150 Certificate of patent or registration of utility model

Ref document number: 6856995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250