JP6846035B2 - Thermal radiation photovoltaic power generation device - Google Patents
Thermal radiation photovoltaic power generation device Download PDFInfo
- Publication number
- JP6846035B2 JP6846035B2 JP2017034724A JP2017034724A JP6846035B2 JP 6846035 B2 JP6846035 B2 JP 6846035B2 JP 2017034724 A JP2017034724 A JP 2017034724A JP 2017034724 A JP2017034724 A JP 2017034724A JP 6846035 B2 JP6846035 B2 JP 6846035B2
- Authority
- JP
- Japan
- Prior art keywords
- thermal
- photoelectric conversion
- power generation
- conversion element
- intermediate member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010248 power generation Methods 0.000 title claims description 85
- 230000005855 radiation Effects 0.000 title claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 113
- 239000004065 semiconductor Substances 0.000 claims description 86
- 239000000463 material Substances 0.000 claims description 28
- 239000004038 photonic crystal Substances 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 8
- 229910005542 GaSb Inorganic materials 0.000 description 19
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001902 propagating effect Effects 0.000 description 5
- 230000005457 Black-body radiation Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は、物体を加熱することにより生じる熱輻射光を光電変換することにより発電を行う熱輻射光発電装置に関する。なお、本明細書では「熱輻射光」には、可視光及び赤外線以外の電磁波を含むものとする。 The present invention relates to a thermal radiant photovoltaic power generation device that generates electricity by photoelectrically converting thermal radiant light generated by heating an object. In addition, in this specification, "thermal radiant light" includes electromagnetic waves other than visible light and infrared rays.
一般に、物体を加熱すると、物体を構成する物質及び物体の温度に応じたスペクトルを有する熱輻射光が放出される。この熱輻射光を光電変換素子に照射することにより、発電を行うことができる。この原理を用いて、例えば火力発電所やエンジンを用いた発電機において発電に寄与することなく発生する熱で生じる熱輻射光により発電を行うことで、エネルギーの利用効率を高めることができる。また、熱源さえあれば、別途電源を用意することなく電力を得ることができる。例えば赤外線を用いてエンジンの排ガス中の成分を分析するための排ガスセンサにおいて、エンジンの廃熱で生じる熱輻射光により発電を行うことで、別途電源を用意することなく排ガスセンサを動作させるための電力を得ることができる。 Generally, when an object is heated, thermal radiant light having a spectrum corresponding to the substance constituting the object and the temperature of the object is emitted. Power can be generated by irradiating the photoelectric conversion element with this heat radiant light. Using this principle, for example, in a thermal power plant or a generator using an engine, energy utilization efficiency can be improved by generating electricity with heat radiant light generated by heat generated without contributing to power generation. Moreover, as long as there is a heat source, electric power can be obtained without preparing a separate power source. For example, in an exhaust gas sensor for analyzing components in engine exhaust gas using infrared rays, the exhaust gas sensor can be operated without preparing a separate power source by generating electric power by thermal radiation generated by waste heat of the engine. You can get power.
熱輻射光発電装置は、加熱によって熱輻射光を発する熱輻射体と、該熱輻射光を電気に変換する光電変換素子で構成されるが、光電変換素子を保護するため、両者を直接接触させることはできず、両者の間には隙間を設けなければならない。熱輻射体を加熱した際には、その内部を含む全体から熱輻射光が放出されるが、内部で生成された熱輻射光は、熱輻射体の表面から外部に放出される他、例えばその表面で全反射することにより熱輻射体内に留まるものも存在する。但し、このように熱輻射体内に留まる光であっても、その表面からわずかに外側(例えば表面から1μm未満の範囲内)には浸出している。このような光を近接場光という。近接場光も光電変換素子に取り込むことができれば、発電の出力密度を高くすることができる。そこで特許文献1に記載の熱輻射光発電装置は、熱輻射体と光電変換素子を構成する半導体層の距離(隙間の大きさ)を、熱輻射体の表面付近に生成される近接場光が該半導体層に伝播するように十分に小さく(例えばナノオーダー、すなわち1μm未満に)する、という構成をとっている。
The thermal radiant light power generation device is composed of a thermal radiator that emits thermal radiant light by heating and a photoelectric conversion element that converts the thermal radiant light into electricity. In order to protect the photoelectric conversion element, the two are brought into direct contact with each other. It cannot be done and there must be a gap between the two. When the thermal radiator is heated, the thermal radiant light is emitted from the whole including the inside thereof, but the thermal radiant light generated inside is emitted to the outside from the surface of the thermal radiator, for example. Some of them stay in the heat radiant body by being totally reflected on the surface. However, even the light that stays in the heat radiant body in this way is leached slightly outside from the surface (for example, within a range of less than 1 μm from the surface). Such light is called near-field light. If near-field light can also be taken into the photoelectric conversion element, the output density of power generation can be increased. Therefore, in the thermal radiant light power generation device described in
光電変換素子のキャリアがドーピングされた半導体層では、発電に寄与する波長範囲よりも波長が長い領域において、誘電率の実部が負の値となる波長が存在する。これは、光の波長が長い、すなわち、周波数が小さく、電界の変化が遅いことにより、半導体中の電荷が光の電界を打ち消すように移動することができるためである。また、2種類以上の原子から構成される化合物半導体においては、その格子振動が光と結合することによっても、発電に寄与する波長範囲よりも波長が長い領域において、誘電率の実部が負の値となる波長が生じる。このような長波長の光は、半導体層内では電界の打ち消しが生じることにより伝播することができず、半導体層の表面付近に局在し、該表面に平行な方向に進行するもののみが伝播することができる。特許文献1に記載の熱輻射光発電装置において、熱輻射光源で生成された光のうちの一部が近接場光として半導体層に伝播したとしても、そのうちのこのように半導体層の表面付近でそれに平行な方向に伝播する長波長の光は発電に寄与することなく熱として消費されてしまい、有効に利用されない。以下、半導体層の表面付近に局在し、該表面に平行な方向に伝播する光を表面波と呼ぶ。
In the semiconductor layer in which the carrier of the photoelectric conversion element is doped, there is a wavelength in which the real part of the dielectric constant becomes a negative value in a region where the wavelength is longer than the wavelength range contributing to power generation. This is because the wavelength of light is long, that is, the frequency is small and the electric field changes slowly, so that the electric charge in the semiconductor can move so as to cancel the electric field of light. In addition, in a compound semiconductor composed of two or more types of atoms, the real part of the permittivity is negative in the region where the wavelength is longer than the wavelength range that contributes to power generation even when the lattice vibration is combined with light. A value wavelength is generated. Such long-wavelength light cannot propagate in the semiconductor layer due to the cancellation of the electric field, and only light that is localized near the surface of the semiconductor layer and travels in a direction parallel to the surface propagates. can do. In the thermal radiant light power generation device described in
本発明が解決しようとする課題は、熱輻射体から光電変換素子の半導体層に、発電に寄与する波長の近接場光は伝播させつつ、発電に寄与しない長波長の表面波が伝播することを防ぐことができ、それにより出力密度及び発電効率が共に高い熱輻射光発電装置を提供することである。 The problem to be solved by the present invention is that while the near-field light having a wavelength that contributes to power generation propagates from the thermal radiator to the semiconductor layer of the photoelectric conversion element, a surface wave having a long wavelength that does not contribute to power generation propagates. It is possible to prevent, thereby providing a thermal radiation photovoltaic power generation device having high output density and power generation efficiency.
上記課題を解決するために成された本発明に係る熱輻射光発電装置は、
a) 熱輻射体と、
b) 前記熱輻射体から離間して配置された、1層又は複数層の半導体層を有する光電変換素子と、
c) 前記熱輻射体と前記光電変換素子の間に、該光電変換素子に接し、前記1層の半導体層を構成する半導体のバンドギャップエネルギーに対応する波長又は前記複数層の各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長であるバンドギャップ波長の1/3以下の距離だけ前記熱輻射体から離間して配置された、波長0.5〜1000μmの範囲内の全ての波長における光に関して誘電率の実部が正の値を有し且つ前記光電変換素子において光電変換される波長範囲内の少なくとも一部の波長の光を透過する材料から成る中間部材と
を備えることを特徴とする。
The thermal radiant photovoltaic power generation device according to the present invention made to solve the above problems is
a) With a thermal radiator
b) A photoelectric conversion element having one or more semiconductor layers arranged apart from the thermal radiator, and
c) Between the thermal radiator and the photoelectric conversion element, a wavelength corresponding to the band gap energy of the semiconductor that is in contact with the photoelectric conversion element and constitutes the semiconductor layer of the one layer or each semiconductor layer of the plurality of layers is formed. All within the wavelength range of 0.5 to 1000 μm arranged apart from the thermal radiator by a distance of 1/3 or less of the band gap wavelength, which is the wavelength corresponding to the minimum of the band gap energies of the semiconductor. It is provided with an intermediate member made of a material having a positive value of the real part of the dielectric constant with respect to light at the wavelength of the above and transmitting light of at least a part of the wavelengths within the wavelength range photoelectrically converted by the photoelectric conversion element. It is characterized by.
本発明に係る熱輻射光発電装置によれば、中間部材はバンドギャップ波長の1/3以下という十分に短い距離だけ熱輻射体から離間して配置されていると共に、中間部材の材料が、光電変換素子において光電変換される(発電に寄与する)波長範囲内の少なくとも一部の波長の光を透過するため、当該波長の光は近接場光を含めて熱輻射体から中間部材を通して光電変換素子に導入され、光電変換がなされて発電される。そのため、本発明に係る熱輻射光発電装置は出力密度が高い。 According to the thermal radiant light power generation device according to the present invention, the intermediate member is arranged away from the thermal radiator by a sufficiently short distance of 1/3 or less of the band gap wavelength, and the material of the intermediate member is photoelectric. Since light of at least a part of the wavelengths within the wavelength range to be photoelectrically converted (contributing to power generation) is transmitted in the conversion element, the light of the wavelength including the near-field light is transmitted from the thermal radiator through the intermediate member to the photoelectric conversion element. Introduced in, photoelectric conversion is performed and power is generated. Therefore, the thermal radiation photovoltaic power generation device according to the present invention has a high output density.
一方、中間部材の材料が、0.5〜1000μmの波長範囲内にある波長の光に関して誘電率の実部が正の値を有することにより、上記の波長範囲内では、熱輻射体に対向した中間部材の表面に表面波が生じない。また、表面波が中間部材の内部を伝播することがないため、熱輻射体から生じる熱輻射によって光電変換素子の半導体層の表面において表面波が誘起されることもない。従って、熱輻射体によって実用上得られる0.5〜1000μmの全ての波長において、発電に寄与しない長波長の光が表面波となって中間部材や光電変換素子で熱として消費されてしまうことを防止することができる。これにより、本発明に係る熱輻射光発電装置は発電効率が高くなる。 On the other hand, the material of the intermediate member has a positive value in the real part of the dielectric constant for light having a wavelength in the wavelength range of 0.5 to 1000 μm, so that the intermediate member facing the thermal radiator is in the above wavelength range. No surface wave is generated on the surface of. Further, since the surface wave does not propagate inside the intermediate member, the surface wave is not induced on the surface of the semiconductor layer of the photoelectric conversion element by the thermal radiation generated from the thermal radiator. Therefore, at all wavelengths of 0.5 to 1000 μm practically obtained by the thermal radiator, it is possible to prevent long-wavelength light that does not contribute to power generation from becoming a surface wave and being consumed as heat by the intermediate member or the photoelectric conversion element. be able to. As a result, the thermal radiation photovoltaic power generation device according to the present invention has high power generation efficiency.
光電変換素子には、1層の半導体層と金属層を有するものと、複数層の半導体層を有するものがある。バンドギャップ波長は、前述のように、半導体層が1層である場合には当該半導体層を構成する半導体のバンドギャップエネルギーに対応する波長により定義し、半導体層が複数である場合には、各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長により定義する。バンドギャップ波長は、光電変換素子において光電変換される波長範囲の最大値に対応する。 Some photoelectric conversion elements have one semiconductor layer and a metal layer, and some have a plurality of semiconductor layers. As described above, the bandgap wavelength is defined by the wavelength corresponding to the bandgap energy of the semiconductors constituting the semiconductor layer when the semiconductor layer is one layer, and when there are a plurality of semiconductor layers, each of them is defined. It is defined by the wavelength corresponding to the minimum bandgap energy of the semiconductors constituting the semiconductor layer. The bandgap wavelength corresponds to the maximum value of the wavelength range that is photoelectrically converted in the photoelectric conversion element.
前記熱輻射体と前記中間部材の距離は、中間部材を配置することなく前記熱輻射体と前記光電変換素子を離間して配置した構成(これは本発明に係る熱輻射光発電装置の構成とは異なることに注意)において、該光電変換素子が表面波を吸収することにより生じるエネルギーの損失が顕著となる0.2μm以下とすることが望ましい。この要件は、従来の熱輻射光発電装置では表面波の吸収により発電効率の低下が顕著になる距離以下まで、本発明に係る熱輻射光発電装置における熱輻射体と中間部材を近づけても、中間部材による表面波の吸収がほとんど生じないため、従来の熱輻射光発電装置に対する本発明に係る熱輻射光発電装置の効率の向上の効果が顕著になることを意味している。 The distance between the thermal radiator and the intermediate member is such that the thermal radiator and the photoelectric conversion element are arranged apart from each other without arranging the intermediate member (this is the configuration of the thermal radiant light power generation device according to the present invention). It is desirable that the energy loss caused by the photoelectric conversion element absorbing surface waves is 0.2 μm or less. This requirement is met even if the thermal radiator and the intermediate member in the thermal radiant photovoltaic power generation device according to the present invention are brought close to each other up to a distance or less where the power generation efficiency is significantly reduced due to the absorption of surface waves in the conventional thermal radiant photovoltaic power generation device. Since the intermediate member hardly absorbs the surface wave, it means that the effect of improving the efficiency of the thermal radiant photovoltaic power generation device according to the present invention on the conventional thermal radiant photovoltaic power generation device becomes remarkable.
同様の理由により、前記熱輻射体と前記中間部材の距離は、前記中間部材を配置することなく前記熱輻射体と前記光電変換素子を離間して配置した構成において、熱輻射体で生成される熱輻射光の全エネルギーに占める、該光電変換素子が表面波を吸収することにより生じるエネルギーの損失の割合が10%となる場合の該熱輻射体と該光電変換素子の距離よりも短いことが望ましい。熱輻射体で生成される熱輻射光の全エネルギー及び光電変換素子が表面波を吸収することにより生じるエネルギーの損失の大きさは、数値計算により求めることができる。 For the same reason, the distance between the thermal radiator and the intermediate member is generated by the thermal radiator in a configuration in which the thermal radiator and the photoelectric conversion element are arranged apart from each other without arranging the intermediate member. It may be shorter than the distance between the thermal radiator and the photoelectric conversion element when the ratio of the energy loss caused by the photoelectric conversion element absorbing the surface wave to the total energy of the thermal radiant light is 10%. desirable. The total energy of the thermal radiant light generated by the thermal radiator and the magnitude of the energy loss caused by the photoelectric conversion element absorbing the surface wave can be obtained by numerical calculation.
近接場光を介して中間部材が光電変換素子に伝達することができる熱輻射光のエネルギーは、屈折率の2乗に比例するため、前記中間部材の材料は、光電変換素子において光電変換される波長範囲内において屈折率が高いことが望ましく、例えば3以上であることが望ましい。そのような高い屈折率を有し、且つ、前述のように波長5〜1000μmの光に関して誘電率の実部が正の値を有すると共に、熱輻射光発電装置で一般的に用いられている温度1000〜2000Kの熱輻射体から発生する熱輻射光において主に発電に寄与する波長1.1〜2.5μmの赤外光を透過する材料として、真性半導体の(すなわちキャリアが添加されていない)Siが挙げられる。 Since the energy of thermal radiation that the intermediate member can transmit to the photoelectric conversion element via near-field light is proportional to the square of the refractive index, the material of the intermediate member is photoelectrically converted in the photoelectric conversion element. It is desirable that the refractive index is high in the wavelength range, for example, 3 or more. It has such a high refractive index, and as described above, the real part of the dielectric constant has a positive value for light having a wavelength of 5 to 1000 μm, and the temperature generally used in thermal radiant light power generation equipment. Intrinsic semiconductor Si (that is, carrier-free) is cited as a material that transmits infrared light with a wavelength of 1.1 to 2.5 μm, which mainly contributes to power generation in thermal radiant light generated from a thermal radiator of 1000 to 2000 K. Be done.
前記熱輻射体は、前記中間部材が透過する波長の光を増幅するフォトニック結晶構造を有することが望ましい。フォトニック結晶構造は、周期的な屈折率の分布が形成された構造をいい、波長が異なる様々な光のうち、この周期に応じた特定の波長の光を選択的に、干渉により増幅するという特徴を有する。熱輻射体がこのようなフォトニック結晶構造を有することにより、中間部材を透過して光電変換素子で発電に寄与する波長の光を増幅することができ、それにより出力密度及び発電効率をより高くすることができる。また、フォトニック結晶構造を有する熱輻射体に太陽光を照射することで該熱輻射体を加熱し、該熱輻射体から放出される、発電に寄与する波長が増幅された光を光電変換素子に照射して光電変換をすることにより、太陽光を直接光電変換素子に照射して光電変換をする場合よりも光電変換の効率を高くすることができる。フォトニック結晶構造は、例えば半導体等から成る部材を周期的に配置することや、半導体等から成る板状の母材に該母材とは屈折率が異なる領域(異屈折率領域)を周期的に設けることにより形成することができる。異屈折率領域には、典型的には空孔を用いることができるが、母材とは異なる部材を空孔に埋め込んだものを用いてもよい。 It is desirable that the thermal radiator has a photonic crystal structure that amplifies light having a wavelength transmitted through the intermediate member. The photonic crystal structure refers to a structure in which a periodic refractive index distribution is formed, and among various light having different wavelengths, light having a specific wavelength corresponding to this period is selectively amplified by interference. It has characteristics. Since the thermal radiator has such a photonic crystal structure, it is possible to amplify the light having a wavelength that contributes to power generation by the photoelectric conversion element through the intermediate member, thereby increasing the output density and power generation efficiency. can do. Further, the thermal radiator having a photonic crystal structure is irradiated with sunlight to heat the thermal radiator, and the light emitted from the thermal radiator whose wavelength contributes to power generation is amplified is a photoelectric conversion element. By irradiating the light with the photoelectric conversion, it is possible to increase the efficiency of the photoelectric conversion as compared with the case where the photoelectric conversion element is directly irradiated with sunlight to perform the photoelectric conversion. In the photonic crystal structure, for example, a member made of a semiconductor or the like is periodically arranged, or a region (different refractive index region) having a refractive index different from that of the base material is periodically arranged on a plate-shaped base material made of a semiconductor or the like. It can be formed by providing it in. Although vacancies can typically be used in the different refractive index region, a member different from the base material may be embedded in the vacancies.
本発明により、熱輻射体から光電変換素子の半導体層に、発電に寄与する波長の近接場光は伝播させつつ、発電に寄与しない長波長の光が伝播することを防ぐことができ、それにより出力密度及び発電効率が共に高い熱輻射光発電装置を得ることができる。 According to the present invention, it is possible to prevent the propagation of long-wavelength light that does not contribute to power generation while propagating the near-field light having a wavelength that contributes to power generation from the thermal radiator to the semiconductor layer of the photoelectric conversion element. It is possible to obtain a thermal radiant photovoltaic power generation device having both high output density and high power generation efficiency.
図1〜図12を用いて、本発明に係る熱輻射光発電装置の実施形態を説明する。図1は、本実施形態の熱輻射光発電装置10の構成を概略図で示したものである。熱輻射光発電装置10は、光電変換素子11と、熱輻射体12と、中間部材(中間基板)13を有する。
An embodiment of the thermal radiation photovoltaic power generation device according to the present invention will be described with reference to FIGS. 1 to 12. FIG. 1 is a schematic view of the configuration of the thermal radiation photovoltaic
光電変換素子11は、第1n型半導体層1111、第2n型半導体層1112、第2p型半導体層1122、及び第1p型半導体層1121がこの順で積層した複数の半導体層から成る光電変換部110を有する。これら4層の半導体層の材料には例えば、上記の順に、n-InP、n-InGaAs、p-InGaAs、p-InPを用いることができる。以下、これら4層の半導体層を用いた光電変換素子を「InGaAs/InP光電変換素子」と呼ぶ。InGaAs/InP光電変換素子では、1.68μm以下の波長範囲内の光により光電変換が生じる。あるいは、これら4層の半導体層の材料に、上記の順に、n+-GaSb、n-GaSb、p-GaSb、p+-GaSbを用いることもできる。以下、これら4層の半導体層を用いた光電変換素子を「GaSb光電変換素子」と呼ぶ。ここでn+-GaSbはn-GaSbよりも電子の添加量が多いことを示し、p+-GaSbはp-GaSbよりも正孔の添加量が多いことを示している。GaSb光電変換素子では、1.77μm以下の波長範囲内の光により光電変換が生じる。
The
第1n型半導体層1111には第1電極1131が接続され、第1p型半導体層1121には第2電極1132が接続されている。
The
熱輻射体12は、キャリアが添加されていないSi(以下、「無添加Si」とする)から成り、光電変換素子11の第1n型半導体層1111に対向して該第1n型半導体層1111に平行に配置された板状部121と、板状部121の裏側(第1n型半導体層1111と対向する表面の反対側)の表面に設けられたフォトニック結晶部122を有する。フォトニック結晶部122は、図2に示すように、Siから成るロッド状の部材であるロッド部材1221を平行に周期(間隔)aで多数、板状部121の裏側の表面に配置することにより構成されている。熱輻射体12は、外部の熱源から熱を受けて熱輻射光を発光し、フォトニック結晶部122において周期aに対応する波長の光を選択的に増幅する。なお、ここで増幅される光の波長は、フォトニック結晶部122内における波長を指し、真空中における波長λ0をフォトニック結晶部122の有効屈折率neffで除した値である。有効屈折率neffは、フォトニック結晶部122に分布する光の電界強度の割合、及びフォトニック結晶部122全体に対するロッド部材1221の充填率を考慮した屈折率である。周期aの具体例は、中間部材13の構成と共に後述する。
The
中間部材13は、無添加Siから成る板状の部材であり、光電変換素子11の第1n型半導体層1111及び熱輻射体12の板状部121の間に、それら第1n型半導体層1111及び熱輻射体12と平行に配置されている。中間部材13は、光電変換素子11の第1n型半導体層1111には接しているのに対して、熱輻射体12の板状部121との間は所定の距離dだけ離間されている。距離dは、光電変換素子11の4層の半導体層をそれぞれ構成する半導体のバンドギャップエネルギーのうち最小の値に対応するバンドギャップ波長の1/3以下とする。この距離dは、波長が光電変換素子11において発電に寄与する範囲内にある、熱輻射による近接場光が、熱輻射体に対向する物体に伝播可能となる距離に対応する。例えば、InGaAs/InP光電変換素子では、バンドギャップ波長は1.68μmであり、距離dは0.560μm以下である。GaSb光電変換素子では、バンドギャップ波長は1.77μmであり、距離dは0.590μm以下である。
The
本実施形態における中間部材13の材料である無添加Siは、図3に示すように、0.5〜1000μmの全ての波長において、誘電率の実部が正の値を有する。これは、中間部材13の表面において表面波が伝播しないことを意味している。また、無添加Siは、1.1〜1.7μmの範囲内の波長を有する光を透過する。この波長範囲は、InGaAs/InP光電変換素子及びGaSb光電変換素子のいずれの例に関しても、光電変換素子において光電変換される波長範囲に含まれている。従って、熱輻射体12において熱輻射により発光する、1.1〜1.7μmの範囲内の波長を有する光は、中間部材13を透過して光電変換素子11に到達することができ、光電変換素子11で光電変換される。熱輻射体12のフォトニック結晶部122において増幅される光の波長をこの中間部材13を透過して光電変換素子11で光電変換される波長範囲内の波長に合わせるように、ロッド部材1221の周期aを設定する。
As shown in FIG. 3, the additive-free Si, which is the material of the
本実施形態の熱輻射光発電装置10の動作を説明する。外部の熱源により、熱輻射体12を加熱する。これにより、熱輻射体12は、加熱温度に対応したスペクトルを有する熱輻射光を生成する。この熱輻射光のうち、フォトニック結晶部122に設けられたロッド部材1221の周期aに対応する波長の光が増幅される。そのため、熱輻射体12から放出される熱輻射光のスペクトルは、周期aに対応する波長における強度が強められたものとなる。熱輻射体12から放出された熱輻射光のうち、周期aに対応する波長を含む、中間部材13を透過する波長の光は、光電変換素子11に到達し、光電変換される。このように周期aに対応する波長の光の強度が増幅されていることは、光電変換の出力密度及び効率を高めることに寄与する。
The operation of the thermal radiant photovoltaic
また、熱輻射体12の板状部121の表面には、そのままでは熱輻射体12の外には放出されない近接場光が浸出している。このうち、中間部材13に対向する表面に浸出し、中間部材13を透過する波長を有する近接場光は、熱輻射体12と中間部材13が前記バンドギャップ波長の1/3以下という短い距離しか離間されていないため、熱輻射体12から中間部材13に伝播することができ、それにより光電変換素子11に到達して光電変換される。この点において、熱輻射光発電装置10は光電変換の出力密度が高い。
Further, on the surface of the plate-shaped
一方、中間部材13が無添加Siから成るため、中間部材13の表面には0.5〜1000μmの全ての波長において表面波が生成されない。そのため、熱輻射体12で生成された熱輻射光のうち、光電変換素子11において発電に寄与しないバンドギャップ波長よりも長波長の光が表面波として熱輻射体12から中間部材13に伝播することを防ぐことができる。光電変換素子11の第1n型半導体層1111は表面に表面波が存在可能な材料から成るが、表面波が中間部材13内を伝播することがないため、熱輻射体から生じる熱輻射によって該表面に表面波が誘起されることはない。従って、このような長波長の光は、熱輻射体12内に留まり、熱として熱輻射体12に吸収される。こうして熱輻射体12に吸収された熱の一部は、熱輻射により、中間部材13を透過して光電変換素子11で光電変換が可能な波長となるため、光電変換の効率は高くなる。
On the other hand, since the
以上のように、本実施形態の熱輻射光発電装置10は、3つの要因により光電変換の出力密度及び効率が共に高くなる。特に、長波長の表面波が中間部材13の表面に伝播しないことによる光電変換の効率の向上は、従来の熱輻射光発電装置には無い顕著な効果である。
As described above, in the thermal radiant photovoltaic
以下、より具体的な例においてシミュレーションを行った結果を示す。まず、InGaAs/InP光電変換素子につき、以下の条件1でシミュレーションを行った。
第1n型半導体層1111:n-InP製、厚み0.1μm、電子添加密度2×1018cm-1。
第2n型半導体層1112:n-InGaAs製、厚み0.3μm、電子添加密度1×1018cm-1。
第2p型半導体層1122:p-InGaAs製、厚み2.0μm、正孔添加密度1×1017cm-1。
第1p型半導体層1121:p-InP製、厚み0.1μm、正孔添加密度2×1018cm-1。
板状部121:無添加Si製、厚み1.5μm。
フォトニック結晶部122:無添加Si製、厚み0.5μm、周期a0.4μm、ロッド部材1221の幅0.28μm。
熱輻射体12の加熱温度:1400K。
中間部材13:無添加Si製、厚みtはシミュレーション毎に異なる。
距離d:シミュレーション毎に異なる。
The results of simulations in a more specific example are shown below. First, a simulation was performed on the InGaAs / InP photoelectric conversion element under the
1st n-type semiconductor layer 1111: made of n-InP, thickness 0.1 μm, electron addition density 2 × 10 18 cm -1 .
Second n-type semiconductor layer 1112: Made of n-InGaAs, thickness 0.3 μm,
Second p-type semiconductor layer 1122: made of p-InGaAs, thickness 2.0 μm,
First p-type semiconductor layer 1121: Made of p-InP, thickness 0.1 μm, hole addition density 2 × 10 18 cm -1 .
Plate-shaped part 121: Made of additive-free Si, thickness 1.5 μm.
Photonic crystal part 122: Made of additive-free Si, thickness 0.5 μm, period a 0.4 μm, width 0.28 μm of
Heating temperature of the thermal radiator 12: 1400K.
Intermediate member 13: Made of additive-free Si, the thickness t is different for each simulation.
Distance d: Different for each simulation.
条件1において、中間部材13の厚みtを10μmとし、距離dを(a)0.01μm(実施例1)及び(b)100μmを超える十分に長い距離(比較例1)とした場合について、熱輻射体12から光電変換素子11に達する熱輻射光のスペクトルを計算により求めた。また、光電変換素子11及び熱輻射体12は上記と同様の構成であって、中間部材13が無い場合について、板状部121と第1n型半導体層1111の距離(d'とする)を(c)0.01μm(比較例2)及び(d)100μmを超える十分に長い距離(比較例3)とした場合についても、同様の計算を行った。
Under
この計算の結果を図4に示す。図4には、光電変換素子11における発電に寄与する熱輻射光の強度と、発電に寄与することなく光電変換素子11の各半導体層を通過する熱輻射光の強度(透過損失)と、中間部材13(実施例1及び比較例1)又は第1n型半導体層1111(比較例2及び3)の表面における表面波の強度を示した。併せて、各図に、1400Kの黒体輻射のスペクトルを示した。
The result of this calculation is shown in FIG. FIG. 4 shows an intermediate between the intensity of thermal radiant light that contributes to power generation in the
実施例1では、バンドギャップ波長以下の波長領域において、1400Kの黒体輻射よりも大きい強度で発電に寄与する熱輻射光が光電変換素子11に達している。それに対して比較例1及び3ではいずれも、バンドギャップ波長以下の波長領域において、発電に寄与する熱輻射光の強度は1400Kの黒体輻射の強度よりも小さい。これは、実施例1では、熱輻射体12と中間部材13の距離dがバンドギャップ波長の1/3以下である0.01μmという十分に短いことにより、黒体輻射では熱輻射体12の外に放出されない近接場光が中間部材13を通して光電変換素子11に導入されるのに対して、比較例1及び3では距離d又はd'が100μmを超えて十分に長いため、近接場光が光電変換素子11に導入されないことによる。なお、比較例2は、発電に寄与する熱輻射光の強度が実施例1と同程度の強度を有し、近接場光が光電変換素子11に導入されていると考えられる。しかし、比較例2は次に述べる問題を有している。
In the first embodiment, in the wavelength region below the bandgap wavelength, thermal radiation that contributes to power generation with an intensity higher than that of blackbody radiation of 1400K reaches the
比較例2では、発電に寄与しない10μmを超える波長範囲において、表面波による吸収損失が生じるのに対して、実施例1では表面波による吸収損失は見られない。これは、実施例1では光電変換素子11と熱輻射体12の間に、0.5〜1000μmの全ての波長において誘電率の実部が正の値を有する無添加Siから成る中間部材13が設けられていることにより、表面波の生成が阻止されていることによる。
In Comparative Example 2, absorption loss due to surface waves occurs in a wavelength range exceeding 10 μm that does not contribute to power generation, whereas in Example 1, absorption loss due to surface waves is not observed. In the first embodiment, an
以上のように、実施例1では近接場光を光電変換素子11に導入することで出力密度を高くしつつ、表面波による吸収損失を抑制することができるため発電の効率を高くすることができる。
As described above, in the first embodiment, by introducing the near-field light into the
次に、厚みtが10μmである中間部材13を有する場合について距離dが異なる複数の例につき、発電に寄与する熱輻射光及び損失となる熱輻射光の強度を全波長について積算した値を計算で求めた結果を図5(a)に示す。同様に、中間部材13が無い場合について、距離d'が異なる複数の例につき同様の計算を行った結果を図5(b)に示す。図5(a)より、熱輻射体から生じる熱輻射光の全体の強度の積算値は、バンドギャップ波長の1/3の波長(同図中に「λgap/3」と記載)に対応する長さよりも距離dが長い場合にはほとんど変わらないのに対して、λgap/3よりも距離dが短い場合には、距離dが短くなるに従って増加することがわかる。これは、バンドギャップ波長の1/3の波長よりも距離dを短くすることにより、中間部材13を介して近接場光を光電変換素子11に導入することができることを意味している。
Next, for a plurality of examples in which the distance d is different in the case of having the
図5(a)と(b)を対比すると、距離d又はd'が0.2μmよりも小さい範囲において、中間部材13を有する場合よりも中間部材13が無い場合の方が、光電変換素子11中で熱輻射体12に最も近い第1n型半導体層1111における吸収損失が高くなっていることがわかる。これは、中間部材13が無い場合には第1n型半導体層1111の表面に長波長の表面波が伝播することによる損失が生じるのに対して、中間部材13を有する場合にはそのような損失が生じないことによる。また、距離dが0.2μmよりも小さい範囲は、中間部材13が無い場合(図5(b))において第1n型半導体層1111の吸収損失が熱輻射体から生じる熱輻射光の全体の強度の積算値の10%以上となる範囲とも対応しており、中間部材13を挿入することで損失の割合を減少させることができることがわかる。
Comparing FIGS. 5 (a) and 5 (b), in the range where the distance d or d'is smaller than 0.2 μm, the case where the
図6に、中間部材13の厚みtが0.1μm、1μm、10μm及び100μmの場合についてそれぞれ、熱輻射体12から放出される熱輻射光のうち発電に寄与するものの強度の割合(発電寄与率)を複数の距離dを対象として計算で求めた結果を示す。同図には併せて、中間部材13が無い場合について、複数の距離d'を対象として同様の計算を行った結果を示す。中間部材13が有る場合と無い場合を、距離dと距離d'が同じであるときについて対比すると、中間部材13の厚みがいずれの場合にも、距離dが0.2μm以下の領域において、中間部材13が無い場合との発電寄与率の差が顕著となる。また、距離dが0.2μm以下の領域において、中間部材13の厚みが1μm及び10μmの場合には、0.1μm及び100μmの場合よりも、発電寄与率がやや高くなる。これは、厚みtが小さくなるほど、光電変換素子11の表面に生成される表面波に、熱輻射体12から中間部材13を超えて直接結合する長波長の光の比率が高くなることと、厚みtが大きくなるほど中間部材13において光が吸収される比率が高くなることから、これら2つの発電寄与率の減少の要因が相対的に小さい、厚みtが1μm及び10μmの場合に発電寄与率が高くなっていると考えられる。
FIG. 6 shows the ratio of the intensity of the heat radiant light emitted from the
図7に、第1n型半導体層1111の電子の添加量が(a)1×1019cm-3、(b)1×1018cm-3、及び(c)1×1017cm-3の場合について、厚み10μmの中間部材13が有る場合と無い場合の発電寄与率を計算で求めた結果を示す。電子の添加量が最も多い(a)では、距離dを小さくすると発電寄与率が(b)及び(c)よりもやや低くなっている。これは、電子が多くなることによって第1n型半導体層1111において光の吸収による損失が大きくなることによる。それ以外の点では、第1n型半導体層1111の電子の添加量の相違による影響はほとんど見られず、いずれの場合にも、距離dが0.2μmよりも小さいときに、中間部材13が無い場合よりも発電寄与率が顕著に高くなっている。
In FIG. 7, the amount of electrons added to the first n-
次に、GaSb光電変換素子につき、以下の条件2について、図5及び図6と同様の計算を行った。
第1n型半導体層1111:n + -GaSb製、厚み0.05μm、電子添加密度2×1018cm-1。
第2n型半導体層1112:n-GaSb製、厚み0.3μm、電子添加密度1×1018cm-1。
第2p型半導体層1122:p-GaSb製、厚み2.0μm、正孔添加密度1×1017cm-1。
第1p型半導体層1121:p + -GaSb製、厚み0.05μm、正孔添加密度2×1018cm-1。
板状部121:無添加Si製、厚み1.5μm。
フォトニック結晶部122:無添加Si製、厚み0.5μm、周期a0.4μm、ロッド部材1221の幅0.28μm。
熱輻射体12の加熱温度:1400K。
中間部材13:無添加Si製、厚み10μm。
距離d:複数の値。
Next, for the GaSb photoelectric conversion element, the same calculation as in FIGS. 5 and 6 was performed for the following condition 2.
First n-type semiconductor layer 1111: made of n + -GaSb, thickness 0.05 μm, electron addition density 2 × 10 18 cm -1 .
Second n-type semiconductor layer 1112: Made of n-GaSb, thickness 0.3 μm,
Second p-type semiconductor layer 1122: made of p-GaSb, thickness 2.0 μm,
First p-type semiconductor layer 1121: made of p + -GaSb, thickness 0.05 μm, hole addition density 2 × 10 18 cm -1 .
Plate-shaped part 121: Made of additive-free Si, thickness 1.5 μm.
Photonic crystal part 122: Made of additive-free Si, thickness 0.5 μm, period a 0.4 μm, width 0.28 μm of
Heating temperature of the thermal radiator 12: 1400K.
Intermediate member 13: Made of additive-free Si,
Distance d: Multiple values.
図8に示すように、条件2においても条件1の場合と同様に、距離dがバンドギャップ波長の1/3よりも短い範囲内で、距離dが短くなるほど、発電に寄与する熱輻射光の強度が大きくなる。また、距離d又はd'が0.2μmよりも小さい範囲において、中間部材13を有する場合よりも中間部材13が無い場合の方が、光電変換素子11中で熱輻射体12に最も近い第1n型半導体層1111における吸収損失が高くなっている。
As shown in FIG. 8, under condition 2 as in the case of
また、図9に示すように、条件2においても条件1の場合と同様に、距離d又はd'が0.2μmよりも小さい範囲において、中間部材13が有る場合と無い場合の発電寄与率の差が顕著となる。
Further, as shown in FIG. 9, in the case of the condition 2, as in the case of the
図10に、光電変換素子11、熱輻射体12及び中間部材13以外の構成要素を含む、本発明の熱輻射光発電装置の全体構成の一例を示す。この例では、熱輻射体12を支持する支持基体(支持基板)14を用いている。熱輻射体12に面する支持基体14の表面には、該表面から支持基体14内に向かって空洞141が複数設けられており、最近接の空洞141同士の間に柱状部142が形成されている。熱輻射体12は、柱状部142においてのみ、支持基体14と接している。このような構成により、空洞141の無い支持基体で熱輻射体12を支持する場合よりも、支持基体14における熱伝導の損失を小さくすることができるうえに、支持基体14の熱膨張による熱輻射光発電装置の変形が生じることを抑えることができる。空洞141は、複数の溝を平行に設けたものや、複数の孔を2次元状に配置したものを用いることができる。熱源として太陽光を用いる場合には、支持基体14の材料には、太陽光を透過し、且つウエットエッチングにより空洞141及び柱状部142を容易に作製することができるという点で、SiO2を好適に用いることができる。
FIG. 10 shows an example of the overall configuration of the thermal radiant photovoltaic power generation device of the present invention, which includes components other than the
支持基体14の上面の縁(空洞141が設けられた領域の外側)の上にはスペーサ15が設けられており、スペーサ15の上に中間部材13が載置されている。このスペーサ15の厚みにより、熱輻射体12と中間部材13の距離dを設定することができる。
A
本発明は上記の実施形態には限定されない。
例えば、上記各実施形態では、光電変換素子はn型半導体から成る層とp型半導体から成る層をそれぞれ2層ずつ有しているが、それらが1層ずつ、あるいは3層以上ずつであってもよい。また、n型又はp型の半導体から成る1層の半導体層と金属層を接合した構成を有する、ショットキー接合を利用した光電変換素子を用いてもよい。光電変換素子の各半導体層の材料は上記の例には限定されず、通常の光電変換素子(太陽電池)に用いられている光電変換層の半導体の材料であれば、適用することができる。熱輻射体12の材料も上記のものには限定されない。さらには、中間部材13の材料も上記のものには限定されず、波長0.5〜1000μmの光に関して誘電率の実部が正の値を有し、且つ前記バンドギャップ波長以下の波長の光(すなわち、光電変換素子で発電に寄与する波長の光)を透過する材料であればよい。
The present invention is not limited to the above embodiments.
For example, in each of the above embodiments, the photoelectric conversion element has two layers each of a layer made of an n-type semiconductor and a layer made of a p-type semiconductor, but these are one layer each or three or more layers each. May be good. Further, a photoelectric conversion element using Schottky junction, which has a configuration in which a single semiconductor layer made of an n-type or p-type semiconductor and a metal layer are bonded, may be used. The material of each semiconductor layer of the photoelectric conversion element is not limited to the above example, and any material of the semiconductor of the photoelectric conversion layer used in a normal photoelectric conversion element (solar cell) can be applied. The material of the
熱輻射体が有するフォトニック結晶構造は、上記の例には限定されず、例えば図11(a)に示した、板状の母材1222Aに複数の空孔1221Aを2次元状に周期的に設けたものや、空孔1221Aの代わりに母材1222Aとは屈折率が異なる部材を埋め込んだものを用いることができる。あるいは、図11(b)に示すように、柱状部材1221Bを2次元状に配置したものをフォトニック結晶構造として用いてもよい。さらには、図11(c)に示すように、ロッド部材1221Cを井桁状に、3次元状に組み合わせたものをフォトニック結晶構造として用いてもよい。また、上記の例では熱輻射体12の一部のみをフォトニック結晶部122としたが、熱輻射体の全体にフォトニック結晶構造を形成してもよい。
The photonic crystal structure of the thermal radiator is not limited to the above example, and for example, a plurality of
本発明の熱輻射光発電装置では、熱輻射体がフォトニック結晶構造を有することは必須ではなく、図12に示すように、フォトニック結晶構造を有しない熱輻射体12Aを用いた構成であってもよい。このような構成を有する熱輻射光発電装置10Aでは、中間基板を透過する波長範囲内の近接場光を光電変換することができることにより出力密度を高くすることができ、バンドギャップ波長よりも長波長の光が表面波として熱輻射体12Aから中間部材13に伝播することを防ぐことができることにより光電変換の効率が高くなる。
In the thermal radiation light power generation device of the present invention, it is not essential that the thermal radiator has a photonic crystal structure, and as shown in FIG. 12, the
10、10A…熱輻射光発電装置
11…光電変換素子
110…光電変換部
1111…第1n型半導体層
1112…第2n型半導体層
1121…第1p型半導体層
1122…第2p型半導体層
1131…第1電極
1132…第2電極
12、12A…熱輻射体
121…板状部
122…フォトニック結晶部
1221、1221C…ロッド部材
1221A…空孔
1221B…柱状部材
1222A…母材
13…中間部材
14…支持基体
141…空洞
142…柱状部
15…スペーサ
10, 10A ... Thermal radiant light
Claims (8)
b) 前記熱輻射体から離間して配置された、1層又は複数層の半導体層を有する光電変換素子と、
c) 前記熱輻射体と前記光電変換素子の間に、該光電変換素子に接し、前記1層の半導体層を構成する半導体のバンドギャップエネルギーに対応する波長又は前記複数層の各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長であるバンドギャップ波長の1/3以下の距離だけ前記熱輻射体から離間して配置された、波長0.5〜1000μmの範囲内の全ての波長における光に関して誘電率の実部が正の値を有し且つ前記光電変換素子において光電変換される波長範囲内の少なくとも一部の波長の光を透過する材料から成る中間部材と
を備えることを特徴とする熱輻射光発電装置。 a) With a thermal radiator
b) A photoelectric conversion element having one or more semiconductor layers arranged apart from the thermal radiator, and
c) Between the thermal radiator and the photoelectric conversion element, a wavelength corresponding to the band gap energy of the semiconductor that is in contact with the photoelectric conversion element and constitutes the semiconductor layer of the one layer or each semiconductor layer of the plurality of layers is formed. All within the wavelength range of 0.5 to 1000 μm arranged apart from the thermal radiator by a distance of 1/3 or less of the band gap wavelength, which is the wavelength corresponding to the minimum of the band gap energies of the semiconductor. It is provided with an intermediate member made of a material having a positive value in the real part of the dielectric constant with respect to light at the wavelength of the above and transmitting light of at least a part of wavelengths within the wavelength range photoelectrically converted by the photoelectric conversion element. A thermal radiation power generation device characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017034724A JP6846035B2 (en) | 2017-02-27 | 2017-02-27 | Thermal radiation photovoltaic power generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017034724A JP6846035B2 (en) | 2017-02-27 | 2017-02-27 | Thermal radiation photovoltaic power generation device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018143025A JP2018143025A (en) | 2018-09-13 |
JP2018143025A5 JP2018143025A5 (en) | 2020-01-16 |
JP6846035B2 true JP6846035B2 (en) | 2021-03-24 |
Family
ID=63528415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017034724A Active JP6846035B2 (en) | 2017-02-27 | 2017-02-27 | Thermal radiation photovoltaic power generation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6846035B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10497821B2 (en) * | 2017-03-24 | 2019-12-03 | Mitsubishi Electric Research Laboratories, Inc. | Thermophotovoltaic energy converter |
KR102204172B1 (en) | 2019-02-13 | 2021-01-18 | 주식회사 헥사솔루션 | A thermal radiation body for cooling heating element and method for manufacturing the same |
KR20220161052A (en) * | 2021-05-28 | 2022-12-06 | 삼성전자주식회사 | Sensor embedded display panel and electronic device |
CN115163436B (en) * | 2022-07-21 | 2023-04-21 | 哈尔滨工业大学 | Multi-effect space power supply device combined with near-field thermophotovoltaic system |
WO2024105787A1 (en) * | 2022-11-15 | 2024-05-23 | 三菱電機株式会社 | Near-field thermal-radiation power generation element |
-
2017
- 2017-02-27 JP JP2017034724A patent/JP6846035B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018143025A (en) | 2018-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6846035B2 (en) | Thermal radiation photovoltaic power generation device | |
US20100031990A1 (en) | Cascaded Photovoltaic and Thermophotovoltaic Energy Conversion Apparatus with Near-Field Radiation Transfer Enhancement at Nanoscale Gaps | |
US20200382048A1 (en) | Thermal radiation light source | |
US11152888B2 (en) | High efficiency photovoltaic cells with suppressed radiative emission due to chemical nonequilibrium of photoelectrons | |
JPWO2017141682A1 (en) | Thermo-light conversion element and thermoelectric conversion element | |
JP2018143025A5 (en) | ||
JP6880225B2 (en) | Method for manufacturing thermothermal electromotive energy converter and thermothermal electromotive force energy converter | |
Shemeya et al. | Comparison of photonic-crystal-enhanced thermophotovoltaic devices with and without a resonant cavity | |
Xia et al. | Opportunities for increased efficiency in monochromatic photovoltaic light conversion | |
US10797633B2 (en) | Thermal emitter for energy conversion technical field | |
JP5500540B2 (en) | Quantum dot solar cell | |
JP5177682B2 (en) | Solar cell | |
Choi et al. | Resonant InGaAs Detectors and Emitters for Passive and Active Imaging Application | |
Dyson et al. | Comparison of type I and type II heterojunction unitravelling carrier photodiodes for terahertz generation | |
Biswas et al. | An analytical study of the minority carrier distribution and photocurrent of ap–i–n quantum dot solar cell based on the InAs/GaAs system | |
Matveev et al. | Comparative Characteristic Analysis of Thermophotovoltaic p-InAsSbP/n-InAs Converters Irradiated on p-and n-Sides | |
JP6456585B2 (en) | Photoelectric conversion element | |
Choi et al. | Wavelength-selective thermal emitters based on micro-scaled photonic structures for thermophotovoltaic power generation | |
Choi et al. | High efficiency metastructure-based emitter and photodetector for imaging | |
Blandre | Thermal radiation at the nanoscale: near-field and interference effects in few-layer structures and on the electrical performances of thermophotovoltaic devices | |
Mintairov et al. | High-Efficiency GaInP/GaAs Photoconverters of the 600 nm Laser Line | |
Liu et al. | Multi-field coupling characteristics of the thermophotovoltaic cell under high-intensity laser beam radiation | |
Choi et al. | Resonant Thermal Emitters and PV Cells for Thermophotovoltaic Power Generation | |
Arefinia et al. | Fundamental Limiting Efficiency and Intrinsic Loss Components of Quantum-Wire Intermediate-Band Solar Cells | |
RU2593821C1 (en) | Photocell receiver-converter of laser radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6846035 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |