[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6736077B2 - Novel squarylium derivative and organic thin-film solar cell using the same - Google Patents

Novel squarylium derivative and organic thin-film solar cell using the same Download PDF

Info

Publication number
JP6736077B2
JP6736077B2 JP2016107477A JP2016107477A JP6736077B2 JP 6736077 B2 JP6736077 B2 JP 6736077B2 JP 2016107477 A JP2016107477 A JP 2016107477A JP 2016107477 A JP2016107477 A JP 2016107477A JP 6736077 B2 JP6736077 B2 JP 6736077B2
Authority
JP
Japan
Prior art keywords
group
solar cell
mmol
layer
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016107477A
Other languages
Japanese (ja)
Other versions
JP2016222665A (en
Inventor
久宏 笹部
久宏 笹部
城戸 淳二
淳二 城戸
健志 佐野
健志 佐野
五十嵐 司
司 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JP2016222665A publication Critical patent/JP2016222665A/en
Application granted granted Critical
Publication of JP6736077B2 publication Critical patent/JP6736077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、新規なスクアリリウム誘導体、及びそれを用いた有機薄膜太陽電池素子に関する。 The present invention relates to a novel squarylium derivative and an organic thin film solar cell device using the same.

近年、有機薄膜太陽電池は、軽量で自由に曲げられるという特徴をもち、製造コスト面でも有利であることから、シリコン系無機太陽電池に代わって、実用化・市場投入段階に入りつつある。有機薄膜太陽電池には蒸着型及び塗布型があるが、特に塗布型の有機薄膜太陽電池は、蒸着型の有機薄膜太陽電池に比べて製造コストが安く、大量生産に向いている。しかしながら、有機薄膜太陽電池は、その光電エネルギー変換効率が10%程度であり、シリコン系無機太陽電池と比較して、効率や信頼性の点で未だ改善の余地があり、盛んに研究開発が行われている。 In recent years, organic thin-film solar cells have been characterized by being lightweight and freely bendable, and are also advantageous in terms of manufacturing cost. Therefore, they are entering the stage of practical application and market introduction in place of silicon-based inorganic solar cells. The organic thin film solar cell includes a vapor deposition type and a coating type. In particular, the coating type organic thin film solar cell has a lower manufacturing cost than the vapor deposition type organic thin film solar cell and is suitable for mass production. However, the organic thin-film solar cell has a photoelectric energy conversion efficiency of about 10%, and there is still room for improvement in efficiency and reliability in comparison with silicon-based inorganic solar cells, and active research and development is underway. It is being appreciated.

太陽光は、そのエネルギーの50%以上を、650nmより長波長の近赤外・赤外領域に持つ。そのため、光電変換効率の飛躍的な向上には、この波長領域を効率良く吸収し、電気エネルギーとして取り出すことが必須である。有機薄膜太陽電池素子はドナー材料とアクセプター材料を用いて作製される。一般にアクセプター材料で用いられているフラーレン誘導体は逆電子移動が遅く、対称性が高いという利点があるが、これらは近赤外領域付近に強い吸収を持たないため、有機薄膜太陽電池の高効率化には、長波長領域の吸収を持つドナー材料の開発が非常に重要となる。また、有機薄膜太陽電池の高効率化には、ドナー材料と、アクセプター材料とのエネルギー準位の関係が重要である。ドナー材料で太陽光を吸収して発生した励起子(エキシトン)からアクセプター材料に電荷移動させるには、一般にドナー材料の最低非占有分子軌道(lowest unoccupied molecular orbital:LUMO)準位がアクセプター材料のLUMO準位よりも0.3eV以上浅いことが好ましいとされている。塗布型有機薄膜太陽電池では、アクセプター材料として、通常溶解性が高いフェニルC71酪酸メチル(PC70BM)が使用される。PC70BMのLUMO準位は4.0eVであるから、ドナー材料には3.7eV程度のLUMO準位が求められる。 Sunlight has 50% or more of its energy in the near infrared/infrared region having a wavelength longer than 650 nm. Therefore, in order to dramatically improve the photoelectric conversion efficiency, it is essential to efficiently absorb this wavelength region and extract it as electric energy. The organic thin film solar cell element is manufactured using a donor material and an acceptor material. Fullerene derivatives, which are generally used as acceptor materials, have the advantages of slow reverse electron transfer and high symmetry, but they do not have strong absorption in the near-infrared region, which improves the efficiency of organic thin-film solar cells. For this reason, development of a donor material having absorption in a long wavelength region is very important. Further, the relationship between the energy levels of the donor material and the acceptor material is important for improving the efficiency of the organic thin film solar cell. In order to transfer charges from excitons (excitons) generated by absorbing sunlight by a donor material to an acceptor material, generally, the lowest unoccupied molecular orbital (LUMO) level of the donor material is the LUMO of the acceptor material. It is said that it is preferable to be shallower than the level by 0.3 eV or more. In the coating type organic thin film solar cell, phenyl C71 methyl butyrate (PC 70 BM), which is usually highly soluble, is used as an acceptor material. Since the LUMO level of PC 70 BM is 4.0 eV, the LUMO level of about 3.7 eV is required for the donor material.

塗布型有機薄膜太陽電池に使用されるドナー材料は、当然ながら、溶媒によく溶ける必要がある。ドナー材料は大きく分けて高分子型と低分子型の2つが知られている。高分子型材料は変換効率が8%程度まで効率が向上しているが、高分子型材料は、精製が難しく、高純度化が困難で、製造ロット間の特性変化が大きく品質を保つことが難しい。一方、低分子型材料は、分子量分布を持たず、精製が容易で信頼性が高い、又は、製造ロット間の品質が変わらず、ロットによりエネルギー変換効率に影響を与えない等の特徴を持つ。しかしながら、低分子型材料は、現時点で移動度も10-5cm2/Vs程度と低く、エネルギー変換効率も7%以下に留まっている。また、低分子型材料のうち、高効率を達成している材料は、一般に溶解性が低く、塗布型有機薄膜太陽電池を作製する際に、オルトジクロロベンゼン(ODCB)、クロロホルム等、ハロゲン系の溶媒を使用しなければならず、環境面で問題がある。そのため、塗布型有機薄膜太陽電池の高性能化と実用性向上には、近赤外光の吸収能と高い移動度を持ち、非ハロゲン系の溶媒等にも高い溶解性を示す新しい低分子材料の開発が求められている。 The donor material used in the coated organic thin-film solar cell must, of course, be well soluble in the solvent. The donor materials are roughly classified into two types, a high molecular type and a low molecular type. Although the conversion efficiency of polymer type materials has improved to about 8%, it is difficult to purify and to improve the purification efficiency of polymer type materials, and the characteristic changes between manufacturing lots are large and quality can be maintained. difficult. On the other hand, the low molecular weight material has a characteristic that it does not have a molecular weight distribution, is easy to purify and is highly reliable, or that the quality between manufacturing lots does not change, and the energy conversion efficiency is not affected depending on the lot. However, the low molecular weight material has a low mobility of about 10 −5 cm 2 /Vs at the present time and an energy conversion efficiency of 7% or less. In addition, among low molecular weight materials, materials that have achieved high efficiency generally have low solubility, and when producing a coating type organic thin film solar cell, halogen-based materials such as orthodichlorobenzene (ODCB) and chloroform are used. A solvent must be used, which is an environmental problem. Therefore, in order to improve the performance and practicality of coating-type organic thin-film solar cells, a new low-molecular material that has high absorption capacity for near-infrared light and high mobility and shows high solubility in non-halogen solvents, etc. Development is required.

スクアリリウム誘導体は、非ハロゲン系溶媒に対しても高い溶解性を示し、近赤外領域に強い吸収を持ち、かつ、逆電子移動が遅く、高い対称性を持つ構造であることから、ドナー材料として研究開発が行われており、すでに多数報告されている(非特許文献1〜3)。 The squarylium derivative has a high solubility even in a non-halogen solvent, has a strong absorption in the near infrared region, has a slow reverse electron transfer, and has a high symmetry structure. Research and development has been carried out, and many reports have already been made (Non-patent documents 1 to 3).

G. Chen, H. Sasabe, Y. Sasaki, H. Katagiri, X.F. Wang, T. Sano, Z. Hong, Y. Yang, and J. Kido, “Chem.Mater.” 2014, 26, 1356-1364.G. Chen, H. Sasabe, Y. Sasaki, H. Katagiri, X.F. Wang, T. Sano, Z. Hong, Y. Yang, and J. Kido, “Chem.Mater.” 2014, 26, 1356-1364. 佐々木、笹部、洪、楊、及び城戸「高分子学会第62回年次大会」、1J28 (2013)Sasaki, Sasabe, Hong, Yang, and Kido, 62nd Annual Meeting of the Polymer Society of Japan, 1J28 (2013) H. Sasabe, T. Igarashi, Y. Sasaki. G. Chen, Z. Hong, and J. Kido, “RSC Advances” 2014,4, 42804-42807.H. Sasabe, T. Igarashi, Y. Sasaki. G. Chen, Z. Hong, and J. Kido, “RSC Advances” 2014,4, 42804-42807.

スクアリリウム誘導体は、脱水縮合反応により高収率で比較的容易に合成できて環境に優しく、種々の置換基の導入も可能である。スクアリリウム誘導体のうち、SQ−1、YSQ−8、SQ−BPは、塗布成膜によるBHJ(bulk heterojunction)型の素子において、それぞれPCE(power conversion efficiency)が4.0%、3.8%、4.8%を達成している。これらの誘導体のエネルギー変換効率は、以前のものに比べると向上しているが、まだ低い値に留まっている。また、これらのスクアリリウム誘導体を用いた有機薄膜太陽電池は、そのVOC(開放電圧)、JSC(短絡電流密度)の値が他の材料に比べて高いものの、FF(曲線因子)が低いという問題があった。

Figure 0006736077
The squarylium derivative can be synthesized relatively easily in a high yield by a dehydration condensation reaction, is environmentally friendly, and can introduce various substituents. Among the squarylium derivatives, SQ-1, YSQ-8, and SQ-BP have a PCH (power conversion efficiency) of 4.0% and 3.8%, respectively, in a BHJ (bulk heterojunction) type element formed by coating film formation. Achieved 4.8%. The energy conversion efficiency of these derivatives is improved compared to the previous ones, but still remains low. In addition, organic thin-film solar cells using these squarylium derivatives have higher V OC (open circuit voltage) and J SC (short circuit current density) values than other materials, but have a low FF (fill factor). There was a problem.
Figure 0006736077

前記誘導体のうち、YSQ−8、SQ−BPは、アクセプター材料としてPC70BMを組み合わせるのに適したエネルギー準位になるように設計した分子である。なかでもSQ−BPはその分子構造が左右対称であり、合成の収率が80%以上であり、PCEも4.8%と比較的高い。 Among the above derivatives, YSQ-8 and SQ-BP are molecules designed to have an energy level suitable for combining PC 70 BM as an acceptor material. Among them, SQ-BP has a bilaterally symmetrical molecular structure, the yield of synthesis is 80% or more, and PCE is relatively high at 4.8%.

そこで、本発明では、高効率な素子を提供するために有用な新規スクアリリウム誘導体を提供すべく、SQ−BPに着目し、その末端置換基を改良して、エネルギー準位を変化させずに、薄膜状態での移動度を向上させ、さらにFFを改善してエネルギー変換効率を向上させることを課題としている。また、得られたスクアリリウム誘導体からなるドナー材料及びそれを用いた有機薄膜太陽電池を提供することを課題としている。 Therefore, in the present invention, in order to provide a novel squarylium derivative useful for providing a highly efficient device, focusing on SQ-BP, improving the terminal substituents thereof, without changing the energy level, An object is to improve the mobility in a thin film state and further improve FF to improve energy conversion efficiency. Another object is to provide a donor material made of the obtained squarylium derivative and an organic thin-film solar cell using the same.

本発明は以下の事項からなる。
本発明は、下記一般式(1)で表されるスクアリリウム誘導体であることを特徴とする。

Figure 0006736077
前記一般式(1)中、R1はそれぞれ独立に芳香族基、R2はそれぞれ独立に炭素数4以上の分岐した脂肪族炭化水素基である。
前記一般式(1)中、R1は炭素数6〜50の芳香族基であり、R2は炭素数4〜20の脂肪族炭化水素基であることが好ましい。
本発明の有機薄膜太陽電池は、前記スクアリリウム誘導体を用いたものであることを特徴とする。 The present invention comprises the following items.
The present invention is characterized by being a squarylium derivative represented by the following general formula (1).
Figure 0006736077
In the general formula (1), R 1 is independently an aromatic group, and R 2 is independently a branched aliphatic hydrocarbon group having 4 or more carbon atoms.
In the general formula (1), R 1 is preferably an aromatic group having 6 to 50 carbon atoms, and R 2 is preferably an aliphatic hydrocarbon group having 4 to 20 carbon atoms.
The organic thin-film solar cell of the present invention is characterized by using the squarylium derivative.

本発明のスクアリリウム誘導体は、該スクアリリウム誘導体におけるアミノ基、すなわち、一般式(1)中のR1に芳香族基を導入することにより、その最高占有分子軌道(highest occupied molecular orbital;HOMO)が深くなり、長波長の光を吸収することができる。また、分子の平面性が高くなり、成膜時にフェイスオン(face−on)配向性が高くなり、キャリア移動度を向上させることができる。さらに、550〜700nmの領域で強い吸収を示す。
また、一般式(1)中のR2に、炭素数4以上の分岐した脂肪族炭化水素基を導入することにより、非ハロゲン溶媒に対する溶解性が向上する。
The squarylium derivative of the present invention has a deepest occupied molecular orbital (HOMO) by introducing an aromatic group into the amino group in the squarylium derivative, that is, R 1 in the general formula (1). Therefore, long wavelength light can be absorbed. In addition, the planarity of the molecule becomes high, the face-on orientation becomes high during film formation, and the carrier mobility can be improved. Further, it exhibits strong absorption in the region of 550 to 700 nm.
Further, by introducing a branched aliphatic hydrocarbon group having 4 or more carbon atoms into R 2 in the general formula (1), the solubility in a non-halogen solvent is improved.

よって、本発明によれば、上記一般式(1)で表されるスクアリリウム誘導体を用いることにより、得られる素子は、薄膜状態でのキャリア移動度が向上してFFの値が改善され、結果としてエネルギー変換効率が向上した、高効率な有機薄膜太陽電池を提供することができる。
また、上記一般式(1)で表されるスクアリリウム誘導体は、非ハロゲン系溶媒に対する溶解性が向上したことで脱ハロゲン化が可能となり、環境面での問題解決や、デバイス性能の向上が期待できる。
また、上記一般式(1)で表されるスクアリリウム誘導体は、高収率かつ安価に大量に合成することができる。よって、上記一般式(1)で表されるスクアリリウム誘導体は、工業的に極めて重要である。
Therefore, according to the present invention, by using the squarylium derivative represented by the general formula (1), the obtained device has improved carrier mobility in a thin film state and improved FF value. A highly efficient organic thin film solar cell with improved energy conversion efficiency can be provided.
Further, the squarylium derivative represented by the general formula (1) can be dehalogenated due to its improved solubility in a non-halogen solvent, which can be expected to solve environmental problems and improve device performance. ..
Further, the squarylium derivative represented by the above general formula (1) can be synthesized in large quantities at high yield and at low cost. Therefore, the squarylium derivative represented by the general formula (1) is extremely important industrially.

本発明の有機薄膜太陽電池の素子構造を模式的に示した概略断面図である。It is a schematic sectional drawing which showed typically the element structure of the organic thin-film solar cell of this invention. 図2は、a)SQ−ET、b)SQ−EP、c)SQ−EN、d)SQ−EB、e)SQ−ETPA、f)SQ−EF、及びg)SQ−ESのそれぞれについて、溶液状態で測定した場合(- - -)、キャストフィルムにして測定した場合(―■―)、熱アニール処理(70℃、10分)後に測定した場合(―◆―)、熱アニール処理(120℃、10分)後に測定した場合(―▲―)のUV−Vis吸収スペクトルを表す図である。FIG. 2 shows a) SQ-ET, b) SQ-EP, c) SQ-EN, d) SQ-EB, e) SQ-ETPA, f) SQ-EF, and g) SQ-ES. When measured in a solution state (---), when measured as a cast film (-■-), when measured after thermal annealing treatment (70°C, 10 minutes) (-◆-), thermal annealing treatment (120 It is a figure showing a UV-Vis absorption spectrum at the time of measuring after 10 minutes (°C) (-▲-). 図3は、SQ−EPのa)電圧−電流密度、b)波長−外部量子効率(EQE)の関係を表す図である。FIG. 3 is a diagram showing a relationship between a) voltage-current density and b) wavelength-external quantum efficiency (EQE) of SQ-EP. 図4は、SQ−ENのa)電圧−電流密度、b)波長−外部量子効率(EQE)の関係を表す図である。FIG. 4 is a diagram showing the relationship of a) voltage-current density, b) wavelength-external quantum efficiency (EQE) of SQ-EN. 図5は、SQ−EBのa)電圧−電流密度、b)波長−外部量子効率(EQE)の関係を表す図である。FIG. 5 is a diagram showing the relationship of a) voltage-current density, b) wavelength-external quantum efficiency (EQE) of SQ-EB. 図6は、SQ−ETPA、SQ−EF、及びSQ−ESのa)電圧−電流密度、b)波長−外部量子効率(EQE)の関係を表す図である。FIG. 6 is a diagram showing a) voltage-current density, b) wavelength-external quantum efficiency (EQE) relationship of SQ-ETPA, SQ-EF, and SQ-ES.

以下、本発明について、詳細に説明する。
[スクアリリウム誘導体]
本発明のスクアリリウム誘導体は、下記一般式(1)で表される。

Figure 0006736077
Hereinafter, the present invention will be described in detail.
[Squarylium derivative]
The squarylium derivative of the present invention is represented by the following general formula (1).
Figure 0006736077

上記一般式(1)中、R1は芳香族基である。前記芳香族基は、芳香族炭化水素基でもよいし、芳香族基に窒素原子、酸素原子又は硫黄原子等を含んでいてもよい。
前記芳香族炭化水素基は、単環のアリール基でも、多環(縮合環)芳香族炭化水素基でもよく、前記芳香族炭化水素基における芳香環上の水素原子の一部が、例えば、メチル基、イソプロピル基及びイソブチル基等で置換されていてもよい。
前記芳香族基に窒素原子、酸素原子又は硫黄原子等を含む基には、例えば、ジフェニルアミノフェニル基、エーテル基及びチオエーテル基、フラニル基、チオフェニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチオフェニル基等が挙げられる。
上記芳香族基は、炭素数6〜50の芳香族基であることが好ましい。前記炭素数6〜50の芳香族基としては、例えば、フェニル基、ビフェニル基、ナフチル基、トリフェニレニル基、ターフェニル基、クオーターフェニル基、アントラセニル、9,9’−スピロビフルオレニル基、ジフェニルアミノフェニル基、及び9,9’−ジメチルフルオレニル基等が挙げられる。これらのうち、フェニル基、トリフェニレニル基、ナフチル基、ビフェニル基、ターフェニル基、クオーターフェニル基、9,9’−スピロビフルオレニル基、ジフェニルアミノフェニル基、及び9,9’−ジメチルフルオレニル基等がより好ましく、フェニル基、2−トリフェニレニル基、2−ナフチル基、ビフェニル−4−イル基、4−(ジフェニルアミノ)フェニル基、2−(9,9’−スピロビフルオレニル)基、3−(9,9’−ジメチルフルオレニル)基が特に好ましい。
In the general formula (1), R 1 is an aromatic group. The aromatic group may be an aromatic hydrocarbon group, or the aromatic group may contain a nitrogen atom, an oxygen atom, a sulfur atom or the like.
The aromatic hydrocarbon group may be a monocyclic aryl group or a polycyclic (fused ring) aromatic hydrocarbon group, and a part of hydrogen atoms on the aromatic ring in the aromatic hydrocarbon group may be, for example, methyl group. It may be substituted with a group, an isopropyl group, an isobutyl group or the like.
Examples of the group containing a nitrogen atom, an oxygen atom, a sulfur atom or the like in the aromatic group include a diphenylaminophenyl group, an ether group and a thioether group, a furanyl group, a thiophenyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group. Group, dibenzothiophenyl group and the like.
The aromatic group is preferably an aromatic group having 6 to 50 carbon atoms. Examples of the aromatic group having 6 to 50 carbon atoms include phenyl group, biphenyl group, naphthyl group, triphenylenyl group, terphenyl group, quarterphenyl group, anthracenyl, 9,9'-spirobifluorenyl group, diphenyl. Examples thereof include an aminophenyl group and a 9,9′-dimethylfluorenyl group. Of these, a phenyl group, a triphenylenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a 9,9'-spirobifluorenyl group, a diphenylaminophenyl group, and a 9,9'-dimethylfluorene group. More preferably, it is a phenyl group, a 2-triphenylenyl group, a 2-naphthyl group, a biphenyl-4-yl group, a 4-(diphenylamino)phenyl group, a 2-(9,9′-spirobifluorenyl) group. The group, 3-(9,9'-dimethylfluorenyl) group, is particularly preferred.

上記一般式(1)中、R2は炭素数4つ以上の分岐した脂肪族炭化水素基であるが、好ましくは、炭素数4〜20の分岐した脂肪族炭化水素基である。
炭素数4〜20の分岐した脂肪族炭化水素基としては、例えば、イソブチル基、2−エチルヘキシル基及び2−エチルオクチル基等が挙げられる。これらのうち、2−エチルヘキシル基、イソブチル基及び2−エチルオクチル基等がより好ましく、2−エチルヘキシル基が特に好ましい。
ここで、脂肪族炭化水素基とは、広く芳香族炭化水素基以外の基を指し、鎖状(非環式)でも環式でもよく、また、脂肪族炭化水素基を構成する水素原子の一部が、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基及びエーテル基等で置換されていてもよい。
なお、R1及びR2は、本発明の効果を損なわない範囲内で、その水素原子の一部が窒素原子、硫黄原子、酸素原子、リン原子若しくはケイ素原子又はこれらを含む置換基で置換されていてもよい。
In the above general formula (1), R 2 is a branched aliphatic hydrocarbon group having 4 or more carbon atoms, preferably a branched aliphatic hydrocarbon group having 4 to 20 carbon atoms.
Examples of the branched aliphatic hydrocarbon group having 4 to 20 carbon atoms include isobutyl group, 2-ethylhexyl group and 2-ethyloctyl group. Among these, a 2-ethylhexyl group, an isobutyl group, a 2-ethyloctyl group and the like are more preferable, and a 2-ethylhexyl group is particularly preferable.
Here, the aliphatic hydrocarbon group broadly refers to a group other than an aromatic hydrocarbon group, and may be chain (acyclic) or cyclic, and one of the hydrogen atoms constituting the aliphatic hydrocarbon group. The part may be substituted with, for example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an ether group or the like.
It should be noted that R 1 and R 2 have a hydrogen atom partially substituted with a nitrogen atom, a sulfur atom, an oxygen atom, a phosphorus atom or a silicon atom, or a substituent containing these, within a range that does not impair the effects of the present invention. May be.

具体的には、上記一般式(1)で表される化合物は、以下の構造式で表される化合物SQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、及びSQ−ESであることが好ましい。

Figure 0006736077
Specifically, the compound represented by the general formula (1) is a compound represented by the following structural formula: SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF. , And SQ-ES are preferred.
Figure 0006736077

上記一般式(1)で表されるスクアリリウム誘導体は、その末端の置換基の一方に芳香族炭化水素基を有することにより、深いHOMO及び近赤外領域における広い吸収を持つことができ、他方に分岐した脂肪族炭化水素基を有することにより、有機溶媒への溶解性が向上し、例えば、スクアリリウム誘導体の末端の置換基がいずれも芳香族基である場合や、末端置換基の一方が芳香族基であり、他方が直鎖状の脂肪族基である場合と比較して、近赤外領域におけるモル吸光係数と有機溶媒への溶解性が向上する。
したがって、上記スクアリリウム誘導体は、PC70BM等のフラーレン又はその誘導体からなるアクセプター材料に対するドナー材料として好適に用いることができる。
The squarylium derivative represented by the general formula (1) can have a deep HOMO and a wide absorption in the near-infrared region by having an aromatic hydrocarbon group at one of the terminal substituents, and at the other, By having a branched aliphatic hydrocarbon group, the solubility in an organic solvent is improved, for example, when the terminal substituents of the squarylium derivative are both aromatic groups, or one of the terminal substituents is aromatic. The molar extinction coefficient in the near infrared region and the solubility in an organic solvent are improved as compared with the case where the other is a linear aliphatic group.
Therefore, the squarylium derivative can be suitably used as a donor material for an acceptor material composed of fullerene such as PC 70 BM or a derivative thereof.

[スクアリリウム誘導体の製造方法]
本発明のスクアリリウム誘導体は、例えば、以下に示す方法により製造することができる。SQ−ETの製造方法を一例に示す。
2−エチルヘキシルアミン及び2−ブロモトリフェニレンを、ヨウ化銅(I)、炭酸カリウム及びL−プロリンの存在下、ジメチルスルホキシド(DMSO)溶液中で反応させることにより、(2−エチル−1−ヘキシル)(2−トリフェニレリル)アミンを得る。次いで、得られた(2−エチル−1−ヘキシル)(2−トリフェニレリル)アミンと1−ブロモ−3,5−ジメトキシベンゼンとを、Pd(0)触媒、カリウム−t−ブトキシド及びトリブチルホスフィンの存在下、キシレン溶液中で加熱還流することにより、対応するアミン化合物を得る。次いで、得られたアミン化合物に三臭化ホウ素を添加し、塩化メチレン溶液中で反応させることにより、3,5−ジヒドロキシアニリン誘導体を得る。次いで、得られた3,5−ジヒドロキシアニリン誘導体にスクアリン酸を添加して、トルエン及びブタノール混合溶液中で反応させることにより、収率80%でSQ−ETを得る。
ただし、上記一般式(1)で表されるスクアリリウム誘導体は、上記した方法に限られず、種々の公知の方法で製造することができる。
[Method for producing squarylium derivative]
The squarylium derivative of the present invention can be produced, for example, by the method shown below. An example of the manufacturing method of SQ-ET is shown.
By reacting 2-ethylhexylamine and 2-bromotriphenylene in a dimethylsulfoxide (DMSO) solution in the presence of copper(I) iodide, potassium carbonate and L-proline, (2-ethyl-1-hexyl) (2-Triphenylyl)amine is obtained. Then, the obtained (2-ethyl-1-hexyl)(2-triphenylylyl)amine and 1-bromo-3,5-dimethoxybenzene were combined with Pd(0) catalyst, potassium-t-butoxide and tributylphosphine. The corresponding amine compound is obtained by heating under reflux in a xylene solution. Then, boron tribromide is added to the obtained amine compound and reacted in a methylene chloride solution to obtain a 3,5-dihydroxyaniline derivative. Then, squaric acid is added to the obtained 3,5-dihydroxyaniline derivative and reacted in a mixed solution of toluene and butanol to obtain SQ-ET with a yield of 80%.
However, the squarylium derivative represented by the general formula (1) is not limited to the above-mentioned method, and can be produced by various known methods.

Figure 0006736077
Figure 0006736077

[有機薄膜太陽電池及びその製造方法]
本発明の有機薄膜太陽電池素子(以下「太陽電池素子」という。)は、一対の電極(陽極2、陰極6)間に少なくとも一層の有機エレクトロルミネッセンス(EL)層が積層された素子構造を有し、典型的には、図1に示すように、基板1、陽極2、正孔輸送層3、活性層4、電子輸送層5及び陰極6が順次積層された素子構造を有する。
以下、本発明の太陽電池素子の構成を説明する。
[Organic thin-film solar cell and manufacturing method thereof]
The organic thin-film solar cell element of the present invention (hereinafter referred to as “solar cell element”) has an element structure in which at least one organic electroluminescence (EL) layer is laminated between a pair of electrodes (anode 2 and cathode 6). However, typically, as shown in FIG. 1, it has a device structure in which a substrate 1, an anode 2, a hole transport layer 3, an active layer 4, an electron transport layer 5 and a cathode 6 are sequentially stacked.
Hereinafter, the structure of the solar cell element of the present invention will be described.

<太陽電池素子の構成>
本発明の太陽電池素子の構成は、図1の例に限定されず、陽極と陰極との間に順次、1)陽極バッファ層(図示せず)/正孔輸送層/活性層、2)陽極バッファ層(図示せず)/活性層/電子輸送層、3)陽極バッファ層(図示せず)/正孔輸送層/活性層/電子輸送層、4)陽極バッファ層(図示せず)/正孔輸送性化合物、活性化合物および電子輸送性化合物を含む層、5)陽極バッファ層(図示せず)/正孔輸送性化合物及び活性化合物を含む層、6)陽極バッファ層(図示せず)/活性化合物及び電子輸送性化合物を含む層、7)陽極バッファ層(図示せず)/正孔電子輸送性化合物および活性化合物を含む層、8)陽極バッファ層(図示せず)/活性層/正孔ブロック層(図示せず)/電子輸送層を設けた構成等が挙げられる。また、図1に示した活性層は一層であるが、二層以上であってもよい。
<Structure of solar cell element>
The structure of the solar cell element of the present invention is not limited to the example of FIG. 1, and 1) anode buffer layer (not shown)/hole transport layer/active layer and 2) anode are provided between the anode and the cathode in order. Buffer layer (not shown)/active layer/electron transport layer, 3) anode buffer layer (not shown)/hole transport layer/active layer/electron transport layer, 4) anode buffer layer (not shown)/positive Layer containing hole transporting compound, active compound and electron transporting compound, 5) Anode buffer layer (not shown)/Layer containing hole transporting compound and active compound, 6) Anode buffer layer (not shown)/ Layer containing active compound and electron transporting compound, 7) Anode buffer layer (not shown)/layer containing hole electron transporting compound and active compound, 8) Anode buffer layer (not shown)/Active layer/Positive A configuration in which a hole block layer (not shown)/electron transport layer is provided can be used. Further, although the active layer shown in FIG. 1 is a single layer, it may be two or more layers.

<陽極>
前記陽極には、−5〜80℃の温度範囲で、面抵抗が、通常1000Ω(オーム)以下、好ましくは100Ω以下の材料が用いられる。
太陽電池素子の陽極側から光を取り出す場合(ボトムエミッション)には、陽極は可視光線に対して透明(380〜680nmの光に対する平均透過率が50%以上)であることが必要であるため、陽極の材料には、酸化インジウム錫(ITO)及びインジウム−亜鉛酸化物(IZO)等が用いられる。これらのうち、入手容易性の観点から、ITOが好ましい。
また、素子の陰極側から光を取り出す場合(トップエミッション)には、陽極の光透過度は制限されないため、陽極の材料には、ITO及びIZOの他に、ステンレスや、銅、銀、金、白金、タングステン、チタン、タンタル若しくはニオブの単体、又はこれらの合金が用いられる。
陽極の厚さは、ボトムエミッションの場合には、高い光透過率を実現するために、通常2〜300nmであり、トップエミッションの場合には、通常2nm〜2mmである。
<Anode>
For the anode, a material having a surface resistance of usually 1000 Ω (ohm) or less, preferably 100 Ω or less in a temperature range of −5 to 80° C. is used.
When light is extracted from the anode side of the solar cell element (bottom emission), the anode needs to be transparent to visible light (average transmittance for light of 380 to 680 nm is 50% or more). Indium tin oxide (ITO), indium-zinc oxide (IZO), or the like is used as the material of the anode. Among these, ITO is preferable from the viewpoint of easy availability.
Further, when light is extracted from the cathode side of the device (top emission), the light transmittance of the anode is not limited. Therefore, in addition to ITO and IZO, stainless steel, copper, silver, gold, A simple substance of platinum, tungsten, titanium, tantalum or niobium, or an alloy thereof is used.
The thickness of the anode is usually 2 to 300 nm in the case of bottom emission in order to realize high light transmittance, and is usually 2 nm to 2 mm in the case of top emission.

<陽極バッファ層>
陽極バッファ層は、陽極上に、陽極バッファ層用材料を塗布し、さらに加熱することによって形成される。
この塗布操作においては、スピンコート法、キャスト法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の公知の塗布法を適用することがきできる。
また、陽極バッファ層用材料には、活性層形成の際に陽極バッファ層が溶解するのを防ぐ観点から、通常は、有機溶剤に対する耐性の高い材料が用いられる。
陽極バッファ層の厚さは、バッファ層としての効果を充分に発揮させ、また、太陽電池素子の駆動電圧の上昇を防ぐ観点から、通常5〜50nm、好ましくは10〜30nmである。
<Anode buffer layer>
The anode buffer layer is formed by applying a material for an anode buffer layer on the anode and then heating.
In this coating operation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, A known coating method such as an inkjet printing method can be applied.
In addition, as a material for the anode buffer layer, a material having high resistance to an organic solvent is usually used from the viewpoint of preventing the anode buffer layer from being dissolved during formation of the active layer.
The thickness of the anode buffer layer is usually 5 to 50 nm, preferably 10 to 30 nm, from the viewpoint of sufficiently exerting the effect as the buffer layer and preventing an increase in driving voltage of the solar cell element.

<活性層、正孔輸送層、電子輸送層>
太陽電池素子における有機EL層は、活性層、正孔輸送層及び電子輸送層で構成される。
前記活性層には、上記一般式(1)で表されるスクアリリウム誘導体が用いられる。前記スクアリリウム誘導体は、通常アクセプター材料を混合して用いられる。前記スクアリリウム誘導体をドナー材料とし、アクセプター材料とともに、活性層4を形成することにより、高効率の有機薄膜太陽電池を提供することができる。
前記アクセプター材料には、公知の材料が適宜選択して用いられるが、電子輸送性があり、HOMOのエネルギー準位が深い化合物が好ましく、具体的には、フラーレン(C60、C70等)又はその誘導体(PC70BM等)体が好適に用いられる。
<Active layer, hole transport layer, electron transport layer>
The organic EL layer in the solar cell element is composed of an active layer, a hole transport layer and an electron transport layer.
The squarylium derivative represented by the general formula (1) is used for the active layer. The squarylium derivative is usually used by mixing an acceptor material. By using the squarylium derivative as a donor material and forming the active layer 4 together with the acceptor material, a highly efficient organic thin film solar cell can be provided.
A known material is appropriately selected and used as the acceptor material, but a compound having an electron transporting property and a deep HOMO energy level is preferable, and specifically, fullerene (C60, C70, etc.) or a derivative thereof. A body (PC 70 BM or the like) is preferably used.

前記活性層は、活性層のキャリア輸送性を補う目的で、図1に示すように、正孔輸送層と電子輸送層との間に挿入してもよいし、活性層中に、前記アクセプター材料とともに、正孔輸送性化合物や電子輸送性化合物を分散させて用いてもよい。
正孔輸送性化合物としては、例えば、酸化モリブデン(VI)(MoO3)、酸化バナジウム(V25)、酸化タングステン(WO3)、酸化ルテニウム(RuO2)等の金属酸化物、ヘキサアザトリフェニレンヘキサカルボニル(HATCN)、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノ−キノジメタン(F4TCNQ)等の低分子材料や、該低分子材料に重合性官能基を導入して高分子化したもの等が挙げられる。
電子輸送性化合物としては、例えば、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)等のフェナントロリン誘導体、B4PyMPM(ビス−3,6−(3,5−ジ−4−ピリジルフェニル)−2−メチルピリミジン)等のオリゴピリジン誘導体及び[60]フラーレン、[70]フラーレン等のナノカーボン誘導体等の低分子材料や、該低分子材料に重合性官能基を導入して高分子化したもの等が挙げられる。
The active layer may be inserted between the hole transporting layer and the electron transporting layer as shown in FIG. 1 in order to supplement the carrier transporting property of the active layer, or the active layer may contain the acceptor material. At the same time, a hole transporting compound or an electron transporting compound may be dispersed and used.
Examples of the hole transporting compound include metal oxides such as molybdenum (VI) oxide (MoO 3 ), vanadium oxide (V 2 O 5 ), tungsten oxide (WO 3 ), ruthenium oxide (RuO 2 ), and hexaaza. Low molecular weight materials such as triphenylene hexacarbonyl (HATCN), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ), and the introduction of polymerizable functional groups into the low molecular weight materials. And the like, which are polymerized.
Examples of the electron transporting compound include phenanthroline derivatives such as BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) and B4PyMPM (bis-3,6-(3,5-di-4). -Pyridylphenyl)-2-methylpyrimidine) and other low molecular weight materials such as oligopyridine derivatives and [60]fullerene, [70]fullerene and other nanocarbon derivatives, and by introducing a polymerizable functional group into the low molecular weight material. Examples include polymerized ones.

<正孔ブロック層>
正孔が活性層を通過するのを抑え、活性層内で電子と効率よく再結合させる目的で、活性層の陰極側に隣接して正孔ブロック層を設けてもよい。この正孔ブロック層には、活性化合物よりHOMO準位の深い化合物が用いられ、例えば、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体、アルミニウム錯体等が用いられる。
さらに、励起子(エキシトン)が陰極金属で失活することを防ぐ目的で、活性層の陰極側に隣接してエキシトンブロック層を設けてもよい。このエキシトンブロック層には、活性化合物よりも、三重項励起エネルギーの大きな化合物が用いられ、該化合物としては、トリアゾール誘導体、フェナントロリン誘導体、アルミニウム錯体等が用いられる。
<Hole blocking layer>
A hole blocking layer may be provided adjacent to the cathode side of the active layer for the purpose of suppressing the passage of holes through the active layer and efficiently recombine with the electrons in the active layer. For the hole blocking layer, a compound having a deeper HOMO level than the active compound is used, and for example, a triazole derivative, an oxadiazole derivative, a phenanthroline derivative, an aluminum complex, or the like is used.
Further, an exciton block layer may be provided adjacent to the cathode side of the active layer for the purpose of preventing excitons (excitons) from being deactivated by the cathode metal. For this exciton block layer, a compound having a triplet excitation energy larger than that of the active compound is used, and as the compound, a triazole derivative, a phenanthroline derivative, an aluminum complex or the like is used.

<陰極>
陰極材料としては、仕事関数が低く(4eV以下)、かつ、化学的に安定なものが使用される。具体的には、Al、MgAg合金、AlLiやAlCa等のAlとアルカリ金属との合金等の既知の陰極材料が挙げられる。これらの陰極材料の成膜方法としては、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法等が用いられる。陰極の厚さは、通常10nm〜1μmであり、好ましくは50〜500nmである。
<Cathode>
As the cathode material, a material having a low work function (4 eV or less) and being chemically stable is used. Specific examples thereof include known cathode materials such as Al, MgAg alloy, and alloys of Al and alkali metals such as AlLi and AlCa. A resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, or the like is used as a film forming method of these cathode materials. The thickness of the cathode is usually 10 nm to 1 μm, preferably 50 to 500 nm.

また、陰極から有機EL層への電子注入障壁を下げて電子の注入効率を上げる目的で、陰極より仕事関数の低い金属層を、陰極バッファ層として、陰極と該陰極に隣接する層の間に挿入してもよい。このような目的に使用できる低仕事関数の金属としては、アルカリ金属、アルカリ土類金属、希土類金属等が挙げられる。また、陰極より仕事関数の低いものであれば、合金又は金属化合物も使用することができる。これらの陰極バッファ層の成膜方法としては、蒸着法やスパッタ法等を用いることができる。陰極バッファ層の厚さは、通常0.05〜50nmであり、好ましくは0.1〜20nmである。 Further, for the purpose of lowering the electron injection barrier from the cathode to the organic EL layer to increase the electron injection efficiency, a metal layer having a work function lower than that of the cathode is used as a cathode buffer layer between the cathode and a layer adjacent to the cathode. May be inserted. Examples of low work function metals that can be used for such purposes include alkali metals, alkaline earth metals, and rare earth metals. Further, an alloy or a metal compound may be used as long as it has a work function lower than that of the cathode. As a method for forming these cathode buffer layers, a vapor deposition method, a sputtering method, or the like can be used. The thickness of the cathode buffer layer is usually 0.05 to 50 nm, preferably 0.1 to 20 nm.

さらに、陰極バッファ層は、上記の低仕事関数の金属等と電子輸送性化合物との混合物として形成させることもできる。この場合の成膜方法としては共蒸着法を用いることができる。また、溶液による塗布成膜が可能な場合は、スピンコート法、スプレーコート法、ディップコート法、印刷法(インクジェットプリント法、ディスペンサー塗布法)等の成膜方法を用いることができる。この場合の陰極バッファ層の厚さは、通常は0.1〜100nmであり、好ましくは0.5〜50nmである。陰極と有機物層との間に、導電性高分子からなる層、或いは、金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。 Furthermore, the cathode buffer layer can be formed as a mixture of the above-mentioned low work function metal or the like and an electron transporting compound. As a film forming method in this case, a co-evaporation method can be used. Further, in the case where coating with a solution is possible, a film forming method such as a spin coating method, a spray coating method, a dip coating method, or a printing method (inkjet printing method, dispenser coating method) can be used. In this case, the thickness of the cathode buffer layer is usually 0.1 to 100 nm, preferably 0.5 to 50 nm. A layer made of a conductive polymer or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like and having an average film thickness of 2 nm or less may be provided between the cathode and the organic layer.

<基板>
前記素子を構成する基板には、太陽電池素子に要求される機械的強度を満たす材料が用いられる。
ボトムエミッション型の太陽電池素子には、可視光線に対して透明な基板が用いられ、例えば、ソーダガラス、無アルカリガラス等のガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂等の透明プラスチック;シリコンからなる基板等が使用できる。
トップエミッション型の太陽電池素子には、ボトムエミッション型の太陽電池素子に用いられる基板に加えて、ステンレスや、銅、銀、金、白金、タングステン、チタン、タンタル若しくはニオブの単体又はこれらの合金からなる基板等が使用できる。
基板の厚さは、要求される機械的強度にもよるが、通常0.1〜10mm、好ましくは0.25〜2mmである。
なお、各層の膜厚は、概ね5nm〜5μmの範囲内である。
<Substrate>
A material satisfying the mechanical strength required for the solar cell element is used for the substrate forming the element.
For bottom emission type solar cell elements, a substrate transparent to visible light is used. For example, glass such as soda glass and non-alkali glass; acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon resin, etc. Transparent plastic; a substrate made of silicon can be used.
Top emission type solar cell elements include, in addition to the substrate used for bottom emission type solar cell elements, stainless steel, copper, silver, gold, platinum, tungsten, titanium, tantalum or niobium alone or alloys thereof. A substrate such as can be used.
Although the thickness of the substrate depends on the required mechanical strength, it is usually 0.1 to 10 mm, preferably 0.25 to 2 mm.
The film thickness of each layer is generally within the range of 5 nm to 5 μm.

(太陽電池素子の形成方法)
上記の有機EL化合物層は、例えば、蒸着法(抵抗加熱蒸着法、電子ビーム蒸着法等)、スパッタリング法等のドライプロセス、又は塗布法(スピンコート法、キャスティング法、ダイコート法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等)等のウェットプロセスにより形成することができる。これらの方法のうち、スピンコート法、ダイコート法、スプレーコート法が好ましく用いられる。
(Method for forming solar cell element)
The organic EL compound layer is formed by, for example, a vapor deposition method (resistance heating vapor deposition method, electron beam vapor deposition method, etc.), a dry process such as a sputtering method, or a coating method (spin coating method, casting method, die coating method, microgravure coating method). , Gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, etc.) be able to. Among these methods, the spin coating method, die coating method and spray coating method are preferably used.

なお、太陽電池素子を長期間、安定的に用いるために、その周囲に保護層及び/又は保護カバーを装着することが好ましい。前記保護層には、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物等が用いられる。前記保護カバーには、ガラス板、表面に低透水化処理を施したプラスチック板、金属等が用いられ、該カバーを熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。さらに、前記空間に窒素やアルゴンのような不活性ガスを封入すれば、陰極の酸化を防止することができ、酸化バリウム等の乾燥剤を空間内に入れれば、製造工程で吸着した水分が太陽電池素子にタメージを与えるのを抑制できる。 In order to use the solar cell element stably for a long period of time, it is preferable to attach a protective layer and/or a protective cover around the solar cell element. For the protective layer, polymer compounds, metal oxides, metal fluorides, metal borides, etc. are used. For the protective cover, a glass plate, a plastic plate whose surface has been made to have low water permeability, a metal, or the like is used. It is preferably used. Further, if the space is filled with an inert gas such as nitrogen or argon, the oxidation of the cathode can be prevented. It is possible to suppress giving an image to the battery element.

[用途]
本発明の有機薄膜太陽電池は、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機薄膜太陽電池は、画素を形成せずに、面発光光源としても好適に用いられる。
本発明の有機薄膜太陽電池は、具体的には、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、標識、看板、ビデオカメラのビューファインダー等における表示装置、バックライト、電子写真、照明、レジスト露光、読み取り装置、インテリア照明、光通信システム等における光照射装置に好適に用いられる。
[Use]
The organic thin-film solar cell of the present invention is suitably used for an image display device as a pixel of a matrix system or a segment system. Further, the organic thin film solar cell is preferably used as a surface emitting light source without forming pixels.
The organic thin film solar cell of the present invention is specifically a display device in a computer, TV, mobile terminal, mobile phone, car navigation, sign, signboard, viewfinder of video camera, backlight, electrophotography, lighting, resist. It is preferably used for a light irradiation device in exposure, a reading device, interior lighting, an optical communication system and the like.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the examples.

[実施例1]SQ−ETの合成
(i)(2−エチル−1−ヘキシル)(2−トリフェニレリル)アミンの合成
2−エチルヘキシルアミン1.55g(12mmol)及び2−ブロモトリフェニレン2.45g(8mmol)をジメチルスルホキシド(DMSO)8mlに溶解させた溶液中に、ヨウ化銅(I)228mg(1.2mmol)、炭酸カリウム2.21g(16mmol)及びL−プロリン230mg(2mmol)を添加して、90℃で21時間攪拌し、さらに温度を上げて140℃で18時間攪拌した。
得られた粗生成物を分液漏斗に移し酢酸エチル100mlを加えて希釈し、イオン交換水を100mlを加え洗浄した。次に飽和食塩水を用いて同様の操作を2回行い洗浄した。その後、硫酸マグネシウムを用いて脱水し、溶媒を減圧除去した。最後に、シリカゲルによるカラムクロマトグラフィー(溶媒;ヘキサン:トルエン=3:1)で精製をすることにより、収率53%でN−(2−エチルヘキシル)トリフェニレリル−2−アミンを得た。
(ii)SQ−ETの合成
1−ブロモ−3,5−ジメトキシベンゼン1.39g(6.4mmol)及びN−(2−エチルヘキシル)トリフェニレリル−2−アミン1.52g(4.29mmol)をキシレン30mlに溶解させた溶液中に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd2(dba)3)36mg(0.04mmol)、カリウム−t−ブトキシド481mg(4.3mmol)、トリブチルホスフィン49mg(0.24mmol)を添加して、21時間加熱還流することにより、N−(2−エチルヘキシル)−N−(3,5−ジメトキシフェニル)トリフェニレン−2−アミンを得た。
ここに、三臭化ホウ素2.3g(9.2mmol)を塩化メチレン9.2mlに溶解させた溶液を添加し、室温で23時間攪拌することにより、5−(N−(2−エチルヘキシル)−N−(トリフェニレニル)アミノ)ベンゼン−1,3−ジオールを得た。
ここに、スクアリン酸166mg(1.45mmol)をトルエン45ml及びブタノール15mlに溶解させた溶液を添加し、18時間加熱還流することにより、収率102%でSQ−ETを得た。

Figure 0006736077
1H−NMR、MS及び元素分析により、SQ−ETの生成を確認した。
結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 10.97 (s, 4H), 8.74-8.63 (m, 8H), 8.53 (d, 2H, J=7.6 Hz), 8.45 (d,2H J=2.8Hz), 7.73-7.65 (m, 8H), 7.49 (d, 2H, J=9.2 Hz), 5.86 (s,4H), 3.84 (d, 4H, J=7.2 Hz), 1.85-1.78 (m, 2H), 1.42-1.22 (m, 16H),0.88-0.81 (m, 12H) ppm
MS: m/z n.d. [M]+
Anal. Calcd for C68H64N2O6:C, 81.25; H, 6.42; N, 2.79%. Found: C, 81.25; H, 6.52; N, 2.70%. [Example 1] Synthesis of SQ-ET (i) Synthesis of (2-ethyl-1-hexyl)(2-triphenylylyl)amine 1.55 g (12 mmol) of 2-ethylhexylamine and 2.45 g (8 mmol of 2-bromotriphenylene) ) Was dissolved in 8 ml of dimethyl sulfoxide (DMSO), 228 mg (1.2 mmol) of copper(I) iodide, 2.21 g (16 mmol) of potassium carbonate and 230 mg (2 mmol) of L-proline were added, The mixture was stirred at 90°C for 21 hours, further heated and stirred at 140°C for 18 hours.
The obtained crude product was transferred to a separatory funnel and diluted with 100 ml of ethyl acetate, and 100 ml of ion-exchanged water was added for washing. Next, the same operation was performed twice using a saturated saline solution for washing. Then, it dehydrated using magnesium sulfate and the solvent was removed under reduced pressure. Finally, purification by column chromatography on silica gel (solvent; hexane:toluene = 3:1) gave N-(2-ethylhexyl)triphenylyl-2-amine with a yield of 53%.
(Ii) Synthesis of SQ-ET 1.39 g (6.4 mmol) of 1-bromo-3,5-dimethoxybenzene and 1.52 g (4.29 mmol) of N-(2-ethylhexyl)triphenylyl-2-amine were added to 30 ml of xylene. In a solution of tris(dibenzylideneacetone)dipalladium(0)(Pd 2 (dba) 3 ) 36 mg (0.04 mmol), potassium t-butoxide 481 mg (4.3 mmol), tributylphosphine 49 mg( 0.24 mmol) was added and the mixture was heated under reflux for 21 hours to obtain N-(2-ethylhexyl)-N-(3,5-dimethoxyphenyl)triphenylene-2-amine.
A solution of 2.3 g (9.2 mmol) of boron tribromide dissolved in 9.2 ml of methylene chloride was added thereto, and the mixture was stirred at room temperature for 23 hours to give 5-(N-(2-ethylhexyl)-. N-(triphenylenyl)amino)benzene-1,3-diol was obtained.
A solution of 166 mg (1.45 mmol) of squaric acid dissolved in 45 ml of toluene and 15 ml of butanol was added thereto, and the mixture was heated under reflux for 18 hours to obtain SQ-ET with a yield of 102%.
Figure 0006736077
The formation of SQ-ET was confirmed by 1 H-NMR, MS and elemental analysis.
The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 10.97 (s, 4H), 8.74-8.63 (m, 8H), 8.53 (d, 2H, J=7.6 Hz), 8.45 (d,2H J=2.8 Hz) , 7.73-7.65 (m, 8H), 7.49 (d, 2H, J=9.2 Hz), 5.86 (s, 4H), 3.84 (d, 4H, J=7.2 Hz), 1.85-1.78 (m, 2H), 1.42-1.22 (m, 16H), 0.88-0.81 (m, 12H) ppm
MS: m/z nd [M] +
Anal. Calcd for C 68 H 64 N 2 O 6 :C, 81.25; H, 6.42; N, 2.79%.Found: C, 81.25; H, 6.52; N, 2.70%.

[実施例2]SQ−EPの合成
(i)N−(2−エチルヘキシル)ベンゼンアミンの合成
2−エチルヘキシルアミン5.81g(45mmol)及びブロモベンゼン2.36g(15mmol)をジメチルスルホキシド(DMSO)15mlに溶解させた溶液中に、ヨウ化銅(I)571mg(3mmol)、炭酸カリウム5.52g(40mol)及びL−プロリン575mg(5mmol)を添加して、90℃で16時間攪拌し、さらに温度を上げて120℃で8時間攪拌した。
得られた粗生成物を分液漏斗に移し酢酸エチル100ml加えて希釈し、イオン交換水を100mlを加え洗浄した。次に飽和食塩水を用いて同様の操作を2回行い洗浄した。その後、硫酸マグネシウムを用いて脱水し、溶媒を減圧除去した。最後に、シリカゲルによるカラムクロマトグラフィー(溶媒;ヘキサン:トルエン=1:1)で精製することにより、収率66%でN−(2−エチルヘキシル)ベンゼンアミンを得た。

Figure 0006736077
(ii)SQ−EPの合成
1−ブロモ−3,5−ジメトキシベンゼン3.36g(15.5mmol)及びN−(2−エチル−1−ヘキシル)アニリン1.59g(7.73mmol)をキシレン80mlに溶解させた溶液中に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd2(dba)3)91mg(0.1mmol)、カリウム−t−ブトキシド3.7mg(33mmol)、トリブチルホスフィン82mg(0.4mmol)を添加して、25時間加熱還流することにより、N−(2−エチルヘキシル)−3,5−ジメトキシ−N−フェニルベンゼンアミンを得た。
ここに、三臭化ホウ素4.0g(16mmol)を塩化メチレン16mlに溶解させた溶液を添加し、室温で21時間攪拌することにより、5−(N−(2−エチルヘキシル)−N−フェニルアミノ)ベンゼン−1,3−ジオールを得た。
ここに、スクアリン酸167mg(1.47mmol)をトルエン45ml及びブタノール15mlに溶解させた溶液を添加し、24時間加熱還流することにより、収率83%でSQ−EPを得た。
Figure 0006736077
1H−NMR、MS及び元素分析により、SQ−EPの生成を確認した。
結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 10.94 (s, 4H), 7.45 (t, 4H, J=7.2 Hz), 7.89 (t, 2H, J=7.2 Hz), 7.18(d, 4H J=7.2 Hz), 5.74 (s, 4H), 3.66 (d, 4H, J=7.2 Hz), 1.73-1.67 (m,2H), 1.43-1.16 (m, 16H), 0.87-0.80 (m, 12H) ppm
MS: m/z 706 [M]+
Anal. Calcd for C44H52N2O6:C, 74.97; H, 7.44; N, 3.97%. Found: C, 75.04; H, 7.35; N, 3.92%. [Example 2] Synthesis of SQ-EP (i) Synthesis of N-(2-ethylhexyl)benzenamine 5.81 g (45 mmol) of 2-ethylhexylamine and 2.36 g (15 mmol) of bromobenzene were added to 15 ml of dimethyl sulfoxide (DMSO). 571 mg (3 mmol) of copper(I) iodide, 5.52 g (40 mol) of potassium carbonate and 575 mg (5 mmol) of L-proline were added to the solution dissolved in, and the mixture was stirred at 90° C. for 16 hours, and the temperature was increased. And stirred at 120° C. for 8 hours.
The obtained crude product was transferred to a separatory funnel and diluted with 100 ml of ethyl acetate, and 100 ml of ion-exchanged water was added for washing. Next, the same operation was performed twice using a saturated saline solution for washing. Then, it dehydrated using magnesium sulfate and the solvent was removed under reduced pressure. Finally, the product was purified by column chromatography on silica gel (solvent; hexane:toluene=1:1) to obtain N-(2-ethylhexyl)benzenamine with a yield of 66%.
Figure 0006736077
(Ii) Synthesis of SQ-EP 3.36 g (15.5 mmol) of 1-bromo-3,5-dimethoxybenzene and 1.59 g (7.73 mmol) of N-(2-ethyl-1-hexyl)aniline were mixed with 80 ml of xylene. in a solution dissolved in tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba ) 3) 91mg (0.1mmol), potassium -t- butoxide 3.7 mg (33 mmol), tributyl phosphine 82 mg ( 0.4 mmol) was added and the mixture was heated under reflux for 25 hours to give N-(2-ethylhexyl)-3,5-dimethoxy-N-phenylbenzenamine.
A solution of 4.0 g (16 mmol) of boron tribromide dissolved in 16 ml of methylene chloride was added thereto, and the mixture was stirred at room temperature for 21 hours to give 5-(N-(2-ethylhexyl)-N-phenylamino). ) Benzene-1,3-diol was obtained.
A solution of 167 mg (1.47 mmol) of squaric acid dissolved in 45 ml of toluene and 15 ml of butanol was added thereto, and the mixture was heated under reflux for 24 hours to obtain SQ-EP with a yield of 83%.
Figure 0006736077
The production of SQ-EP was confirmed by 1 H-NMR, MS and elemental analysis.
The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 10.94 (s, 4H), 7.45 (t, 4H, J=7.2 Hz), 7.89 (t, 2H, J=7.2 Hz), 7.18(d, 4H J= 7.2 Hz), 5.74 (s, 4H), 3.66 (d, 4H, J=7.2 Hz), 1.73-1.67 (m, 2H), 1.43-1.16 (m, 16H), 0.87-0.80 (m, 12H) ppm
MS: m/z 706 [M] +
Anal. Calcd for C 44 H 52 N 2 O 6 :C, 74.97; H, 7.44; N, 3.97%.Found: C, 75.04; H, 7.35; N, 3.92%.

[実施例3]SQ−ENの合成
(i)N−(2−エチルヘキシル)ナフタレン−2−アミンの合成
2−エチルヘキシルアミン2.33g(18mmol)及び2−ブロモナフタレン2.48g(12mol)をジメチルスルホキシド(DMSO)6mlに溶解させた溶液中に、ヨウ化銅(I)228mg(1.8mmol)、炭酸カリウム2.21g(24mmol)、L−プロリン230mg(3mmol)を添加して、90℃で11時間攪拌し、さらに温度を上げて120℃で23時間攪拌した。
得られた粗生成物を分液漏斗に移し酢酸エチル100ml加えて希釈し、イオン交換水を100mlを加え洗浄した。次に飽和食塩水を用いて同様の操作を2回行い洗浄した。その後、硫酸マグネシウムを用いて脱水し、溶媒を減圧除去した。最後に、シリカゲルによるカラムクロマトグラフィー(溶媒;ヘキサン:トルエン=2:1)で精製することにより、収率68%でN−(2−エチルヘキシル)ナフタレン−2−アミンを得た。

Figure 0006736077
(ii)SQ−ENの合成
1−ブロモ−3,5−ジメトキシベンゼン2.54g(11.7mmol)及びN−(2−エチルヘキシル)ナフタレン−2−アミン2.01g(7.86mmol)をキシレン50mlに溶解させた溶液中に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd2(dba)3)91mg(0.1mmol)、カリウム−t−ブトキシド897mg(8mmol)、トリブチルホスフィン82mg(0.4mmol)を添加して、25時間加熱還流することにより、N−(2−エチルヘキシル)−N−(3,5−ジメトキシフェニル)ナフタレン−2−アミンを得た。
ここに、三臭化ホウ素3.75g(15mmol)を塩化メチレン15mlに溶解させた溶液を添加し、室温で20時間攪拌することにより、5−(N−(2−エチルヘキシル)−N−(ナフタレニル)アミノ)ベンゼン−1,3−ジオールを得た。
ここに、スクアリン酸244mg(2.15mmol)をトルエン45ml及びブタノール15mlに溶解させた溶液を添加し、22時間加熱還流することにより、収率85%でSQ−ENを得た。
Figure 0006736077
1H−NMR、MS及び元素分析により、SQ−ENの生成を確認した。
結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 10.96 (s, 4H), 7.92 (d, 2H, J=8.0 Hz), 7.89-7.87 (m, 2H),7.83-7.8 (m, 2H), 7.66 (d, 2H, J=1.2 Hz), 7.56-7.52 (m, 4H), 7.28 (d,2H, J=8.6 Hz), 5.79 (s, 4H), 3.78 (d, 4H, J=7.2 Hz), 1.78-1.70 (m,2H), 1.50-1.18 (m, 16H), 0.85-0.81 (m, 12H) ppm
MS: m/z 806 [M]+
Anal. Calcd for C52H56N2O6:C, 77.58; H, 7.01; N, 3.48%. Found: C, 77.48; H, 6.85; N, 3.46%. [Example 3] Synthesis of SQ-EN (i) Synthesis of N-(2-ethylhexyl)naphthalene-2-amine 2.33 g (18 mmol) of 2-ethylhexylamine and 2.48 g (12 mol) of 2-bromonaphthalene were added to dimethyl. To a solution prepared by dissolving 6 ml of sulfoxide (DMSO), 228 mg (1.8 mmol) of copper(I) iodide, 2.21 g (24 mmol) of potassium carbonate and 230 mg (3 mmol) of L-proline were added at 90°C. The mixture was stirred for 11 hours, further heated and stirred at 120° C. for 23 hours.
The obtained crude product was transferred to a separatory funnel and diluted with 100 ml of ethyl acetate, and 100 ml of ion-exchanged water was added for washing. Next, the same operation was performed twice using a saturated saline solution for washing. Then, it dehydrated using magnesium sulfate and the solvent was removed under reduced pressure. Finally, the product was purified by column chromatography on silica gel (solvent; hexane:toluene=2:1) to obtain N-(2-ethylhexyl)naphthalen-2-amine with a yield of 68%.
Figure 0006736077
(Ii) Synthesis of SQ-EN 2.54 g (11.7 mmol) of 1-bromo-3,5-dimethoxybenzene and 2.01 g (7.86 mmol) of N-(2-ethylhexyl)naphthalene-2-amine were added to 50 ml of xylene. in a solution dissolved in tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba ) 3) 91mg (0.1mmol), potassium -t- butoxide 897 mg (8 mmol), tributylphosphine 82 mg (0. 4 mmol) was added and the mixture was heated under reflux for 25 hours to obtain N-(2-ethylhexyl)-N-(3,5-dimethoxyphenyl)naphthalen-2-amine.
A solution prepared by dissolving 3.75 g (15 mmol) of boron tribromide in 15 ml of methylene chloride was added thereto, and the mixture was stirred at room temperature for 20 hours to give 5-(N-(2-ethylhexyl)-N-(naphthalenyl). ) Amino)benzene-1,3-diol was obtained.
A solution of 244 mg (2.15 mmol) of squaric acid dissolved in 45 ml of toluene and 15 ml of butanol was added thereto, and the mixture was heated under reflux for 22 hours to obtain SQ-EN with a yield of 85%.
Figure 0006736077
The production of SQ-EN was confirmed by 1 H-NMR, MS and elemental analysis.
The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 10.96 (s, 4H), 7.92 (d, 2H, J=8.0 Hz), 7.89-7.87 (m, 2H), 7.83-7.8 (m, 2H), 7.66 (d, 2H, J=1.2 Hz), 7.56-7.52 (m, 4H), 7.28 (d,2H, J=8.6 Hz), 5.79 (s, 4H), 3.78 (d, 4H, J=7.2 Hz) , 1.78-1.70 (m, 2H), 1.50-1.18 (m, 16H), 0.85-0.81 (m, 12H) ppm
MS: m/z 806 [M] +
Anal. Calcd for C 52 H 56 N 2 O 6 :C, 77.58; H, 7.01; N, 3.48%.Found: C, 77.48; H, 6.85; N, 3.46%.

[実施例4]SQ−EBの合成
(i)N−(2−エチルヘキシル)−4−ビフェニルアミンの合成
2−エチルヘキシルアミン1.55g(12mmol)及び4−ブロモビフェニル1.86g(8mmol)をジメチルスルホキシド(DMSO)8mlに溶解させた溶液中に、ヨウ化銅(I)228mg、炭酸カリウム2.21g、L−プロリン230mgを添加して、90℃で18時間攪拌した。
得られた粗生成物を分液漏斗に移し酢酸エチル100ml加えて希釈し、イオン交換水を100mlを加え洗浄した。次に飽和食塩水を用いて同様の操作を2回行い洗浄した。その後、硫酸マグネシウムを用いて脱水し、溶媒を減圧除去した。最後に、シリカゲルによるカラムクロマトグラフィー(溶媒;ヘキサン:トルエン=2:1)で精製することにより、収率39%でN−(2−エチルヘキシル)−4−ビフェニルアミンを得た。

Figure 0006736077
(ii)SQ−EBの合成
1−ブロモ−3,5−ジメトキシベンゼン1.01g(4.63mmol)及び4−(N−(2−エチルヘキシル)アミノ)ビフェニル868mg(3.08mmol)をキシレン30mlに溶解させた溶液中に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd2(dba)3)27mg(0.03mmol)、カリウム−t−ブトキシド348mg(3.1mmol)、トリブチルホスフィン33mg(0.17mol)を添加して、20時間加熱還流することにより、N−(2−エチルヘキシル)−N−(3,5−ジメトキシフェニル)−4−ビフェニルアミンを得た。
ここに、三臭化ホウ素1.5g(6mmol)を塩化メチレン6mlに溶解させた溶液を添加し、室温で16時間攪拌することにより、5−(N−(2−エチルヘキシル)−N−(4−ビフェニルアミノ)ベンゼン−1,3−ジオールを得た。
ここに、スクアリン酸108mg(0.95mmol)をトルエン45ml及びブタノール15mlに溶解させた溶液を添加し、25時間加熱還流することにより、収率77%でSQ−EBを得た。
Figure 0006736077
1H−NMR、MS及び元素分析により、SQ−ETPA及びSQ−EFの生成を確認した。
結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 10.97 (s, 4H), 7.64 (d, 4H, J=8.8Hz), 7.61 (d, 4H, J=7.6 Hz), 7.47 (t, 4H, J=7.8 Hz), 7.38 (t, 2H,J=7.4 Hz), 7.25 (d, 4H, J=6.8 Hz), 5.81 (s, 4H), 3.70 (d, 4H, J=7.2Hz), 1.7-1.72 (m, 2H), 1.48-1.22 (m, 16H), 0.87-0.83 (m, 12H) ppm
MS: m/z 856 [M]+
Anal. Calcd for C56H60N2O6:C, 78.48; H, 7.06; N, 3.27%. Found: C, 78.60; H, 7.20; N, 3.22%.
[実施例5、6]
下記構造式で表されるSQ−ETPA(実施例5)及びSQ−EF(実施例6)を、実施例1〜4と同様の手順で合成した。
Figure 0006736077
合成スキームは以下のとおりである。
Figure 0006736077
1H−NMR、MS及び元素分析により、SQ−ETPA及びSQ−EFの生成を確認した。
結果を以下に示す。
(1)SQ−ETPA
1H NMR(400 MHz, CDCl3): δ 10.98 (s, 4H), 7.30 (t, 8H, J=8.0 Hz), 7.14 (d, 8H, J=8.8Hz), 7.08 (t, 8H, J=6.6 Hz), 6.99 (d, 4H, J=6.4 Hz), 5.80 (s, 4H), 3.63 (d, 4H,J=7.6 Hz), 1.77-1.73 (m, 2H), 1.46-1.21 (m, 16H), 0.89-0.82 (m, 12H) ppm
MS: m/z n.d. [M]+
Anal. Calcd for C68H70N4O6:C, 78.58; H, 6.79; N, 5.31%. Found: C, 78.50; H, 6.89; N, 5.31%.
(2)SQ−EF
1H NMR(400 MHz, CDCl3): δ 10.95 (s, 4H), 7.76 (d, 2H, J=8.0 Hz), 7.73 (d, 2H, J=6.0 Hz), 7.45(d, 2H, J=6.0 Hz), 7.39-7.33 (m, 4H), 7.24 (d, 2H, J=2.0 Hz),7.14 (d, 2H, J=8.4 Hz), 5.82 (s, 4H), 3.70 (d, 4H, J=7.6 Hz), 1.75-1.68 (m,2H), 1.49 (s, 12H), 1.45-1.15 (m, 16H), 0.85-0.80 (m, 12H) ppm
MS: m/z 937 [M]+
Anal. Calcd for C62H68N2O6:C, 79.46; H, 7.31; N, 2.99%. Found: C, 79.39; H, 7.35; N, 2.97%.
[実施例6]
下記構造式で表されるSQ−ESを以下の合成スキームに従って合成した。
Figure 0006736077
Figure 0006736077
1H−NMR、MS及び元素分析により、SQ−ESの生成を確認した。
結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 10.84 (s, 4H), 7.88-7.81 (m, 8H), 7.40-7.34 (m, 6H), 7.18-7.10 (m,8H), 7.75 (t, 6H, J=7.6 Hz), 7.53 (s, 2H), 5.66 (s, 4H), 3.45 (d, 4H, J=7.2 Hz),1.49-1.40 (m, 2H), 1.17-0.98 (m, 16H), 0.76 (t, 6H, J=6.8 Hz), 0.61 (t, 6H,J=6.8 Hz) ppm
MS: m/z n.d. [M]+
Anal. Calcd for C82H72N2O6:C, 83.36; H, 6.14; N, 2.37%. Found: C, 83.33; H, 6.36; N, 2.36%. Example 4 Synthesis of SQ-EB (i) Synthesis of N-(2-ethylhexyl)-4-biphenylamine 1.55 g (12 mmol) of 2-ethylhexylamine and 1.86 g (8 mmol) of 4-bromobiphenyl were added to dimethyl. 228 mg of copper(I) iodide, 2.21 g of potassium carbonate and 230 mg of L-proline were added to a solution dissolved in 8 ml of sulfoxide (DMSO), and the mixture was stirred at 90° C. for 18 hours.
The obtained crude product was transferred to a separatory funnel and diluted with 100 ml of ethyl acetate, and 100 ml of ion-exchanged water was added for washing. Next, the same operation was performed twice using saturated saline and washing was performed. Then, it dehydrated using magnesium sulfate and the solvent was removed under reduced pressure. Finally, purification by column chromatography on silica gel (solvent; hexane:toluene=2:1) gave N-(2-ethylhexyl)-4-biphenylamine in a yield of 39%.
Figure 0006736077
(Ii) Synthesis of SQ-EB 1.01 g (4.63 mmol) of 1-bromo-3,5-dimethoxybenzene and 868 mg (3.08 mmol) of 4-(N-(2-ethylhexyl)amino)biphenyl in 30 ml of xylene. during dissolved solution, tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba ) 3) 27mg (0.03mmol), potassium -t- butoxide 348 mg (3.1 mmol), tributylphosphine 33 mg (0 .17 mol) was added and the mixture was heated under reflux for 20 hours to obtain N-(2-ethylhexyl)-N-(3,5-dimethoxyphenyl)-4-biphenylamine.
A solution of 1.5 g (6 mmol) of boron tribromide dissolved in 6 ml of methylene chloride was added thereto, and the mixture was stirred at room temperature for 16 hours to give 5-(N-(2-ethylhexyl)-N-(4 -Biphenylamino)benzene-1,3-diol was obtained.
A solution of 108 mg (0.95 mmol) of squaric acid dissolved in 45 ml of toluene and 15 ml of butanol was added thereto, and the mixture was heated under reflux for 25 hours to obtain SQ-EB with a yield of 77%.
Figure 0006736077
The production of SQ-ETPA and SQ-EF was confirmed by 1 H-NMR, MS and elemental analysis.
The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 10.97 (s, 4H), 7.64 (d, 4H, J=8.8Hz), 7.61 (d, 4H, J=7.6 Hz), 7.47 (t, 4H, J =7.8 Hz), 7.38 (t, 2H,J=7.4 Hz), 7.25 (d, 4H, J=6.8 Hz), 5.81 (s, 4H), 3.70 (d, 4H, J=7.2Hz), 1.7- 1.72 (m, 2H), 1.48-1.22 (m, 16H), 0.87-0.83 (m, 12H) ppm
MS: m/z 856 [M] +
Anal. Calcd for C 56 H 60 N 2 O 6 :C, 78.48; H, 7.06; N, 3.27%.Found: C, 78.60; H, 7.20; N, 3.22%.
[Examples 5 and 6]
SQ-ETPA (Example 5) and SQ-EF (Example 6) represented by the following structural formulas were synthesized by the same procedure as in Examples 1 to 4.
Figure 0006736077
The synthetic scheme is as follows.
Figure 0006736077
The production of SQ-ETPA and SQ-EF was confirmed by 1 H-NMR, MS and elemental analysis.
The results are shown below.
(1) SQ-ETPA
1 H NMR (400 MHz, CDCl 3 ): δ 10.98 (s, 4H), 7.30 (t, 8H, J=8.0 Hz), 7.14 (d, 8H, J=8.8Hz), 7.08 (t, 8H, J =6.6 Hz), 6.99 (d, 4H, J=6.4 Hz), 5.80 (s, 4H), 3.63 (d, 4H, J=7.6 Hz), 1.77-1.73 (m, 2H), 1.46-1.21 (m , 16H), 0.89-0.82 (m, 12H) ppm
MS: m/z nd [M] +
Anal. Calcd for C 68 H 70 N 4 O 6 :C, 78.58; H, 6.79; N, 5.31%.Found: C, 78.50; H, 6.89; N, 5.31%.
(2) SQ-EF
1 H NMR (400 MHz, CDCl 3 ): δ 10.95 (s, 4H), 7.76 (d, 2H, J=8.0 Hz), 7.73 (d, 2H, J=6.0 Hz), 7.45(d, 2H, J =6.0 Hz), 7.39-7.33 (m, 4H), 7.24 (d, 2H, J=2.0 Hz), 7.14 (d, 2H, J=8.4 Hz), 5.82 (s, 4H), 3.70 (d, 4H , J=7.6 Hz), 1.75-1.68 (m, 2H), 1.49 (s, 12H), 1.45-1.15 (m, 16H), 0.85-0.80 (m, 12H) ppm
MS: m/z 937 [M] +
Anal. Calcd for C 62 H 68 N 2 O 6 :C, 79.46; H, 7.31; N, 2.99%.Found: C, 79.39; H, 7.35; N, 2.97%.
[Example 6]
SQ-ES represented by the following structural formula was synthesized according to the following synthetic scheme.
Figure 0006736077
Figure 0006736077
The production of SQ-ES was confirmed by 1 H-NMR, MS and elemental analysis.
The results are shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 10.84 (s, 4H), 7.88-7.81 (m, 8H), 7.40-7.34 (m, 6H), 7.18-7.10 (m, 8H), 7.75 (t, 6H, J=7.6 Hz), 7.53 (s, 2H), 5.66 (s, 4H), 3.45 (d, 4H, J=7.2 Hz), 1.49-1.40 (m, 2H), 1.17-0.98 (m, 16H ), 0.76 (t, 6H, J=6.8 Hz), 0.61 (t, 6H, J=6.8 Hz) ppm
MS: m/z nd [M] +
Anal. Calcd for C 82 H 72 N 2 O 6 :C, 83.36; H, 6.14; N, 2.37%.Found: C, 83.33; H, 6.36; N, 2.36%.

[試験例1]紫外・可視分光分析(UV−vis)
実施例1〜7で得られたSQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、及びSQ−ESを2mgずつ秤量し、それぞれクロロホルム1mlに溶解させ、2mg/ml溶液を調製した。
SQ−ET、SQ−EP、SQ−EN、SQ−EBのそれぞれについて、クロロホルム溶液を石英ガラスに入れて測定した場合(- - -)、キャストフィルムにして測定した場合(―■―)、キャストフィルムに熱アニール処理(70℃、10分)を施した後に測定した場合(―◆―)、キャストフィルムに熱アニール処理(120℃、10分)を施した後に測定した場合(―▲―)のUV−Vis吸収スペクトルを測定した。SQ−ETPA、SQ−EF、SQ−ESについては、キャストフィルムにして測定した場合(―●―)、キャストフィルムに熱アニール処理(70℃、10分)を施した後に測定した場合(―■―)、キャストフィルムに熱アニール処理(120℃、10分)を施した後に測定した場合(―◆―)のUV−Vis吸収スペクトルを測定した。
UV−Vis吸収スペクトルでは、SQ−EP<SQ−EB<SQ−EN<SQ−ETの順に長波長化しているが、そのエネルギー差はわずか0.03eV程度であることがわかった。
結果を表1及び図2に示す。
[Test Example 1] UV-visible spectroscopic analysis (UV-vis)
2 mg each of SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES obtained in Examples 1 to 7 were weighed and dissolved in 1 ml of chloroform, A 2 mg/ml solution was prepared.
For each of SQ-ET, SQ-EP, SQ-EN, and SQ-EB, when chloroform solution was put into quartz glass for measurement (---), when cast film was used for measurement (-■-), cast When measured after thermal annealing treatment (70°C, 10 minutes) on the film (-◆-), when measured after thermal annealing treatment (120°C, 10 minutes) on the cast film (-▲-) UV-Vis absorption spectrum was measured. Regarding SQ-ETPA, SQ-EF, and SQ-ES, when measured as a cast film (-●-), when measured after subjecting the cast film to thermal annealing treatment (70°C, 10 minutes) (-■ -), the UV-Vis absorption spectrum was measured when the cast film was subjected to thermal annealing treatment (120°C, 10 minutes) and then measured (-◆-).
In the UV-Vis absorption spectrum, the wavelengths became longer in the order of SQ-EP<SQ-EB<SQ-EN<SQ-ET, but it was found that the energy difference was only about 0.03 eV.
The results are shown in Table 1 and FIG.

[試験例2]示差走査熱量測定(DSC)及び示差熱分析(TGA)
実施例1〜7で得られたSQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、SQ−ESをそれぞれ5mgずつアルミニウムパンに入れてDSC、TGAを測定した。
結果を表1に示す。SQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、SQ−ESのガラス転位温度(Tg)は観測されず、融点(Tm)は164〜285℃であり、5%重量減少温度(Td)は305〜343℃であった。SQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、SQ−ESのいずれも芳香族炭化水素基を有するため、剛直な構造であり、高い熱安定性を有することがわかった。
[Test Example 2] Differential scanning calorimetry (DSC) and differential thermal analysis (TGA)
5 mg each of SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES obtained in Examples 1 to 7 were placed in an aluminum pan, and DSC and TGA were measured. did.
The results are shown in Table 1. The glass transition temperature (Tg) of SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES was not observed, and the melting point (Tm) was 164 to 285°C. The 5% weight loss temperature (Td) was 305 to 343°C. Since all of SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES have an aromatic hydrocarbon group, they have a rigid structure and high thermal stability. Found to have.

[試験例3]サイクリックボルタンメトリー(CV)
実施例1〜4で得られたSQ−EPを2.11mg、SQ−ENを2.41mg、SQ−EBを2.57mg秤量し、それぞれ塩化メチレン6mlに溶解させ、0.5mM溶液を調製し、CV測定を行った。SQ−ETは1mg秤量し、塩化メチレン6mlでも完全溶解していなかったが、それ(0.17mM以下の溶液)を用いてCV測定を行った。
実施例5〜7で得られたSQ−ETPA、SQ−EF、SQ−ESについても同様に、CV測定を行った。
結果を表1に示す。SQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、SQ−ESについて、芳香族炭化水素基の違いによるエネルギー準位の差はほとんど認められなかった。
[Test Example 3] Cyclic voltammetry (CV)
2.11 mg of SQ-EP obtained in Examples 1 to 4, 2.41 mg of SQ-EN and 2.57 mg of SQ-EB were weighed and dissolved in 6 ml of methylene chloride to prepare 0.5 mM solutions. , CV measurement was performed. Although 1 mg of SQ-ET was weighed and not completely dissolved in 6 ml of methylene chloride, CV measurement was performed using it (solution of 0.17 mM or less).
The CV measurement was similarly performed on the SQ-ETPA, SQ-EF, and SQ-ES obtained in Examples 5 to 7.
The results are shown in Table 1. Regarding SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES, almost no difference in energy level due to the difference in aromatic hydrocarbon groups was observed.

Figure 0006736077
Figure 0006736077

[試験例4]溶解性試験
実施例1〜7で得られたSQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、SQ−ESを、クロロホルム、トルエン、テトラヒドロフラン(THF)、1,4−ジオキサン、クロロベンゼン(CB;120℃)及びo−ジクロロベンゼン(ODCB)に溶解させて、溶解性の評価を行った。
芳香族炭化水素基に2−ナフチル基、2−トリフェニレニル基を導入したSQ−EN及びSQ−ETは溶解性が低いことがわかった。
結果を表2に示す。

Figure 0006736077
[Test Example 4] Solubility test SQ-ET, SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES obtained in Examples 1 to 7 were dissolved in chloroform, toluene, and Solubility was evaluated by dissolving in tetrahydrofuran (THF), 1,4-dioxane, chlorobenzene (CB; 120° C.) and o-dichlorobenzene (ODCB).
It was found that SQ-EN and SQ-ET in which a 2-naphthyl group and a 2-triphenylenyl group were introduced into an aromatic hydrocarbon group had low solubility.
The results are shown in Table 2.
Figure 0006736077

[試験例5]太陽電池特性評価
陽極として、ガラス基板の全面に酸化インジウムスズ(ITO)膜が塗布されたITO基板を準備し、ITO電極の上に、正孔輸送層として、6nm厚の酸化モリブデン(VI)(MoO3)層を積層させ、その上に活性層として、ドナー材料に、実施例1〜7で得られたSQ−ET、SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、SQ−ESと、アクセプター材料にフェニルC71酪酸メチル(PC70BM)とを所定の質量比で混合したものを70〜100nm厚となるように塗布し、その上に電子輸送層として、10nm厚の2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を積層し、陰極として100nm厚のアルミニウム板を積層させて、BHJ型太陽電池の素子を作製し、特性評価を行った。

Figure 0006736077
SQ−EP、SQ−EN、SQ−EB、SQ−ETPA、SQ−EF、及びSQ−ESのそれぞれの素子特性結果を表3及び図3〜5に示す。 [Test Example 5] Solar cell characteristic evaluation An ITO substrate having an indium tin oxide (ITO) film coated on the entire surface of a glass substrate was prepared as an anode, and a 6 nm-thick oxide film was formed on the ITO electrode as a hole transport layer. A molybdenum (VI) (MoO 3 ) layer was laminated, and the SQ-ET, SQ-EP, SQ-EN, SQ-EB, and SQ obtained in Examples 1 to 7 were used as the active layer on the layer. -ETPA, SQ-EF, SQ-ES and a mixture of phenyl C71 methyl butyrate (PC 70 BM) as an acceptor material in a predetermined mass ratio are applied to a thickness of 70 to 100 nm, and then electron is applied thereon. As a transport layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) having a thickness of 10 nm was laminated, and an aluminum plate having a thickness of 100 nm was laminated as a cathode to form an element of a BHJ solar cell. It was produced and the characteristics were evaluated.
Figure 0006736077
The device characteristic results of SQ-EP, SQ-EN, SQ-EB, SQ-ETPA, SQ-EF, and SQ-ES are shown in Table 3 and FIGS.

Figure 0006736077
SQ−EP及びSQ−EBを用いた太陽電池素子において、熱アニールすることで、VOC(開放電圧)、JSC(短絡電流密度)及びFF(曲線因子)のすべての値が低下し、PCEが低下する傾向が確認できた。一方、SQ−ENを用いた太陽電池素子では、熱アニールによる変化がみられなかった。
SQ−EP:PC70BM=1:1.7(SQ 46.2%)の質量比で太陽電池素子を作製した結果、VOC=1.00V、JSC=11.68mA/cm-2、FF=0.48であり、PCEが5.53%と比較的高い効率を示した。そこで、SQ−EPの割合を多くした素子を作成し、素子の最適化をすれば、より高い効率を得られることが期待できる。しかしながら、SQ−EBについては、分子の平面性の観点から、効率の向上が期待できると考えられたが、SQの割合を多くするほどJSCの低下がみられ、SQ−EPと比べて効率が劣っていた。
Figure 0006736077
In the solar cell element using SQ-EP and SQ-EB, all values of V OC (open circuit voltage), J SC (short circuit current density) and FF (fill factor) are decreased by thermal annealing, and PCE It was confirmed that the value decreased. On the other hand, in the solar cell element using SQ-EN, no change due to thermal annealing was observed.
As a result of producing a solar cell element with a mass ratio of SQ-EP:PC 70 BM=1:1.7 (SQ 46.2%), V OC =1.00 V, J SC =1.68 mA/cm −2 , FF=0.48, and PCE showed a relatively high efficiency of 5.53%. Therefore, if an element with a high SQ-EP ratio is created and the element is optimized, higher efficiency can be expected to be obtained. However, regarding SQ-EB, it was considered that the efficiency could be expected to be improved from the viewpoint of the planarity of the molecule, but as the proportion of SQ increased, the J SC decreased, and the efficiency was higher than that of SQ-EP. Was inferior.

1 基板
2 陰極
3 正孔輸送層
4 活性層
5 電子輸送層
6 陰極
1 Substrate 2 Cathode 3 Hole Transport Layer 4 Active Layer 5 Electron Transport Layer 6 Cathode

Claims (3)

下記一般式(1)で表される化合物であるスクアリリウム誘導体;
Figure 0006736077
(一般式(1)中、R1はそれぞれ独立に芳香族基、R2はそれぞれ独立に炭素数4以上の分岐した脂肪族炭化水素基である。)。
A squarylium derivative which is a compound represented by the following general formula (1);
Figure 0006736077
(In the general formula (1), R 1 is independently an aromatic group, and R 2 is independently a branched aliphatic hydrocarbon group having 4 or more carbon atoms.).
前記一般式(1)中、R1が炭素数6〜50の芳香族基であり、R2が炭素数4〜20の脂肪族炭化水素基である、請求項1に記載のスクアリリウム誘導体。 The squarylium derivative according to claim 1, wherein in the general formula (1), R 1 is an aromatic group having 6 to 50 carbon atoms, and R 2 is an aliphatic hydrocarbon group having 4 to 20 carbon atoms. 請求項1又は2に記載のスクアリリウム誘導体を用いた有機薄膜太陽電池。 An organic thin-film solar cell using the squarylium derivative according to claim 1.
JP2016107477A 2015-06-03 2016-05-30 Novel squarylium derivative and organic thin-film solar cell using the same Active JP6736077B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015112798 2015-06-03
JP2015112798 2015-06-03

Publications (2)

Publication Number Publication Date
JP2016222665A JP2016222665A (en) 2016-12-28
JP6736077B2 true JP6736077B2 (en) 2020-08-05

Family

ID=57747647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107477A Active JP6736077B2 (en) 2015-06-03 2016-05-30 Novel squarylium derivative and organic thin-film solar cell using the same

Country Status (1)

Country Link
JP (1) JP6736077B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975960B2 (en) * 2017-07-28 2021-12-01 国立大学法人山形大学 Squalilium derivative and organic thin-film solar cells using it
JPWO2020054627A1 (en) * 2018-09-14 2021-09-02 コニカミノルタ株式会社 Squalilium compounds, luminescent compositions and luminescent films
JPWO2023282014A1 (en) * 2021-07-05 2023-01-12

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945873B2 (en) * 2001-09-27 2012-06-06 コニカミノルタホールディングス株式会社 Semiconductor for photoelectric conversion material, photoelectric conversion element and solar cell
US20100065112A1 (en) * 2008-09-15 2010-03-18 Thompson Mark E Organic Photosensitive Devices Comprising a Squaraine Containing Organoheterojunction and Methods of Making Same
JP2011198811A (en) * 2010-03-17 2011-10-06 Fujifilm Corp Photoelectric conversion element and organic thin-film solar cell
CN103797075A (en) * 2011-02-09 2014-05-14 密歇根大学董事会 Organic photosensitive devices comprising aryl squaraines and methods of making the same
JP6312456B2 (en) * 2014-02-10 2018-04-18 国立大学法人山形大学 Organic thin film solar cell

Also Published As

Publication number Publication date
JP2016222665A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US12091429B2 (en) Fluorinated porphyrin derivatives for optoelectronic applications
EP3667749B1 (en) Organic light-emitting device
EP3032606B1 (en) Organic optoelectric device and display device
US8057712B2 (en) Radialene compounds and their use
US20120168734A1 (en) Compound containing 5-membered heterocycles, organic light-emitting device using same, and terminal comprising the latter
KR101123047B1 (en) Chemical and organic electronic element using the same, electronic device thereof
KR101282176B1 (en) Chemical and Organic Electronic Element using the same, Electronic Device thereof
KR101859123B1 (en) New compound for Hole blocking layer and/or electron transport layer of organic devices and Preparing method of organic film comprising the same compound and OLED
KR20110066763A (en) Compound containing indoloacridine and organic electronic element using the same, terminal thereof
CN113773209B (en) Triarylamine derivative and organic electroluminescent device thereof
KR101094701B1 (en) Polycyclic aromatic chemiclal and organic electroric element using the same, terminal thererof
KR20220069959A (en) First and second organic semiconductor layers and organic electronic device including the same
WO2018147204A1 (en) Charge transporting varnish
JP6736077B2 (en) Novel squarylium derivative and organic thin-film solar cell using the same
KR20130113115A (en) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
TWI659944B (en) Charge-transporting paint and its use
KR20120097320A (en) Chemical and organic electronic element using the same, electronic device thereof
JP6419704B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE, ITS MANUFACTURING METHOD, AND NOVEL CARBAZOLE DERIVATIVE
KR101181277B1 (en) Compound Containing Indoloacridine And Organic Electronic Element Using The Same, Terminal Thereof
KR101181276B1 (en) Compound Containing Indoloacridine And Organic Electronic Element Using The Same, Terminal Thereof
KR101181278B1 (en) Compound Containing Indoloacridine And Organic Electronic Element Using The Same, Terminal Thereof
JP6945841B2 (en) Near-infrared absorption squarylium derivatives and organic electronic devices containing them
KR20200126889A (en) Fused polycyclic compound, and preparation method and use thereof
KR101181270B1 (en) Compound Containing Indoloacridine And Organic Electronic Element Using The Same, Terminal Thereof
CN112969695B (en) Compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20160610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6736077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250