JP6841503B2 - Column packing material for measuring hemoglobin and method for measuring hemoglobin - Google Patents
Column packing material for measuring hemoglobin and method for measuring hemoglobin Download PDFInfo
- Publication number
- JP6841503B2 JP6841503B2 JP2017073454A JP2017073454A JP6841503B2 JP 6841503 B2 JP6841503 B2 JP 6841503B2 JP 2017073454 A JP2017073454 A JP 2017073454A JP 2017073454 A JP2017073454 A JP 2017073454A JP 6841503 B2 JP6841503 B2 JP 6841503B2
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- peak
- measuring
- column
- maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Description
本発明は、高速液体クロマトグラフィーに用いられるヘモグロビン類測定用カラム充填剤、並びに該カラム充填剤を用いたヘモグロビン類の測定方法に関する。 The present invention relates to a column packing material for measuring hemoglobins used in high performance liquid chromatography, and a method for measuring hemoglobins using the column packing material.
ヘモグロビンA1c(HbA1c)は、赤血球の寿命である約120日間血液中に存在し続ける。従って、ヘモグロビンA1cを測定することで、過去1〜2か月間の血糖の状態を推定することができる。そのため、グリコアルブミン等の他の糖尿病マーカーと異なり、ヘモグロビンA1cの測定によって、比較的長期にわたる血糖値の推移を確認できる。 Hemoglobin A1c (HbA1c) remains present in the blood for about 120 days, which is the lifespan of red blood cells. Therefore, by measuring hemoglobin A1c, the blood glucose status for the past 1 to 2 months can be estimated. Therefore, unlike other diabetes markers such as glycoalbumin, the transition of blood glucose level can be confirmed over a relatively long period of time by measuring hemoglobin A1c.
ヘモグロビンA1cの測定においては、測定値の精度が良好であるという理由から、高速液体クロマトグラフィーによる測定が広く行われている。高速液体クロマトグラフィーにおいて、測定値の精度と同様に重要な指標であるのが、測定時間である。検査技師の負担を軽減するため、また、効率的な検査体制の構築のため、測定時間の短縮は、測定値の精度向上と並ぶ大きな課題であった。 In the measurement of hemoglobin A1c, the measurement by high performance liquid chromatography is widely performed because the accuracy of the measured value is good. In high performance liquid chromatography, the measurement time is as important as the accuracy of the measured value. In order to reduce the burden on inspection engineers and to build an efficient inspection system, shortening the measurement time was a major issue along with improving the accuracy of measured values.
下記の特許文献1には、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、かつ前記度数分布のピークのうち、最大粒径を示すピークの粒径が、最小粒径を示すピークの粒径の1.1〜3.0倍である、ヘモグロビン類測定用カラム充填剤が開示されている。 In Patent Document 1 below, there are two or more peaks of the frequency distribution obtained when the particle size distribution is measured, and among the peaks of the frequency distribution, the particle size of the peak showing the maximum particle size is the smallest grain. A column packing material for measuring hemoglobins, which is 1.1 to 3.0 times the particle size of the peak indicating the diameter, is disclosed.
高速液体クロマトグラフィーの測定時間の短縮に大きく貢献するのが、流速の上昇である。ところで、高速液体クロマトグラフィーによりヘモグロビンA1cを測定する場合、ヘモグロビンA1c等のヘモグロビン類のピークに隣接して生じる他のピークが大きいと、ヘモグロビン類のピークの鋭さが損なわれる。そのため分離性能が低下するおそれがあった。 An increase in the flow velocity greatly contributes to shortening the measurement time of high performance liquid chromatography. By the way, when hemoglobin A1c is measured by high performance liquid chromatography, if the other peaks generated adjacent to the peaks of hemoglobins such as hemoglobin A1c are large, the sharpness of the peaks of hemoglobins is impaired. Therefore, there is a risk that the separation performance will deteriorate.
高速液体クロマトグラフィーにおいて、ヘモグロビン類のピークを鋭敏にする事は、分離性能の向上において重要な課題である。ヘモグロビン類のピークの鋭敏さを判定する方法の一つとして、ヘモグロビン類のピークの底部に着目することができる。図1に記載のクロマトグラム模式図が示す通り、ヘモグロビンA1cのピークの左側に発生する下向きの突出部分(以下「谷部分」と呼ぶ)と、そのさらに左側に発生する上向きの突出部分(以下「山部分」と呼ぶ)の双方が発生する。ヘモグロビンA1c測定のクロマトグラムにおいて、上記谷部分のベースラインからの高さと山部分のベースラインからの高さの比率(以下、本明細書では「A1cピーク左側の平坦さ」と呼ぶ)は、測定時の流速を上昇させると増大する傾向にある。そのため、ヘモグロビンA1cのピークの鋭敏さが失われ、ヘモグロビンA1cの分離性能が低下するおそれがある。 In high performance liquid chromatography, sensitizing the peak of hemoglobins is an important issue in improving the separation performance. As one of the methods for determining the sensitivity of the hemoglobin peak, the bottom of the hemoglobin peak can be focused on. As shown in the schematic chromatogram diagram shown in FIG. 1, a downward protruding portion (hereinafter referred to as a “valley portion”) generated on the left side of the peak of hemoglobin A1c and an upward protruding portion (hereinafter referred to as “valley portion”) generated on the left side thereof. Both of the "mountain part") occur. In the chromatogram of hemoglobin A1c measurement, the ratio of the height from the baseline of the valley portion to the height from the baseline of the peak portion (hereinafter, referred to as "flatness on the left side of the A1c peak") is measured. It tends to increase as the flow velocity of time is increased. Therefore, the sharpness of the peak of hemoglobin A1c may be lost, and the separation performance of hemoglobin A1c may deteriorate.
特許文献1に記載のカラム充填剤を用いた場合、カラム寿命を延ばすことができる。しかしながら、特許文献1に記載のカラム充填剤において、測定の高速化を図るために、流速を高めると、ヘモグロビンA1c等のヘモグロビン類のピークにおいて、ピーク左側の平坦さが増大する傾向があった。そのため、ヘモグロビン類の分離性能が低下するおそれがあった。 When the column packing material described in Patent Document 1 is used, the column life can be extended. However, in the column packing material described in Patent Document 1, when the flow velocity is increased in order to speed up the measurement, the flatness on the left side of the peak tends to increase at the peak of hemoglobins such as hemoglobin A1c. Therefore, there is a risk that the separation performance of hemoglobins may deteriorate.
本発明の目的は、液体クロマトグラフィーによるヘモグロビン類の測定に際し、ヘモグロビン類の分離性能に優れ、かつ測定時間の短縮を図り得る、ヘモグロビン類測定用カラム充填剤並びに該ヘモグロビン類の測定方法を提供することにある。 An object of the present invention is to provide a column packing material for measuring hemoglobins and a method for measuring the hemoglobins, which are excellent in the separation performance of the hemoglobins and can shorten the measurement time when measuring the hemoglobins by liquid chromatography. There is.
本発明は、高速液体クロマトグラフィーによりヘモグロビン類を測定するために用いられるカラム充填剤であって、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、度数分布ピークのうち、最大粒径を示すピークの粒径が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、度数分布における度数が最大であるピーク(最大ピーク)の粒径は、度数分布における度数が2番目に大きいピーク(第2ピーク)を示す粒径よりも小さく、下記式(1)で表される小粒径比率が0.91〜0.99であり、かつ該カラム充填剤の平均粒径が3.0〜6.5μmの範囲にある、ヘモグロビン類測定用カラム充填剤である。 The present invention is a column packing material used for measuring hemoglobins by high-speed liquid chromatography, and has two or more peaks of frequency distribution obtained when measuring particle size distribution, and among the peaks of frequency distribution. the particle size of the peak indicating the maximum particle diameter is 1.1 to 3.0 times the particle size of the peak indicating the minimum particle size, the particle size of the peak (maximum peak) power in the frequency distribution is maximum , The particle size in the frequency distribution is smaller than the particle size showing the second largest peak (second peak), and the small particle size ratio represented by the following formula (1) is 0.91 to 0.99, and the particle size is the same. A column filler for measuring hemoglobins, wherein the average particle size of the column filler is in the range of 3.0 to 6.5 μm.
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1) Small particle size ratio = (height from the baseline of the maximum peak) / (height from the baseline of the maximum peak + height from the baseline of the second peak) ... (1)
本発明に係るヘモグロビン類測定用カラム充填剤では、好ましくは、前記カラム充填剤は、アクリル系モノマーを主成分とする。 In the column packing material for measuring hemoglobins according to the present invention, preferably, the column packing material contains an acrylic monomer as a main component.
本発明に係るヘモグロビン類測定用カラム充填剤では、好ましくは、粒度分布を測定した際に得られる度数分布のピークが2つである。 In the column packing material for measuring hemoglobins according to the present invention, preferably, there are two peaks of the frequency distribution obtained when the particle size distribution is measured.
本発明に係るヘモグロビン類測定用液体クロマトグラフィーカラムでは、カラムに、本発明に従って構成されている上記ヘモグロビン類測定用カラム充填剤が充填されている。 In the liquid chromatography column for measuring hemoglobins according to the present invention, the column is filled with the above-mentioned column packing material for measuring hemoglobins, which is configured according to the present invention.
本発明に係る液体クロマトグラフィーによるヘモグロビン類の測定方法は、高速液体クロマトグラフィーによるヘモグロビン類の測定法であって、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、度数分布ピークのうち、最大粒径を示すピークの粒径が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、度数分布における度数が最大であるピーク(最大ピーク)の粒径は、度数分布における度数が2番目に大きいピーク(第2ピーク)を示す粒径よりも小さく、下記式(1)で表される小粒径比率が0.91〜0.99であり、かつ該カラム充填剤の平均粒径が3.0〜6.5μmを満たすことを特徴とするカラム充填剤を使用し、かつ流速を2.5〜3.7mL/minとすることを特徴とする。 The method for measuring hemoglobins by liquid chromatography according to the present invention is a method for measuring hemoglobins by high-speed liquid chromatography, in which two or more peaks of the frequency distribution obtained when measuring the particle size distribution are present and the frequencies are present. of distribution peak, the particle size of the peak indicating the maximum particle diameter is 1.1 to 3.0 times the particle size of the peak indicating the minimum particle size, peak power in the frequency distribution is maximum (maximum peak) The particle size of is smaller than the particle size showing the second largest peak (second peak) in the frequency distribution , and the small particle size ratio represented by the following formula (1) is 0.91 to 0.99. A column filler is used, and the average particle size of the column filler is 3.0 to 6.5 μm, and the flow velocity is 2.5 to 3.7 mL / min. And.
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1) Small particle size ratio = (height from the baseline of the maximum peak) / (height from the baseline of the maximum peak + height from the baseline of the second peak) ... (1)
本発明に係るヘモグロビン類測定用カラム充填剤及びヘモグロビン類の測定方法によれば、流速を高めて高速化を図った場合においても、ヘモグロビン類のピークの鋭敏さを維持することができる。従って、測定時間の短縮と、ヘモグロビン類の分離性能の向上との両立が可能となる。 According to the column packing material for measuring hemoglobins and the method for measuring hemoglobins according to the present invention, the sharpness of the peak of hemoglobins can be maintained even when the flow velocity is increased to increase the speed. Therefore, it is possible to achieve both a reduction in the measurement time and an improvement in the separation performance of hemoglobins.
以下、本発明の詳細を説明する。 The details of the present invention will be described below.
(充填剤粒子の粒径)
本発明のヘモグロビン類測定用カラム充填剤(以下、単に充填剤ともいう)は、粒子状の充填剤からなる。
(Diameter of filler particles)
The column packing material for measuring hemoglobins of the present invention (hereinafter, also simply referred to as a packing material) is composed of a particulate packing material.
本発明の充填剤の平均粒径の下限は3.0μm、上限は6.5μmである。充填剤の平均粒径が3.0μm未満であると、溶離液をカラムに流すために必要となる圧力が高くなり、液体クロマトグラフィーの装置に耐圧性付与のための特殊な部品等が必要となる。充填剤の平均粒径が6.5μmを超えると、カラム内の空隙率が増大し、流速を上昇させた際に分離性能に影響を与えるおそれがある。本発明の充填剤の平均粒径の好ましい下限は6.0μm、好ましい上限は6.4μmである。 The lower limit of the average particle size of the filler of the present invention is 3.0 μm, and the upper limit is 6.5 μm. If the average particle size of the filler is less than 3.0 μm, the pressure required to flow the eluent through the column increases, and the liquid chromatography device requires special parts for imparting pressure resistance. Become. If the average particle size of the filler exceeds 6.5 μm, the porosity in the column increases, which may affect the separation performance when the flow velocity is increased. The preferable lower limit of the average particle size of the filler of the present invention is 6.0 μm, and the preferable upper limit is 6.4 μm.
なお、本明細書において上記平均粒径、並びに粒度分布は、個数カウント法の原理に基づく粒度分布測定装置により得られた測定結果によるものである。ただし、他の測定原理に基づく測定装置であっても、測定結果について、個数カウント法の原理による測定結果との相関が既知であり、又はキャリブレーションが成されている装置であれば用いることができ、このような装置としては、例えば、遠心沈降法、動的光散乱法、レーザー回折光散乱法、超音波減衰法、キャピラリー法、コールター法等の公知の原理に基づく装置等が挙げられる。 In this specification, the average particle size and the particle size distribution are based on the measurement results obtained by the particle size distribution measuring device based on the principle of the number counting method. However, even if the measuring device is based on another measurement principle, it can be used as long as the measurement result has a known correlation with the measurement result based on the principle of the number counting method or has been calibrated. Examples of such an apparatus include an apparatus based on a known principle such as a centrifugal sedimentation method, a dynamic light scattering method, a laser diffracted light scattering method, an ultrasonic attenuation method, a capillary method, and a Coulter method.
(度数分布のピーク)
本発明の充填剤では、粒度分布を測定した際に得られる度数分布のピーク(以下、単に粒度分布のピークともいう)が2つ以上存在する。本発明の充填剤は、上記粒度分布のピークを2つ〜4つ有することが好ましく、2つ有することがより好ましい。
(Peak of frequency distribution)
In the filler of the present invention, there are two or more peaks of the frequency distribution (hereinafter, also simply referred to as peaks of the particle size distribution) obtained when the particle size distribution is measured. The filler of the present invention preferably has two to four peaks of the particle size distribution, and more preferably has two peaks.
なお、本明細書において上記ピークとは、隣接する左右の測定点よりもベースラインからの高さの大きい測定点を意味する。即ち、上記粒度分布のピークとは、粒度分布を示すグラフにおける各山の頂点のことである。 In the present specification, the peak means a measurement point having a height higher than the baseline than the adjacent left and right measurement points. That is, the peak of the particle size distribution is the apex of each mountain in the graph showing the particle size distribution.
本発明の充填剤では、度数分布ピークのうち、最大粒径を示すピークの粒径が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、ピークが最大を示す粒径は、2番目に大きいピークを示す粒径よりも小さく、下記式(1)で定義される小粒径比率が0.91〜0.99となっている。 In the filler of the present invention, among the frequency distribution peaks, the particle size of the peak showing the maximum particle size is 1.1 to 3.0 times the particle size of the peak showing the minimum particle size, and the peak shows the maximum. The particle size is smaller than the particle size showing the second largest peak, and the small particle size ratio defined by the following formula (1) is 0.91 to 0.99.
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1) Small particle size ratio = (height from the baseline of the maximum peak) / (height from the baseline of the maximum peak + height from the baseline of the second peak) ... (1)
小粒径比率が前述の範囲となっていることによって、カラム内部に充填剤粒子を高密度に充填することと、充填剤粒子の最適な比表面積をコントロールすることとの両立が可能となる。そのため、耐圧性と高い分析能力とを両立したカラムを提供することが可能となる。小粒径比率の好ましい範囲は、0.94〜0.99である。 When the small particle size ratio is in the above range, it is possible to both fill the column with the filler particles at a high density and control the optimum specific surface area of the filler particles. Therefore, it is possible to provide a column having both pressure resistance and high analytical ability. The preferred range for the small particle size ratio is 0.94 to 0.99.
(製造方法)
本発明の充填剤を製造する方法としては、公知の方法を用いることができ、例えば、粒度分布が単一ピークを有する2種以上の充填剤を、上述した条件に適合するように混合する方法、複数のピークを有する充填剤を重合により得る方法等が挙げられる。
(Production method)
As a method for producing the filler of the present invention, a known method can be used. For example, a method of mixing two or more kinds of fillers having a single peak in particle size distribution so as to meet the above-mentioned conditions. , A method of obtaining a filler having a plurality of peaks by polymerization and the like.
(充填剤の素材)
本発明の充填剤の素材としては、シリカ系、セラミックス系、もしくはガラス系等の無機系素材、または、アクリル系ポリマー、もしくはスチレン系ポリマー等の有機合成系素材等の公知の素材を用いることができる。なかでも、有機合成系素材を用いることが好ましく、アクリル系ポリマーを主成分とすることがより好ましい。
(Material of filler)
As the material of the filler of the present invention, a known material such as an inorganic material such as silica-based, ceramic-based or glass-based material, or an organic synthetic material such as an acrylic polymer or a styrene-based polymer can be used. it can. Of these, it is preferable to use an organic synthetic material, and it is more preferable to use an acrylic polymer as a main component.
なお、本明細書において「アクリル系」とは、アクリロイルオキシ基又はメタクリロイルオキシ基を有することを意味し、「(メタ)アクリル」とは、「アクリル又はメタクリル」を意味する。 In the present specification, "acrylic" means having an acryloyloxy group or a methacryloyloxy group, and "(meth) acrylic" means "acrylic or methacrylic".
上記アクリル系ポリマーを素材とした場合の充填剤の製造方法としては、アクリル系モノマーを公知の重合法により重合する方法を用いることができる。 As a method for producing a filler when the acrylic polymer is used as a material, a method of polymerizing an acrylic monomer by a known polymerization method can be used.
上記アクリル系モノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート類、ポリプロピレングリコールジ(メタ)アクリレート類、アルキレングリコールジ(メタ)アクリレート類等の、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する架橋性のアクリル系モノマー等が挙げられる。 Examples of the acrylic monomer include polyethylene glycol di (meth) acrylates, polypropylene glycol di (meth) acrylates, alkylene glycol di (meth) acrylates, and the like, and at least two (meth) acryloyloxys in the molecule. Examples thereof include a crosslinkable acrylic monomer having a group.
上記アクリル系ポリマーは、上記架橋性のアクリル系モノマーを重合する方法や、上記架橋性のアクリル系モノマーと、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、ポリエチレングリコールモノ(メタ)アクリレート類、2−ヒドロキシエチル(メタ)アクリレート等の非架橋性のアクリル系モノマーとを共重合する方法等により調製することができる。 The acrylic polymer is a method for polymerizing the crosslinkable acrylic monomer, the crosslinkable acrylic monomer, methyl (meth) acrylate, ethyl (meth) acrylate, polyethylene glycol mono (meth) acrylates. , 2-Hydroxyethyl (meth) acrylate and the like can be prepared by a method of copolymerizing with a non-crosslinkable acrylic monomer or the like.
(表面状態)
本発明の充填剤は、イオン交換基を有することが好ましい。
(Surface condition)
The filler of the present invention preferably has an ion exchange group.
上記イオン交換基としては、カチオン交換基であることが好ましく、スルホン酸基であることがより好ましい。上記イオン交換基を有する充填剤は、例えば、充填剤の主成分を上記アクリル系ポリマーとする場合、a)アクリル系モノマーとイオン交換基を有する単量体とを重合してアクリル系ポリマーを調製する方法、b)アクリル系ポリマーを調製した後にイオン交換基を導入する方法等の公知の方法により調製することができる。 The ion exchange group is preferably a cation exchange group, more preferably a sulfonic acid group. For the filler having an ion exchange group, for example, when the main component of the filler is the acrylic polymer, a) an acrylic monomer and a monomer having an ion exchange group are polymerized to prepare an acrylic polymer. It can be prepared by a known method such as a method of preparing an acrylic polymer and then introducing an ion exchange group.
なお、本明細書においては充填剤、並びに充填剤粒子は、特に断らない限り同義の語として用いられる。 In addition, in this specification, a filler and a filler particle are used as synonymous terms unless otherwise specified.
(測定対象)
本発明の充填剤を用いれば、高速液体クロマトグラフィーによって種々のヘモグロビン類を測定することができる。具体的には、本発明のヘモグロビン類測定用カラム充填剤を用いれば、液体クロマトグラフィーにより、ヘモグロビンA0、ヘモグロビンA1c、ヘモグロビンF(胎児性ヘモグロビン)、ヘモグロビンA2やヘモグロビンS等を測定することができる。
(Measurement target)
By using the filler of the present invention, various hemoglobins can be measured by high performance liquid chromatography. Specifically, by using the column packing material for measuring hemoglobins of the present invention, hemoglobin A0, hemoglobin A1c, hemoglobin F (fetal hemoglobin), hemoglobin A2, hemoglobin S and the like can be measured by liquid chromatography. ..
また、本発明の充填剤を用いることで、従来より流速を高めた条件での測定も可能となる。測定時間の短縮を図るために、流速を2.5〜3.7mL/minとした条件下で本発明のヘモグロビン類測定用カラム充填剤を用いた、高速液体クロマトグラフィーによるヘモグロビン類の測定方法もまた、本発明の一つである。 Further, by using the filler of the present invention, it is possible to perform measurement under conditions where the flow velocity is higher than before. In order to shorten the measurement time, a method for measuring hemoglobins by high performance liquid chromatography using the column packing material for measuring hemoglobins of the present invention under the condition that the flow rate is 2.5 to 3.7 mL / min is also available. It is also one of the present inventions.
本発明のヘモグロビン類測定用カラム充填剤を用いて高速液体クロマトグラフィーによりヘモグロビンA1c等のヘモグロビン類の測定を行う場合には、溶離液送液用のポンプ、サンプラ、検出器等を備えた公知の高速液体クロマトグラフィーシステムに、本発明のヘモグロビン類測定用カラム充填剤を充填したカラムを接続し、血液試料中のヘモグロビン類の測定を行なうことができる。 When measuring hemoglobins such as hemoglobin A1c by high performance liquid chromatography using the column packing material for measuring hemoglobins of the present invention, it is known to be equipped with a pump, sampler, detector, etc. for eluent delivery. A column filled with the column packing material for measuring hemoglobins of the present invention can be connected to a high performance liquid chromatography system to measure hemoglobins in a blood sample.
(溶離液)
本発明のヘモグロビン類測定用カラム充填剤を用いた液体クロマトグラフィーに用いられる溶離液としては、公知の塩化合物を含む緩衝液類や有機溶媒類を用いることが好ましい。具体的な緩衝液としては、例えば、有機酸、無機酸、及び、これらの塩類、アミノ酸類、グッドの緩衝液等が挙げられる。
(Eluent)
As the eluent used for liquid chromatography using the column packing material for measuring hemoglobins of the present invention, it is preferable to use buffers or organic solvents containing known salt compounds. Specific examples of the buffer solution include organic acids, inorganic acids, salts thereof, amino acids, Good's buffer solution and the like.
上記有機酸は特に限定されず、例えば、クエン酸、コハク酸、酒石酸、リンゴ酸等が挙げられる。 The organic acid is not particularly limited, and examples thereof include citric acid, succinic acid, tartaric acid, and malic acid.
上記無機酸は特に限定されず、例えば、塩酸、硝酸、硫酸、リン酸、ホウ酸、酢酸等が挙げられる。 The inorganic acid is not particularly limited, and examples thereof include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, and acetic acid.
上記アミノ酸類は特に限定されず、例えば、グリシン、タウリン、アルギニン等が挙げられる。 The amino acids are not particularly limited, and examples thereof include glycine, taurine, and arginine.
塩類としては例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。 Examples of the salts include sodium salt, potassium salt, calcium salt, magnesium salt and the like.
また、上記緩衝液には、他に一般に添加される物質、例えば、界面活性剤、各種ポリマー、親水性の低分子化合物等を適宜添加してもよい。 In addition, other commonly added substances such as surfactants, various polymers, and hydrophilic low molecular weight compounds may be appropriately added to the buffer solution.
ヘモグロビンA1cの測定を行う際の上記緩衝液の塩濃度の好ましい下限は10mmol/L、好ましい上限は1000mmol/Lである。緩衝液の塩濃度が10mmol/L未満であると、イオン交換反応が行なわれず、ヘモグロビン類を分離することができなくなることがある。緩衝液の塩濃度が1000mmol/Lを超えると、塩が析出してシステムに悪影響を及ぼすことがある。 The preferable lower limit of the salt concentration of the buffer solution when measuring hemoglobin A1c is 10 mmol / L, and the preferable upper limit is 1000 mmol / L. If the salt concentration of the buffer solution is less than 10 mmol / L, the ion exchange reaction may not occur and hemoglobins may not be separated. If the salt concentration of the buffer exceeds 1000 mmol / L, salt may precipitate and adversely affect the system.
(ヘモグロビン類のピーク)
図1に示すように、ヘモグロビンA1cのクロマトグラムにおいては、ヘモグロビンA1cのピークの左側に発生する下向きの突出部分(「谷部分」)と、そのさらに左側に発生する上向きの突出部分(「山部分」)の双方が発生する。
(Peak of hemoglobins)
As shown in FIG. 1, in the chromatogram of hemoglobin A1c, a downward protruding portion (“valley portion”) generated on the left side of the peak of hemoglobin A1c and an upward protruding portion (“mountain portion”) generated on the left side thereof. ") Both occur.
本発明の評価指標となる「ピーク左部の平坦さ」は、以下のように求められる。 The "flatness on the left side of the peak", which is an evaluation index of the present invention, is obtained as follows.
「ピーク左部の平坦さ」 =(谷部分の頂点となるベースラインからの高さ)/(山部分の頂点となるベースラインからの高さ) "Flatness of the left part of the peak" = (height from the baseline that is the apex of the valley part) / (height from the baseline that is the apex of the mountain part)
一般に、この値は測定の際に流速を上昇させると共に増大する傾向があり、増大を抑える事でヘモグロビンA1cのピークを鋭敏に保持でき、高い分離能力を維持できると判断される。 In general, this value tends to increase as the flow velocity is increased during measurement, and it is judged that by suppressing the increase, the peak of hemoglobin A1c can be sharply maintained and a high separation ability can be maintained.
(実施例)
以下に発明の効果を説明するための実施例を記載するが、本発明は下記の実施例に限定されるものではない。
(Example)
Examples for explaining the effects of the invention will be described below, but the present invention is not limited to the following examples.
[製造例1]
2−ヒドロキシ−3−アクリロイルオキシプロピルメタクリレート(新中村化学工業社製)40g、トリエチレングリコールジメタクリレート(新中村化学工業社製)140g、ペンタエリスリトールテトラアクリレート(新中村化学工業社製)5g、及びペンタエリスリトールトリアクリレート(トリエステル37%)(新中村化学工業社製)15gを含有する単量体混合物に、過酸化ベンゾイル1.0gを溶解した。得られた混合物を、4重量%のポリビニルアルコール水溶液2Lに分散させ、羽根長60mmの撹拌羽根を用いて390rpmで撹拌しながら、窒素雰囲気下で80℃に加温して1時間重合反応を行った。1時間後に反応系にアクリルアミド−tert−ブチルスルホン酸80gを溶解した水溶液200mLを添加してさらに80℃で1時間重合反応を行った。
[Manufacturing Example 1]
2-Hydroxy-3-acryloyloxypropyl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 40 g, triethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 140 g, pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 5 g, and 1.0 g of benzoyl peroxide was dissolved in a monomer mixture containing 15 g of pentaerythritol triacrylate (triester 37%) (manufactured by Shin-Nakamura Chemical Co., Ltd.). The obtained mixture was dispersed in 2 L of a 4 wt% polyvinyl alcohol aqueous solution, and the polymerization reaction was carried out for 1 hour by heating to 80 ° C. in a nitrogen atmosphere while stirring at 390 rpm using a stirring blade having a blade length of 60 mm. It was. After 1 hour, 200 mL of an aqueous solution in which 80 g of acrylamide-tert-butylsulfonic acid was dissolved was added to the reaction system, and the polymerization reaction was further carried out at 80 ° C. for 1 hour.
得られた重合体粒子を洗浄して充填剤粒子を得た。粒度分布測定装置により、得られた充填剤粒子の平均粒径及び粒度分布を測定した。測定に際しては、光源としては半導体レーザーを、センサとしてはLE400−05を用い、120秒間測定を行って体積分布表示を行い、平均粒径を算出した。その結果、平均粒径は4.45μm、粒度分布は単一ピーク状であった。 The obtained polymer particles were washed to obtain filler particles. The average particle size and particle size distribution of the obtained filler particles were measured by a particle size distribution measuring device. In the measurement, a semiconductor laser was used as the light source and LE400-05 was used as the sensor, and the measurement was performed for 120 seconds to display the volume distribution and calculate the average particle size. As a result, the average particle size was 4.45 μm, and the particle size distribution was a single peak.
[製造例2]
製造例1における撹拌時の回転数を390rpmから300rpmに変更したこと以外は、製造例1と同様に操作して、充填剤粒子を得た。得られた充填剤粒子の平均粒径及び粒度分布を測定した。その結果、平均粒径は9.47μm、粒度分布は単一ピーク状であった。
[Manufacturing Example 2]
Filler particles were obtained in the same manner as in Production Example 1 except that the rotation speed during stirring in Production Example 1 was changed from 390 rpm to 300 rpm. The average particle size and particle size distribution of the obtained filler particles were measured. As a result, the average particle size was 9.47 μm, and the particle size distribution was a single peak.
製造例1、2で得られた充填剤粒子の平均粒径及び粒度分布ピーク数を表1に示す。 Table 1 shows the average particle size and the number of particle size distribution peaks of the filler particles obtained in Production Examples 1 and 2.
製造例1及び2で得られた充填剤粒子を、表2に示した混合比で混合して、実施例1、2、及び、比較例1〜3のカラム充填剤を得た。得られた、これらのカラム充填剤の各種パラメータを表2に示す。 The filler particles obtained in Production Examples 1 and 2 were mixed at the mixing ratios shown in Table 2 to obtain column fillers of Examples 1 and 2 and Comparative Examples 1 to 3. Table 2 shows various parameters of these column packing materials obtained.
実施例1〜2、比較例1〜3で得られたカラム充填剤を内径4.6mm、長さ20mmのステンレス製カラムに充填し、ヘモグロビン類測定用カラムを得た。得られたカラムを汎用高速液体クロマトグラフィー測定装置にセットし、血液試料の測定を行った。 The column packing materials obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were filled in a stainless steel column having an inner diameter of 4.6 mm and a length of 20 mm to obtain a column for measuring hemoglobins. The obtained column was set in a general-purpose high performance liquid chromatography measuring device, and a blood sample was measured.
(血液試料の測定)
精度管理用コントロール血液を試料とし、下記の条件で測定を行った。
(Measurement of blood sample)
Control blood for quality control was used as a sample, and measurement was performed under the following conditions.
測定試料:精度管理用コントロール血液(シスメックス社製)
溶離液:溶離液Aとして200mmol/Lのリン酸緩衝液(pH5.3)、溶離液Bとして400mmol/Lのリン酸緩衝液(pH8.0)
吸光度:415nm
測定装置:LC20A(島津製作所社製)
Measurement sample: Control blood for quality control (manufactured by Sysmex Corporation)
Eluent: 200 mmol / L phosphate buffer (pH 5.3) as eluent A, 400 mmol / L phosphate buffer (pH 8.0) as eluent B
Absorbance: 415 nm
Measuring device: LC20A (manufactured by Shimadzu Corporation)
また、測定の際に、流速を11段階に渡って1.7〜3.7mL/minまで変化させた。図2は、流速をこのように変化させた場合の、ヘモグロビンA1cのピークに隣接する他のピークの値の変化を示す。 In addition, at the time of measurement, the flow velocity was changed from 1.7 to 3.7 mL / min over 11 steps. FIG. 2 shows changes in the values of other peaks adjacent to the peak of hemoglobin A1c when the flow velocity is changed in this way.
実施例1、2においては、流速を上昇させた測定条件下でもヘモグロビンA1cのピーク左部の平坦さの増大は見られず、分離能力が維持されることが分かる。 In Examples 1 and 2, it can be seen that the flatness of the left side of the peak of hemoglobin A1c is not increased even under the measurement conditions in which the flow velocity is increased, and the separation ability is maintained.
一方、比較例1、2においては、流速の上昇に伴いヘモグロビンA1cのピーク左部の平坦さの増大が見られた。従って、測定時間を短縮する目的で流速を上昇させた測定条件においては、比較例1〜3のカラム充填剤はピークの鋭敏さが損なわれ、十分な分離能力を維持できない。 On the other hand, in Comparative Examples 1 and 2, the flatness of the left side of the peak of hemoglobin A1c increased as the flow velocity increased. Therefore, under the measurement conditions in which the flow velocity is increased for the purpose of shortening the measurement time, the column packing materials of Comparative Examples 1 to 3 impair the sharpness of the peak and cannot maintain a sufficient separation ability.
Claims (5)
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1) A column packing material used for measuring hemoglobins by high-speed liquid chromatography. There are two or more peaks of the frequency distribution obtained when measuring the particle size distribution, and the maximum particle size of the frequency distribution peaks. the particle size of the peaks indicating that a 1.1 to 3.0 times the particle size of the peak indicating the minimum particle size, the particle size of the peak (maximum peak) power in the frequency distribution is maximum, in the frequency distribution The particle size of the column filler is smaller than the particle size showing the second largest peak (second peak), and the small particle size ratio represented by the following formula (1) is 0.91 to 0.99. A column filler for measuring hemoglobins having an average particle size in the range of 3.0 to 6.5 μm.
Small particle size ratio = (height from the baseline of the maximum peak) / (height from the baseline of the maximum peak + height from the baseline of the second peak) ... (1)
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1) A method of measuring hemoglobin by high performance liquid chromatography, the peak of the frequency distribution obtained when measuring the particle size distribution is present two or more, of the frequency distribution peak, particle size of a peak indicating a maximum particle size , The particle size of the peak (maximum peak ) , which is 1.1 to 3.0 times the particle size of the peak showing the minimum particle size and has the maximum frequency in the frequency distribution, is the peak with the second largest frequency in the frequency distribution. It is smaller than the particle size showing (second peak), the small particle size ratio represented by the following formula (1) is 0.91 to 0.99, and the average particle size of the column packing material is 3.0 to. A method for measuring hemoglobins, which comprises using a column filler characterized by satisfying 6.5 μm and setting a flow velocity of 2.5 to 3.7 mL / min.
Small particle size ratio = (height from the baseline of the maximum peak) / (height from the baseline of the maximum peak + height from the baseline of the second peak) ... (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073454A JP6841503B2 (en) | 2017-04-03 | 2017-04-03 | Column packing material for measuring hemoglobin and method for measuring hemoglobin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073454A JP6841503B2 (en) | 2017-04-03 | 2017-04-03 | Column packing material for measuring hemoglobin and method for measuring hemoglobin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018179505A JP2018179505A (en) | 2018-11-15 |
JP6841503B2 true JP6841503B2 (en) | 2021-03-10 |
Family
ID=64276410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017073454A Active JP6841503B2 (en) | 2017-04-03 | 2017-04-03 | Column packing material for measuring hemoglobin and method for measuring hemoglobin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6841503B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10123113A (en) * | 1996-10-24 | 1998-05-15 | Sekisui Chem Co Ltd | Column for liquid chromatography |
US7309426B2 (en) * | 2004-04-23 | 2007-12-18 | Agilent Technologies, Inc. | Composition and method for high efficiency chromatography |
JP2011209040A (en) * | 2010-03-29 | 2011-10-20 | Sekisui Medical Co Ltd | COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS |
AU2011245735A1 (en) * | 2010-04-26 | 2012-11-15 | Ge Healthcare Bio-Sciences Ab | Method for production of chromatography media |
JP2014095637A (en) * | 2012-11-09 | 2014-05-22 | Sekisui Medical Co Ltd | Method of measuring stable type hemoglobin a1c value |
JP6160281B2 (en) * | 2013-01-25 | 2017-07-12 | 日立化成株式会社 | Column packing material |
-
2017
- 2017-04-03 JP JP2017073454A patent/JP6841503B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018179505A (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140162369A1 (en) | Method for measuring hemoglobins | |
JP6733900B2 (en) | Separation carrier, method for producing separation carrier, column, and device for liquid chromatography or solid phase extraction | |
US20100210458A1 (en) | Biomicromolecule-separating, monolithic silica column and its production process, and separation method of biomicromolecules | |
BR102020005683A2 (en) | PREPARATION OF A WATER DISPERSION OF VINYL ACETATE COPOLYMER PARTICLES AND A CYCLIC ACETAL CETENE MONOMER | |
JP6841503B2 (en) | Column packing material for measuring hemoglobin and method for measuring hemoglobin | |
JP5446001B2 (en) | Method for measuring hemoglobin A1c and abnormal hemoglobins by liquid chromatography | |
JP2011209040A (en) | COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS | |
US20200393472A1 (en) | Haemoglobin analysis method | |
JP7258276B2 (en) | METHOD FOR MANUFACTURING PACKING MATERIAL FOR GLYCATED HEMOGLOBIN ANALYSIS | |
JP5749031B2 (en) | Method for producing column filler for liquid chromatography, method for measuring sample by liquid chromatography, and method for measuring hemoglobin | |
JP2009133654A (en) | Method of measuring saccharified hemoglobin | |
JP2012073184A (en) | Method for measuring hemoglobins | |
JP5901081B2 (en) | Column filler for measuring hemoglobin, method for producing column filler for measuring hemoglobin, and method for measuring hemoglobin by liquid chromatography | |
JP2011047859A (en) | COLUMN PACKING FOR SEPARATING HEMOGLOBIN, METHOD FOR MEASURING HEMOGLOBIN A1c, METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBIN, AND METHOD FOR PRODUCING COLUMN PACKING FOR SEPARATING HEMOGLOBIN | |
JP6004516B2 (en) | Column packing material for separating hemoglobins and method for producing the same | |
JP2010236909A (en) | COLUMN PACKING FOR SEPARATING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS, AND METHOD FOR MANUFACTURING COLUMN PACKING FOR SEPARATING HEMOGLOBINS | |
JP5259225B2 (en) | Method for measuring hemoglobins | |
JP5522772B2 (en) | Column filler and method for producing column filler | |
JP7355471B2 (en) | Hemoglobin analysis method | |
JPS6359463B2 (en) | ||
JP4037537B2 (en) | Packing for liquid chromatography | |
JP7331866B2 (en) | Guard column and guard column manufacturing method | |
JP5731464B2 (en) | Method for measuring hemoglobin A1c | |
JP2014095637A (en) | Method of measuring stable type hemoglobin a1c value | |
JP5408766B2 (en) | Column filler for measuring hemoglobin, method for producing column filler for measuring hemoglobin, and method for measuring hemoglobin by liquid chromatography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20200121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201229 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6841503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |