JP6843512B2 - Electron beam welding equipment, computer programs, electron beam welding methods - Google Patents
Electron beam welding equipment, computer programs, electron beam welding methods Download PDFInfo
- Publication number
- JP6843512B2 JP6843512B2 JP2016060020A JP2016060020A JP6843512B2 JP 6843512 B2 JP6843512 B2 JP 6843512B2 JP 2016060020 A JP2016060020 A JP 2016060020A JP 2016060020 A JP2016060020 A JP 2016060020A JP 6843512 B2 JP6843512 B2 JP 6843512B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- pulse
- focal position
- thickness direction
- plate thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Welding Or Cutting Using Electron Beams (AREA)
Description
本発明は、電子ビーム溶接装置、コンピュータプログラム、電子ビーム溶接方法に関する。 The present invention relates to an electron beam welding apparatus, a computer program, and an electron beam welding method.
例えば特許文献1に開示されているように、電子ビーム溶接は、ワーク(加工対象物)同士を突き合わせた開先部に電子ビームを照射することで、開先部の両側のワークをそれぞれ溶融して接合する。電子ビームは、電子銃から放射された後、フォーカスコイルによって発生する電磁界により集束されることで、エネルギ密度を高めた状態で開先部に照射される。 For example, as disclosed in Patent Document 1, in electron beam welding, the workpieces on both sides of the groove are melted by irradiating the groove where the workpieces (work objects) are butted against each other with an electron beam. To join. After being emitted from the electron gun, the electron beam is focused by the electromagnetic field generated by the focus coil, so that the electron beam is irradiated to the groove portion in a state where the energy density is increased.
ここで、電子ビーム溶接は、電子ビームを照射しながら開先部に沿って一度だけ溶接を行う、いわゆる1パスで溶接を行うことができる。その一方で、電子ビームの照射によりワークを溶融した後、溶融したワークが冷却固化すると、電子ビームの入熱による影響で強度が低下してしまう。 Here, the electron beam welding can be performed in a so-called one pass, in which welding is performed only once along the groove portion while irradiating the electron beam. On the other hand, if the work is melted by irradiation with an electron beam and then the melted work is cooled and solidified, the strength is lowered due to the influence of the heat input of the electron beam.
例えば50mm以上の厚板に電子ビーム溶接を施す場合、確実な溶接を行うには、厚板の板厚方向全体で開先部両側のワークを溶融する必要がある。これには、厚板に対する電子ビームによる入熱量を高める必要がある。しかし、入熱量を高めた結果、電子ビームの入熱の影響による溶接部位の強度や靭性等の機械的性質の低下度合いが大きくなってしまう。
そこでなされた本発明の目的は、厚板であっても溶接を確実に行いつつ入熱量を抑え、溶接部位の強度や靭性等の機械的性質を向上させることのできる電子ビーム溶接装置、コンピュータプログラム、電子ビーム溶接方法を提供することである。
For example, when electron beam welding is performed on a thick plate of 50 mm or more, it is necessary to melt the workpieces on both sides of the groove portion in the entire plate thickness direction of the thick plate in order to perform reliable welding. For this purpose, it is necessary to increase the amount of heat input by the electron beam to the thick plate. However, as a result of increasing the amount of heat input, the degree of deterioration of mechanical properties such as strength and toughness of the welded portion due to the influence of heat input of the electron beam becomes large.
Therefore, an object of the present invention is an electron beam welding apparatus and a computer program capable of reliably performing welding even on a thick plate, suppressing the amount of heat input, and improving mechanical properties such as strength and toughness of the welded portion. , To provide an electron beam welding method.
本発明は、上記課題を解決するため、以下の手段を採用する。
本発明の一態様に係る電子ビーム溶接装置は、互いに突き合わせた一対の加工対象物の開先部に向かって電子ビームを照射する電子銃と、電磁界によって前記電子ビームを集束させるフォーカスコイルと、前記開先部に沿って前記電子ビームを照射している間、前記フォーカスコイルに供給する電流値を変化させて、前記電子ビームの焦点位置を前記加工対象物の板厚方向に変動させる制御部と、を備え、前記制御部は、一定時間Tsの間に、前記電流値のピーク位置が互いに異なる電流波形の複数パルスを前記フォーカスコイルに供給することによって、前記焦点位置が前記板厚方向に異なる前記電子ビームを順次生成し、前記複数パルスは、前記加工対象物の表面側に前記焦点位置を有する第一パルスと、前記板厚方向中央部に前記焦点位置を有する第二パルスと、裏面側に前記焦点位置を有する第三パルスと、を少なくとも含む。
The present invention employs the following means in order to solve the above problems.
The electron beam welding apparatus according to one aspect of the present invention includes an electron gun that irradiates an electron beam toward a groove portion of a pair of workpieces that are butted against each other, a focus coil that focuses the electron beam by an electric current, and a focus coil. A control unit that changes the current value supplied to the focus coil while irradiating the electron beam along the groove portion to change the focal position of the electron beam in the plate thickness direction of the workpiece. When, wherein the control unit, during the predetermined time Ts, a plurality of pulses of different current waveform peak position of the current value by supplying to the focus coil, the focal position is the plate thickness direction Different electron beams are sequentially generated, and the plurality of pulses include a first pulse having the focal position on the front surface side of the workpiece, a second pulse having the focal position in the central portion in the plate thickness direction, and a back surface. It includes at least a third pulse having the focal position on the side .
このような構成によれば、開先部に沿って電子ビームを照射している間、フォーカスコイルに供給する電流値を変化させて、電子ビームの焦点位置を加工対象物の板厚方向に変動させるようにした。これによって、開先部の板厚方向全体にわたって、電子ビームによる溶接を確実に行うことができる。
さらに、このように、一定時間の間に、電流値のピーク位置が板厚方向で互いに異なる複数パルスの電流波形で電流を供給すると、電子ビームの焦点位置を加工対象物の板厚方向に容易に変動させることができる。
According to such a configuration, while irradiating the electron beam along the groove portion, the current value supplied to the focus coil is changed to change the focal position of the electron beam in the plate thickness direction of the workpiece. I tried to make it. As a result, welding by the electron beam can be reliably performed over the entire plate thickness direction of the groove portion.
Further, in this way, when the current is supplied with the current waveforms of a plurality of pulses in which the peak positions of the current values are different from each other in the plate thickness direction for a certain period of time, the focal position of the electron beam can be easily set in the plate thickness direction of the workpiece. Can be varied to.
本発明の一態様に係るコンピュータプログラムは、電子ビーム溶接装置の制御部で実行されるコンピュータプログラムであって、互いに突き合わせた一対の加工対象物の開先部に向かって電子銃から電子ビームを照射するステップと、前記電子ビームを照射している間、前記電子ビームの焦点位置が前記加工対象物の板厚方向に変化するよう、電磁界によって前記電子ビームを集束させるフォーカスコイルに対して供給する電流値を変動させるステップと、一定時間Tsの間に、前記電流値のピーク位置が互いに異なる電流波形の複数パルスを前記フォーカスコイルに供給することによって、前記焦点位置が前記板厚方向に異なる前記電子ビームを順次生成するステップと、を備え、前記複数パルスは、前記加工対象物の表面側に前記焦点位置を有する第一パルスと、前記板厚方向中央部に前記焦点位置を有する第二パルスと、裏面側に前記焦点位置を有する第三パルスと、を少なくとも含むことを特徴とする。 The computer program according to one aspect of the present invention is a computer program executed by a control unit of an electron beam welding apparatus, and irradiates an electron beam from an electron gun toward a groove portion of a pair of workpieces butted against each other. And the focus coil that focuses the electron beam by an electric current so that the focal position of the electron beam changes in the plate thickness direction of the object to be processed while irradiating the electron beam. a step of varying a current value, during a predetermined time Ts, by providing multiple pulses of peak positions mutually different current waveform of the current value to the focus coil, the said focal positions are different in the thickness direction The plurality of pulses include a step of sequentially generating an electron beam, the first pulse having the focal position on the surface side of the object to be processed, and the second pulse having the focal position in the central portion in the plate thickness direction. It is characterized by including at least a third pulse having the focal position on the back surface side .
本発明の一態様に係る電子ビーム溶接方法は、電子ビーム溶接装置で実行される電子ビーム溶接方法であって、互いに突き合わせた一対の加工対象物の開先部に向かって電子ビームを照射する工程と、前記電子ビームを照射している間、前記電子ビームの焦点位置が前記加工対象物の板厚方向に変化するよう、電磁界によって前記電子ビームを集束させるフォーカスコイルに対して供給する電流値を変動させる工程と、一定時間Tsの間に、前記電流値のピーク位置が互いに異なる電流波形の複数パルスを前記フォーカスコイルに供給することによって、前記焦点位置が前記板厚方向に異なる前記電子ビームを順次生成する工程と、を備え、前記複数パルスは、前記加工対象物の表面側に前記焦点位置を有する第一パルスと、前記板厚方向中央部に前記焦点位置を有する第二パルスと、裏面側に前記焦点位置を有する第三パルスと、を少なくとも含むことを特徴とする。
このように構成することで、開先部の板厚方向全体にわたって、電子ビームによる溶接を確実に行うことができる。
The electron beam welding method according to one aspect of the present invention is an electron beam welding method executed by an electron beam welding apparatus, and is a step of irradiating an electron beam toward a groove portion of a pair of workpieces butted against each other. The current value supplied to the focus coil that focuses the electron beam by an electromagnetic field so that the focal position of the electron beam changes in the plate thickness direction of the object to be processed while irradiating the electron beam. a step of varying the, during the predetermined time Ts, by providing multiple pulses of peak positions mutually different current waveform of the current value to the focus coil, the electron beam the focal positions are different in the thickness direction The plurality of pulses include a first pulse having the focal position on the surface side of the workpiece, a second pulse having the focal position in the central portion in the plate thickness direction, and the like. It is characterized by including at least a third pulse having the focal position on the back surface side .
With such a configuration, welding by the electron beam can be reliably performed over the entire plate thickness direction of the groove portion.
本発明の一態様に係る電子ビーム溶接方法は、上記電子ビーム溶接方法において、前記開先部を含むように前記電子ビームを照射して一次溶接ビードを形成する工程と、前記一次溶接ビードと少なくとも一部が重なり、かつ、前記一次溶接ビードとは前記開先部が連続する方向に直交する方向における位置及び幅の少なくとも一方が異なる二次溶接ビードを形成する工程と、を備える。
このような構成によれば、一次溶接ビードと二次溶接ビードとが重なることで、開先部に形成される溶接ビードの幅を広くとることができ、目外れによる欠陥を防止し、溶接金属の強度の低下を防ぐことができる。
The electron beam welding method according to one aspect of the present invention includes, in the electron beam welding method, a step of irradiating the electron beam so as to include the groove portion to form a primary welding bead, and at least the primary welding bead. The step includes a step of forming a secondary weld bead in which at least one of the positions and widths in a direction orthogonal to the continuous direction of the groove portion is different from that of the primary weld bead.
According to such a configuration, by overlapping the primary welding bead and the secondary welding bead, the width of the welding bead formed at the groove can be widened, defects due to misalignment can be prevented, and the weld metal can be prevented. It is possible to prevent a decrease in the strength of the.
この発明に係る電子ビーム溶接装置、コンピュータプログラム、電子ビーム溶接方法によれば、厚板であっても溶接を確実に行いつつ入熱量を抑え、溶接部位の強度や靭性等の機械的性質を向上させることができる。 According to the electron beam welding apparatus, computer program, and electron beam welding method according to the present invention, even a thick plate is reliably welded, the amount of heat input is suppressed, and mechanical properties such as strength and toughness of the welded portion are improved. Can be made to.
以下、添付図面を参照して、本発明における電子ビーム溶接装置、コンピュータプログラム、電子ビーム溶接方法を実施するための形態を説明する。しかし、本発明はこの実施形態のみに限定されるものではない。 Hereinafter, embodiments for carrying out the electron beam welding apparatus, computer program, and electron beam welding method according to the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to this embodiment.
図1は、本実施形態に係る電子ビーム溶接装置10の概略構成を示す図である。
図1に示すように、電子ビーム溶接装置10は、電子銃11と、フォーカスコイル12と、ワーク保持部(図示無し)と、制御部20と、を備えている。
FIG. 1 is a diagram showing a schematic configuration of an electron
As shown in FIG. 1, the electron
電子銃11は、図示しない電源から供給される電流に応じたエネルギ密度で、陰極11aから電子を電子ビームEBとして放射する。
The
フォーカスコイル12及びワーク保持部(図示無し)は、真空チャンバー(図示無し)内に設けられている。この実施形態において、フォーカスコイル12は、電子ビームEBの放射方向において、第一フォーカスコイル12A、第二フォーカスコイル12Bの2段階に設けられている。第一フォーカスコイル12A、第二フォーカスコイル12Bは、電源(図示無し)から供給される電流に応じて電磁界を発生し、電子銃11から照射される電子ビームEBを集束させる。
The
ワーク保持部(図示無し)は、溶接すべきワーク(加工対象物)100,100を互いに突き合わせた状態で保持する。ワーク保持部(図示無し)は、電子ビームEBの放射方向に対して直交する面内で、少なくとも、ワーク100,100を互いに突き合わせた開先部100kが連続する方向(図1において紙面に直交する方向)に沿って、保持したワーク100,100を電子銃11に対し相対的に移動可能としている。
この実施形態において、ワーク100,100は、低合金鋼、オーステナイト系ステンレス鋼等とすることができる。
The work holding portion (not shown) holds the workpieces (workpieces) 100, 100 to be welded in a state of being butted against each other. The work holding portion (not shown) is in a plane orthogonal to the radiation direction of the electron beam EB, and at least in a direction in which the
In this embodiment, the
制御部20は、電子銃11及び第一フォーカスコイル12A、第二フォーカスコイル12Bへの電流供給、ワーク保持部(図示無し)の移動を制御する。
The
以下、本実施形態に係る電子ビーム溶接装置における電子ビーム溶接方法の流れについて説明する。
図2は、本実施形態に係る電子ビーム溶接方法の処理の流れを示す図である。
制御部20は、予めインストールされたコンピュータプログラムに基づいて所定の処理を順次実行することで、以下に示すような電子ビーム溶接方法を実現する。
図2に示すように、電子ビーム溶接処理が開始されると、制御部20は、電子銃11から電子ビームEBを放射し、ワーク100,100の開先部100kに照射させる(ステップS101)。これとともに、ワーク保持部(図示無し)は、保持したワーク100,100を、電子銃11に対して開先部100kが連続する方向に沿って移動させる。これにより、電子銃11から開先部100kに照射される電子ビームEBによって、開先部100kの両側のワーク100,100がビームによって溶融され、開先部100kに沿った溶接が順次なされていく。
Hereinafter, the flow of the electron beam welding method in the electron beam welding apparatus according to the present embodiment will be described.
FIG. 2 is a diagram showing a processing flow of the electron beam welding method according to the present embodiment.
The
As shown in FIG. 2, when the electron beam welding process is started, the
制御部20は、上記のようにして開先部100kに沿って電子ビームEBを照射していく間、以下のようにして、第二フォーカスコイル12Bに印加する電流を変化させ、電子ビームEBの焦点位置を変動させる(ステップS102)。ここで、図1に示すように、第二フォーカスコイル12Bは、発生する電磁界の強度が印加する電流値によって変化し、電子ビームEBの焦点位置Fが、開先部100kにおけるワーク100,100の板厚方向Tに変化する。
While the
図3は、一定時間の間に制御部から順次発生させる、複数パルスの電流波形の例、およびこれら複数パルスの電流波形の合成波形の例を示す図である。
開先部100kに沿って電子ビームEBを照射する一定時間Tsの間、制御部20は、関数発生器(図示無し)等により、電流波形が互いに異なる複数パルスの電流を発生させ、第二フォーカスコイル12Bに供給する。制御部20は、例えば、図3に示すように、第一パルスP1では、ワーク100の表面100f(図1参照)側にピークPt1を有した電流波形で電流を供給する。また、第二パルスP2では、ワークの板厚方向中央部にピークPt2を有した電流波形で電流を供給する。第三パルスP3では、ワーク100の裏面100g(図1参照)側にピークPt3を有した電流波形で電流を供給する。これら第一パルスP1、第二パルスP2、第三パルスP3は、一定時間Tsの間に順次供給される。
このように、一定時間Tsの間に、電流値のピークPt1〜Pt3をワーク100の板厚方向T(図1参照)に変化させながら第一パルスP1、第二パルスP2、第三パルスP3を出力すると、時間Ts内における第一パルスP1、第二パルスP2、第三パルスP3の合成波形W1は、電流値が板厚方向Tにおいてほぼ一定となった矩形(台形)パルス状となる。
FIG. 3 is a diagram showing an example of a plurality of pulsed current waveforms sequentially generated from the control unit during a certain period of time, and an example of a composite waveform of these plurality of pulsed current waveforms.
During a certain period of time Ts in which the electron beam EB is irradiated along the
In this way, during a certain period of time Ts, the first pulse P1, the second pulse P2, and the third pulse P3 are generated while changing the peaks Pt1 to Pt3 of the current value in the plate thickness direction T (see FIG. 1) of the
このように、一定時間Tsの間に、第一パルスP1、第二パルスP2、第三パルスP3において、電流値のピークPt1〜Pt3をワーク100の板厚方向Tに変化させながら、開先部100kに沿って電子ビームEBを照射していく。
第一パルスP1、第二パルスP2、第三パルスP3において、電流値のピークPt1〜Pt3の位置をずらすと、電子銃11から放射される電子ビームEBの焦点位置Fが板厚方向Tに順次変化する。つまり、開先部100kに沿って電子ビームEBを照射している間に、照射している電子ビームEBの焦点位置Fをワークの板厚方向Tに変動させることができる。
In this way, during a certain period of time Ts, in the first pulse P1, the second pulse P2, and the third pulse P3, the peaks Pt1 to Pt3 of the current value are changed in the plate thickness direction T of the
When the positions of the peaks Pt1 to Pt3 of the current value are shifted in the first pulse P1, the second pulse P2, and the third pulse P3, the focal position F of the electron beam EB emitted from the
図4は、図3に示したような電流波形でフォーカスコイルに電流を供給した場合の、電子ビームのエネルギ分布の一例を示す。この図4において、板厚方向をT、板厚方向Tに直交する方向Xを開先部の幅方向、板厚方向T及び幅方向Xに直交する方向Zをエネルギの大きさとしている。
図3に示したような電流波形で第二フォーカスコイル12Bに電流を供給した場合、図4に示すように、開先部100kに照射される電子ビームEBのエネルギ分布は、開先部100kの板厚方向Tにおいて、ほぼ一定の大きさとなる。したがって、ワーク100,100を開先部100kの全体にわたって板厚方向Tに均一に入熱することができる。
FIG. 4 shows an example of the energy distribution of the electron beam when a current is supplied to the focus coil with the current waveform as shown in FIG. In FIG. 4, the plate thickness direction is T, the direction X orthogonal to the plate thickness direction T is the width direction of the groove portion, and the direction Z orthogonal to the plate thickness direction T and the width direction X is the magnitude of energy.
When a current is supplied to the
図5は、比較のため、一定時間の間に制御部から順次発生させる複数パルスにおいて、板厚方向における電流のピーク位置を固定したままの状態としたときの電流波形、およびそれらの合成波形の一例を示す図である。
この図5に示すように、一定時間Tsの間に順次発生する第一パルスP1’、第二パルスP2’、第三パルスP3’において、電流のピーク位置Pt0を固定したままとすると、これら第一パルスP1’、第二パルスP2’、第三パルスP3’の合成波形W0においては、開先部100kの板厚方向Tの中央部において、電流値のピークPwが大きくなる。
For comparison, FIG. 5 shows the current waveforms when the peak positions of the currents in the plate thickness direction are kept fixed in a plurality of pulses sequentially generated from the control unit during a certain period of time, and their composite waveforms. It is a figure which shows an example.
As shown in FIG. 5, assuming that the peak position Pt0 of the current remains fixed in the first pulse P1', the second pulse P2', and the third pulse P3' that are sequentially generated during a certain period of time Ts, these second pulses In the combined waveform W0 of the one pulse P1', the second pulse P2', and the third pulse P3', the peak Pw of the current value becomes large in the central portion of the
図6は、図5に示したような電流波形でフォーカスコイルに電流を供給した場合の、電子ビームのエネルギ分布の一例を示す。
図5に示すように、一定時間Tsの間、電流のピーク位置Pt0を固定したまま第二フォーカスコイル12Bに電流を印加し続けると、図6に示すように、開先部100kに照射される電子ビームEBの板厚方向Tにおけるエネルギ分布は、電流波形の電流のピーク位置(板厚方向Tの中央部)でエネルギ値が最も大きくなる。すなわち板厚方向T中央部に対する入熱量が多く、板厚方向Tの両側における入熱量は板厚方向Tの中央部に対して低くなる。
FIG. 6 shows an example of the energy distribution of the electron beam when a current is supplied to the focus coil with the current waveform as shown in FIG.
As shown in FIG. 5, when the current is continuously applied to the
図7は、電子ビームの焦点位置を固定していた場合の開先部への入熱量分布と、電子ビームの焦点位置を変動させた場合の開先部への入熱量分布との比較を示す図である。
この図7に示すように、板厚方向Tにおける電流のピーク位置Pt0を固定したまま、つまり電子ビームEBの焦点位置を板厚方向Tに変動させずに溶接を行った場合、板厚方向Tの中央部(図6、図7における断面B−B)においては、電子ビームEBによる入熱によってなされる溶接幅(ビード幅)は狭いものの、エネルギが集中しており、入熱量は大きい。また、この場合、板厚方向Tの端部(図6、図7における断面A−A)においては、板厚方向Tの中央部に対し、電子ビームEBの焦点位置からのオフセット寸法が大きいため、電子ビームEBのビーム径が大きい。このため、溶接幅が大きく、入熱量は、板厚方向Tの中央部よりも小さい。
FIG. 7 shows a comparison between the heat input distribution to the groove when the focal position of the electron beam is fixed and the heat input distribution to the groove when the focal position of the electron beam is changed. It is a figure.
As shown in FIG. 7, when welding is performed with the current peak position Pt0 in the plate thickness direction T fixed, that is, without changing the focal position of the electron beam EB in the plate thickness direction T, the plate thickness direction T In the central portion (cross section BB in FIGS. 6 and 7), the welding width (bead width) formed by the heat input by the electron beam EB is narrow, but the energy is concentrated and the heat input amount is large. Further, in this case, at the end portion in the plate thickness direction T (cross section AA in FIGS. 6 and 7), the offset dimension from the focal position of the electron beam EB is large with respect to the central portion in the plate thickness direction T. , The beam diameter of the electron beam EB is large. Therefore, the welding width is large and the amount of heat input is smaller than that of the central portion in the plate thickness direction T.
これに対し、板厚方向Tにおいて電子ビームEBの焦点位置を変動させながら溶接を行った場合、前述したように、板厚方向Tにおいて、広い範囲で均一に入熱がなされる。その結果、図6、図7における断面C−Cに示すように、溶接幅は、電子ビームの焦点位置を固定していた場合の断面A−Aよりも小さく、入熱量は、電子ビームの焦点位置を固定していた場合の断面B−Bよりも小さい。 On the other hand, when welding is performed while changing the focal position of the electron beam EB in the plate thickness direction T, heat is uniformly applied in a wide range in the plate thickness direction T as described above. As a result, as shown in the cross sections CC in FIGS. 6 and 7, the welding width is smaller than the cross section AA when the focal position of the electron beam is fixed, and the amount of heat input is the focal point of the electron beam. It is smaller than the cross section BB when the position is fixed.
このようにして、ワーク100,100の板厚が大きい場合においても、開先部100kの板厚方向Tにおいて、均一な入熱を行い、溶接を均質に行うことができる。また、これによって、より少ないエネルギで開先部100kの板厚方向T全域にわたる電子ビーム溶接を行うことが可能となる。
In this way, even when the plate thicknesses of the
上述したような電子ビーム溶接装置10、コンピュータプログラム、電子ビーム溶接方法によれば、開先部100kに沿って電子ビームEBを照射している間、第二フォーカスコイル12Bに供給する電流値を変化させて、電子ビームEBの焦点位置をワーク100の板厚方向に変動させるようにした。これによって、開先部100kの板厚方向Tの全体にわたって、電子ビームEBによる溶接を確実に行うことができる。したがって、ワーク100が厚板であっても溶接を確実に行いつつ入熱量を抑え、溶接部位の強度や靭性等の機械的性質を向上させることができる。
According to the electron
また、制御部20においては、一定時間Tsの間に、電流値のピーク位置が板厚方向Tで互いに異なる第一〜第三パルスP1〜P3の電流波形で電流を供給すると、電子ビームEBの焦点位置Fをワーク100の板厚方向に容易に変動させることができる。
Further, when the
(実施形態の変形例)
上記実施形態では、開先部100kを1パスで溶接する場合を示したが、これに限らない。開先部100kに対して、複数パスでの電子ビーム溶接を行うようにしてもよい。
例えば図8に示すように、1パス目の電子ビーム溶接で、開先部100kを含む範囲でビード幅の大きい一次溶接ビードB1を形成した後、2パス目の電子ビーム溶接で、ビード幅のより小さい二次溶接ビードB2を、一次溶接ビードB1及び開先部100kに重ねて施すようにしてもよい。
(Modified example of the embodiment)
In the above embodiment, the case where the
For example, as shown in FIG. 8, in the first pass of electron beam welding, a primary welding bead B1 having a large bead width is formed in a range including the
このように、ビード幅の大きい一次溶接ビードB1を形成することで、開先部100kからの電子ビームEBの目ハズレを防止することができる。
By forming the primary welded bead B1 having a large bead width in this way, it is possible to prevent the electron beam EB from losing its eyes from the
また、図9に示すように、1パス目の電子ビーム溶接で、開先部100kを含む一定幅での一次溶接ビードB4を形成した後、2パス目の電子ビーム溶接で開先部100kに対して幅方向一方の側で二次溶接ビードB5を形成し、3パス目の電子ビーム溶接で開先部100kに対して幅方向他方の側で二次溶接ビードB6を形成してもよい。さらに加えて、開先部100kを含む部分に、一次溶接ビードB4、二次溶接ビードB5、B6と重なるよう、二次溶接ビードB7を施してもよい。
Further, as shown in FIG. 9, after forming the primary welding bead B4 having a constant width including the
このように、複数回の電子ビーム溶接を施すことで、電子ビーム溶接の入熱により低下した強度や靱性を、いわゆる焼き入れ効果によって向上させ、溶接金属の強度の低下を防ぐことができる。 By performing the electron beam welding a plurality of times in this way, the strength and toughness decreased by the heat input of the electron beam welding can be improved by the so-called quenching effect, and the decrease in the strength of the weld metal can be prevented.
(その他の実施形態)
なお、本発明の電子ビーム溶接装置10の構成は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
例えば、上記実施形態では、一定時間Tsの間に、第一パルスP1、第二パルスP2、第三パルスP3で電流を供給する例を挙げたが、時間Tsの間、より細かい時間Ts間隔でより多くのパルスで電流を供給するようにしてもよい。
(Other embodiments)
The configuration of the electron
For example, in the above embodiment, an example in which a current is supplied by the first pulse P1, the second pulse P2, and the third pulse P3 during a certain period of time Ts is given, but during the time Ts, at finer time Ts intervals. The current may be supplied with more pulses.
また、上記実施形態では、フォーカスコイル12として、第一フォーカスコイル12A,第二フォーカスコイル12Bを備えるようにしたが、これに限らない。フォーカスコイル12を、一段のみ、あるいは三段以上に設けてもよい。
Further, in the above embodiment, the
これ以外にも、電子ビーム溶接装置10の構成、電子ビーム溶接方法の詳細な手順等についても、上記以外の構成を採用してもよい。
In addition to this, configurations other than the above may be adopted for the configuration of the electron
また、上記制御部20において電子ビーム溶接を行う際の各処理の過程は、コンピュータプログラムの形式でコンピュータによる読み取りが可能な記録媒体に記憶されている。このコンピュータプログラムは、制御部20を構成するコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
Further, each process of performing electron beam welding in the
In addition to this, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
10 電子ビーム溶接装置
11 電子銃
11a 陰極
12 フォーカスコイル
12A 第一フォーカスコイル
12B 第二フォーカスコイル
20 制御部
100 ワーク(加工対象物)
100k 開先部
B1、B3 一次溶接ビード
B2、B4、B5、B6、B7 二次溶接ビード
EB 電子ビーム
F 焦点位置
P1 第一パルス
P2 第二パルス
P3 第三パルス
Ts 一定時間
T 板厚方向
W0 合成波形
W1 合成波形
10 Electron
100k Grooves B1, B3 Primary welding beads B2, B4, B5, B6, B7 Secondary welding beads EB Electron beam F Focus position P1 First pulse P2 Second pulse P3 Third pulse Ts Fixed time T Plate thickness direction W0 synthesis Waveform W1 composite waveform
Claims (4)
電磁界によって前記電子ビームを集束させるフォーカスコイルと、
前記開先部に沿って前記電子ビームを照射している間、前記フォーカスコイルに供給する電流値を変化させて、前記電子ビームの焦点位置を前記加工対象物の板厚方向に変動させる制御部と、
を備え、
前記制御部は、一定時間Tsの間に、前記電流値のピーク位置が互いに異なる電流波形の複数パルスを前記フォーカスコイルに供給することによって、前記焦点位置が前記板厚方向に異なる前記電子ビームを順次生成し、
前記複数パルスは、前記加工対象物の表面側に前記焦点位置を有する第一パルスと、前記板厚方向中央部に前記焦点位置を有する第二パルスと、裏面側に前記焦点位置を有する第三パルスと、を少なくとも含む電子ビーム溶接装置。 An electron gun that irradiates an electron beam toward the groove of a pair of workpieces that are butted against each other.
A focus coil that focuses the electron beam by an electromagnetic field,
A control unit that changes the current value supplied to the focus coil while irradiating the electron beam along the groove portion to change the focal position of the electron beam in the plate thickness direction of the workpiece. When,
With
Wherein, during the predetermined time Ts, by providing multiple pulses of peak positions mutually different current waveform of the current value to the focus coil, the electron beam the focal positions are different in the thickness direction Generate sequentially ,
The plurality of pulses include a first pulse having the focal position on the front surface side of the workpiece, a second pulse having the focal position in the central portion in the plate thickness direction, and a third pulse having the focal position on the back surface side. An electron beam welder that includes at least a pulse.
互いに突き合わせた一対の加工対象物の開先部に向かって電子銃から電子ビームを照射するステップと、
前記電子ビームを照射している間、前記電子ビームの焦点位置が前記加工対象物の板厚方向に変化するよう、電磁界によって前記電子ビームを集束させるフォーカスコイルに対して供給する電流値を変動させるステップと、
一定時間Tsの間に、前記電流値のピーク位置が互いに異なる電流波形の複数パルスを前記フォーカスコイルに供給することによって、前記焦点位置が前記板厚方向に異なる前記電子ビームを順次生成するステップと、
を備え、
前記複数パルスは、前記加工対象物の表面側に前記焦点位置を有する第一パルスと、前記板厚方向中央部に前記焦点位置を有する第二パルスと、裏面側に前記焦点位置を有する第三パルスと、を少なくとも含むことを特徴とするコンピュータプログラム。 A computer program executed by the control unit of an electron beam welder.
A step of irradiating an electron beam from an electron gun toward the groove of a pair of workpieces that are butted against each other,
While irradiating the electron beam, the current value supplied to the focus coil that focuses the electron beam is changed by an electromagnetic field so that the focal position of the electron beam changes in the plate thickness direction of the object to be processed. Steps to make and
During the predetermined time Ts, by providing multiple pulses of peak positions mutually different current waveform of the current value to the focus coil, the steps of the focal position is sequentially generating different said electron beam to said plate thickness direction ,
Equipped with a,
The plurality of pulses include a first pulse having the focal position on the front surface side of the object to be processed, a second pulse having the focal position in the central portion in the plate thickness direction, and a third pulse having the focal position on the back surface side. A computer program characterized by containing at least a pulse.
互いに突き合わせた一対の加工対象物の開先部に向かって電子ビームを照射する工程と、
前記電子ビームを照射している間、前記電子ビームの焦点位置が前記加工対象物の板厚方向に変化するよう、電磁界によって前記電子ビームを集束させるフォーカスコイルに対して供給する電流値を変動させる工程と、
一定時間Tsの間に、前記電流値のピーク位置が互いに異なる電流波形の複数パルスを前記フォーカスコイルに供給することによって、前記焦点位置が前記板厚方向に異なる前記電子ビームを順次生成する工程と、
を備え、
前記複数パルスは、前記加工対象物の表面側に前記焦点位置を有する第一パルスと、前記板厚方向中央部に前記焦点位置を有する第二パルスと、裏面側に前記焦点位置を有する第三パルスと、を少なくとも含むことを特徴とする電子ビーム溶接方法。 An electron beam welding method performed by an electron beam welding device.
A process of irradiating an electron beam toward the groove of a pair of workpieces that are butted against each other,
While irradiating the electron beam, the current value supplied to the focus coil that focuses the electron beam is changed by an electromagnetic field so that the focal position of the electron beam changes in the plate thickness direction of the object to be processed. And the process of making
During the predetermined time Ts, by providing multiple pulses of peak positions mutually different current waveform of the current value to the focus coil, a step of the focal position is sequentially generating different said electron beam to said plate thickness direction ,
Equipped with a,
The plurality of pulses include a first pulse having the focal position on the front surface side of the workpiece, a second pulse having the focal position in the central portion in the plate thickness direction, and a third pulse having the focal position on the back surface side. An electron beam welding method comprising, at least, a pulse.
前記一次溶接ビードと少なくとも一部が重なり、かつ、前記一次溶接ビードとは前記開先部が連続する方向に直交する方向における位置及び幅の少なくとも一方が異なる二次溶接ビードを形成する工程と、
を備える請求項3に記載の電子ビーム溶接方法。 A step of irradiating the electron beam so as to include the groove portion to form a primary welding bead, and
A step of forming a secondary weld bead that overlaps at least a part of the primary weld bead and has a different position and width from the primary weld bead in a direction orthogonal to the continuous direction.
The electron beam welding method according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016060020A JP6843512B2 (en) | 2016-03-24 | 2016-03-24 | Electron beam welding equipment, computer programs, electron beam welding methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016060020A JP6843512B2 (en) | 2016-03-24 | 2016-03-24 | Electron beam welding equipment, computer programs, electron beam welding methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017170492A JP2017170492A (en) | 2017-09-28 |
JP6843512B2 true JP6843512B2 (en) | 2021-03-17 |
Family
ID=59969925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016060020A Active JP6843512B2 (en) | 2016-03-24 | 2016-03-24 | Electron beam welding equipment, computer programs, electron beam welding methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6843512B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116551140B (en) * | 2023-07-05 | 2023-09-22 | 陕西长羽航空装备股份有限公司 | Vacuum electron beam welding process for thick plate high-temperature alloy material |
-
2016
- 2016-03-24 JP JP2016060020A patent/JP6843512B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017170492A (en) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6714580B2 (en) | Method of joining two blanks, blank and resulting product | |
EP2666579B1 (en) | Hybrid laser arc welding process and apparatus | |
KR101420950B1 (en) | A welding process and a welding arrangement | |
US20130136940A1 (en) | Welding system, welding process, and welded article | |
JP6843512B2 (en) | Electron beam welding equipment, computer programs, electron beam welding methods | |
CA3017005C (en) | Laser welding apparatus and manufacturing method of component | |
JP7416999B2 (en) | Laser-arc hybrid welding equipment | |
JP2016043391A (en) | Laser arc hybrid welding method | |
JP5245972B2 (en) | Laser welding method and laser welding apparatus | |
JP6213332B2 (en) | Hot wire laser combined welding method for thick steel plate | |
JP2010227950A (en) | Laser beam welding apparatus and laser beam welding method | |
JP7284014B2 (en) | Laser-arc hybrid welding equipment | |
JP5871675B2 (en) | Arc welding apparatus and arc welding method | |
Kuzmikova et al. | Investigation into feasibility of hybrid laser-GMAW process for welding high strength quenched and tempered steel | |
JP2020199525A (en) | Laser spot welding method | |
JP7219195B2 (en) | Laser-arc hybrid welding equipment | |
JP4419593B2 (en) | Electron beam welding method | |
CN111687538A (en) | Method for manufacturing bonded body | |
JP2004195528A (en) | Laser irradiation arc welding method of magnesium or magnesium alloy | |
JP5489005B2 (en) | Welding method | |
EP4104962A1 (en) | Electron beam welding | |
JP4828873B2 (en) | Superconducting coil manufacturing method, manufacturing apparatus, and superconducting coil | |
JP2018069258A (en) | Laser welding method and laser welding equipment | |
CN111774728A (en) | Stator copper wire welding method, controller, laser processing machine and readable program carrier | |
JP4595652B2 (en) | Electron beam welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160325 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181109 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200115 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6843512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |