JP6853450B2 - 表面被覆切削工具 - Google Patents
表面被覆切削工具 Download PDFInfo
- Publication number
- JP6853450B2 JP6853450B2 JP2017026575A JP2017026575A JP6853450B2 JP 6853450 B2 JP6853450 B2 JP 6853450B2 JP 2017026575 A JP2017026575 A JP 2017026575A JP 2017026575 A JP2017026575 A JP 2017026575A JP 6853450 B2 JP6853450 B2 JP 6853450B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ticn
- carbonitride
- tool
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、酸化アルミニウム層(以下、Al2O3層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られているが、被削材の種類、切削条件に応じて、耐チッピング性、耐欠損性、耐剥離性、耐摩耗性等の工具性能を高めるため、各種の提案がなされている。
即ち、TiCN層は(220)面に配向することで、基体または下の層との密着力を増し、界面からの剥離が起きにくくなるため、剥離に起因する異常損傷の発生や寿命低下を抑えることができる。また、(220)面に配向したTiCN層の上に、κ型結晶を主体としかつASTMにおいてκ−Al2O3の面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層を被覆すると、前記面間距離2.79オングストロームに配向性を示すκ−Al2O3は被覆層表面が平滑であるために、切り屑と工具間の摩擦による異常損傷が生じにくくなり、この酸化アルミニウム層が異常損傷を起しにくく安定した耐摩耗性を示すというものである。
(311)とを除く配向性指数TC(hkl)がすべて1.5以下とすることによって、被覆工具の耐剥離性、耐摩耗性、耐クレータ性、また、破壊強度を向上させることが提案されている。
ここで、炭窒化チタン層の配向性指数TC(422)、TC(311)をともに1.3以上とし、その組織を柱状組織とすることにより、10μm以上の膜厚でも膜の耐破壊性を大きく向上させ耐摩耗性を向上させることが可能となり、また、切削中のチッピングによる摩耗の進行が抑制し得るとともに、切削中の被削材の溶着が起こりにくくなり、その結果、膜にかかる切削応力の増大が防げることから耐剥離性も大幅に向上するとされている。
また、前記TiCN層を、アスペクト比が5以上である柱状縦長組織として形成した場合には、すぐれた耐塑性変形性に加え、柱状縦長組織によりもたらされる一段とすぐれた耐摩耗性を発揮することを見出したのである。
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、少なくとも下部層と上部層からなり、
(b)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとAlの複合窒化物層から選ばれる1層または2層以上からなり、かつ、その内の少なくとも1層は1.7μm以上の平均層厚のTiの炭窒化物層で構成された2〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)前記上部層は、1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(d)前記下部層のTi化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。
(2)前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有するTiの炭窒化物からなる結晶粒が占める面積割合は、70面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.7〜13.5μmであることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
本発明の被覆工具の硬質被覆層は、少なくとも、Ti化合物層からなる下部層と、Al2O3層から上部層とによって構成される。
Ti化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層、TiCNO層およびTiAlN層)からなる下部層は、それ自身の有するすぐれた高温強度によって、硬質被覆層に対して高温強度を与える。また、Ti化合物層は、工具基体表面、Al2O3層からなる上部層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。
しかしながら、このTi化合物層の合計平均層厚が2μm未満の場合、前述した作用を十分に発揮させることができない。
一方、本発明の下部層は、後述するようにすぐれた耐塑性変形性を有するが、下部層の合計平均層厚が15μmを越えるような場合には、切削加工時に作用する高負荷によって塑性変形を起し易くなり、その結果、結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは偏摩耗の進行等の異常損傷発生の原因となる。
したがって、本発明では、Ti化合物層からなる下部層の合計平均層厚は2〜15μmと定めた。
前記のとおり、本発明被覆工具の硬質被覆層の下部層は、Ti化合物層によって構成されるが、該下部層は、少なくとも1層のTiCN層を含み、該層は、(200)配向性を有するTiCN層として構成する。
すなわち、下部層の前記少なくとも1層のTiCN層を構成する結晶粒について、X線回折により各結晶格子面からの回折ピーク強度を測定した場合、(200)面に最大の回折ピーク強度が現れる(200)配向性を有する。
図1に、本発明被覆工具のTiCN層について、X線回折により測定した各結晶格子面からの回折ピーク強度のチャートの一例を示す。
図1からも明らかなように、本発明被覆工具のTiCN層は、(200)面についての回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることがわかる。
なお、X線回折は、X線回折装置としてスペクトリス社PANalytical Empyreanを用いて、CuKα線による2θ‐θ法で測定し、測定条件として、測定範囲(2θ):30〜130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
なお、配向性指数Tc(hkl)とは、以下の式で定義されるものである。
上記式中、I(hkl)は測定された(hkl)面のピーク強度(回折強度)を示し、I0(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面であり、上記式の中括弧内は8面の平均値を示す。
しかし、(200)面についてのX線回折ピーク強度が、他の格子面からの回折ピーク強度に比して最大であるといえない場合、あるいは、配向性指数Tc(200)が2.0未満であるような場合には、(200)面配向性が十分でないため、耐塑性変形性向上効果が十分でなく、その結果、高負荷(高せん断力)が作用した場合の粒子の脱落防止、チッピング・欠損の発生、偏摩耗の発生を抑制することができない。
したがって、本発明では、下部層の少なくとも1層のTiCN層について測定した(200)面のX線回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることとし、また、配向性指数Tc(200)が2.0以上、好ましくは、3.0以上であると定めた。
特に、TiCN結晶粒の最大粒子幅Wと層厚方向の最大粒子長さLから求められるアスペクト比が5以上である柱状縦長成長TiCN結晶粒の占める面積割合が、TiCN層の縦断面面積の70面積%以上を占める場合には、柱状縦長組織の特徴であるすぐれた耐摩耗性向上効果を期待することができる。
なお、前記最大粒子幅W、最大粒子長さLとは、柱状縦長成長TiCN結晶粒について、TiCN層の縦断面における1つの結晶粒を計測したとき、層厚方向に垂直な方向の結晶粒の幅(短辺)で最も大きい値を最大粒子幅Wと呼び、一方、層厚方向の結晶粒の高さ(長辺)で最も大きい値を最大粒子長さLと呼ぶ。
また、TiCN層の層厚について特に限定するものではないが、Ti化合物層を構成するすべてのTiCN層の層厚が1.7〜13.5μmであることが望ましい。
これは、TiCN層の層厚が1.7μm以上になると、Tc(200)の値が大きくなる傾向を示し、高負荷切削加工における耐塑性変形性が向上するとともに、逃げ面摩耗量も減少し耐摩耗性が向上するからであり、一方、TiCN層の層厚が13.5μmを超えると、塑性変形を起し易くなり、偏摩耗の進行による異常損傷が発生するという理由による。
この発明における下部層のTi化合物層は、例えば、以下のようにして形成する。
即ち、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層、TiCNO層およびTiAlN層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成する。
その中で、(200)配向性の高いTiCN層、あるいは、アスペクト比が5以上である柱状縦長組織を有する結晶粒が、下部層縦断面の70面積%以上を占めるTiCN層は、例えば、以下の蒸着方法によって形成することができる。
反応ガス組成(容量%):TiCl4 1〜5%、CH3CN 0.5〜1.5%、N2 25〜40%、残部H2、
反応雰囲気温度:750〜850℃、
反応雰囲気圧力:5〜10kPa
反応雰囲気温度を低温にし、TiCN層の原料となるガス濃度比を低くすることで、(200)配向性の高い結晶組織が形成しやすくなり、またその組織は柱状縦長組織を有しやすくなる。
また、TiN層の形成時に、例えば、
反応ガス組成(容量%):NH3 0.5〜2.0%,TiCl4 0.1〜0.3%、N2 0〜10%、残部H2、
反応雰囲気温度:750〜850℃、
反応雰囲気圧力:5〜8kPa
のような条件で作成することで、アスペクト比が5以上である柱状縦長組織を有する結晶粒を形成しやすくなる。
本発明被覆工具の上部層は、前記の(200)面にX線回折による最大ピーク強度を有し、かつ、配向性指数Tc(200)が2.0以上であるTiCN層を含む下部層の表面に、通常の化学蒸着法によって、1〜15μmの平均層厚を有するAl2O3層を蒸着することにより形成する。
Al2O3には、α型、κ型、γ型等の種々の結晶構造が存在するが、すぐれた高温硬さを有すること、耐酸化性を有すること、熱安定性に優れていること等の点から、上部層を構成するAl2O3層としては、α型の結晶構造を有するα型Al2O3層が望ましい。
例えば、α型Al2O3層を形成する場合には、
反応ガス組成(容量%):AlCl3 2〜5%,CO2 10〜20%、HCl 1〜3%、H2S 0〜0.15%、残部H2、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:5〜10kPa
のような条件で作製する。
また、上部層の平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が15μmを越えるとAl2O3結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、切れ刃に大きなせん断力が作用する高負荷切削加工時の耐チッピング性、耐欠損性が低下することから、その平均層厚は1〜15μmと定めた。
その結果、TiCN層表面への大きなせん断力が作用する高負荷・低速切削加工条件で使用した場合でも、本発明被覆工具は、TiCN層の備えるすぐれた耐塑性変形性によって、結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生を抑制することができ、また、Al2O3層からなる上部層が備えるすぐれた高温硬さ、耐酸化性、熱安定性と相俟って、長期の使用にわたってすぐれた耐摩耗性を発揮し、特に炭素鋼や合金鋼のようなすくい面の摩耗進行の影響が出やすい被削材に有効である。
さらに、下部層において、アスペクト比が5以上である柱状縦長組織を有する結晶粒の面積割合を、下部層の縦断面の70面積%以上とすることによって、耐摩耗性をより向上させることができ、切削工具の長寿命化を図ることができる。
なお、表3にあるHT−TiCN層は、段落0016で示したTiCN層よりも反応雰囲気温度が高温で作製したTiCN層を示す。
また、表3において、アスペクト比が5以上である柱状縦長組織の結晶粒が形成されやすいTi化合物層の成膜条件は、TiN層−1(第1層)とTiAlN層である。
図1に、本発明被覆工具1について求めたチャートを示す。
なお、X線回折は、装置としてスペクトリス社PANalytical Empyreanを用い、CuKα線による2θ‐θ法で測定した。
測定条件は、測定範囲(2θ):30〜130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepである。
上記で求めたチャートから、(200)面からの回折ピーク強度が、他の格子面からの回折ピーク強度に対して最大であるか否かを判定した。
表6、表7に、その判定結果を示す。
配向性指数Tc(200)は、
の式によって算出した。
ここで、I(hkl)は測定された(hkl)面の回折ピーク強度を示し、I0(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面である。
表6、表7に、上記で算出した配向性指数Tc(200)の値を示す。
表6、表7に、上記で求めた面積割合を示す。
≪切削条件A≫
被削材:S45C
切削速度:200m/min,
切り込み:3.0mm,
送り:0.4mm/rev,
切削時間:5分間
の条件での炭素鋼丸棒の乾式連続高切り込み切削試験、
≪切削条件B≫
被削材:SCM440
切削速度:250m/min,
切り込み:2.0mm,
送り:0.3mm/rev,
切削時間:5分間
の条件での合金鋼4本スリット材の湿式断続切削試験、
上記の切削試験における切れ刃の逃げ面摩耗幅を測定するとともに、チッピング、欠損、剥離等の異常損傷の発生状況を肉眼で観察した。
表8、表9に、この試験結果を示す。
これに対して、比較例被覆工具1〜13は、高負荷・低速切削加工においては、TiCN結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生により、比較的短時間で使用寿命に至ることが明らかである。
Claims (3)
- 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、少なくとも下部層と上部層からなり、
(b)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとAlの複合窒化物層から選ばれる1層または2層以上からなり、かつ、その内の少なくとも1層は1.7μm以上の平均層厚のTiの炭窒化物層で構成された2〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)前記上部層は、1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(d)前記下部層のTi化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。 - 前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有するTiの炭窒化物からなる結晶粒が占める面積割合は、70面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。
- 前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.7〜13.5μmであることを特徴とする請求項1または2に記載の表面被覆切削工具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/005901 WO2017142061A1 (ja) | 2016-02-17 | 2017-02-17 | 表面被覆切削工具 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016027727 | 2016-02-17 | ||
JP2016027727 | 2016-02-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017144549A JP2017144549A (ja) | 2017-08-24 |
JP6853450B2 true JP6853450B2 (ja) | 2021-03-31 |
Family
ID=59681024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017026575A Active JP6853450B2 (ja) | 2016-02-17 | 2017-02-16 | 表面被覆切削工具 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6853450B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12115586B2 (en) * | 2018-09-05 | 2024-10-15 | Kyocera Corporation | Coated tool and cutting tool |
JP7141022B2 (ja) * | 2019-02-27 | 2022-09-22 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
CN116837347B (zh) * | 2023-09-01 | 2023-11-21 | 赣州澳克泰工具技术有限公司 | 一种带涂层的切削刀具及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE514737C2 (sv) * | 1994-03-22 | 2001-04-09 | Sandvik Ab | Belagt skärverktyg av hårdmetall |
JP5884138B2 (ja) * | 2011-04-21 | 2016-03-15 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
EP2604720A1 (en) * | 2011-12-14 | 2013-06-19 | Sandvik Intellectual Property Ab | Coated cutting tool and method of manufacturing the same |
WO2014142190A1 (ja) * | 2013-03-12 | 2014-09-18 | 日立ツール株式会社 | 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法 |
USRE49475E1 (en) * | 2013-06-14 | 2023-03-28 | Sandvik Intellectual Property Ab | Coated cutting tool |
-
2017
- 2017-02-16 JP JP2017026575A patent/JP6853450B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017144549A (ja) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10456844B2 (en) | Surface-coated cutting tool | |
JP5831707B2 (ja) | 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
EP3202515A1 (en) | Surface-coated cutting tool having excellent chip resistance | |
JP5907406B2 (ja) | 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
US20190003060A1 (en) | Surface-coated cutting tool | |
JP5582409B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP7098932B2 (ja) | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
EP3505282B1 (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance | |
JP7121234B2 (ja) | 硬質被覆層が優れた耐チッピング性を発揮する表面切削工具 | |
JP6853450B2 (ja) | 表面被覆切削工具 | |
JP6857298B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5029825B2 (ja) | 硬質被覆層が高速重切削加工ですぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具 | |
JP5402516B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP3887811B2 (ja) | 硬質被覆層が高速切削ですぐれた耐摩耗性を発揮する表面被覆炭化タングステン基超硬合金製切削工具 | |
JP6853449B2 (ja) | 表面被覆切削工具 | |
JP2004122269A (ja) | 高速重切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP6940815B2 (ja) | 硬質被覆層がすぐれた耐摩耗性および耐剥離性を発揮する表面被覆切削工具 | |
JP5569740B2 (ja) | 耐チッピング性にすぐれた表面被覆切削工具 | |
WO2017142061A1 (ja) | 表面被覆切削工具 | |
WO2017142058A1 (ja) | 表面被覆切削工具 | |
JP5686294B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5569739B2 (ja) | 耐チッピング性にすぐれた表面被覆切削工具 | |
JP2018149668A (ja) | 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
JP2010274330A (ja) | 表面被覆切削工具 | |
JP5305013B2 (ja) | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6853450 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |