[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6844971B2 - Grinding device - Google Patents

Grinding device Download PDF

Info

Publication number
JP6844971B2
JP6844971B2 JP2016171855A JP2016171855A JP6844971B2 JP 6844971 B2 JP6844971 B2 JP 6844971B2 JP 2016171855 A JP2016171855 A JP 2016171855A JP 2016171855 A JP2016171855 A JP 2016171855A JP 6844971 B2 JP6844971 B2 JP 6844971B2
Authority
JP
Japan
Prior art keywords
plate
shaped work
layer
water
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171855A
Other languages
Japanese (ja)
Other versions
JP2018034283A (en
Inventor
敦 中塚
敦 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2016171855A priority Critical patent/JP6844971B2/en
Priority to TW106125668A priority patent/TWI726134B/en
Publication of JP2018034283A publication Critical patent/JP2018034283A/en
Application granted granted Critical
Publication of JP6844971B2 publication Critical patent/JP6844971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、板状ワークの厚みを測定しながら研削する研削装置に関する。 The present invention relates to a grinding device that grinds while measuring the thickness of a plate-shaped workpiece.

研削装置として、非接触式の厚み測定器を用いて板状ワークの厚みを測定しながら研削するものが知られている(例えば、特許文献1参照)。非接触式の厚み測定器は、赤外レーザー光等の測定光を板状ワークに照射し、板状ワークの上下面からの反射光に基づいて板状ワークの厚みを測定している。板状ワークの上面には厚み測定器から水が供給され、測定光が研削水の噴霧(飛沫)で遮光されないように厚み測定器と板状ワークの間が水で封止されている。測定光が水層を透過して板状ワークに照射されることで、板状ワークの厚みが精度よく測定される。 As a grinding device, a non-contact type thickness measuring device is known to grind while measuring the thickness of a plate-shaped workpiece (see, for example, Patent Document 1). The non-contact type thickness measuring device irradiates the plate-shaped work with measurement light such as infrared laser light, and measures the thickness of the plate-shaped work based on the reflected light from the upper and lower surfaces of the plate-shaped work. Water is supplied from the thickness measuring instrument to the upper surface of the plate-shaped work, and the space between the thickness measuring instrument and the plate-shaped work is sealed with water so that the measurement light is not blocked by the spray (spray) of the grinding water. By irradiating the plate-shaped work with the measurement light through the water layer, the thickness of the plate-shaped work is measured with high accuracy.

特許第5731806号公報Japanese Patent No. 5731806

ところで、板状ワークとして表面に樹脂層が形成されたものがあり、樹脂層を研削する際に樹脂層の厚みを測定したいという要望がある。しかしながら、樹脂と水が近い屈折率であるため、樹脂層と水の界面で測定光が適切に反射されず、樹脂層の上下面からの反射光を受光することができない。また、研削加工時の研削砥石の高速回転時には研削水の噴霧が飛び散り易く、研削砥石の低速回転時には研削水の噴霧が飛び散り難い。したがって、噴霧の影響が少ない低速回転時には、厚み測定器と板状ワークの間を水で満たしながら板状ワークの厚みを測定する必要がない。 By the way, some plate-shaped workpieces have a resin layer formed on the surface, and there is a desire to measure the thickness of the resin layer when grinding the resin layer. However, since the refractive index of the resin and water are close to each other, the measurement light is not properly reflected at the interface between the resin layer and the water, and the reflected light from the upper and lower surfaces of the resin layer cannot be received. Further, when the grinding wheel is rotated at a high speed during grinding, the spray of grinding water is likely to be scattered, and when the grinding wheel is rotated at a low speed, the spray of grinding water is unlikely to be scattered. Therefore, it is not necessary to measure the thickness of the plate-shaped work while filling the space between the thickness measuring device and the plate-shaped work with water at the time of low-speed rotation where the influence of spraying is small.

本発明はかかる点に鑑みてなされたものであり、研削加工条件に応じて板状ワークの厚みを適切に測定することができる研削装置を提供することを目的の1つとする。 The present invention has been made in view of the above points, and one of the objects of the present invention is to provide a grinding apparatus capable of appropriately measuring the thickness of a plate-shaped workpiece according to the grinding processing conditions.

本発明の一態様の研削装置は、一層又は上層と下層の二層からなる板状ワークを保持する保持テーブルと、保持テーブルが保持した板状ワークを研削砥石で研削する研削手段と、研削手段で研削される板状ワークに測定光を照射させ板状ワークの上面で反射した第1の反射光と上面を通過した測定光が一層の下面又は上層と下層との界面で反射した第2の反射光とを受光して第1の反射光と第2の反射光との光路差から板状ワークの厚み又は上層の厚みを測定する非接触厚み測定器と、を備える研削装置であって、非接触厚み測定器は、測定光と第1の反射光と第2の反射光とを透過するカバーガラスと、カバーガラスと保持テーブルが保持する板状ワークとの間に形成する測定光保護部、とを備え、測定光保護部は、保持テーブルが保持した板状ワークとカバーガラスとの間を流体で満たす開口を有するケースと、ケースに供給する流体を水とエアとに切り換え可能な切換部とを備え、一層で形成された板状ワークの場合は、板状ワークの上面とカバーガラスの下面との間を水で満たし水層を形成させ、板状ワークの厚みを測定しながら研削し、二層で形成された板状ワークの場合は、板状ワークの上面とカバーガラスの下面との間をエアで満たしエア層を形成させ、上層の厚みを測定しながら研削するThe grinding apparatus according to one aspect of the present invention includes a holding table for holding a plate-shaped work composed of one layer or two layers of an upper layer and a lower layer, a grinding means for grinding the plate-shaped work held by the holding table with a grinding wheel, and a grinding means. The plate-shaped work ground in the above is irradiated with the measurement light, and the first reflected light reflected on the upper surface of the plate-shaped work and the measurement light passing through the upper surface are reflected at the lower surface of one layer or the interface between the upper layer and the lower layer . the reflected light to a grinding apparatus and a non-contact thickness gauge for measuring the thickness or the upper layer of the thickness of the plate-shaped workpiece from the optical path difference between the first reflected light and second reflected light received, The non-contact thickness measuring instrument is a measurement light protection unit formed between a cover glass that transmits the measurement light, the first reflected light, and the second reflected light, and the plate-shaped work held by the cover glass and the holding table. The measurement light protection unit can switch between a case having an opening filled with fluid between the plate-shaped work held by the holding table and the cover glass, and water and air to supply the fluid to the case. In the case of a plate-shaped work having a portion and formed of one layer, the space between the upper surface of the plate-shaped work and the lower surface of the cover glass is filled with water to form an aqueous layer, and grinding is performed while measuring the thickness of the plate-shaped work. In the case of a plate-shaped work formed of two layers, the space between the upper surface of the plate-shaped work and the lower surface of the cover glass is filled with air to form an air layer, and grinding is performed while measuring the thickness of the upper layer .

この構成によれば、ケースには水又はエアが供給されて、カバーガラスと板状ワークの間に水層又はエア層が形成されている。非接触厚み測定器からの測定光がカバーガラスを透過し、水層又はエア層を通って板状ワークに照射される。測定光の光路が水層又はエア層によって保護されているため、研削水の噴霧によって測定光が遮られることがない。このとき、ケースに供給される流体が水又はエアに切り替え可能であるため、カバーガラスと板状ワークの間が研削加工条件に適した流体で満たすことができる。例えば、板状ワークの上面の屈折率が水に近い場合にはケースにエアが供給され、板状ワークの屈折率が水と十分に離れている場合にはケースに水が供給される。また、噴霧の影響が少ない状況ではケースにエアが供給され、噴霧の影響が大きな状況ではケースに水が供給される。 According to this configuration, water or air is supplied to the case, and an aqueous layer or an air layer is formed between the cover glass and the plate-shaped work. The measurement light from the non-contact thickness measuring device passes through the cover glass and irradiates the plate-shaped work through the aqueous layer or the air layer. Since the optical path of the measurement light is protected by the water layer or the air layer, the measurement light is not blocked by the spray of the grinding water. At this time, since the fluid supplied to the case can be switched to water or air, the space between the cover glass and the plate-shaped work can be filled with a fluid suitable for the grinding process conditions. For example, when the refractive index of the upper surface of the plate-shaped work is close to water, air is supplied to the case, and when the refractive index of the plate-shaped work is sufficiently distant from water, water is supplied to the case. In addition, air is supplied to the case when the influence of spraying is small, and water is supplied to the case when the influence of spraying is large.

本発明によれば、ワークの種類や研削加工時の回転速度等の研削加工条件に応じて、カバーガラスと板状ワークの間の流体を水とエアで切り替えることで、板状ワークの厚みを適切に測定することができる。 According to the present invention, the thickness of the plate-shaped work can be increased by switching the fluid between the cover glass and the plate-shaped work between water and air according to the grinding processing conditions such as the type of the work and the rotation speed at the time of grinding. It can be measured appropriately.

本実施の形態の研削装置の斜視図である。It is a perspective view of the grinding apparatus of this embodiment. 比較例の非接触厚み測定器による厚み測定の説明図である。It is explanatory drawing of the thickness measurement by the non-contact thickness measuring instrument of the comparative example. 本実施の形態の非接触厚み測定器の断面模式図である。It is sectional drawing of the non-contact thickness measuring instrument of this embodiment. 本実施の形態の流体の供給経路の模式図である。It is a schematic diagram of the fluid supply path of this embodiment. 本実施の形態の非接触厚み測定器による厚み測定の説明図である。It is explanatory drawing of the thickness measurement by the non-contact thickness measuring instrument of this embodiment.

以下、添付図面を参照して、本実施の形態の研削装置について説明する。図1は、本実施の形態の研削装置の斜視図である。図2は、比較例の非接触厚み測定器による厚み測定の説明図である。また、研削装置は、図1に示すように研削加工専用の装置構成に限定されず、例えば、研削加工、研磨加工、洗浄加工等の一連の加工が全自動で実施されるフルオートタイプの加工装置に組み込まれてもよい。 Hereinafter, the grinding apparatus of this embodiment will be described with reference to the accompanying drawings. FIG. 1 is a perspective view of the grinding apparatus of the present embodiment. FIG. 2 is an explanatory diagram of thickness measurement by a non-contact thickness measuring device of a comparative example. Further, the grinding device is not limited to the device configuration dedicated to grinding as shown in FIG. 1, and for example, a fully automatic type machining in which a series of machining such as grinding, polishing, and cleaning is performed fully automatically. It may be incorporated into the device.

図1に示すように、研削装置1は、多数の研削砥石47を環状に並べた研削ホイール46を用いて、保持テーブル20に保持された板状ワークWを研削するように構成されている。板状ワークWは保護テープTが貼着された状態で研削装置1に搬入され、保護テープTを介して保持テーブル20に保持される。なお、板状ワークWは、研削対象となる板状部材であればよく、シリコン、ガリウム砒素等の半導体ウエーハでもよいし、セラミック、ガラス、サファイア等の光デバイスウエーハでもよいし、デバイスパターン形成前のアズスライスウエーハでもよい。 As shown in FIG. 1, the grinding apparatus 1 is configured to grind the plate-shaped work W held on the holding table 20 by using a grinding wheel 46 in which a large number of grinding wheels 47 are arranged in an annular shape. The plate-shaped work W is carried into the grinding device 1 with the protective tape T attached, and is held on the holding table 20 via the protective tape T. The plate-shaped work W may be a plate-shaped member to be ground, a semiconductor wafer such as silicon or gallium arsenide, an optical device wafer such as ceramic, glass, or sapphire, or before device pattern formation. It may be an asslice wafer.

研削装置1の基台10の上面には、X軸方向に延在する矩形状の開口が形成され、この開口は保持テーブル20と共に移動可能な移動板11及び蛇腹状の防水カバー12に覆われている。防水カバー12の下方には、保持テーブル20をX軸方向に移動させるボールねじ式の進退手段(不図示)が設けられている。保持テーブル20は回転手段(不図示)に連結されており、回転手段の駆動によって回転可能に構成されている。また、保持テーブル20の上面には、多孔質のポーラス材によって板状ワークWを吸引保持する保持面21が形成されている。 A rectangular opening extending in the X-axis direction is formed on the upper surface of the base 10 of the grinding device 1, and this opening is covered with a moving plate 11 movable together with the holding table 20 and a bellows-shaped waterproof cover 12. ing. Below the waterproof cover 12, a ball screw type advancing / retreating means (not shown) for moving the holding table 20 in the X-axis direction is provided. The holding table 20 is connected to a rotating means (not shown), and is configured to be rotatable by driving the rotating means. Further, on the upper surface of the holding table 20, a holding surface 21 for sucking and holding the plate-shaped work W is formed by a porous porous material.

基台10上のコラム15には、研削手段40を保持テーブル20に対して接近及び離反させる方向(Z軸方向)に研削送りする研削送り手段30が設けられている。研削送り手段30は、コラム15に配置されたZ軸方向に平行な一対のガイドレール31と、一対のガイドレール31にスライド可能に設置されたモータ駆動のZ軸テーブル32とを有している。Z軸テーブル32の背面側には図示しないナット部が形成され、これらナット部にボールネジ33が螺合されている。ボールネジ33の一端部に連結された駆動モータ34によりボールネジ33が回転駆動されることで、研削手段40がガイドレール31に沿ってZ軸方向に移動される。 The column 15 on the base 10 is provided with a grinding feed means 30 for grinding and feeding the grinding means 40 in a direction (Z-axis direction) for approaching and separating from the holding table 20. The grinding feed means 30 has a pair of guide rails 31 arranged on the column 15 parallel to the Z-axis direction, and a motor-driven Z-axis table 32 slidably installed on the pair of guide rails 31. .. Nut portions (not shown) are formed on the back surface side of the Z-axis table 32, and a ball screw 33 is screwed into these nut portions. The ball screw 33 is rotationally driven by the drive motor 34 connected to one end of the ball screw 33, so that the grinding means 40 is moved along the guide rail 31 in the Z-axis direction.

研削手段40は、ハウジング41を介してZ軸テーブル32の前面に取り付けられており、スピンドルユニット42で研削ホイール46を中心軸回りに回転させるように構成されている。スピンドルユニット42は、いわゆるエアスピンドルであり、ケーシング43の内側で高圧エアを介してスピンドル軸44を回転可能に支持している。スピンドル軸44の先端にはマウント45が連結されており、マウント45には多数の研削砥石47が環状に配設された研削ホイール46が装着されている。研削砥石47は、ダイヤモンド砥粒をメタルボンドやレジンボンド等の結合剤で固めて形成されている。 The grinding means 40 is attached to the front surface of the Z-axis table 32 via the housing 41, and is configured to rotate the grinding wheel 46 around the central axis by the spindle unit 42. The spindle unit 42 is a so-called air spindle, and rotatably supports the spindle shaft 44 inside the casing 43 via high-pressure air. A mount 45 is connected to the tip of the spindle shaft 44, and a grinding wheel 46 in which a large number of grinding wheels 47 are arranged in an annular shape is mounted on the mount 45. The grinding wheel 47 is formed by solidifying diamond abrasive grains with a binder such as a metal bond or a resin bond.

研削手段40の高さ位置は、リニアスケール51によって測定されている。リニアスケール51は、Z軸テーブル32に設けた読取部52でガイドレール31の表面に設けたスケール部53の目盛りを読み取ることで、研削手段40の高さ位置を測定している。基台10の上面には、アーム56を介して板状ワークWの厚みを測定する非接触厚み測定器60が片持ちで支持されている。非接触厚み測定器60は、板状ワークWに赤外レーザー光等の測定光を照射させ、板状ワークWの上面及び界面の反射光の光路差から厚みを測定している。なお、非接触厚み測定器60の詳細構成については後述する。 The height position of the grinding means 40 is measured by the linear scale 51. The linear scale 51 measures the height position of the grinding means 40 by reading the scale of the scale portion 53 provided on the surface of the guide rail 31 with the reading portion 52 provided on the Z-axis table 32. On the upper surface of the base 10, a non-contact thickness measuring device 60 for measuring the thickness of the plate-shaped work W via an arm 56 is cantilevered and supported. The non-contact thickness measuring device 60 irradiates the plate-shaped work W with measurement light such as infrared laser light, and measures the thickness from the optical path difference of the reflected light on the upper surface and the interface of the plate-shaped work W. The detailed configuration of the non-contact thickness measuring device 60 will be described later.

また、研削装置1には、装置各部を統括制御する制御手段90が設けられている。制御手段90は、各種処理を実行するプロセッサやメモリ等により構成される。メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体で構成される。この研削装置1では、研削ホイール46に配設された研削砥石47を板状ワークWの上面に押し付けながら回転させることで板状ワークWが所定厚みまで薄化される。このとき、研削手段40は、リニアスケール51及び非接触厚み測定器60の測定結果に基づいて制御手段90によって研削送り量が制御される。 Further, the grinding device 1 is provided with a control means 90 that controls each part of the device in an integrated manner. The control means 90 is composed of a processor, a memory, and the like that execute various processes. The memory is composed of one or a plurality of storage media such as ROM (Read Only Memory) and RAM (Random Access Memory) depending on the intended use. In this grinding device 1, the plate-shaped work W is thinned to a predetermined thickness by rotating the grinding wheel 47 arranged on the grinding wheel 46 while pressing it against the upper surface of the plate-shaped work W. At this time, the grinding means 40 is controlled by the control means 90 based on the measurement results of the linear scale 51 and the non-contact thickness measuring device 60.

ところで、図2Aに示すように、比較例の非接触厚み測定器95では、研削加工中に飛び散った研削水の噴霧で測定光が遮光されないように、非接触厚み測定器95と板状ワークWの間が水で封止されている。板状ワークWとしてシリコンウエーハW1が研削される場合には、非接触厚み測定器95とシリコンウエーハW1の間の水層内を測定光が透過されるため、研削水の噴霧によって測定光の光路が遮られることがない。よって、シリコンウエーハW1の上面と下面からの反射光によってシリコンウエーハW1の厚みを精度よく測定しながら、シリコンウエーハW1を研削することができる。 By the way, as shown in FIG. 2A, in the non-contact thickness measuring device 95 of the comparative example, the non-contact thickness measuring device 95 and the plate-shaped work W are used so that the measurement light is not blocked by the spray of the grinding water scattered during the grinding process. The space is sealed with water. When the silicon wafer W1 is ground as a plate-shaped work W, the measurement light is transmitted through the water layer between the non-contact thickness measuring device 95 and the silicon wafer W1, so that the optical path of the measurement light is transmitted by spraying the grinding water. Is not blocked. Therefore, the silicon wafer W1 can be ground while accurately measuring the thickness of the silicon wafer W1 by the reflected light from the upper surface and the lower surface of the silicon wafer W1.

しかしながら、図2Bに示すように、板状ワークWとしてシリコンウエーハW1の上面に樹脂層W2が形成されている場合には、非接触厚み測定器95と樹脂層W2の間が水で封止されると、樹脂層W2の厚みを測定することができない。これは、樹脂の屈折率(1.4から1.5)と水の屈折率(1.33)とが近いため、水と樹脂の界面(樹脂層W2の上面)で測定光が適切に反射しないためである。非接触厚み測定器95と板状ワークWの間の水層で研削水の噴霧から測定光の光路を保護することができるものの、樹脂層W2の上面で測定光が適切に反射しないため、樹脂層W2の厚みを測定しながら研削することができない。 However, as shown in FIG. 2B, when the resin layer W2 is formed on the upper surface of the silicon wafer W1 as the plate-shaped work W, the space between the non-contact thickness measuring instrument 95 and the resin layer W2 is sealed with water. Then, the thickness of the resin layer W2 cannot be measured. This is because the refractive index of the resin (1.4 to 1.5) and the refractive index of water (1.33) are close to each other, so that the measured light is appropriately reflected at the interface between water and the resin (upper surface of the resin layer W2). This is because it does not. Although the optical path of the measurement light can be protected from the spray of grinding water in the water layer between the non-contact thickness measuring instrument 95 and the plate-shaped work W, the measurement light is not properly reflected on the upper surface of the resin layer W2, so that the resin is used. It is not possible to grind while measuring the thickness of layer W2.

また、板状ワークWとしてシリコンウエーハW1を研削する場合(図2A参照)、研削ホイール46(図1参照)の高速回転時には研削水の噴霧が飛び散り易いが、研削ホイール46の低速回転時には研削水の噴霧が飛び散り難い。このため、研削水の噴霧が飛び散り難い場合には、非接触厚み測定器95と板状ワークWの間を水で封止せずに測定した方が非接触厚み測定器95による測定精度が高くなる。そこで、本実施の形態の非接触厚み測定器60(図3参照)では、非接触厚み測定器60と板状ワークWの間の流体を水とエアで切り替え可能にして、板状ワークWの種類や研削ホイール46の回転速度等の研削加工条件に適した厚み測定を実施するようにしている。 Further, when grinding the silicon wafer W1 as the plate-shaped workpiece W (see FIG. 2A), the spray of grinding water tends to scatter at high speed rotation of the grinding wheel 46 (see FIG. 1), but the grinding water is easily scattered at low speed rotation of the grinding wheel 46. The spray is hard to scatter. Therefore, when the spray of the grinding water is difficult to scatter, the measurement accuracy by the non-contact thickness measuring device 95 is higher when the measurement is performed without sealing the space between the non-contact thickness measuring device 95 and the plate-shaped work W with water. .. Therefore, in the non-contact thickness measuring device 60 (see FIG. 3) of the present embodiment, the fluid between the non-contact thickness measuring device 60 and the plate-shaped work W can be switched between water and air, so that the plate-shaped work W can be switched. The thickness is measured according to the grinding conditions such as the type and the rotation speed of the grinding wheel 46.

以下、図3及び図4を参照して、本実施の形態の非接触厚み測定器について説明する。図3は、本実施の形態の非接触厚み測定器の断面模式図である。図4は、本実施の形態の流体の供給経路の模式図である。 Hereinafter, the non-contact thickness measuring device of the present embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a schematic cross-sectional view of the non-contact thickness measuring instrument of the present embodiment. FIG. 4 is a schematic diagram of the fluid supply path of the present embodiment.

図3に示すように、非接触厚み測定器60は、板状ワークWの上面に流体を供給しながら、測定器本体61の内部から流体層を透過するように板状ワークWに向けて測定光を照射して、板状ワークWの厚みを測定するように構成されている。測定器本体61の内部には、発光部62、ハーフミラー63、受光部64が収容されており、これらの部材によって測定光の光路が形成されている。測定器本体61の下面には、測定光及び反射光の出入口となるカバーガラス65が設けられており、カバーガラス65によって測定器本体61の内側と外側が液密に仕切られている。 As shown in FIG. 3, the non-contact thickness measuring instrument 60 measures toward the plate-shaped work W so as to permeate the fluid layer from the inside of the measuring instrument main body 61 while supplying the fluid to the upper surface of the plate-shaped work W. It is configured to irradiate light and measure the thickness of the plate-shaped work W. A light emitting unit 62, a half mirror 63, and a light receiving unit 64 are housed inside the measuring instrument main body 61, and an optical path of measurement light is formed by these members. A cover glass 65 that serves as an entrance / exit for measurement light and reflected light is provided on the lower surface of the measuring instrument main body 61, and the inside and outside of the measuring instrument main body 61 are liquid-tightly partitioned by the cover glass 65.

測定器本体61には、カバーガラス65と板状ワークWとの間で測定光を保護する測定光保護部70が設けられている。測定光保護部70は、測定器本体61の下部で流体を貯留するケース71と、ケース71に供給する流体を水とエアとに切り替える切換部75とを有している。ケース71の側面には水供給源76及びエア供給源77に接続された供給口72が形成されており、ケース71の下面にはケース71に供給された水やエア等の流体を板状ワークWの上面に排出する開口73が形成されている。ケース71によって板状ワークWとカバーガラス65の間が流体で満たされて、研削水の噴霧から測定光の光路が保護される。 The measuring instrument main body 61 is provided with a measuring light protection unit 70 that protects the measuring light between the cover glass 65 and the plate-shaped work W. The measurement light protection unit 70 has a case 71 for storing the fluid in the lower part of the measuring instrument main body 61, and a switching unit 75 for switching the fluid supplied to the case 71 between water and air. A water supply source 76 and a supply port 72 connected to the air supply source 77 are formed on the side surface of the case 71, and a plate-shaped work such as water or air supplied to the case 71 is formed on the lower surface of the case 71. An opening 73 for discharging is formed on the upper surface of W. The case 71 fills the space between the plate-shaped work W and the cover glass 65 with a fluid to protect the optical path of the measurement light from the spray of grinding water.

非接触厚み測定器60では、切換部75によってケース71の供給口72の接続先が水供給源76及びエア供給源77に切り替えられる。例えば、板状ワークWがシリコンウエーハW1の場合には(図5A参照)、供給口72の接続先が水供給源76に切り替えられてカバーガラス65と板状ワークWの間に水が供給される。また、板状ワークWの上面に水と屈折率が近い樹脂層W2が形成されている場合には(図5B参照)、供給口72の接続先がエア供給源77に切り替えられてカバーガラス65と板状ワークWの間にエアが供給される。このように、板状ワークWの上面の材質(屈折率)に応じて流体が水とエアに切り替えられる。 In the non-contact thickness measuring instrument 60, the connection destination of the supply port 72 of the case 71 is switched between the water supply source 76 and the air supply source 77 by the switching unit 75. For example, when the plate-shaped work W is a silicon wafer W1 (see FIG. 5A), the connection destination of the supply port 72 is switched to the water supply source 76, and water is supplied between the cover glass 65 and the plate-shaped work W. To. When the resin layer W2 having a refractive index close to that of water is formed on the upper surface of the plate-shaped work W (see FIG. 5B), the connection destination of the supply port 72 is switched to the air supply source 77 to cover the cover glass 65. Air is supplied between the plate-shaped work W and the plate-shaped work W. In this way, the fluid is switched between water and air according to the material (refractive index) of the upper surface of the plate-shaped work W.

ここで、水とエアでは屈折率が違うことから、非接触厚み測定器60の焦点距離を変更する必要がある。このため、水とエアを切り替える際には、カバーガラス65と板状ワークWとの間の設定距離が調整される。例えば、水の屈折率を1.33、エアの屈折率を約1.00とし、水で厚み測定する際の設定距離a(図5A参照)を基準にして、エアで厚み測定する際の設定距離b(図5B参照)は、以下の式(1)のように表される。
式(1)
b=a/1.33
Here, since the refractive indexes of water and air are different, it is necessary to change the focal length of the non-contact thickness measuring instrument 60. Therefore, when switching between water and air, the set distance between the cover glass 65 and the plate-shaped work W is adjusted. For example, the refractive index of water is 1.33, the refractive index of air is about 1.00, and the setting when measuring the thickness with air is based on the set distance a (see FIG. 5A) when measuring the thickness with water. The distance b (see FIG. 5B) is expressed by the following equation (1).
Equation (1)
b = a / 1.33

このように、屈折率に応じて設定距離を調整することで、水とエアの屈折率による測定結果の誤差が補正される。同一の測定対象を測定する際には、この補正によって水とエアを切り替えて測定しても同じ厚みが測定される。なお、非接触厚み測定器60と板状ワークWの間にエア層が形成される場合には、エア層によって測定光の光路が保護されているが、研削水の噴霧を完全に防ぐことができない場合がある。エア層内に噴霧が入り込むと実際の厚みよりも厚めに測定されるため、エア層内の噴霧の割合を予測して測定結果を補正するようにしてもよい。 By adjusting the set distance according to the refractive index in this way, the error in the measurement result due to the refractive index of water and air is corrected. When measuring the same measurement target, the same thickness is measured even if water and air are switched and measured by this correction. When an air layer is formed between the non-contact thickness measuring instrument 60 and the plate-shaped work W, the optical path of the measurement light is protected by the air layer, but the spraying of grinding water can be completely prevented. It may not be possible. When the spray enters the air layer, the thickness is measured to be thicker than the actual thickness. Therefore, the ratio of the spray in the air layer may be predicted to correct the measurement result.

この非接触厚み測定器60では、発光部62から出射された測定光がカバーガラス65を透過し、カバーガラス65と板状ワークWの間の流体を通って板状ワークWに照射される。このとき、板状ワークWの上面と屈折率が大きく異なる流体を選択することで、測定光が板状ワークWの上面で第1の反射光として反射され、上面を透過した測定光が板状ワークWの界面で第2の反射光として反射される。第1、第2の反射光は、再びカバーガラス65を透過してハーフミラー63で受光部64に向けて反射される。そして、受光部64で第1、第2の反射光の光路差から板状ワークWの厚みが測定される。 In the non-contact thickness measuring device 60, the measurement light emitted from the light emitting unit 62 passes through the cover glass 65 and is irradiated to the plate-shaped work W through the fluid between the cover glass 65 and the plate-shaped work W. At this time, by selecting a fluid having a refractive index significantly different from that of the upper surface of the plate-shaped work W, the measurement light is reflected as the first reflected light on the upper surface of the plate-shaped work W, and the measurement light transmitted through the upper surface is plate-shaped. It is reflected as the second reflected light at the interface of the work W. The first and second reflected light passes through the cover glass 65 again and is reflected by the half mirror 63 toward the light receiving portion 64. Then, the light receiving unit 64 measures the thickness of the plate-shaped work W from the optical path difference between the first and second reflected lights.

また、カバーガラス65と板状ワークWの間で測定光の光路が流体によって保護されているため、研削水の噴霧の影響を受けることなく板状ワークWの厚みを測定することが可能になっている。なお、板状ワークWの種類に応じて流体を水とエアに切り替える構成に限らず、研削ホイール46(図1参照)の回転速度に応じて流体を水とエアで切り替える構成にしてもよい。 Further, since the optical path of the measurement light is protected by the fluid between the cover glass 65 and the plate-shaped work W, it is possible to measure the thickness of the plate-shaped work W without being affected by the spray of grinding water. ing. The configuration is not limited to switching the fluid between water and air according to the type of the plate-shaped work W, and the fluid may be switched between water and air according to the rotation speed of the grinding wheel 46 (see FIG. 1).

図4に示すように、非接触厚み測定器60のケース71の供給口72には、第1の流路81を通じて水供給源76から水が供給され、第2の流路82を通じてエア供給源77からエアが供給されている。第1の流路81の途中部分には水層形成バルブ84及び水層用の第1の絞り弁85が設けられており、第2の流路82の途中部分にはエア層形成バルブ86及びエア層用の第2の絞り弁87が設けられている。また、第2の流路82には第2の絞り弁87を迂回するようにバイパス流路83が接続されており、バイパス流路83には乾燥用の第3の絞り弁88及び乾燥エアバルブ89が設けられている。 As shown in FIG. 4, water is supplied from the water supply source 76 through the first flow path 81 to the supply port 72 of the case 71 of the non-contact thickness measuring instrument 60, and the air supply source is supplied through the second flow path 82. Air is supplied from 77. A water layer forming valve 84 and a first throttle valve 85 for the water layer are provided in the middle part of the first flow path 81, and an air layer forming valve 86 and an air layer forming valve 86 are provided in the middle part of the second flow path 82. A second throttle valve 87 for the air layer is provided. Further, a bypass flow path 83 is connected to the second flow path 82 so as to bypass the second throttle valve 87, and a third throttle valve 88 for drying and a drying air valve 89 are connected to the bypass flow path 83. Is provided.

水層形成バルブ84、エア層形成バルブ86、乾燥エアバルブ89には制御手段90が電気的に接続され、制御手段90によってバルブが開閉されることでケース71に供給する流体が水とエアで切り替えられる。このように、水層形成バルブ84、エア層形成バルブ86、乾燥エアバルブ89によって切換部75が構成されている。水層形成バルブ84が開かれて、エア層形成バルブ86が閉じられると、水供給源76からの水が第1の絞り弁85で所定水量(1〜2[l/min])に絞られてケース71に供給される。これにより、カバーガラス65と板状ワークWの間に水層が形成され、水層によって研削時の噴霧等から測定光の光路が保護される。 A control means 90 is electrically connected to the water layer forming valve 84, the air layer forming valve 86, and the dry air valve 89, and the fluid supplied to the case 71 is switched between water and air by opening and closing the valve by the control means 90. Be done. As described above, the switching portion 75 is composed of the water layer forming valve 84, the air layer forming valve 86, and the drying air valve 89. When the water layer forming valve 84 is opened and the air layer forming valve 86 is closed, the water from the water supply source 76 is throttled to a predetermined amount (1-2 [l / min]) by the first throttle valve 85. Is supplied to the case 71. As a result, an aqueous layer is formed between the cover glass 65 and the plate-shaped work W, and the aqueous layer protects the optical path of the measurement light from spraying and the like during grinding.

水層形成バルブ84が閉じられた状態で、エア層形成バルブ86が開かれて、乾燥エアバルブ89が閉じられると、エア供給源77からのエアが第2の絞り弁87で所定エア量(4〜5[l/min])に絞られてケース71に供給される。これにより、カバーガラス65と板状ワークWの間にエア層が形成され、エア層によって研削時の噴霧等から測定光の光路が保護される。なお、第1、第2の絞り弁85、87は、カバーガラス65と板状ワークWの間隔によっても異なるが、カバーガラス65と板状ワークWの間を水やエアで満たすことができる程度の流量に調整可能であればよい。 When the air layer forming valve 86 is opened and the drying air valve 89 is closed while the water layer forming valve 84 is closed, the air from the air supply source 77 is discharged by the second throttle valve 87 to a predetermined amount of air (4). It is narrowed down to ~ 5 [l / min]) and supplied to the case 71. As a result, an air layer is formed between the cover glass 65 and the plate-shaped work W, and the air layer protects the optical path of the measurement light from sprays and the like during grinding. The first and second throttle valves 85 and 87 are different depending on the distance between the cover glass 65 and the plate-shaped work W, but the space between the cover glass 65 and the plate-shaped work W can be filled with water or air. It suffices if it can be adjusted to the flow rate of.

また、水層形成バルブ84が閉じられた状態で、エア層形成バルブ86及び乾燥エアバルブ89が開かれると、エア供給源77からのエアが第2の絞り弁87を迂回してバイパス流路83に流れ込む。これは、第2の流路82の第2の絞り弁87よりもバイパス流路83の第3の絞り弁88の開口面積が広いからである。そして、バイパス流路83内のエアが第3の絞り弁88で所定エア量(40〜50[l/min])に絞られて、第2の流路82を通じてケース71に供給される。これにより、カバーガラス65と板状ワークWの間に水層を形成した後にエア層を形成する際に、ケース71内に大量のエアが流れ込んで、ケース71内の水滴が除去されると共に板状ワークWが乾燥される。 Further, when the air layer forming valve 86 and the dry air valve 89 are opened while the water layer forming valve 84 is closed, the air from the air supply source 77 bypasses the second throttle valve 87 and bypasses the bypass flow path 83. Flow into. This is because the opening area of the third throttle valve 88 of the bypass flow path 83 is wider than that of the second throttle valve 87 of the second flow path 82. Then, the air in the bypass flow path 83 is throttled to a predetermined amount of air (40 to 50 [l / min]) by the third throttle valve 88, and is supplied to the case 71 through the second flow path 82. As a result, when the air layer is formed after the water layer is formed between the cover glass 65 and the plate-shaped work W, a large amount of air flows into the case 71, water droplets in the case 71 are removed, and the plate is formed. The work W is dried.

図5を参照して、非接触厚み測定器による厚み測定について説明する。図5は、本実施の形態の非接触厚み測定器による厚み測定の説明図である。なお、図5Aはシリコンウエーハの厚みを測定する一例、図5Bはシリコンウエーハ上の樹脂層の厚みを測定する一例をそれぞれ示している。なお、非接触厚み測定器の測定対象はシリコンウエーハ及び樹脂層に限定されるものではなく、適宜変更が可能である。また、上記したように、水とエアを切り替えて板状ワークを測定する際には、カバーガラスと保持テーブルとの間の設定距離も調整されている。 The thickness measurement by the non-contact thickness measuring device will be described with reference to FIG. FIG. 5 is an explanatory diagram of thickness measurement by the non-contact thickness measuring device of the present embodiment. FIG. 5A shows an example of measuring the thickness of the silicon wafer, and FIG. 5B shows an example of measuring the thickness of the resin layer on the silicon wafer. The measurement target of the non-contact thickness measuring device is not limited to the silicon wafer and the resin layer, and can be changed as appropriate. Further, as described above, when measuring the plate-shaped work by switching between water and air, the set distance between the cover glass and the holding table is also adjusted.

図5Aに示すように、板状ワークWとしてのシリコンウエーハW1が保護テープTを介して保持テーブル20上で保持されている。シリコンウエーハW1と水の屈折率が大きく異なるため、切換部75によってエア供給源77からケース71が遮断されて水供給源76に接続される。これにより、ケース71内には水供給源76から水が供給され、カバーガラス65とシリコンウエーハW1の間に水層S1が形成される。この状態で、発光部62から測定光L0が出射されると、ハーフミラー63及びカバーガラス65を測定光L0が透過して、水層S1内を通って測定光L0がシリコンウエーハW1に照射される。 As shown in FIG. 5A, the silicon wafer W1 as the plate-shaped work W is held on the holding table 20 via the protective tape T. Since the refractive index of water is significantly different from that of the silicon wafer W1, the case 71 is cut off from the air supply source 77 by the switching unit 75 and connected to the water supply source 76. As a result, water is supplied from the water supply source 76 into the case 71, and the water layer S1 is formed between the cover glass 65 and the silicon wafer W1. In this state, when the measurement light L0 is emitted from the light emitting unit 62, the measurement light L0 is transmitted through the half mirror 63 and the cover glass 65, and the measurement light L0 is irradiated to the silicon wafer W1 through the aqueous layer S1. To.

シリコンウエーハW1の上面では測定光L0が第1の反射光L1として反射され、シリコンウエーハW1と保護テープTの界面では測定光L0が第2の反射光L2として反射される。第1、第2の反射光L1、L2は、再び水層S1を通ってカバーガラス65を透過し、ハーフミラー63によって受光部64に向けて反射される。受光部64では、第1、第2の反射光L1、L2の光路差(干渉差)からシリコンウエーハW1の厚みを測定する。なお、上記したように、シリコンウエーハW1の厚み測定では、研削ホイール46(図1参照)の低速回転時のように研削水の噴霧が少ない場合には、カバーガラス65とシリコンウエーハW1の間にエア層S2(図5B参照)を形成してもよい。 The measurement light L0 is reflected as the first reflected light L1 on the upper surface of the silicon wafer W1, and the measurement light L0 is reflected as the second reflected light L2 at the interface between the silicon wafer W1 and the protective tape T. The first and second reflected lights L1 and L2 pass through the water layer S1 again, pass through the cover glass 65, and are reflected by the half mirror 63 toward the light receiving portion 64. The light receiving unit 64 measures the thickness of the silicon wafer W1 from the optical path difference (interference difference) of the first and second reflected lights L1 and L2. As described above, in the thickness measurement of the silicon wafer W1, when the amount of sprayed grinding water is small as in the case of low-speed rotation of the grinding wheel 46 (see FIG. 1), between the cover glass 65 and the silicon wafer W1. The air layer S2 (see FIG. 5B) may be formed.

図5Bに示すように、板状ワークWとしての樹脂層W2付きのシリコンウエーハW1が、樹脂層W2を上方に向けた状態で保護テープTを介して保持テーブル20上に保持されている。樹脂層W2と水の屈折率が近いため、切換部75によって水供給源76からケース71が遮断されてエア供給源77に接続される。これにより、ケース71内にはエア供給源77からエアが供給され、カバーガラス65と樹脂層W2の間にエア層S2が形成される。この状態で、発光部62から測定光L0が出射されると、ハーフミラー63及びカバーガラス65を測定光L0が透過して、エア層S2内を通って測定光が樹脂層W2に照射される。 As shown in FIG. 5B, a silicon wafer W1 with a resin layer W2 as a plate-shaped work W is held on a holding table 20 via a protective tape T with the resin layer W2 facing upward. Since the refractive index of water is close to that of the resin layer W2, the switching unit 75 cuts off the case 71 from the water supply source 76 and connects it to the air supply source 77. As a result, air is supplied from the air supply source 77 into the case 71, and the air layer S2 is formed between the cover glass 65 and the resin layer W2. In this state, when the measurement light L0 is emitted from the light emitting unit 62, the measurement light L0 is transmitted through the half mirror 63 and the cover glass 65, and the measurement light is irradiated to the resin layer W2 through the air layer S2. ..

樹脂層W2の上面では測定光L0が第1の反射光L1として反射され、樹脂層W2とシリコンウエーハW1の界面では測定光L0が第2の反射光L2として反射される。第1、第2の反射光L1、L2は、再びエア層S2を通ってカバーガラス65を透過し、ハーフミラー63によって受光部64に向けて反射される。受光部64では、第1、第2の反射光L1、L2の光路差から樹脂層W2の厚みを測定する。このように、水層S1の代わりにエア層S2を形成することで、樹脂層W2とエアの屈折率が十分に離れているため、エア層S2と樹脂層W2の界面(樹脂層W2の上面)で測定光を適切に反射させることができる。 The measurement light L0 is reflected as the first reflected light L1 on the upper surface of the resin layer W2, and the measurement light L0 is reflected as the second reflected light L2 at the interface between the resin layer W2 and the silicon wafer W1. The first and second reflected lights L1 and L2 pass through the air layer S2 again through the cover glass 65, and are reflected by the half mirror 63 toward the light receiving portion 64. The light receiving unit 64 measures the thickness of the resin layer W2 from the optical path difference between the first and second reflected lights L1 and L2. By forming the air layer S2 instead of the water layer S1 in this way, the refractive indexes of the resin layer W2 and the air are sufficiently separated from each other, so that the interface between the air layer S2 and the resin layer W2 (the upper surface of the resin layer W2). ) Can appropriately reflect the measurement light.

以上のように、本実施の形態の研削装置1によれば、非接触厚み測定器60のケース71には水又はエアが供給されて、カバーガラス65と板状ワークWの間に水層又はエア層が形成されている。非接触厚み測定器60からの測定光がカバーガラス65を透過し、水層又はエア層を通って板状ワークWに照射される。測定光の光路が水層又はエア層によって保護されているため、研削水の噴霧によって測定光が遮られることがない。このとき、ケース71に供給される流体が水又はエアに切り替え可能であるため、カバーガラス65と板状ワークWの間が研削加工条件に適した流体で満すことができる。例えば、板状ワークWの上面の屈折率が水に近い場合にはケース71にエアが供給され、板状ワークWの屈折率が水と十分に離れている場合にはケース71に水が供給される。また、噴霧の影響が少ない状況ではケース71にエアが供給され、噴霧の影響が大きな状況ではケース71に水が供給される。 As described above, according to the grinding apparatus 1 of the present embodiment, water or air is supplied to the case 71 of the non-contact thickness measuring instrument 60, and an aqueous layer or an aqueous layer or a plate-shaped work W is provided between the cover glass 65 and the plate-shaped work W. An air layer is formed. The measurement light from the non-contact thickness measuring device 60 passes through the cover glass 65 and is irradiated to the plate-shaped work W through the aqueous layer or the air layer. Since the optical path of the measurement light is protected by the water layer or the air layer, the measurement light is not blocked by the spray of the grinding water. At this time, since the fluid supplied to the case 71 can be switched to water or air, the space between the cover glass 65 and the plate-shaped work W can be filled with a fluid suitable for the grinding processing conditions. For example, when the refractive index of the upper surface of the plate-shaped work W is close to water, air is supplied to the case 71, and when the refractive index of the plate-shaped work W is sufficiently distant from water, water is supplied to the case 71. Will be done. Further, air is supplied to the case 71 when the influence of the spray is small, and water is supplied to the case 71 when the influence of the spray is large.

なお、本実施の形態では、板状ワークWの種類や研削ホイール46の回転速度等の研削加工条件に応じて流体を水とエアに切り替える構成にしたが、この構成に限定されない。他の条件に応じて流体を水とエアに切り替える構成にしてもよい。 In the present embodiment, the fluid is switched between water and air according to the grinding conditions such as the type of the plate-shaped work W and the rotation speed of the grinding wheel 46, but the configuration is not limited to this. The fluid may be switched between water and air according to other conditions.

また、本実施の形態では、板状ワークWの上面がシリコンの場合には水層が形成され、板状ワークWの上面が樹脂の場合にはエア層が形成される構成にしたが、この構成に限定されない。板状ワークWの上面の材質は特に限定されず、板状ワークWの上面の屈折率に応じて水とエアが切り替えられればよい。 Further, in the present embodiment, when the upper surface of the plate-shaped work W is made of silicon, an aqueous layer is formed, and when the upper surface of the plate-shaped work W is made of resin, an air layer is formed. It is not limited to the configuration. The material of the upper surface of the plate-shaped work W is not particularly limited, and water and air may be switched according to the refractive index of the upper surface of the plate-shaped work W.

また、本実施の形態では、非接触厚み測定器60が板状ワークWを乾燥させるエアノズルとして機能する構成にしたが、非接触厚み測定器60がエアノズルの機能を備えていなくてもよい。 Further, in the present embodiment, the non-contact thickness measuring device 60 is configured to function as an air nozzle for drying the plate-shaped work W, but the non-contact thickness measuring device 60 does not have to have the function of the air nozzle.

また、本実施の形態及び変形例を説明したが、本発明の他の実施の形態として、上記実施の形態及び変形例を全体的又は部分的に組み合わせたものでもよい。 Moreover, although the present embodiment and the modified example have been described, as another embodiment of the present invention, the above-described embodiment and the modified example may be combined in whole or in part.

また、本発明の実施の形態は上記の実施の形態に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施形態をカバーしている。 Further, the embodiment of the present invention is not limited to the above-described embodiment, and may be variously modified, replaced, or modified without departing from the spirit of the technical idea of the present invention. Furthermore, if the technical idea of the present invention can be realized in another way by the advancement of technology or another technology derived from it, it may be carried out by using that method. Therefore, the scope of claims covers all embodiments that may be included within the scope of the technical idea of the present invention.

また、本実施の形態では、本発明を研削装置に適用した構成について説明したが、板状ワークの厚みを適切に測定可能な他の装置に適用することが可能である。 Further, in the present embodiment, the configuration in which the present invention is applied to the grinding apparatus has been described, but it is possible to apply the present invention to other apparatus capable of appropriately measuring the thickness of the plate-shaped work.

以上説明したように、本発明は、研削加工条件に応じて板状ワークの厚みを適切に測定することができるという効果を有し、特に、樹脂層付きのシリコンウエーハの研削に使用される研削装置に有用である。 As described above, the present invention has an effect that the thickness of the plate-shaped workpiece can be appropriately measured according to the grinding processing conditions, and in particular, grinding used for grinding a silicon wafer with a resin layer. Useful for equipment.

1 研削装置
20 保持テーブル
40 研削手段
47 研削砥石
60 非接触厚み測定器
62 発光部
64 受光部
65 カバーガラス
70 測定光保護部
71 ケース
73 開口
75 切換部
L0 測定光
L1 第1の反射光
L2 第2の反射光
S1 水層
S2 エア層
W 板状ワーク
W1 シリコンウエーハ(板状ワーク)
W2 樹脂層(板状ワーク)
1 Grinding device 20 Holding table 40 Grinding means 47 Grinding grindstone 60 Non-contact thickness measuring instrument 62 Light emitting part 64 Light receiving part 65 Cover glass 70 Measuring light protection part 71 Case 73 Opening 75 Switching part L0 Measuring light L1 First reflected light L2 First 2 reflected light S1 water layer S2 air layer W plate-shaped work W1 silicon wafer (plate-shaped work)
W2 resin layer (plate-shaped work)

Claims (1)

一層又は上層と下層の二層からなる板状ワークを保持する保持テーブルと、該保持テーブルが保持した板状ワークを研削砥石で研削する研削手段と、該研削手段で研削される板状ワークに測定光を照射させ板状ワークの上面で反射した第1の反射光と上面を通過した該測定光が該一層の下面又は該上層と該下層との界面で反射した第2の反射光とを受光して該第1の反射光と該第2の反射光との光路差から板状ワークの厚み又は上層の厚みを測定する非接触厚み測定器と、を備える研削装置であって、
該非接触厚み測定器は、該測定光と該第1の反射光と該第2の反射光とを透過するカバーガラスと、該カバーガラスと該保持テーブルが保持する板状ワークとの間に形成する測定光保護部、とを備え、
該測定光保護部は、該保持テーブルが保持した板状ワークと該カバーガラスとの間を流体で満たす開口を有するケースと、該ケースに供給する流体を水とエアとに切り換え可能な切換部とを備え、
該一層で形成された板状ワークの場合は、該板状ワークの上面と該カバーガラスの下面との間を水で満たし水層を形成させ、板状ワークの厚みを測定しながら研削し、
該二層で形成された板状ワークの場合は、該板状ワークの上面と該カバーガラスの下面との間をエアで満たしエア層を形成させ、該上層の厚みを測定しながら研削する研削装置。
A holding table that holds a plate-shaped work consisting of one layer or two layers, an upper layer and a lower layer, a grinding means that grinds the plate-shaped work held by the holding table with a grinding wheel, and a plate-shaped work that is ground by the grinding means. The first reflected light that is irradiated with the measurement light and reflected on the upper surface of the plate-shaped work and the second reflected light that the measurement light that has passed through the upper surface is reflected at the lower surface of the one layer or the interface between the upper layer and the lower layer. a grinding apparatus and a non-contact thickness gauge for measuring the thickness or the upper layer of the thickness of the plate-shaped workpiece from the optical path difference between the light receiving to the first reflected light and the second reflected light,
The non-contact thickness measuring device is formed between a cover glass that transmits the measurement light, the first reflected light, and the second reflected light, and a plate-shaped work held by the cover glass and the holding table. Equipped with a measuring light protection unit, and
The measurement light protection unit is a case having an opening filled with a fluid between the plate-shaped work held by the holding table and the cover glass, and a switching unit capable of switching the fluid supplied to the case between water and air. With and
In the case of a plate-shaped work formed of the single layer, the space between the upper surface of the plate-shaped work and the lower surface of the cover glass is filled with water to form an aqueous layer, and the plate-shaped work is ground while measuring the thickness.
In the case of a plate-shaped work formed of the two layers, the space between the upper surface of the plate-shaped work and the lower surface of the cover glass is filled with air to form an air layer, and grinding is performed while measuring the thickness of the upper layer. apparatus.
JP2016171855A 2016-09-02 2016-09-02 Grinding device Active JP6844971B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016171855A JP6844971B2 (en) 2016-09-02 2016-09-02 Grinding device
TW106125668A TWI726134B (en) 2016-09-02 2017-07-31 Grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171855A JP6844971B2 (en) 2016-09-02 2016-09-02 Grinding device

Publications (2)

Publication Number Publication Date
JP2018034283A JP2018034283A (en) 2018-03-08
JP6844971B2 true JP6844971B2 (en) 2021-03-17

Family

ID=61566856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171855A Active JP6844971B2 (en) 2016-09-02 2016-09-02 Grinding device

Country Status (2)

Country Link
JP (1) JP6844971B2 (en)
TW (1) TWI726134B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507576B2 (en) 2020-03-17 2024-06-28 株式会社東京精密 Grinding Equipment
JP2023000307A (en) 2021-06-17 2023-01-04 株式会社ディスコ Grinding apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958148A (en) * 1996-07-26 1999-09-28 Speedfam-Ipec Corporation Method for cleaning workpiece surfaces and monitoring probes during workpiece processing
US6967715B2 (en) * 2002-12-06 2005-11-22 International Business Machines Corporation Method and apparatus for optical film measurements in a controlled environment
JP2006313883A (en) * 2005-04-04 2006-11-16 Shin Etsu Handotai Co Ltd Bonded wafer, manufacturing method therefor, and plane grinding apparatus
US20090233109A1 (en) * 2005-04-04 2009-09-17 Shin-Etsu Handotai Co., Ldt. Method for Producing Bonded Wafer, Bonded Wafer, and Surface Grinding Machine
JP5101312B2 (en) * 2008-01-17 2012-12-19 株式会社ディスコ Thickness measuring device and grinding device provided with the thickness measuring device
JP2011519735A (en) * 2008-04-21 2011-07-14 アプライド マテリアルズ インコーポレイテッド Method and apparatus for measuring substrate edge thickness during polishing
JP5731806B2 (en) * 2010-12-02 2015-06-10 株式会社ディスコ Grinding equipment
JP5795942B2 (en) * 2011-11-11 2015-10-14 株式会社ディスコ SAW device wafer grinding method
JP6145342B2 (en) * 2013-07-12 2017-06-07 株式会社荏原製作所 Film thickness measuring apparatus, film thickness measuring method, and polishing apparatus equipped with film thickness measuring apparatus
JP6441056B2 (en) * 2014-12-10 2018-12-19 株式会社ディスコ Grinding equipment

Also Published As

Publication number Publication date
TWI726134B (en) 2021-05-01
JP2018034283A (en) 2018-03-08
TW201811506A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
JP6441056B2 (en) Grinding equipment
JP6377433B2 (en) Grinding method
US20170113322A1 (en) Cutting aparatus
US11819975B2 (en) Workpiece processing apparatus including a resin coater and a resin grinder
JP6844971B2 (en) Grinding device
JP6732382B2 (en) Processing device and method of processing workpiece
JP6552930B2 (en) Grinding device
JP6385734B2 (en) Grinding method
JP6990588B2 (en) Cutting equipment
JP2016078147A (en) Grinding device
JP2018062052A (en) Cutting method and cutting device
JP6721473B2 (en) Wafer processing method
JP6598668B2 (en) Grinding equipment
JP5731806B2 (en) Grinding equipment
JP6262593B2 (en) Grinding equipment
KR102315293B1 (en) Dry type polishing apparatus
JP6888396B2 (en) Grinding machine system
JP7015139B2 (en) Grinding method and grinding equipment for workpieces
KR20200015378A (en) Wheel mount
TWI530358B (en) Grinding device
JP6774242B2 (en) Spindle unit
JP6910888B2 (en) Grinding device and grinding method
JP6888397B2 (en) Machine tool system
JP6932979B2 (en) Machine tool system
JP6244206B2 (en) Grinding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210225

R150 Certificate of patent or registration of utility model

Ref document number: 6844971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250