JP6738212B2 - Aluminum alloy forged product and manufacturing method thereof - Google Patents
Aluminum alloy forged product and manufacturing method thereof Download PDFInfo
- Publication number
- JP6738212B2 JP6738212B2 JP2016117232A JP2016117232A JP6738212B2 JP 6738212 B2 JP6738212 B2 JP 6738212B2 JP 2016117232 A JP2016117232 A JP 2016117232A JP 2016117232 A JP2016117232 A JP 2016117232A JP 6738212 B2 JP6738212 B2 JP 6738212B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- aluminum alloy
- forged product
- strength
- forged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 91
- 238000004519 manufacturing process Methods 0.000 title description 13
- 239000000843 powder Substances 0.000 claims description 23
- 229910000765 intermetallic Inorganic materials 0.000 claims description 13
- 229910018473 Al—Mn—Si Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 12
- 229910018565 CuAl Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 description 20
- 238000001125 extrusion Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 238000005242 forging Methods 0.000 description 12
- 230000032683 aging Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000748 compression moulding Methods 0.000 description 5
- -1 Si: 15.6 mass% Inorganic materials 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/008—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Forging (AREA)
Description
本発明は、高温での強度に優れたアルミニウム合金鍛造品及びその製造方法に関するものであり、特に内燃機関のエンジンピストン等のような、熱負荷が大きく、耐摩耗性、耐焼付性が要求される摺動部材として好適なアルミニウム合金鍛造品及びその製造方法に関する。 The present invention relates to an aluminum alloy forged product having excellent strength at high temperatures and a method for manufacturing the same, and in particular, a large thermal load such as an engine piston of an internal combustion engine, abrasion resistance, and seizure resistance are required. The present invention relates to an aluminum alloy forged product suitable as a sliding member and a manufacturing method thereof.
内燃機関のエンジンピストンは、高温において摺動する部材であることから、耐摩耗性に優れると共に高温強度が十分に大きいことが求められ、さらに耐焼付性にも優れることが求められている。 Since an engine piston of an internal combustion engine is a member that slides at high temperatures, it is required to have excellent wear resistance, sufficiently high temperature strength, and seizure resistance.
また、自動車部品としては、近年の自動車業界での燃費向上の要請を受けて、軽量化、高機能化を図ることが必要になってきている。そこで、自動車用エンジンピストン等の摺動部材として、従来の鉄鋼材、鋳鉄材に代わり、軽量であるアルミニウム合金材が注目されている。 In addition, as automobile parts, in response to the recent demand for improvement in fuel consumption in the automobile industry, it has become necessary to achieve weight reduction and high functionality. Therefore, a lightweight aluminum alloy material has been attracting attention as a sliding member for automobile engine pistons and the like, instead of conventional steel materials and cast iron materials.
各種アルミニウム合金のうち共晶又は過共晶Al−Si合金は、Siを約10質量%以上含有している。この共晶又は過共晶Al−Si合金は、熱膨張係数が小さく、優れた耐摩耗性を有しているので、自動車用エンジンピストン等の摺動部材の材料として用いられている。 Among various aluminum alloys, the eutectic or hypereutectic Al—Si alloy contains Si in an amount of about 10% by mass or more. Since this eutectic or hypereutectic Al-Si alloy has a small coefficient of thermal expansion and excellent wear resistance, it is used as a material for sliding members such as engine pistons for automobiles.
しかし、Siを多量に含有するAl−Si合金は、鋳造法によって製造されているため、鋳造欠陥を完全に無くすことは困難であり、また初晶Siが粗大に晶出したり、偏析することがあるため、強度、靱性が低下するという問題があった。また、この種のAl−Si合金は、合金元素の種類や添加量に制限があるため、このAl−Si合金でさらに性能を向上させるには限界があった。 However, since an Al-Si alloy containing a large amount of Si is manufactured by a casting method, it is difficult to completely eliminate casting defects, and primary crystal Si may coarsely crystallize or segregate. Therefore, there is a problem that strength and toughness are reduced. Further, since this kind of Al-Si alloy is limited in the kind and addition amount of alloy elements, there is a limit to further improving the performance of this Al-Si alloy.
このような状況の中、高温雰囲気でも使用できるアルミニウム合金粉末材が注目されている。前記アルミニウム合金粉末としては、重量比でSi:15.0〜25.0%と、Fe:5.9%〜15.0%またはMn:7.1〜15.0%のうち1種または2種の重金属を含み、残部が不可避不純物を含むAlからなり、Si結晶粒の大きさが15μm以下であるアルミニウム合金粉末が公知である(特許文献1参照)。 Under such circumstances, attention has been paid to aluminum alloy powder materials that can be used even in a high temperature atmosphere. As the aluminum alloy powder, one or two of Si: 15.0 to 25.0% and Fe: 5.9% to 15.0% or Mn: 7.1 to 15.0% by weight is used. There is known an aluminum alloy powder containing a heavy metal of some kind, the balance being Al containing unavoidable impurities, and having Si crystal grains having a size of 15 μm or less (see Patent Document 1).
ところで、近年、内燃機関の燃焼効率及び出力を向上させるため、内燃機関の燃焼温度が上昇している。これに伴い、例えば、自動車用エンジンピストン等の摺動部材においても従来よりさらに高い温度域において十分に大きい強度を有していることが求められているが、上記特許文献1に記載の技術ではこのような要求に応え得るものではなかった。 By the way, in recent years, in order to improve the combustion efficiency and output of the internal combustion engine, the combustion temperature of the internal combustion engine is increasing. Along with this, for example, sliding members such as automobile engine pistons are also required to have sufficiently large strength in a temperature range higher than conventional ones. It was not possible to meet such a demand.
本発明は、かかる技術的背景に鑑みてなされたものであって、鍛造変形し易い、割れない等の優れた鍛造性を有すると共に、高温強度が大きいアルミニウム合金鍛造品及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above technical background, and provides an aluminum alloy forged product having high forging strength that is easily deformed, has excellent forgeability such as no cracking, and has high high-temperature strength, and a manufacturing method thereof. The purpose is to
前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
[1]Si:10.0質量%〜19.0質量%、Mn:3.0質量%〜10.0質量%、Cu:0.5質量%〜10.0質量%、Mg:0.2質量%〜3.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金アトマイズ粉末鍛造品であって、
前記鍛造品の断面組織構造は、CuAl2のθ相を備え、該θ相の平均円相当直径が0.66μm〜1.66μmの範囲であることを特徴とするアルミニウム合金鍛造品。
[1] Si: 10.0 mass% to 19.0 mass%, Mn: 3.0 mass% to 10.0 mass%, Cu: 0.5 mass% to 10.0 mass%, Mg: 0.2 An aluminum alloy atomized powder forged product containing 1% by mass to 3.0% by mass and the balance being Al and inevitable impurities,
The cross-sectional structure structure of the forged product includes a θ phase of CuAl 2 , and an average circle equivalent diameter of the θ phase is in a range of 0.66 μm to 1.66 μm.
[2]前記鍛造品は、Al−Mn−Si系金属間化合物を含有し、前記鍛造品の断面組織構造において前記Al−Mn−Si系金属間化合物の平均円相当直径が0.04μm〜0.24μmの範囲である前項1に記載のアルミニウム合金鍛造品。 [2] The forged product contains an Al-Mn-Si based intermetallic compound, and in the cross-sectional structure structure of the forged product, the average equivalent circle diameter of the Al-Mn-Si based intermetallic compound is 0.04 μm to 0. The aluminum alloy forged product according to the above 1, which is in a range of 24 μm.
[3]前記アルミニウム合金鍛造品は、さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf及びNbからなる群より選ばれる1種または2種以上の元素をそれぞれ0.01質量%〜5.0質量%含む前項1または2に記載のアルミニウム合金鍛造品。 [3] The forged aluminum alloy further contains 0.01 or more of one or more elements selected from the group consisting of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb. The aluminum alloy forged product according to the above item 1 or 2, which contains mass% to 5.0 mass%.
[4]Si:10.0質量%〜19.0質量%、Mn:3.0質量%〜10.0質量%、Cu:0.5質量%〜10.0質量%、Mg:0.2質量%〜3.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得る粉末化工程と、
前記アルミニウム合金粉末を圧縮成形して圧粉体を得る成形工程と、
前記圧粉体を熱間押出しして押出材を得る押出工程と、
前記押出材を熱間鍛造することによって、断面組織構造がCuAl2のθ相を備え、該θ相の平均円相当直径が0.66μm〜1.66μmである鍛造品を得る鍛造工程と、を含むことを特徴とするアルミニウム合金鍛造品の製造方法。
[4] Si: 10.0 mass% to 19.0 mass%, Mn: 3.0 mass% to 10.0 mass%, Cu: 0.5 mass% to 10.0 mass%, Mg: 0.2 A powdering step of obtaining an aluminum alloy powder by rapidly solidifying a molten metal of an aluminum alloy containing mass% to 3.0 mass% and the balance consisting of Al and unavoidable impurities by atomization to obtain an aluminum alloy powder;
A molding step of compression molding the aluminum alloy powder to obtain a green compact,
An extrusion step of hot extruding the green compact to obtain an extruded material;
A forging step, in which the extruded material is hot forged to obtain a forged product having a θ phase with a sectional structure structure of CuAl 2 and an average circle equivalent diameter of the θ phase of 0.66 μm to 1.66 μm. A method for manufacturing an aluminum alloy forged product, comprising:
[5]前記鍛造品は、Al−Mn−Si系金属間化合物を含有し、前記鍛造品の断面組織構造において前記Al−Mn−Si系金属間化合物の平均円相当直径が0.04μm〜0.24μmの範囲である前項4に記載のアルミニウム合金鍛造品の製造方法。 [5] The forged product contains an Al-Mn-Si-based intermetallic compound, and the average equivalent circle diameter of the Al-Mn-Si-based intermetallic compound is 0.04 μm to 0 in the sectional structure structure of the forged product. The method for producing an aluminum alloy forged product according to the above item 4, which has a range of 24 μm.
[6]前記アルミニウム合金の溶湯は、さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf及びNbからなる群より選ばれる1種または2種以上の元素をそれぞれ0.01質量%〜5.0質量%含むものである請求項4または5に記載のアルミニウム合金鍛造品の製造方法。 [6] The molten aluminum alloy further contains one or more elements selected from the group consisting of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb in 0.01 or more. The method for manufacturing an aluminum alloy forged product according to claim 4 or 5, wherein the forged aluminum alloy contains 5 to 5.0% by mass.
[1]の発明によれば、鍛造変形し易い、割れない等の優れた鍛造性を有すると共に、高温強度が大きいアルミニウム合金鍛造品が提供される。従って、この鍛造品は、例えば、自動車用エンジンピストン等の摺動部材として好適である。 According to the invention of [1], there is provided an aluminum alloy forged product which has excellent forgeability such that it is easily forged and deformed and does not crack, and has high high-temperature strength. Therefore, this forged product is suitable as, for example, a sliding member such as an automobile engine piston.
[2]の発明によれば、高温強度がより大きいアルミニウム合金鍛造品が提供される。 According to the invention of [2], an aluminum alloy forged product having higher strength at high temperature is provided.
[3]の発明によれば、高温強度がさらに増大したアルミニウム合金鍛造品が提供される。 According to the invention of [3], there is provided an aluminum alloy forged product having further increased high temperature strength.
[4]の発明によれば、鍛造変形し易い、割れない等の優れた鍛造性を有すると共に、高温強度が大きいアルミニウム合金鍛造品を製造することができる。従って、得られた鍛造品は、例えば、自動車用エンジンピストン等の摺動部材として好適である。 According to the invention of [4], it is possible to manufacture an aluminum alloy forged product which has excellent forgeability such that it is easily deformed by forging, does not crack, and has high high-temperature strength. Therefore, the obtained forged product is suitable as a sliding member such as an automobile engine piston, for example.
[5]の発明によれば、高温強度がより大きいアルミニウム合金鍛造品を製造することができる。 According to the invention of [5], an aluminum alloy forged product having higher strength at high temperature can be manufactured.
[6]の発明によれば、高温強度がさらに増大したアルミニウム合金鍛造品を製造することができる。 According to the invention of [6], it is possible to manufacture an aluminum alloy forged product having further increased high temperature strength.
本発明に係るアルミニウム合金鍛造品は、Si:10.0質量%〜19.0質量%、Mn:3.0質量%〜10.0質量%、Cu:0.5質量%〜10.0質量%、Mg:0.2質量%〜3.0質量%を含有し、残部がAl(アルミニウム)及び不可避不純物からなるアルミニウム合金アトマイズ粉末鍛造品であって、前記鍛造品の断面組織構造は、CuAl2のθ相を備え、該θ相の平均円相当直径が0.66μm〜1.66μmの範囲である構成である。 The aluminum alloy forged product according to the present invention has Si: 10.0% by mass to 19.0% by mass, Mn: 3.0% by mass to 10.0% by mass, Cu: 0.5% by mass to 10.0% by mass. %, Mg: 0.2% by mass to 3.0% by mass, the balance being an aluminum alloy atomized powder forged product consisting of Al (aluminum) and inevitable impurities, and the cross-sectional structure structure of the forged product is CuAl. Two θ phases are provided, and the average equivalent circle diameter of the θ phases is in the range of 0.66 μm to 1.66 μm.
上記構成の鍛造品は、アルミニウム合金アトマイズ粉末鍛造品であり、アトマイズ粉末を用いていることで上記鍛造品は微細、均一な組織が得られ、前記鋳造法で得られた合金と比較すると、耐摩耗性および低熱膨張率等の特性を向上させることができる。更に、上記構成の鍛造品は、その断面組織構造が、CuAl2のθ相を備え、該θ相の平均円相当直径が0.66μm〜1.66μmの範囲であるので、鍛造変形し易い、割れない等の優れた鍛造性を有すると共に、大きい高温強度が得られる。 The forged product having the above configuration is an aluminum alloy atomized powder forged product, and the forged product is fine and uniform structure obtained by using the atomized powder, and compared with the alloy obtained by the casting method, It is possible to improve properties such as wear resistance and low coefficient of thermal expansion. Furthermore, the forged product having the above-mentioned structure has a cross-sectional structure structure that includes the θ phase of CuAl 2 and the average circle equivalent diameter of the θ phase is in the range of 0.66 μm to 1.66 μm, so that it is easy to forge and deform. It has excellent forgeability such as no cracking, and high strength at high temperature.
前記θ相の平均円相当直径が0.66μmより小さいと、大きな高温強度が得られない。また、前記θ相の平均円相当直径が1.66μmより大きいと、分散硬化能が低下し、例えば摺動部材の稼働温度域における強度(高温強度)が十分に得られない。中でも、前記θ相の平均円相当直径は0.86μm〜1.46μmであるのが好ましい。 If the average circle-equivalent diameter of the θ phase is smaller than 0.66 μm, a large high temperature strength cannot be obtained. Further, when the average circle equivalent diameter of the θ phase is larger than 1.66 μm, the dispersion hardening ability is lowered and, for example, the strength (high temperature strength) in the operating temperature range of the sliding member cannot be sufficiently obtained. Among them, the average circle equivalent diameter of the θ phase is preferably 0.86 μm to 1.46 μm.
前記アルミニウム合金鍛造品は、Al−Mn−Si系金属間化合物を有し、前記鍛造品の断面組織構造において前記Al−Mn−Si系金属間化合物の平均円相当直径が0.04μm〜0.24μmの範囲である構成が好ましい。平均円相当直径が0.04μmより小さいと、大きな高温強度が得られない。また、平均円相当直径が0.24μmより大きいと、分散硬化能が低下し、例えば摺動部材の稼働温度域における強度(高温強度)が十分に得られない。 The aluminum alloy forged product has an Al-Mn-Si based intermetallic compound, and in the cross-sectional structure structure of the forged product, the average circle equivalent diameter of the Al-Mn-Si based intermetallic compound is 0.04 μm to 0. A structure having a range of 24 μm is preferable. If the average circle equivalent diameter is smaller than 0.04 μm, a large high temperature strength cannot be obtained. Further, if the average equivalent circle diameter is larger than 0.24 μm, the dispersion hardening ability is lowered and, for example, the strength in the operating temperature range of the sliding member (high temperature strength) cannot be obtained sufficiently.
なお、前記θ相の円相当直径とは、SEM写真(画像)におけるθ相(CuAl2)の面積と同じ面積を有する円の直径として換算した値であり、前記Al−Mn−Si系金属間化合物の円相当直径とは、SEM写真(画像)におけるAl−Mn−Si系金属間化合物の面積と同じ面積を有する円の直径として換算した値である。 The circle-equivalent diameter of the θ phase is a value converted as a diameter of a circle having the same area as the area of the θ phase (CuAl 2 ) in the SEM photograph (image). The equivalent circle diameter of the compound is a value converted as the diameter of a circle having the same area as the area of the Al-Mn-Si based intermetallic compound in the SEM photograph (image).
次に、本発明に係る、アルミニウム合金鍛造品の製造方法について説明する。Si:10.0質量%〜19.0質量%、Mn:3.0質量%〜10.0質量%、Cu:0.5質量%〜10.0質量%、Mg:0.2質量%〜3.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金の溶湯をアトマイズ法によって急冷凝固させて粉末化してアルミニウム合金粉末を得る(粉末化工程)。 Next, a method for manufacturing an aluminum alloy forged product according to the present invention will be described. Si: 10.0 mass% to 19.0 mass%, Mn: 3.0 mass% to 10.0 mass%, Cu: 0.5 mass% to 10.0 mass%, Mg: 0.2 mass% to A molten aluminum alloy containing 3.0% by mass and the balance of Al and unavoidable impurities is rapidly solidified by an atomizing method and powdered to obtain an aluminum alloy powder (powdering step).
上記特定組成のアルミニウム合金溶湯を通常の溶解法によって調製する。得られたアルミニウム合金溶湯をアトマイズ法によって粉末化する。アトマイズ法は、噴霧ノズルからの窒素ガス等のガス流によりアルミニウム合金溶湯の微小液滴をミスト化して噴霧し、微小液滴を急冷凝固させて微細なアルミニウム合金粉末を得る方法である。冷却速度は、103〜105℃/秒であるのが好ましい。30μm〜70μmのアルミニウム合金粉末が得られるようにするのがよい。得られたアルミニウム合金粉末は、篩を用いて分級するのが好ましく、中でも150μm以下のアルミニウム合金粉末を得るのがより好ましい。 The molten aluminum alloy having the above specific composition is prepared by a usual melting method. The obtained molten aluminum alloy is pulverized by an atomizing method. The atomization method is a method in which fine droplets of molten aluminum alloy are misted and sprayed by a gas flow of nitrogen gas or the like from a spray nozzle, and the fine droplets are rapidly cooled and solidified to obtain fine aluminum alloy powder. The cooling rate is preferably 10 3 to 10 5 °C/sec. It is preferable to obtain an aluminum alloy powder having a size of 30 μm to 70 μm. It is preferable to classify the obtained aluminum alloy powder using a sieve, and it is more preferable to obtain an aluminum alloy powder having a particle size of 150 μm or less.
次に、前記粉末化工程で得られたアルミニウム合金粉末を圧縮成形して圧粉体を得る(圧縮成形工程)。一例を挙げると、250℃〜300℃に加熱したアルミニウム合金粉末を、230℃〜270℃に加熱された金型内に充填し、所定形状に圧縮成形して圧粉体を得る。前記圧縮成形の圧力は、特に限定されないが、通常は、0.5トン/cm2〜3.0トン/cm2に設定するのが好ましい。また、相対密度が60%〜90%の圧粉体にするのが好ましい。前記圧粉体の形状は、特に限定されないが、次の押出工程を考慮して、円柱形状または円盤状とするのが好ましい。 Next, the aluminum alloy powder obtained in the powderizing step is compression molded to obtain a green compact (compression molding step). As an example, an aluminum alloy powder heated to 250° C. to 300° C. is filled in a mold heated to 230° C. to 270° C., and compression-molded into a predetermined shape to obtain a green compact. The pressure for the compression molding is not particularly limited, but normally, it is preferably set to 0.5 tons/cm 2 to 3.0 tons/cm 2 . Further, it is preferable to use a green compact having a relative density of 60% to 90%. The shape of the green compact is not particularly limited, but in consideration of the next extrusion step, it is preferably a cylindrical shape or a disk shape.
次いで、前記圧縮成形工程で得られた圧粉体を熱間押出しして押出材を得る(押出工程)。前記圧粉体には、必要に応じて面削等の機械加工を施してから、脱ガス処理を施し、加熱して押出工程に供する。押出前の圧粉体の加熱温度は、300℃〜450℃にするのが好ましい。押出に際しては、例えば、圧粉体を押出コンテナ内に挿入して押出ラムにより加圧力を加え、押出ダイスから例えば丸棒形状に押出す。この時、前記押出コンテナを予め300℃〜400℃に加熱しておくのが望ましい。このように熱間で押し出すことによって圧粉体の塑性変形が進行し、アルミニウム合金粉末(粒子)同士が結合して一体化した押出体が得られる。前記押出の際に、押出圧力は10MPa〜25MPaに設定するのが好ましい。 Next, the green compact obtained in the compression molding step is hot extruded to obtain an extruded material (extrusion step). If necessary, the green compact is subjected to mechanical processing such as chamfering, then degassed, heated, and then subjected to an extrusion step. The heating temperature of the green compact before extrusion is preferably 300°C to 450°C. At the time of extrusion, for example, a green compact is inserted into an extrusion container, a pressing force is applied by an extrusion ram, and the extrusion die is extruded into, for example, a round bar shape. At this time, it is desirable to preheat the extrusion container to 300°C to 400°C. By thus extruding hot, the plastic deformation of the green compact progresses, and an extruded body in which aluminum alloy powders (particles) are bonded and integrated is obtained. At the time of the extrusion, the extrusion pressure is preferably set to 10 MPa to 25 MPa.
次に、前記押出工程で得られた押出材を熱間鍛造することによって、断面組織構造がCuAl2のθ相を備え、該θ相の平均円相当直径が0.66μm〜1.66μmである鍛造品を得ることができる(鍛造工程)。一例を挙げると、丸棒状の押出材を必要に応じて所定長さに切断した後、熱間鍛造する。この熱間鍛造は、鍛造上がり材(鍛造品)が製品形状(例えばエンジンピストン形状)に近い形状になるように、密閉型鍛造または半密閉型鍛造とすることが好ましいが、製品(鍛造品)形状によっては自由鍛造でもよい。熱間鍛造の温度は、300℃〜450℃に設定するのが好ましい。 Next, the extruded material obtained in the extruding step is hot forged to have a θ phase of CuAl 2 in cross-sectional structure, and the average circle equivalent diameter of the θ phase is 0.66 μm to 1.66 μm. A forged product can be obtained (forging process). For example, a round bar-shaped extruded material is cut into a predetermined length as needed, and then hot forged. This hot forging is preferably a closed forging or a semi-closed forging so that the forged material (forged product) has a shape close to the product shape (for example, engine piston shape), but the product (forged product) Free forging may be used depending on the shape. The hot forging temperature is preferably set to 300°C to 450°C.
鍛造上がり材は、これに切削加工や表面研磨等を施して、自動車用エンジンピストン等の摺動部材等の製品(鍛造品)としてもよいが、次のような熱処理を行うようにしてもよい。 The forged material may be cut or surface-polished to be a product (forged product) such as a sliding member such as an automobile engine piston, but may be subjected to the following heat treatment. ..
前記鍛造上がり材に溶体化処理を行う。この溶体化処理は、Cu、Mg等を過飽和に固溶させる処理であり、溶体化処理の加熱温度は480℃〜500℃が好ましい。 A solution treatment is applied to the forged material. This solution treatment is a treatment for supersaturating Cu, Mg, etc., and the heating temperature of the solution treatment is preferably 480°C to 500°C.
前記溶体化処理の後に、水焼き入れ等によって急冷して、常温での固溶限を超えてCu、Mg等が過飽和に固溶された材料(過飽和固溶体)を得る焼入れ処理を行う。焼入れ温度は0℃〜50℃が好ましい。 After the solution treatment, quenching is performed by water quenching or the like to obtain a material (supersaturated solid solution) in which Cu, Mg, etc. are supersaturated in a solid state beyond the solid solution limit at room temperature. The quenching temperature is preferably 0°C to 50°C.
前記焼入れ処理の後に、時効処理を行う。この時効処理により、Cu、Mg等を含む金属間化合物を微細に析出させて、鍛造品の強度、耐摩耗性を向上させることができる。前記時効処理は、180℃〜280℃の温度で1時間〜4時間行うのが好ましい。 After the quenching treatment, an aging treatment is performed. By this aging treatment, an intermetallic compound containing Cu, Mg or the like can be finely precipitated to improve the strength and wear resistance of the forged product. The aging treatment is preferably performed at a temperature of 180°C to 280°C for 1 hour to 4 hours.
上記時効処理後の鍛造品に、切削加工等の機械加工や表面研磨等を施すことによって、自動車用エンジンピストン等の摺動部材等の製品(鍛造品)を得ることができる。 By subjecting the forged product after the aging treatment to mechanical processing such as cutting or surface polishing, products (forged products) such as sliding members such as engine pistons for automobiles can be obtained.
本発明の鍛造品及び鍛造品の製造方法におけるアルミニウム合金の組成について以下説明する。前記アルミニウム合金は、Si:10.0質量%〜19.0質量%、Mn:3.0質量%〜10.0質量%、Cu:0.5質量%〜10.0質量%、Mg:0.2質量%〜3.0質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金である。 The composition of the aluminum alloy in the forged product and the method for manufacturing the forged product of the present invention will be described below. The aluminum alloy has Si: 10.0% by mass to 19.0% by mass, Mn: 3.0% by mass to 10.0% by mass, Cu: 0.5% by mass to 10.0% by mass, Mg:0. It is an aluminum alloy containing 0.2 mass% to 3.0 mass% and the balance being Al and inevitable impurities.
前記アルミニウム合金におけるSi含有率は、10.0質量%〜19.0質量%の範囲とする。Si含有率が10.0質量%未満になると、Si晶出物の量が少なくなって耐摩耗性および強度の低下をもたらし、Si含有率が19.0質量%を超えると、粗大な初晶Siが晶出して強度の低下をもたらすとともに、材料の脆化をもたらして、鍛造性が低下する。中でも、前記アルミニウム合金におけるSi含有率は12質量%〜16質量%であるのが好ましく、高温強度と優れた鍛造性を確実に両立させることができる。 The Si content in the aluminum alloy is in the range of 10.0% by mass to 19.0% by mass. If the Si content is less than 10.0% by mass, the amount of Si crystallized substances is reduced, resulting in deterioration of wear resistance and strength. If the Si content exceeds 19.0% by mass, coarse primary crystals are produced. Si crystallizes and causes a decrease in strength, and also causes embrittlement of the material, resulting in a decrease in forgeability. Among them, the Si content in the aluminum alloy is preferably 12% by mass to 16% by mass, and it is possible to surely achieve both high temperature strength and excellent forgeability.
前記アルミニウム合金におけるMn含有率は、3.0質量%〜10.0質量%の範囲とする。Mn含有率が3.0質量%未満になると、Al−Mn−Si系金属間化合物による分散強化が十分に得られない。また、Mn含有率が10.0質量%を超えると、硬さや耐摩耗性がかえって低くなり、成形体において材質が脆くなる傾向がある。中でも、前記アルミニウム合金におけるMn含有率は、6.0質量%〜8.0質量%であるのが好ましい。 The Mn content in the aluminum alloy is in the range of 3.0% by mass to 10.0% by mass. If the Mn content is less than 3.0% by mass, the dispersion strengthening by the Al-Mn-Si based intermetallic compound cannot be sufficiently obtained. Further, when the Mn content exceeds 10.0 mass %, the hardness and wear resistance are rather lowered, and the material tends to become brittle in the molded body. Above all, the Mn content in the aluminum alloy is preferably 6.0% by mass to 8.0% by mass.
前記アルミニウム合金におけるCu含有率は、0.5質量%〜10.0質量%の範囲とする。Cuは、常温強度及び高温強度を向上させるのに不可欠の元素である。Cu含有率が0.5質量%未満になると、固溶量が低下し強度向上の効果が少なくなるし、晶出するCuAl2相による分散強化による強度向上の効果も少ない。Cu含有率が10.0質量%を超えると、押出加工性が低下するし、θ相(CuAl2)が粒界に粗大に析出または晶出して破断伸びが低下する可能性がある。 The Cu content in the aluminum alloy is in the range of 0.5% by mass to 10.0% by mass. Cu is an essential element for improving room temperature strength and high temperature strength. When the Cu content is less than 0.5% by mass, the amount of solid solution is reduced and the effect of improving the strength is reduced, and the effect of improving the strength by the dispersion strengthening by the crystallized CuAl 2 phase is also small. When the Cu content exceeds 10.0 mass %, the extrudability may be deteriorated, and the θ phase (CuAl 2 ) may be coarsely precipitated or crystallized at the grain boundaries to reduce the elongation at break.
前記アルミニウム合金におけるMg含有率は、0.2質量%〜3.0質量%の範囲とする。Mgは、Cuと同様に、常温強度及び高温強度を向上させるのに不可欠の元素である。Mg含有率が0.2質量%未満になると、強度向上の効果が少ない。また、Mg含有率が3.0質量%を超えると、押出加工性が低下する。 The Mg content in the aluminum alloy is in the range of 0.2% by mass to 3.0% by mass. Like Cu, Mg is an essential element for improving room temperature strength and high temperature strength. If the Mg content is less than 0.2% by mass, the effect of improving strength is small. Moreover, when the Mg content exceeds 3.0 mass %, the extrusion processability deteriorates.
本発明の鍛造品及び鍛造品の製造方法において、前記アルミニウム合金は、さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf及びNbからなる群より選ばれる1種または2種以上の元素をそれぞれ0.01質量%〜5.0質量%含む構成としてもよい。この場合には、高温強度がさらに増大したアルミニウム合金鍛造品が得られる。 In the forged product and the method for manufacturing the forged product of the present invention, the aluminum alloy is further one or two selected from the group consisting of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf and Nb. You may make it the structure which contains each said element 0.01 mass%-5.0 mass %. In this case, an aluminum alloy forged product having further increased high temperature strength can be obtained.
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<実施例1>
Si:15.8質量%、Mn:6.83質量%、Cu:3.14質量%、Mg:1.11質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱して1000℃のアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯をガスにてアトマイズして急冷凝固させて粉末化し、100メッシュの篩により分級して、100メッシュの篩を通過したアルミニウム合金粉末を得た。
<Example 1>
An aluminum alloy containing Si: 15.8% by mass, Mn: 6.83% by mass, Cu: 3.14% by mass, Mg: 1.11% by mass, the balance being Al and inevitable impurities was heated to 1000 After obtaining the aluminum alloy melt at ℃, atomize the aluminum alloy melt with gas, rapidly solidify it into powder, classify with a 100 mesh screen, and obtain an aluminum alloy powder that has passed through a 100 mesh screen. ..
次に、得られたアルミニウム合金粉末を280℃の温度に予熱し、この予熱したアルミニウム合金粉末を、同じ280℃に加熱保持した金型内に充填し、1.5トン/cm2の圧力で圧縮成形して、直径210mm、長さ250mmの円柱形状の圧粉体(成形体)を得た。次に、得られた圧粉体を旋盤にて直径203mmまで面削して、圧粉体のビレットを得た。 Next, the obtained aluminum alloy powder was preheated to a temperature of 280° C., and the preheated aluminum alloy powder was filled in a mold heated and held at the same temperature of 280° C., and a pressure of 1.5 ton/cm 2 was applied. By compression molding, a cylindrical green compact (molded body) having a diameter of 210 mm and a length of 250 mm was obtained. Next, the obtained green compact was face-milled with a lathe to a diameter of 203 mm to obtain a green compact billet.
次に、得られたビレットを350℃に加熱し、この加熱ビレットを、350℃に加熱保持された内径210mmの押出コンテナ中に挿入し、内径75mmのダイスで間接押出法により押出比7.8で押出して押出材10を得た。得られた押出材を長さ30mmに切断した後、450℃に加熱して熱間自由鍛造を施し、直径107.5mm、長さ15mmのアルミニウム合金鍛造品20を得た。なお、図1に鍛造前の押出材10を示し、図2に鍛造後の鍛造品20を示す。
Next, the obtained billet is heated to 350° C., the heated billet is inserted into an extrusion container having an inner diameter of 210 mm which is heated and held at 350° C., and the extrusion ratio is 7.8 by an indirect extrusion method using a die having an inner diameter of 75 mm. Was extruded to obtain an extruded
<比較例1>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、Si:15.6質量%、Mn:6.72質量%、Cu:3.09質量%、Mg:1.06質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を用い、アルミニウム合金溶湯の温度を900℃とし、篩として170メッシュの篩を用いた以外は、実施例1と同様にして、アルミニウム合金鍛造品を得た。
<Comparative Example 1>
As an aluminum alloy for forming a molten aluminum alloy, Si: 15.6 mass%, Mn: 6.72 mass%, Cu: 3.09 mass%, Mg: 1.06 mass% are contained, and the balance is Al. An aluminum alloy forged product was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used, the temperature of the molten aluminum alloy was set to 900° C., and a 170-mesh sieve was used as the sieve.
<比較例2>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、Si:15.6質量%、Mn:6.78質量%、Cu:3.12質量%、Mg:1.11質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を用い、アルミニウム合金溶湯の温度を1100℃とした以外は、実施例1と同様にして、アルミニウム合金鍛造品を得た。
<Comparative example 2>
As an aluminum alloy for forming a molten aluminum alloy, Si: 15.6 mass%, Mn: 6.78 mass%, Cu: 3.12 mass%, Mg: 1.11 mass% are contained, and the balance is Al. An aluminum alloy forged product was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used and the temperature of the molten aluminum alloy was set to 1100°C.
<比較例3>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、Si:15.6質量%、Mn:6.78質量%、Cu:3.12質量%、Mg:1.11質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を用い、アルミニウム合金溶湯の温度を1100℃とし、篩として50メッシュの篩を用いた以外は、実施例1と同様にして、アルミニウム合金鍛造品を得た。
<Comparative example 3>
As an aluminum alloy for forming a molten aluminum alloy, Si: 15.6 mass%, Mn: 6.78 mass%, Cu: 3.12 mass%, Mg: 1.11 mass% are contained, and the balance is Al. An aluminum alloy forged product was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used, the temperature of the molten aluminum alloy was 1100° C., and a 50-mesh sieve was used as the sieve.
<比較例4>
アルミニウム合金溶湯を形成するためのアルミニウム合金として、Si:15.6質量%、Mn:6.72質量%、Cu:3.09質量%、Mg:1.06質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を用い、アルミニウム合金溶湯の温度を900℃とした以外は、実施例1と同様にして、アルミニウム合金鍛造品を得た。
<Comparative example 4>
As an aluminum alloy for forming a molten aluminum alloy, Si: 15.6 mass%, Mn: 6.72 mass%, Cu: 3.09 mass%, Mg: 1.06 mass% are contained, and the balance is Al. An aluminum alloy forged product was obtained in the same manner as in Example 1 except that an aluminum alloy containing unavoidable impurities was used and the temperature of the molten aluminum alloy was set to 900°C.
上記のようにして得られた各アルミニウム合金鍛造品について下記評価法に基づいて評価を行った。その結果を表1に示す。 Each forged aluminum alloy product obtained as described above was evaluated based on the following evaluation method. The results are shown in Table 1.
<高温引張強度評価法>
得られた鍛造品を490℃に加熱して3時間保持した後、20℃の水に焼き入れした。その後、時効処理として220℃で1時間加熱してT7処理品を得た。前記T7処理品を、標点間距離20mm、平行部直径4mmの引張試験片に加工して、該引張試験片の高温引張試験を行うことによって高温引張強度(300℃での引張強度)を測定した。前記高温引張試験は、高温引張試験片を300℃に100時間保持した後に300℃で試験を行った。下記判定基準に基づいて評価した。実施例1では、300℃での引張強度が160MPaであり、◎(大きな高温引張強度が得られる)の評価であった。
(判定基準)
「◎」…300℃での引張強度が160MPa以上
「○」…300℃での引張強度が155MPa以上160MPa未満
「△」…300℃での引張強度が150MPa以上155MPa未満
「×」…300℃での引張強度が150MPa未満である。
<High temperature tensile strength evaluation method>
The obtained forged product was heated to 490° C., held for 3 hours, and then quenched in water at 20° C. Then, as an aging treatment, it was heated at 220° C. for 1 hour to obtain a T7-treated product. The T7 treated product is processed into a tensile test piece having a gauge length of 20 mm and a parallel part diameter of 4 mm, and a high temperature tensile strength test (tensile strength at 300° C.) of the tensile test piece is performed. did. The high temperature tensile test was performed at 300° C. after holding the high temperature tensile test piece at 300° C. for 100 hours. It evaluated based on the following judgment criteria. In Example 1, the tensile strength at 300° C. was 160 MPa, and the evaluation was ⊚ (a large high temperature tensile strength is obtained).
(Criteria)
"A"... Tensile strength at 300°C is 160 MPa or more "O"... Tensile strength at 300°C is 155 MPa or more and less than 160 MPa "△"... Tensile strength at 300°C is 150 MPa or more and less than 155 MPa "X"... At 300°C Has a tensile strength of less than 150 MPa.
<鍛造品の組織形態評価法>
得られた鍛造品を490℃に加熱して3時間保持した後、20℃の水に焼き入れした。その後、時効処理として220℃で1時間加熱してT7処理品を得た。前記T7処理品から10mm×10mm×10mmの大きさの組織観察用試料を切り出した。得られた組織観察用試料を樹脂埋めした後、物理研磨により鏡面仕上げを施し、FE−SEM(電界放出形走査電子顕微鏡;JEOL JSM−7000F)を用いて据え込み方向に垂直な断面について組織観察を行った(反射電子像を観察した)。得られた反射電子像(×10k)の画像解析を行った。画像解析の対象は、θ相(CuAl2相)およびAl−Mn−Si系金属間化合物であり、いずれの対象物についても、電子顕微鏡画像における任意の3視野(3箇所)の円相当直径をそれぞれ求めてその平均値を算出して「平均円相当直径」を求めた。即ち、θ相(CuAl2相)の平均円相当直径およびAl−Mn−Si系金属間化合物の平均円相当直径を求めた(表1参照)。
<Method of evaluating structure of forged products>
The obtained forged product was heated to 490° C., held for 3 hours, and then quenched in water at 20° C. Then, as an aging treatment, it was heated at 220° C. for 1 hour to obtain a T7-treated product. A tissue observation sample having a size of 10 mm×10 mm×10 mm was cut out from the T7-treated product. After embedding the obtained structure observation sample in resin, the surface was mirror-finished by physical polishing, and the structure was observed using a FE-SEM (Field Emission Scanning Electron Microscope; JEOL JSM-7000F) on a cross section perpendicular to the upsetting direction. (The backscattered electron image was observed). Image analysis of the obtained backscattered electron image (×10 k) was performed. The target of the image analysis is the θ phase (CuAl 2 phase) and the Al-Mn-Si based intermetallic compound, and for any of the objects, the circle equivalent diameters of arbitrary 3 fields of view (3 places) in the electron microscope image are taken. Each was calculated|required and the average value was calculated and the "mean circle equivalent diameter" was calculated|required. That is, the average equivalent circle diameter of the θ phase (CuAl 2 phase) and the average equivalent circle diameter of the Al—Mn—Si intermetallic compound were determined (see Table 1).
表1から明らかなように、本発明に係る実施例1のアルミニウム合金鍛造品は、高温引張強度(300℃での引張強度)が大きいものであった。 As is clear from Table 1, the aluminum alloy forged product of Example 1 according to the present invention had high high-temperature tensile strength (tensile strength at 300°C).
これに対し、本発明の規定範囲を逸脱する比較例1〜4のアルミニウム合金鍛造品では、高温引張強度(300℃での引張強度)は不十分であった。 On the other hand, in the aluminum alloy forged products of Comparative Examples 1 to 4 which deviate from the specified range of the present invention, the high temperature tensile strength (tensile strength at 300°C) was insufficient.
本発明に係るアルミニウム合金鍛造品と、本発明の製造方法で製造されたアルミニウム合金鍛造品は、優れた鍛造性を備え、高温での強度に優れているので、自動車用エンジンピストン等の摺動部材として好適であるが、特にこのような用途に限定されない。 Since the aluminum alloy forged product according to the present invention and the aluminum alloy forged product manufactured by the manufacturing method of the present invention have excellent forgeability and excellent strength at high temperature, sliding of engine pistons for automobiles, etc. It is suitable as a member, but is not particularly limited to such use.
10…押出材
20…アルミニウム合金鍛造品
10... Extruded
Claims (2)
前記鍛造品の断面組織構造は、CuAl2のθ相を備え、該θ相の平均円相当直径が0.66μm〜1.66μmの範囲であることを特徴とするアルミニウム合金鍛造品。 Si: 10.0 mass% to 19.0 mass%, Mn: 3.0 mass% to 10.0 mass%, Cu: 0.5 mass% to 10.0 mass%, Mg: 0.2 mass% to An aluminum alloy atomized powder forged product containing 3.0% by mass, the balance being Al and inevitable impurities,
The cross-sectional structure structure of the forged product includes a θ phase of CuAl 2 , and an average circle equivalent diameter of the θ phase is in a range of 0.66 μm to 1.66 μm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016117232A JP6738212B2 (en) | 2016-06-13 | 2016-06-13 | Aluminum alloy forged product and manufacturing method thereof |
EP17168677.7A EP3257957A1 (en) | 2016-06-13 | 2017-04-28 | Aluminum alloy forging and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016117232A JP6738212B2 (en) | 2016-06-13 | 2016-06-13 | Aluminum alloy forged product and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017222893A JP2017222893A (en) | 2017-12-21 |
JP6738212B2 true JP6738212B2 (en) | 2020-08-12 |
Family
ID=58640740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016117232A Active JP6738212B2 (en) | 2016-06-13 | 2016-06-13 | Aluminum alloy forged product and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3257957A1 (en) |
JP (1) | JP6738212B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019190366A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2019190365A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2019190364A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2020100863A (en) * | 2018-12-21 | 2020-07-02 | 昭和電工株式会社 | Aluminum alloy for compressor slide component, forging product of compressor slide component and production method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5913041A (en) * | 1982-07-12 | 1984-01-23 | Showa Denko Kk | Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production |
JPS61295301A (en) * | 1985-06-25 | 1986-12-26 | Honda Motor Co Ltd | Heat-resistant high-power aluminum alloy powder and its molding |
JPS6210237A (en) * | 1985-07-09 | 1987-01-19 | Showa Denko Kk | Aluminum alloy for hot forging |
JPS63230842A (en) * | 1987-03-18 | 1988-09-27 | Showa Denko Kk | Aluminum alloy excellent in hot forgeability |
JPS62247044A (en) * | 1987-04-03 | 1987-10-28 | Sumitomo Electric Ind Ltd | Wear resistant aluminum alloy of high strength |
JPS6439341A (en) * | 1987-08-06 | 1989-02-09 | Sumitomo Electric Industries | Al-si-mn sintered alloy for forging |
JPS63266005A (en) | 1987-11-10 | 1988-11-02 | Showa Denko Kk | High strength aluminum alloy powder having heat and wear resistances |
CN105522156B (en) * | 2014-10-23 | 2018-01-09 | 东睦新材料集团股份有限公司 | A kind of manufacture method of powder metallurgy silumin compressor piston |
JP2017078213A (en) * | 2015-10-21 | 2017-04-27 | 昭和電工株式会社 | Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same |
-
2016
- 2016-06-13 JP JP2016117232A patent/JP6738212B2/en active Active
-
2017
- 2017-04-28 EP EP17168677.7A patent/EP3257957A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JP2017222893A (en) | 2017-12-21 |
EP3257957A1 (en) | 2017-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021527758A (en) | High-performance Al-Zn-Mg-Zr-based aluminum alloy for welding and additive manufacturing | |
WO2010122960A1 (en) | High-strength copper alloy | |
JP5556723B2 (en) | Heat resistant high strength aluminum alloy and method for producing the same | |
JP6738212B2 (en) | Aluminum alloy forged product and manufacturing method thereof | |
JPH02258935A (en) | Manufacture of 7000 series aluminum alloy and composite material, which has high mechanical strength and good ductility and consists of discontinuous reinforcement and matrix formed from said alloy, by spray up method | |
EP3456853A1 (en) | Manufacturing of high strength and heat resistant aluminium alloys strengthened by dual precipitates | |
JP2017155270A (en) | Aluminum alloy atomized powder for extrusion material, manufacturing method of aluminum alloy atomized powder for extrusion material, manufacturing method of extrusion material, manufacturing method of forging article and forging article | |
WO2019069651A1 (en) | Compressor component for transport and method for manufacturing same | |
JP2007092117A (en) | Aluminum alloy with high strength and low specific gravity | |
US20190100824A1 (en) | Aluminum alloy powder and production method thereof, and aluminum alloy extruded material and production method thereof | |
JP4764094B2 (en) | Heat-resistant Al-based alloy | |
JP7033481B2 (en) | Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method | |
JP2020007594A (en) | Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material | |
JP3987471B2 (en) | Al alloy material | |
JP7118705B2 (en) | Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same | |
JP4704720B2 (en) | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties | |
JP2010126740A (en) | Aluminum alloy and method for manufacturing the same | |
CN112996614B (en) | Method for forming object by spraying | |
JPH07305132A (en) | High elasticity aluminum alloy excellent in toughness | |
JPH10265918A (en) | Aluminum alloy | |
JP4704722B2 (en) | Heat-resistant Al-based alloy with excellent wear resistance and workability | |
JP4699786B2 (en) | Al-based alloy with excellent workability and heat resistance | |
JP4699787B2 (en) | Heat-resistant Al-based alloy with excellent wear resistance and rigidity | |
JP2007327080A (en) | INTERMETALLIC COMPOUND-DISPERSED TYPE Al-BASED MATERIAL AND ITS PRODUCTION METHOD | |
JP2917999B2 (en) | Method for producing high-strength aluminum alloy compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200717 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6738212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |