[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6733533B2 - Method for manufacturing RTB-based sintered magnet - Google Patents

Method for manufacturing RTB-based sintered magnet Download PDF

Info

Publication number
JP6733533B2
JP6733533B2 JP2016243999A JP2016243999A JP6733533B2 JP 6733533 B2 JP6733533 B2 JP 6733533B2 JP 2016243999 A JP2016243999 A JP 2016243999A JP 2016243999 A JP2016243999 A JP 2016243999A JP 6733533 B2 JP6733533 B2 JP 6733533B2
Authority
JP
Japan
Prior art keywords
rtb
sintered magnet
powder
based sintered
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016243999A
Other languages
Japanese (ja)
Other versions
JP2018098430A (en
Inventor
三野 修嗣
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016243999A priority Critical patent/JP6733533B2/en
Publication of JP2018098430A publication Critical patent/JP2018098430A/en
Application granted granted Critical
Publication of JP6733533B2 publication Critical patent/JP6733533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本開示は、R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)の製造方法に関する。 The present disclosure relates to a method for manufacturing an RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co).

14B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等に使用されている。 R-T-B based sintered magnet of the R 2 T 14 B type compound as a main phase is known as the most powerful magnet in the permanent magnet, and voice coil motor of a hard disk drive (VCM), It is used in various motors such as electric vehicle (EV, HV, PHV, etc.) motors, industrial equipment motors, and home electric appliances.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 Since the intrinsic coercive force H cJ (hereinafter, simply referred to as “H cJ ”) of the RTB -based sintered magnet decreases at a high temperature, irreversible thermal demagnetization occurs. In order to avoid irreversible thermal demagnetization, when used for a motor or the like, it is required to maintain high H cJ even at high temperatures.

R−T−B系焼結磁石は、R14B型化合物相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度B(以下、単に「B」と表記する)が低下してしまうという問題がある。 It is known that in the RTB-based sintered magnet, H cJ is improved when a part of R in the R 2 T 14 B type compound phase is replaced with a heavy rare earth element RH(Dy, Tb). .. In order to obtain high HcJ at high temperature, it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet. However, the R-T-B based sintered magnet, replacing light rare-earth element RL as R a (Nd, Pr) in the heavy rare-earth element RH, while the H cJ is improved, the residual magnetic flux density B r (hereinafter, simply " B r )) is reduced.

そこで、Bを低下させないように、より少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHのフッ化物または酸化物や、各種の金属MまたはM合金をそれぞれ単独、または混合して焼結磁石の表面に存在させ、その状態で熱処理することにより、保磁力向上に寄与する重希土類元素RHを磁石内に拡散させることが提案されている。特許文献1は、Rフッ化物、R酸フッ化物、R酸化物の粉末をR−T−B系焼結磁石の表面に接触させて熱処理を行うことによりそれらを磁石内に拡散させる方法を開示している。また、出願人は特許文献2において、RLM合金(MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RHフッ化物の粉末をR−T−B系焼結磁石の表面に存在させて熱処理を行うことにより、RLMによってRHフッ化物を還元し、RHのみを磁石内に拡散させる方法を提案した。 Therefore, so as not to reduce the B r, to improve the H cJ of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH. For example, a fluoride or an oxide of the heavy rare earth element RH, or various metals M or M alloys may be present individually or in a mixed state and allowed to exist on the surface of the sintered magnet, and heat treated in that state to improve coercive force. It has been proposed to diffuse the contributing heavy rare earth element RH into the magnet. Patent Document 1 discloses a method in which powders of R fluoride, R oxyfluoride, and R oxide are brought into contact with the surface of an RTB-based sintered magnet to perform heat treatment to diffuse them into the magnet. doing. Further, the applicant has described in Patent Document 2 that a powder of RLM alloy (M is one or more kinds selected from Cu, Fe, Ga, Co, and Ni) and a powder of RH fluoride are RTB sintered magnets. We proposed a method of reducing RH fluoride by RLM and diffusing only RH into the magnet by allowing it to exist on the surface of and heat treated.

国際公開第2006/043348号International Publication No. 2006/043348 国際公開第2015/163397号International Publication No. 2015/163397

近年、R−T−B系焼結磁石のコストダウンの要求に伴い、RH拡散源にはコストダウンとHcJ向上効果の両立が望まれている。 In recent years, along with the demand for cost reduction of the R-T-B system sintered magnet, it is desired for the RH diffusion source to have both the cost reduction and the H cJ improvement effect.

本開示は、R−T−B系焼結磁石にRHを拡散させるための拡散源に対して、コストダウンが可能であり、かつ、HcJ向上効果の高いRH拡散源を用いてR−T−B系焼結磁石を製造する方法を提供する。 The present disclosure can reduce the cost of a diffusion source for diffusing RH in an R-T-B based sintered magnet, and uses an RH diffusion source having a high H cJ improvement effect to form an R-T. -A method for manufacturing a B-based sintered magnet is provided.

本開示によるR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R−T−B系焼結磁石を用意する工程と、前記R−T−B系焼結磁石の表面にRLM1M2合金(RLは、Nd、Prから選ばれる1種以上、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)の粉末と、RHフッ化物(RHはDyおよび/またはTb)の粉末およびR−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末の混合粉末(拡散源粉末)とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程とを含む。 In an exemplary embodiment, a method of manufacturing an RTB-based sintered magnet according to the present disclosure includes a step of preparing an RTB-based sintered magnet, and a step of preparing the RTB-based sintered magnet. Powder of RLM1M2 alloy (RL is one or more selected from Nd and Pr, M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni and Al, and M1=M2 may be M1=M2) on the surface, In the state where a powder of RH fluoride (RH is Dy and/or Tb) and a mixed powder of RH compound powder (diffusion source powder) produced by a recycling process of an RTB magnet are present, And a step of performing heat treatment at a temperature equal to or lower than the sintering temperature of the RTB-based sintered magnet.

ある実施形態において、前記RH化合物の粉末は、R−T−B系磁石のリサイクル工程によって製造された中間生成物である。 In one embodiment, the RH compound powder is an intermediate product produced by a recycling process of an RTB magnet.

ある実施形態において、前記R−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末はRH炭酸塩、RHシュウ酸塩、RH硫酸塩、RHりん酸塩、RH酢酸塩、RH酸化物から選ばれる1種以上である。 In an embodiment, the powder of the RH compound manufactured by the recycling process of the R-T-B magnet is RH carbonate, RH oxalate, RH sulfate, RH phosphate, RH acetate, RH oxide. It is 1 or more types chosen from.

ある実施形態において、前記混合粉末中の前記R−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末の割合は5〜50質量%である。 In one embodiment, a ratio of the powder of the RH compound manufactured by the recycling process of the RTB-based magnet in the mixed powder is 5 to 50% by mass.

ある実施形態において、前記RLM1M2合金はRLを50原子%以上含み、かつ、前記RLM1M2合金の融点は前記熱処理の温度以下である。 In one embodiment, the RLM1M2 alloy contains 50 atomic% or more of RL, and the melting point of the RLM1M2 alloy is equal to or lower than the temperature of the heat treatment.

ある実施形態において、前記熱処理は、前記RLM1M2合金の粉末と前記混合粉末とが、RLM1M2合金:混合粉末=96:4〜50:50の質量比率で前記R−T−B系焼結磁石の表面に存在する状態で行われる。 In one embodiment, in the heat treatment, the powder of the RLM1M2 alloy and the mixed powder have a mass ratio of RLM1M2 alloy:mixed powder=96:4 to 50:50 on the surface of the RTB-based sintered magnet. It is done in the state that exists in.

ある実施形態では、前記R−T−B系焼結磁石の表面において、前記混合粉末に含まれるRH元素の質量は、R−T−B系焼結磁石に対して0.2〜1.5質量%である。 In one embodiment, the mass of the RH element contained in the mixed powder on the surface of the RTB-based sintered magnet is 0.2 to 1.5 with respect to the RTB-based sintered magnet. It is% by mass.

ある実施形態において、前記RH化合物の粉末をR−T−B系磁石のリサイクルによって製造する工程を更に包含する。 In one embodiment, the method further includes the step of producing the powder of the RH compound by recycling the RTB magnet.

本開示の実施形態によると、還元作用のあるRLM1M2合金の粉末とともに、RH拡散源として、HcJ向上効果の高いRHフッ化物にリサイクル工程によって生成され得るRH化合物の粉末を混合して用いるため、希少資源を効率的に利用してコストダウンが可能であり、高温下でも高いHcJを維持することができるR−T−B系焼結磁石を製造することができる。 According to the embodiment of the present disclosure, the powder of the RLM1M2 alloy having a reducing effect is used together with the powder of the RH compound that can be generated by the recycling process in the RH fluoride having a high H cJ improving effect as the RH diffusion source, It is possible to efficiently use rare resources, reduce costs, and manufacture an RTB -based sintered magnet that can maintain high H cJ even at high temperatures.

希土類元素R、特に重希土類元素RHは資源存在量が少ない上、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、使用済みの廃磁石や、生産工程中に不良物として排出される磁石スクラップ、切削屑や研削屑として排出される磁石加工屑などから希土類元素Rを分離・回収して磁石原料として再利用するリサイクル技術が発展している。発明者は、拡散源として、リサイクル工程内で生成するRH化合物を用いれば、希少なRHを有効活用でき、かつ、拡散源においてコストダウンが可能となると考えた。そこで、HcJ向上効果の高いRHフッ化物にリサイクル工程内で生成するRH化合物を混合し、これを拡散源として使用する方法を検討したところ、還元能力に優れるRLM1M2合金をともに磁石表面に存在させて熱処理することにより、RHフッ化物およびリサイクル工程内で生成したRH化合物が還元され、RHを磁石内に拡散させることができることを見出して本発明を完成した。なお、本明細書において、RHを含有する物質を「拡散剤」、拡散剤のRHを還元して拡散し得る状態にする物質を「拡散助剤」と称する。 The rare earth element R, in particular the heavy rare earth element RH, has a problem that the supply is not stable and the price fluctuates greatly because the resource abundance is small and the production area is limited. .. Therefore, in recent years, rare earth elements R are separated and recovered from used waste magnets, magnet scraps discharged as defectives during the production process, magnet processing scraps discharged as cutting scraps and grinding scraps, and used as a magnet raw material. Recycling technology for reuse is developing. The inventor considered that if an RH compound produced in a recycling process is used as a diffusion source, rare RH can be effectively used and the cost of the diffusion source can be reduced. Therefore, when a method of mixing an RH compound having a high H cJ improving effect with an RH compound generated in the recycling step and using this as a diffusion source was examined, both RLM1M2 alloys having excellent reducing ability were present on the magnet surface. The present invention has been completed by discovering that the RH fluoride and the RH compound produced in the recycling step can be reduced by the heat treatment so that the RH can be diffused in the magnet. In the present specification, a substance containing RH is referred to as a “diffusion agent”, and a substance that reduces the RH of the diffusing agent into a diffusible state is referred to as a “diffusion aid”.

[R−T−B系焼結磁石母材の準備]
重希土類元素RHの拡散の対象とするR−T−B系焼結磁石母材を準備する。本明細書では、わかりやすさのため、重希土類元素RHの拡散の対象とするR−T−B系焼結磁石をR−T−B系焼結磁石母材と厳密に称することがあるが、「R−T−B系焼結磁石」の用語はそのような「R−T−B系焼結磁石母材」を含むものとする。このR−T−B系焼結磁石母材は公知のものが使用でき、例えば以下の組成を有する。
希土類元素R:12〜17原子%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):5〜8原子%
添加元素M´(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0〜2原子%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)および不可避不純物:残部
[Preparation of sintered RTB magnet base material]
An RTB-based sintered magnet base material, which is a target of diffusion of the heavy rare earth element RH, is prepared. In the present specification, for the sake of clarity, an RTB-based sintered magnet, which is an object of diffusion of the heavy rare earth element RH, may be strictly referred to as an RTB-based sintered magnet base material. The term "RTB-based sintered magnet" includes such "RTB-based sintered magnet base material". Known materials can be used as the RTB-based sintered magnet base material, and have, for example, the following compositions.
Rare earth element R: 12 to 17 atom%
B (some of B (boron) may be substituted with C (carbon)): 5 to 8 atom%
Additional element M′ (selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi). At least one): 0-2 atom%
T (transition metal element mainly containing Fe and optionally containing Co) and unavoidable impurities: balance

ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。 Here, the rare earth element R is mainly a light rare earth element RL (at least one element selected from Nd and Pr), but may contain a heavy rare earth element. When a heavy rare earth element is contained, it is preferable to contain at least one of Dy and Tb.

上記組成のR−T−B系焼結磁石母材は、任意の製造方法によって製造される。R−T−B系焼結磁石母材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。 The RTB-based sintered magnet base material having the above composition is manufactured by any manufacturing method. The R-T-B system sintered magnet base material may be as-sintered or may be subjected to cutting or polishing.

[拡散剤]
拡散剤としては、RHフッ化物(RHはDyおよび/又はTb)の粉末にR−T−B系磁石のリサイクル工程内で生成したRH化合物を混合して用いる。以下、わかりやすさのため、この混合粉末を拡散源粉末と称する。具体的には、例えば、RH炭酸塩、RHシュウ酸塩、RH硫酸塩、RHりん酸塩、RH酢酸塩、RH酸化物から選ばれる1種以上である。中でもRH炭酸塩、RHシュウ酸塩、RH酸化物が好ましい。また、RHフッ化物のRHとリサイクル工程内で生成したRH化合物のRHは同種であることが好ましい。
[Diffusing agent]
As the diffusing agent, powder of RH fluoride (RH is Dy and/or Tb) is mixed with the RH compound generated in the recycling process of the RTB magnet. Hereinafter, this mixed powder is referred to as a diffusion source powder for the sake of clarity. Specifically, for example, at least one selected from RH carbonate, RH oxalate, RH sulfate, RH phosphate, RH acetate, and RH oxide. Of these, RH carbonate, RH oxalate and RH oxide are preferable. Further, it is preferable that the RH of the RH fluoride and the RH of the RH compound produced in the recycling step are the same kind.

R−T−B系磁石の廃磁石、磁石スクラップ、磁石加工屑等から、希土類元素Rを回収する技術が開発されている(国際公開第2013/018710号)。このような回収技術によれば、上記のR−T−B系磁石の廃磁石等に種々の処理を行うことにより、FeおよびCoから分離された希土類酸化物を得ることができる。こうして得た希土類酸化物を酸に溶解して溶媒抽出を行うと、重希土類RHの溶液(RH溶液)を他の希土類元素Rから分離して得ることができる。RH溶液に沈殿剤として炭酸塩、シュウ酸、硫酸、硫酸塩、燐酸、燐酸塩を添加すると、それぞれRH炭酸塩、RHシュウ酸塩、RH硫酸塩、RH燐酸塩が沈殿する。また、これらの沈殿物を焼成するとRH酸化物が生成する。こうして得られたRH化合物の粉末は、本開示におけるRH拡散源としてRHフッ化物と混合して好適に用いられる。通常のリサイクル工程においては、この後、これらのRH化合物は溶融塩電解等によってRH金属に還元され、R−T−B系磁石の原料として用いられる。従来、このようなリサイクル工程における中間生成物の状態で磁石原料(拡散剤)として用いられることはなかった。このような中間生成物をRH拡散源として用いることにより、拡散工程においては原料を安価で調達できるというメリットがあり、また、リサイクル工程においては後の還元工程を省略できるというメリットがある。すなわち、本開示の方法を採用することによって、拡散工程およびリサイクル工程で二重にコストダウンが可能である。 Techniques for recovering the rare earth element R from waste magnets of RTB magnets, magnet scraps, magnet processing scraps, and the like have been developed (International Publication No. 2013/018710). According to such a recovery technique, a rare earth oxide separated from Fe and Co can be obtained by performing various treatments on the waste magnet of the RTB-based magnet. When the rare earth oxide thus obtained is dissolved in an acid and solvent extraction is performed, a solution of the heavy rare earth RH (RH solution) can be obtained by separating it from other rare earth elements R. When carbonate, oxalic acid, sulfuric acid, sulfate, phosphoric acid or phosphate is added to the RH solution as a precipitant, RH carbonate, RH oxalate, RH sulfate or RH phosphate is precipitated respectively. Further, when these precipitates are fired, RH oxide is generated. The powder of the RH compound thus obtained is preferably used as a RH diffusion source in the present disclosure by being mixed with RH fluoride. In a normal recycling process, thereafter, these RH compounds are reduced to RH metal by molten salt electrolysis or the like and used as a raw material of an RTB magnet. Conventionally, it has not been used as a magnet raw material (diffusing agent) in the state of an intermediate product in such a recycling process. By using such an intermediate product as the RH diffusion source, there is a merit that raw materials can be procured at a low cost in the diffusion step, and a subsequent reduction step can be omitted in the recycling step. That is, by adopting the method of the present disclosure, the cost can be double reduced in the diffusion process and the recycling process.

なお、R−T−B系磁石に対して重希土類元素を外部から拡散させるために使用されたDy−Fe合金またはTb−Fe合金は、拡散工程中にR−T−B系磁石と接触して磁石中のNdなどの軽希土類元素Rを含有した状態で廃棄されることがある。このような使用済みのRH拡散用合金からも、重希土類元素RHを回収する技術が開発されている(国際公開第2014/115876号)。したがって、使用済みのRH拡散用合金からも、同様にしてRH化合物を得ることができる。 In addition, the Dy-Fe alloy or the Tb-Fe alloy used for diffusing the heavy rare earth element from the outside with respect to the R-T-B system magnet comes into contact with the R-T-B system magnet during the diffusion process. In some cases, the magnet may be discarded in a state where it contains the light rare earth element R such as Nd. A technique for recovering the heavy rare earth element RH from such a used RH diffusion alloy has also been developed (International Publication No. 2014/115876). Therefore, the RH compound can be similarly obtained from the used RH diffusion alloy.

リサイクルに供されるR−T−B系磁石は焼結磁石に限らず、ボンド磁石や熱間加工磁石、それらに使用される磁石粉末などでもよい。R−T−B系磁石のリサイクル工程内で生成したものを用いれば希少なRHを有効活用でき、かつ、拡散源においてコストダウンが可能である。RH化合物の粉末の粒度は、例えば20μm以下であり、小さいものは数μm程度である。なお、本開示において粉末の粒度は、例えば顕微鏡観察によって測定すればよい。また、市販の粒度分布測定装置(例えば、マイクロトラック・ベル社製レーザー回折・散乱式 粒子径分布測定装置等)を用いて測定することもできる。 The RTB-based magnet to be recycled is not limited to the sintered magnet, but may be a bonded magnet, a hot-worked magnet, magnet powder used for them, or the like. By using the R-T-B magnet generated in the recycling process, it is possible to effectively utilize the rare RH and reduce the cost of the diffusion source. The particle size of the RH compound powder is, for example, 20 μm or less, and the small one is about several μm. In the present disclosure, the particle size of powder may be measured by, for example, microscopic observation. It can also be measured using a commercially available particle size distribution measuring device (for example, a laser diffraction/scattering particle size distribution measuring device manufactured by Microtrac Bell Co., Ltd.).

RHフッ化物の粉末は、工業的に製造されたものであればどのようなものでも良い。RHフッ化物の粉末の粒度は100μm以下が好ましい。なお、本発明におけるRHフッ化物には、RHフッ化物の製造工程における中間物質であるRH酸フッ化物が含まれていてもよい。 The RH fluoride powder may be any powder produced industrially. The particle size of the RH fluoride powder is preferably 100 μm or less. The RH fluoride in the present invention may include RH oxyfluoride, which is an intermediate substance in the production process of RH fluoride.

拡散源粉末中の前記R−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末の割合は5〜50質量%が好ましく、10〜40質量%がより好ましい。5質量%未満では、希少資源の効率的利用と言う点では一定の効果があるが、コストダウンの効果は低い。また、50質量%を超えると、多くの拡散源をリサイクル工程で生成する必要があり、原料供給が不安定になる可能性がある。また、化合物の種類によっては、HcJ向上効果が低くなる可能性がある。 The ratio of the powder of the RH compound produced by the recycling step of the RTB-based magnet in the diffusion source powder is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If it is less than 5% by mass, there is a certain effect in terms of efficient use of rare resources, but the effect of cost reduction is low. On the other hand, if it exceeds 50% by mass, many diffusion sources need to be generated in the recycling process, and the supply of raw materials may become unstable. Further, depending on the type of compound, the H cJ improving effect may be low.

上記のRH化合物は、第三者がR−T−B系磁石のリサイクル工程によって製造したRH化合物を当該第三者から購入して準備したものであってもよいし、R−T−B系磁石のリサイクル工程を自ら実行して製造したものであってもよい。 The above-mentioned RH compound may be one prepared by purchasing an RH compound manufactured by a third party through a recycling process of an RTB-based magnet from the third party, or an RTB-based compound. It may be manufactured by performing the magnet recycling process by itself.

[拡散助剤]
拡散助剤としては、RLM1M2合金の粉末を用いる。RLは、Nd、Prから選ばれる1種以上、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上であり、M1=M2でもよい。RLM1M2合金の典型例は、NdCu合金、NdFe合金、NdCuAl合金、NdCuCo合金、NdCoGa合金、NdPrCu合金、NdPrFe合金などである。これらの合金の粉末は、上述の拡散源粉末と混合して用いられる。複数種のRLM1M2合金粉末と拡散源粉末を混合して用いてもよい。RLM1M2合金の粉末の作製方法は特に限定されない。急冷法または鋳造法で作製される場合、粉砕性を良くするために、M1≠M2とし、例えば、NdCuAl合金、NdCuCo合金、NdCoGa合金などの3元系以上の合金を採用することが好ましい。RLM1M2合金粉末の粒度は、例えば500μm以下であり、小さいものは10μm程度である。
[Diffusion aid]
As the diffusion aid, powder of RLM1M2 alloy is used. RL is at least one selected from Nd and Pr, M1 and M2 are at least one selected from Cu, Fe, Ga, Co, Ni, and Al, and M1=M2 may be satisfied. Typical examples of the RLM1M2 alloy are NdCu alloy, NdFe alloy, NdCuAl alloy, NdCuCo alloy, NdCoGa alloy, NdPrCu alloy, NdPrFe alloy and the like. The powder of these alloys is used as a mixture with the above-mentioned diffusion source powder. A plurality of types of RLM1M2 alloy powder and a diffusion source powder may be mixed and used. The method for producing the powder of the RLM1M2 alloy is not particularly limited. In the case of being manufactured by a quenching method or a casting method, in order to improve the pulverizability, it is preferable to set M1≠M2, and to use an alloy of ternary system or more such as NdCuAl alloy, NdCuCo alloy, and NdCoGa alloy. The particle size of the RLM1M2 alloy powder is, for example, 500 μm or less, and the small one is about 10 μm.

本開示における、リサイクル工程によって製造されたRH化合物は、拡散助剤としてRLM1M2合金をともにR−T−B系焼結磁石表面に存在させて熱処理することによって、RLM1M2合金がRH化合物を効率よく還元し、十分に還元されたRHがR−T−B系焼結磁石母材中に拡散する。このことにより、拡散源としてRHフッ化物と同様、少ないRH量でHcJを大きく向上させることができる。 In the present disclosure, the RH compound produced by the recycling process is such that the RLM1M2 alloy efficiently reduces the RH compound by heat-treating the RLM1M2 alloy as a diffusion aid together on the surface of the RTB-based sintered magnet. Then, the sufficiently reduced RH diffuses in the RTB-based sintered magnet base material. This makes it possible to greatly improve H cJ as a diffusion source with a small amount of RH, as in the case of RH fluoride.

[塗布]
RLM1M2合金の粉末と拡散源粉末とをR−T−B系焼結磁石の表面に存在させる方法はどのようなものであってもよい。例えば、RLM1M2合金の粉末と拡散源粉末をR−T−B系焼結磁石の表面に散布する方法や、RLM1M2合金の粉末と拡散源粉末とを純水や有機溶剤などの溶媒に分散させ、これにR−T−B系焼結磁石を浸漬して引き上げる方法、RLM1M2合金の粉末と混合粉末とをバインダや溶媒と混合してスラリーを作製し、このスラリーをR−T−B系焼結磁石の表面に塗布する方法、RLM1M2合金の粉末と拡散源粉末をバインダと共に造粒して造粒粉末を作製し、この造粒粉末をR−T−B系焼結磁石の表面に付着させる方法、等が挙げられる。バインダや溶媒は、その後の熱処理の昇温過程において、拡散助剤の融点以下の温度で熱分解や蒸発などでR−T−B系焼結磁石の表面から実質的に除去されるものであればよく、特に限定されるものではない。バインダの例としては、ポリビニルアルコール、エチルセルロース、ポリエステルなどがあげられる。またRLM1M2合金の粉末と拡散源粉末は、それらが混合した状態でR−T−B系焼結磁石の表面に存在させてもよいし、別々に存在させてもよい。なお、本開示の方法においては、RLM1M2合金はその融点が熱処理温度以下であるため熱処理の際に溶融し、R−T−B系焼結磁石の表面は還元されたRHがR−T−B系焼結磁石内部に拡散しやすい状態になる。したがって、RLM1M2合金の粉末と拡散源粉末とをR−T−B系焼結磁石の表面に存在させる前にR−T−B系焼結磁石の表面に対して酸洗などの特段の清浄化処理を行う必要はない。もちろん、そのような清浄化処理を行うことを排除するものではない。また、RLM1M2合金粉末粒子の表面が多少酸化されていても拡散源粉末を還元する効果にほとんど影響はない。
[Application]
Any method may be used for allowing the powder of the RLM1M2 alloy and the diffusion source powder to be present on the surface of the RTB-based sintered magnet. For example, a method of spraying the powder of the RLM1M2 alloy and the diffusion source powder on the surface of the RTB-based sintered magnet, or dispersing the powder of the RLM1M2 alloy and the diffusion source powder in a solvent such as pure water or an organic solvent, A method of immersing an R-T-B based sintered magnet in this and pulling it up, a powder of the RLM1M2 alloy and a mixed powder are mixed with a binder or a solvent to prepare a slurry, and this slurry is subjected to the R-T-B based sintering. A method of applying to the surface of the magnet, a method of granulating the powder of the RLM1M2 alloy and the diffusion source powder together with a binder to prepare a granulated powder, and adhering the granulated powder to the surface of the RTB sintered magnet. , And the like. The binder and the solvent should be substantially removed from the surface of the RTB-based sintered magnet by thermal decomposition or evaporation at a temperature equal to or lower than the melting point of the diffusion aid in the subsequent heating process. However, there is no particular limitation. Examples of the binder include polyvinyl alcohol, ethyl cellulose, polyester and the like. Further, the powder of the RLM1M2 alloy and the diffusion source powder may be present on the surface of the RTB-based sintered magnet in a state where they are mixed, or may be present separately. In the method of the present disclosure, the melting point of the RLM1M2 alloy is equal to or lower than the heat treatment temperature, so that the RLM1M2 alloy melts during the heat treatment, and the surface of the R-T-B system sintered magnet has reduced RH as RT-B. It becomes easy to diffuse inside the system sintered magnet. Therefore, before the powder of the RLM1M2 alloy and the diffusion source powder are present on the surface of the RTB-based sintered magnet, special cleaning such as pickling is performed on the surface of the RTB-based sintered magnet. No action required. Of course, it does not exclude performing such a cleaning process. Further, even if the surface of the RLM1M2 alloy powder particles is slightly oxidized, it has almost no effect on the effect of reducing the diffusion source powder.

粉末状態にあるRLM1M2合金および拡散源粉末のR−T−B系焼結磁石の表面における存在比率(熱処理前)は、質量比率でRLM1M2合金:拡散源粉末=96:4〜50:50であることが好ましく、存在比率はRLM1M2合金:拡散源粉末=95:5〜60:40であることがより好ましい。 The abundance ratio of the RLM1M2 alloy in the powder state and the diffusion source powder on the surface of the RTB-based sintered magnet (before heat treatment) is RLM1M2 alloy:diffusion source powder=96:4 to 50:50 by mass ratio. Preferably, the abundance ratio is RLM1M2 alloy:diffusion source powder=95:5 to 60:40.

本開示の製造方法によれば、少ない量のRHで、効率的にR−T−B系焼結磁石のHcJを向上させることが可能である。R−T−B系焼結磁石の表面に存在させる粉末中のRH元素の量は、R−T−B系焼結磁石に対して0.2〜1.5質量%であることが好ましい。 According to the manufacturing method of the present disclosure, it is possible to efficiently improve HcJ of an RTB -based sintered magnet with a small amount of RH. The amount of the RH element in the powder present on the surface of the RTB-based sintered magnet is preferably 0.2 to 1.5 mass% with respect to the RTB-based sintered magnet.

[拡散熱処理]
熱処理温度はR−T−B系焼結磁石の焼結温度以下(具体的には例えば1000℃以下)であり、かつ、RLM1M2合金の粉末の融点よりも高い温度であるが、具体的には、500℃以上が好ましい。熱処理時間は例えば10分〜72時間である。また前記熱処理の後必要に応じてさらに400〜700℃で10分〜72時間の熱処理を行ってもよい。
[Diffusion heat treatment]
The heat treatment temperature is equal to or lower than the sintering temperature of the R-T-B based sintered magnet (specifically, for example, 1000° C. or lower) and higher than the melting point of the powder of the RLM1M2 alloy, but specifically, It is preferably 500° C. or higher. The heat treatment time is, for example, 10 minutes to 72 hours. Further, after the heat treatment, if necessary, heat treatment may be further performed at 400 to 700° C. for 10 minutes to 72 hours.

まず、公知の方法で、組成比Nd=13.4、B=5.8、Al=0.5、Cu=0.1、Co=1.1、残部=Fe(原子%)のR−T−B系焼結磁石を作製した。これを機械加工することにより、6.5mm×7.4mm×7.4mmのR−T−B系焼結磁石母材を得た。得られたR−T−B系焼結磁石母材の磁気特性をB−Hトレーサーによって測定したところ、HcJは1035kA/m、Bは1.45Tであった。なお、後述の通り、熱処理後のR−T−B系焼結磁石の磁気特性は、R−T−B系焼結磁石の表面を機械加工によって除去してから測定するので、R−T−B系焼結磁石母材もそれに合わせて、表面をさらに機械加工によって除去し、大きさ6.3mm×7.0mm×7.0mmとしてから測定した。拡散剤としてTbF、炭酸Tb、シュウ酸Tb、酸化Tbを用意した。TbFは市販のものを用いた。炭酸Tb、シュウ酸Tb、酸化TbはR−T−B系磁石のリサイクル工程で生成した各化合物を想定して実験的に作製したものを用いた。具体的には、炭酸Tbとシュウ酸Tbは、R−T−B系磁石のリサイクル工程において、Tbを含有するR−T−B系磁石やRH拡散源をTと分離して得たTb酸化物から得られる炭酸Tb、シュウ酸Tbを想定し、Tb試薬から模擬的に作製した。10vol%塩酸にTb試薬を添加して60℃で溶解後、濾過した。こうして得た濾液に炭酸ナトリウム、またはシュウ酸二水和物を添加し、60℃で2時間放置した後、濾過して沈殿物を得た。この沈殿物を60℃で6時間真空乾燥して炭酸Tb粉末、またはシュウ酸Tb粉末を得た。さらに、得られた炭酸Tb粉末を大気中、900℃で2時間焼成し、酸化Tb粉末を得た。これらの粉末の粒度は数μmであった。また、得られた炭酸Tb、シュウ酸Tb、酸化TbをICP分析により分析したところ、Tbの含有率はそれぞれ58.5mass%、42.7mass%、14.2mass%であった。次に組成がNd70Cu30(原子%)の拡散助剤を用意した(融点520℃:Nd−Cuの二元系状態図で示される値)。拡散助剤は遠心アトマイズ法で作製し、粒度106μm以下とした。得られた拡散剤の粉末と拡散助剤の粉末を表1に示す混合比でポリビニルアルコールおよび純水と混合してスラリーを得た。このスラリーを、R−T−B系焼結磁石母材の7.4mm×7.4mmの1面に、RH量がR−T−B系焼結磁石母材に対する質量比で0.25%となるように塗布した。なお、本実施例は前記スラリーをR−T−B系焼結磁石母材の1つの拡散面のみに塗布してHcJの向上効果を確認した実験である。実際には、1面でもよいし、2面〜全面の複数面でもよい。このR−T−B系焼結磁石母材を処理容器に収容して蓋をした。(この蓋は容器内外のガスの出入りを妨げるものではない。)これを熱処理炉に収容し、100PaのAr雰囲気中、400℃で2時間の熱処理後900℃に昇温して10時間の熱処理を行った。熱処理は、室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR−T−B系焼結磁石を回収した。回収したR−T−B系焼結磁石を処理容器に戻して再び熱処理炉に収容し、10Pa以下の真空中、490℃で3時間の熱処理を行った。この熱処理も室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR−T−B系焼結磁石を回収した。 First, by a known method, the composition ratio Nd=13.4, B=5.8, Al=0.5, Cu=0.1, Co=1.1, and the balance=Fe (atomic %) RT. A B-type sintered magnet was produced. By subjecting this to machining, an RTB based sintered magnet base material of 6.5 mm×7.4 mm×7.4 mm was obtained. Magnetic properties of the obtained R-T-B based sintered magnet base material where a measured by B-H tracer, H cJ is 1035kA / m, B r was 1.45 T. As will be described later, since the magnetic characteristics of the RTB-based sintered magnet after heat treatment are measured after the surface of the RTB-based sintered magnet is removed by machining, RT-T- The surface of the B-based sintered magnet base material was also removed by mechanical processing in accordance with it, and the size was measured to be 6.3 mm×7.0 mm×7.0 mm. TbF 3 , carbonic acid Tb, oxalic acid Tb, and oxidized Tb were prepared as diffusing agents. A commercially available TbF 3 was used. Carbonic acid Tb, oxalic acid Tb, and oxidized Tb were experimentally prepared assuming each compound produced in the recycling process of the RTB magnet. Specifically, carbonic acid Tb and oxalic acid Tb are Tb oxides obtained by separating an R-T-B based magnet containing Tb and an RH diffusion source from T in the recycling process of the R-T-B based magnet. Assuming carbonic acid Tb and oxalic acid Tb obtained from the product, it was prepared by imitation from Tb 4 O 7 reagent. The Tb 4 O 7 reagent was added to 10 vol% hydrochloric acid, dissolved at 60° C., and then filtered. Sodium carbonate or oxalic acid dihydrate was added to the filtrate thus obtained, and the mixture was allowed to stand at 60° C. for 2 hours and then filtered to obtain a precipitate. The precipitate was vacuum dried at 60° C. for 6 hours to obtain a carbonic acid Tb powder or an oxalic acid Tb powder. Furthermore, the obtained Tb carbonate powder was fired in the air at 900° C. for 2 hours to obtain an oxidized Tb powder. The particle size of these powders was a few μm. When the obtained carbonic acid Tb, oxalic acid Tb, and oxidized Tb were analyzed by ICP analysis, the Tb contents were 58.5 mass%, 42.7 mass%, and 14.2 mass%, respectively. Next, a diffusion aid having a composition of Nd 70 Cu 30 (atomic %) was prepared (melting point 520° C.: value shown in binary system phase diagram of Nd—Cu). The diffusion aid was produced by a centrifugal atomization method and had a particle size of 106 μm or less. The obtained diffusing agent powder and diffusion aid powder were mixed with polyvinyl alcohol and pure water at a mixing ratio shown in Table 1 to obtain a slurry. The amount of RH was 0.25% by mass of the slurry on one surface of the 7.4 mm×7.4 mm of the RTB-based sintered magnet base material in a mass ratio to the RTB-based sintered magnet base material. Was applied so that In this example, the slurry was applied to only one diffusion surface of the RTB -based sintered magnet base material to confirm the effect of improving HcJ . Actually, it may be one surface or a plurality of surfaces from two surfaces to the entire surface. The RTB-based sintered magnet base material was housed in a processing container and the lid was covered. (This lid does not prevent the gas in and out of the container from entering and exiting.) This was placed in a heat treatment furnace and heat-treated at 400° C. for 2 hours in an Ar atmosphere of 100 Pa and then heated to 900° C. for 10 hours. I went. The heat treatment was performed under the above conditions after the temperature was raised from the room temperature while being evacuated and the atmospheric pressure and temperature reached the above conditions. After that, the temperature was once lowered to room temperature, and then the RTB-based sintered magnet was collected. The recovered RTB-based sintered magnet was returned to the processing container, housed again in the heat treatment furnace, and heat-treated at 490° C. for 3 hours in a vacuum of 10 Pa or less. This heat treatment was also performed under the above conditions after the temperature was raised from the room temperature while exhausting the vacuum and the atmospheric pressure and temperature reached the above conditions. After that, the temperature was once lowered to room temperature, and then the RTB-based sintered magnet was collected.

得られたR−T−B系焼結磁石の表面を機械加工にて除去し、6.3mm×7.0mm×7.0mmのサンプル1〜10を得た。得られたサンプル1〜10の磁気特性をB−Hトレーサーによって測定し、HcJの変化量を求めた。結果を表1に示す。 The surface of the obtained RTB-based sintered magnet was removed by machining to obtain samples 1 to 10 of 6.3 mm×7.0 mm×7.0 mm. The magnetic characteristics of the obtained samples 1 to 10 were measured by a BH tracer to determine the amount of change in HcJ . The results are shown in Table 1.

Figure 0006733533
Figure 0006733533

表1からわかるように、本開示の製造方法によるR−T−B系焼結磁石はBがほとんど低下することなくHcJが大きく向上している。すなわち、拡散源としてRHフッ化物にリサイクル工程で生成したRH化合物を混合して使用しても、拡散助剤としてRLM1M2合金をともにR−T−B系焼結磁石表面に存在させて熱処理すれば、RLM1M2合金がRHフッ化物とリサイクル工程で生成したRH化合物を効率よく還元し、十分に還元されたRHがR−T−B系焼結磁石母材中に拡散することにより、拡散源としてRHフッ化物のみを使用した場合と同様、少ないRH量でHcJを大きく向上させることができたことがわかった。これに対し、拡散助剤を用いなかった場合はHcJを大きく向上させることができなかったことから、RH化合物は、RLM1M2合金と共にR−T−B系焼結磁石表面に存在させて熱処理した場合のみ、磁石中に拡散してHcJを大きく向上させる効果を発揮することがわかった。 As can be seen from Table 1, R-T-B based sintered magnet according to the manufacturing method of the present disclosure is H cJ is greatly improved without the B r little lowered. That is, even if the RH compound produced in the recycling step is mixed with the RH fluoride as the diffusion source and used, if the RLM1M2 alloy as the diffusion auxiliary is both present on the surface of the RTB-based sintered magnet and heat treated. , RLM1M2 alloy efficiently reduces the RH fluoride and the RH compound generated in the recycling step, and the sufficiently reduced RH diffuses into the R-T-B system sintered magnet base material, thereby serving as a diffusion source. It was found that H cJ could be greatly improved with a small amount of RH as in the case of using only fluoride. On the other hand, when the diffusion aid was not used, H cJ could not be significantly improved. Therefore, the RH compound was present together with the RLM1M2 alloy on the surface of the RTB-based sintered magnet and heat-treated. Only in the case, it was found that it diffuses in the magnet and exerts an effect of greatly improving H cJ .

本開示の製造方法は、希少資源を効率的に利用して、高温下でも高いHcJを維持することができるR−T−B系焼結磁石を製造できるため、当該製造方法によって得られる磁石を電気自動車(EV、HV、PHVなど)のモータなどに好適に用いることが可能になる。 Since the manufacturing method of the present disclosure can efficiently use rare resources to manufacture an RTB -based sintered magnet that can maintain a high H cJ even at high temperatures, a magnet obtained by the manufacturing method. Can be suitably used for a motor of an electric vehicle (EV, HV, PHV, etc.).

Claims (8)

R−T−B系焼結磁石を用意する工程と、
前記R−T−B系焼結磁石の表面にRLM1M2合金(RLは、Nd、Prから選ばれる1種以上、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)の粉末と、RHフッ化物(RHはDyおよび/またはTb)の粉末およびR−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末の混合粉末とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程と、
を含むR−T−B系焼結磁石の製造方法。
A step of preparing an RTB-based sintered magnet,
RLM1M2 alloy (RL is one or more selected from Nd and Pr, M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni and Al on the surface of the RTB sintered magnet. , M1=M2) and a powder of RH fluoride (RH is Dy and/or Tb) and a powder of RH compound produced by the recycling process of the RTB magnet. A step of performing heat treatment at a temperature equal to or lower than the sintering temperature of the R-T-B system sintered magnet in the state of being allowed to stand;
The manufacturing method of the RTB type|system|group sintered magnet containing.
前記RH化合物の粉末は、R−T−B系磁石のリサイクル工程によって製造された中間生成物である、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, wherein the powder of the RH compound is an intermediate product produced by a recycling step of the RTB-based magnet. 前記R−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末は、RH炭酸塩、RHシュウ酸塩、RH硫酸塩、RHりん酸塩、RH酢酸塩、RH酸化物から選ばれる1種以上である、請求項1または2に記載のR−T−B系焼結磁石の製造方法。 The powder of the RH compound produced by the recycling process of the R-T-B magnet is selected from RH carbonate, RH oxalate, RH sulfate, RH phosphate, RH acetate and RH oxide. The method for producing an RTB-based sintered magnet according to claim 1 or 2, which is one or more kinds. 前記混合粉末中の前記R−T−B系磁石のリサイクル工程によって製造されたRH化合物の粉末の割合は5〜50質量%である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。 The R-T- according to any one of claims 1 to 3, wherein a ratio of the powder of the RH compound manufactured by the recycling step of the R-T-B magnet in the mixed powder is 5 to 50% by mass. A method for manufacturing a B-based sintered magnet. 前記RLM1M2合金はRLを50原子%以上含み、かつ、前記RLM1M2合金の融点は前記熱処理の温度以下である、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。 The manufacturing of the RTB-based sintered magnet according to claim 1, wherein the RLM1M2 alloy contains 50 atomic% or more of RL, and the melting point of the RLM1M2 alloy is equal to or lower than the temperature of the heat treatment. Method. 前記熱処理は、前記RLM1M2合金の粉末と前記混合粉末とが、RLM1M2合金:混合粉末=96:4〜50:50の質量比率で前記R−T−B系焼結磁石の表面に存在する状態で行われる、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。 In the heat treatment, the powder of the RLM1M2 alloy and the mixed powder are present on the surface of the RTB-based sintered magnet in a mass ratio of RLM1M2 alloy:mixed powder=96:4 to 50:50. The method for producing an RTB-based sintered magnet according to claim 1, which is performed. 前記R−T−B系焼結磁石の表面において、前記混合粉末に含まれるRH元素の質量は、R−T−B系焼結磁石に対して0.2〜1.5質量%である、請求項1から6のいずれかに記載のR−T−B系焼結磁石の製造方法。 On the surface of the RTB-based sintered magnet, the mass of the RH element contained in the mixed powder is 0.2 to 1.5 mass% with respect to the RTB-based sintered magnet. A method for manufacturing an RTB-based sintered magnet according to claim 1. 前記RH化合物の粉末をR−T−B系磁石のリサイクルによって製造する工程を更に包含する、請求項1から7のいずれかに記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, further comprising a step of producing the powder of the RH compound by recycling an RTB-based magnet.
JP2016243999A 2016-12-16 2016-12-16 Method for manufacturing RTB-based sintered magnet Active JP6733533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243999A JP6733533B2 (en) 2016-12-16 2016-12-16 Method for manufacturing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243999A JP6733533B2 (en) 2016-12-16 2016-12-16 Method for manufacturing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2018098430A JP2018098430A (en) 2018-06-21
JP6733533B2 true JP6733533B2 (en) 2020-08-05

Family

ID=62633866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243999A Active JP6733533B2 (en) 2016-12-16 2016-12-16 Method for manufacturing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP6733533B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139920B2 (en) * 2018-12-03 2022-09-21 Tdk株式会社 R-T-B system permanent magnet
CN111192754A (en) * 2019-12-31 2020-05-22 慈溪市恒韵照明有限公司 Method for preparing N38M type sintered neodymium-iron-boron magnetic material at low cost
CN111180189A (en) * 2019-12-31 2020-05-19 慈溪市恒韵照明有限公司 Method for preparing N40M type sintered NdFeB magnetic material by adding 38M waste material
CN111145997B (en) * 2019-12-31 2021-09-28 慈溪市兴发磁业科技有限公司 Preparation method of N30 type sintered mixed rare earth alloy magnetic material for improving coercive force

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283317A (en) * 1985-10-08 1987-04-16 Asahi Chem Ind Co Ltd Production of rare earth metal compound having high purity
JPH01183415A (en) * 1988-01-13 1989-07-21 Daido Steel Co Ltd Method for separating and recovering rare earth element
TWI302712B (en) * 2004-12-16 2008-11-01 Japan Science & Tech Agency Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same
JP4564993B2 (en) * 2007-03-29 2010-10-20 株式会社日立製作所 Rare earth magnet and manufacturing method thereof
JP5261747B2 (en) * 2008-04-15 2013-08-14 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP5596590B2 (en) * 2011-02-16 2014-09-24 三和油化工業株式会社 Method for separating and recovering metal elements from rare earth magnet alloy materials
JP2014051718A (en) * 2012-09-10 2014-03-20 Hitachi Metals Ltd Rare earth separation method and rare earth separation unit
FR3003270B1 (en) * 2013-03-15 2015-04-17 Eramet PROCESS FOR THE SELECTIVE RECOVERY OF RARE EARTHS OF AQUEOUS ACID SOLUTION OF ALUMINUM-RICH SULPHATE AND PHOSPHATES
EP3106536B1 (en) * 2014-02-14 2019-10-09 Santoku Corporation Rare earth-containing alloy flakes and manufacturing method thereof
JP6414597B2 (en) * 2014-09-11 2018-10-31 日立金属株式会社 Method for producing RTB-based sintered magnet

Also Published As

Publication number Publication date
JP2018098430A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4656323B2 (en) Method for producing rare earth permanent magnet material
JP4548673B2 (en) Grain boundary modification method for Nd-Fe-B magnet
JP6414597B2 (en) Method for producing RTB-based sintered magnet
JP6572550B2 (en) R-T-B sintered magnet
JP5884957B1 (en) Method for producing RTB-based sintered magnet
JP6733533B2 (en) Method for manufacturing RTB-based sintered magnet
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
CN107077964B (en) Method for producing R-T-B sintered magnet
JP6503960B2 (en) Method of manufacturing RTB based sintered magnet
JPWO2018143230A1 (en) Method for producing RTB-based sintered magnet
JP6399307B2 (en) R-T-B sintered magnet
WO2016121790A1 (en) Method for producing r-t-b sintered magnet
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP6717230B2 (en) Method for manufacturing sintered RTB magnet
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
JP2018018911A (en) Method for manufacturing r-t-b based sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP2005150503A (en) Method for manufacturing sintered magnet
JP6743650B2 (en) Method for manufacturing RTB-based sintered magnet
JP5644170B2 (en) Method for producing RTB-based sintered magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP6717231B2 (en) Method for manufacturing sintered RTB magnet
JP7123469B2 (en) Manufacturing method of sintered magnet and sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350