[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6727296B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6727296B2
JP6727296B2 JP2018516266A JP2018516266A JP6727296B2 JP 6727296 B2 JP6727296 B2 JP 6727296B2 JP 2018516266 A JP2018516266 A JP 2018516266A JP 2018516266 A JP2018516266 A JP 2018516266A JP 6727296 B2 JP6727296 B2 JP 6727296B2
Authority
JP
Japan
Prior art keywords
refrigerant
outdoor unit
source side
heat source
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018516266A
Other languages
Japanese (ja)
Other versions
JPWO2017195296A1 (en
Inventor
美沙紀 幸田
美沙紀 幸田
直道 田村
直道 田村
豊 青山
豊 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017195296A1 publication Critical patent/JPWO2017195296A1/en
Application granted granted Critical
Publication of JP6727296B2 publication Critical patent/JP6727296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • F25B2313/02522Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、ビル用マルチエアコン等に適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to a building multi air conditioner or the like.

空気調和装置を冬場に暖房運転すると、熱源側の熱交換器に空気中の水蒸気が付着し、霜が生成される。熱交換器に霜が付着したままだと暖房能力の低下が起きるため、通常、暖房運転の合間に室外機でデフロスト運転を行い、熱交換器に付着した霜を溶かし、暖房能力を安定して発揮できるようにしている。 When the air conditioner is operated for heating in winter, water vapor in the air adheres to the heat exchanger on the heat source side to generate frost. If frost remains on the heat exchanger, the heating capacity will decrease.Therefore, normally, defrost operation is performed in the outdoor unit between heating operations to melt the frost adhering to the heat exchanger and stabilize the heating capacity. I am trying to demonstrate it.

デフロスト運転が行われると、熱交換器に発生した霜は融解し除霜水となり、熱交換器の下部へ伝わる。寒冷地においては、この除霜水の温度が低く、かつ外気温度が極めて低いため、空気調和装置でこのようなデフロスト運転が行われると、除霜水が熱交換器の下部へ伝わる際、再氷結することがある。そこで、除霜水の再氷結を防止するために、熱交換器の最下部にバイパス回路を設け、そこに高圧高温の冷媒を流入させることが行われる(特許文献1)。 When the defrost operation is performed, the frost generated in the heat exchanger melts and becomes defrost water, which is transmitted to the lower part of the heat exchanger. In cold regions, the defrost water temperature is low and the outside air temperature is extremely low.Therefore, when such defrost operation is performed in the air conditioner, when the defrost water is transferred to the lower part of the heat exchanger, It may freeze. Therefore, in order to prevent re-freezing of the defrosted water, a bypass circuit is provided at the bottom of the heat exchanger, and a high-pressure and high-temperature refrigerant is allowed to flow into the bypass circuit (Patent Document 1).

特開2008−64381号公報JP, 2008-64381, A

ところで、ビル用マルチエアコンには複数の空気調和装置を使用することが多く、その際、空気調和装置の室外機は横に並べて、すなわち各側面を対向させた状態で設置される。複数の室外機を集中して設置する場合、隣接する装置同士の間で対向する側面の間隔はわずか数センチメートルとなる。上述のデフロスト運転のとき、空気調和装置の室外機の送風機は停止されるため、室外機には外風のみが通過することになる。従って、ビル用マルチエアコンにおいて、複数台の室外機が上述のように集中して設置されている場合、デフロスト運転時に受ける外風の影響は、各室外機同士がわずかな間隔で対向している側面よりも、前面および背面において大きい。その結果、室外機の前面および背面において、除霜水が再氷結しやすくなる。 By the way, a plurality of air conditioners for buildings are often used with a plurality of air conditioners. At that time, the outdoor units of the air conditioners are installed side by side, that is, with their side surfaces facing each other. When a plurality of outdoor units are installed in a concentrated manner, the distance between adjacent side surfaces of adjacent devices is only a few centimeters. During the above-mentioned defrost operation, since the blower of the outdoor unit of the air conditioner is stopped, only the outdoor wind passes through the outdoor unit. Therefore, in a multi air conditioner for a building, when a plurality of outdoor units are installed in a concentrated manner as described above, the influence of the outside wind during defrost operation is such that the outdoor units face each other at a slight interval. Larger on the front and back than sides. As a result, the defrosted water is likely to refreeze on the front surface and the rear surface of the outdoor unit.

また、室外機の外形は全体として略直方体であることが多く、外風の影響は、各面の面積により異なってくる。さらに、上述のバイパス回路において、熱交換器のヘッダから最も遠い部位における冷媒温度は他の部位の冷媒温度に比べて低くなる。従って、再氷結を防止するためのバイパス回路の温度は1枚の熱交換器において均一とならず、排水性が悪くなりやすく、ヘッダからの距離によっては再氷結を招くことが懸念される。 In addition, the outer shape of the outdoor unit is often a substantially rectangular parallelepiped as a whole, and the influence of outside wind varies depending on the area of each surface. Further, in the above-mentioned bypass circuit, the temperature of the refrigerant farthest from the header of the heat exchanger becomes lower than the temperature of the other parts. Therefore, the temperature of the bypass circuit for preventing re-freezing is not uniform in one heat exchanger, drainage tends to be poor, and re-freezing may be caused depending on the distance from the header.

本発明は、上記のような課題を解決するためになされたものであり、複数の室外機を配置するマルチエアコンにおいて、デフロスト運転時の除霜効率を向上させると共に除霜水の再氷結を防止することを目的とする。 The present invention has been made to solve the above problems, and in a multi-air conditioner in which a plurality of outdoor units are arranged, improves defrosting efficiency during defrost operation and prevents refreezing of defrosted water. The purpose is to do.

本発明に係る空気調和装置は、圧縮機と、流路切替装置と、複数の熱源側熱交換器とを有し、これらが配管接続されている室外機と、前記室外機に接続され、対象空間の空調を行う室内機とを備える空気調和装置であって、前記室外機は、前記室外機の配管接続において一方は前記圧縮機の吐出側に接続され他方は前記圧縮機の吸入側に接続されている複数のバイパス回路であって、前記空気調和装置のデフロスト運転時に前記複数の熱源側熱交換器のそれぞれの下部に冷媒が流入するよう構成されている複数のバイパス回路と、前記複数のバイパス回路にそれぞれ設けられ、前記複数のバイパス回路に流入する冷媒の流量を調節する流量調節機構と、制御手段と、前記複数の熱源側熱交換器の周辺温度を検知する検知手段と、を有し、前記制御手段は、前記空気調和装置のデフロスト運転開始直後若しくはデフロスト運転開始から設定時間経過後、前記複数の熱源側熱交換器のそれぞれの前記検知手段により検知された周辺温度に基づいて前記流量調節機構を制御し、前記複数のバイパス回路に流入する冷媒の流量を調節するものである。 The air conditioner according to the present invention includes a compressor, a flow path switching device, and a plurality of heat source side heat exchangers, an outdoor unit in which these are connected by piping, and the outdoor unit is connected to the outdoor unit. An air conditioner comprising an indoor unit for air conditioning a space, wherein the outdoor unit is connected to a discharge side of the compressor and the other is connected to a suction side of the compressor in a pipe connection of the outdoor unit. A plurality of bypass circuits, wherein a plurality of bypass circuits configured to allow refrigerant to flow into the respective lower portions of the plurality of heat source side heat exchangers during defrost operation of the air conditioner; A flow rate adjusting mechanism that is provided in each of the bypass circuits and that adjusts the flow rate of the refrigerant that flows into the plurality of bypass circuits , a control unit, and a detection unit that detects the ambient temperature of the plurality of heat source side heat exchangers are provided. However, the control means, immediately after the start of the defrost operation of the air conditioner or after a lapse of a set time from the start of the defrost operation, based on the ambient temperature detected by the detection means of each of the plurality of heat source side heat exchangers, The flow rate adjusting mechanism is controlled to adjust the flow rate of the refrigerant flowing into the plurality of bypass circuits .

本発明に係る空気調和装置によると、デフロスト運転時に複数の熱源側熱交換器の下部に冷媒が流入するよう構成された複数のバイパス回路において、バイパス回路に流れ込む冷媒の流量を調節するために流量調節機構が設けられている。従って、ビル用マルチエアコンにおいて室外機を集中して配置する場合であっても、各室外機の配置の態様に応じて流量調節機構のそれぞれを機能させることにより、デフロスト運転で発生する除霜水の再氷結を確実に防止することができる。 According to the air conditioner of the present invention, in the plurality of bypass circuits configured to allow the refrigerant to flow into the lower portions of the plurality of heat source side heat exchangers during the defrost operation, the flow rate for adjusting the flow rate of the refrigerant flowing into the bypass circuit. An adjustment mechanism is provided. Therefore, even when the outdoor units are centrally arranged in the multi-air conditioner for buildings, the defrost water generated in the defrost operation is caused by causing each of the flow rate adjustment mechanisms to function according to the arrangement mode of each outdoor unit. It is possible to surely prevent the re-freezing.

空気調和装置の冷媒回路の概略図である。It is a schematic diagram of a refrigerant circuit of an air harmony device. 空気調和装置の暖房運転時の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant at the time of heating operation of an air conditioner. 空気調和装置のデフロスト運転時の冷媒の流れを示す図である。It is a figure showing the flow of the refrigerant at the time of defrost operation of an air harmony device. 空気調和装置の熱源側熱交換器の概略図である。It is a schematic diagram of a heat source side heat exchanger of an air harmony device. 空気調和装置のデフロスト運転時、バイパス回路用の電磁弁を開いたときの冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant at the time of the defrost operation of an air conditioning apparatus, when the solenoid valve for bypass circuits is opened. 本発明の実施の形態1における室外機の集中設置の一例を示す図である。It is a figure which shows an example of the intensive installation of the outdoor unit in Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の制御ブロック図である。It is a control block diagram of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2における熱源側熱交換器を上方から示す概略図である。It is the schematic which shows the heat-source side heat exchanger in Embodiment 2 of this invention from an upper part. 本発明の実施の形態2に係る空気調和装置の冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 2 of this invention.

以下に、本発明における冷凍サイクル装置の実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。 Embodiments of a refrigeration cycle device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the following drawings, the size of each component may be different from the actual device.

図1は、空気調和装置の冷媒回路の概略図である。空気調和装置100において、室内機10a、10b、10c、および10dと、室外機(熱源機)20とは、配管Aおよび配管Bで接続されている。室内機10a、10b、10c、10dは、並列に接続されている。配管Aおよび配管Bは、冷媒(熱源側冷媒)を導通する冷媒配管である。 FIG. 1 is a schematic diagram of a refrigerant circuit of an air conditioner. In the air conditioner 100, the indoor units 10a, 10b, 10c, and 10d and the outdoor unit (heat source device) 20 are connected by a pipe A and a pipe B. The indoor units 10a, 10b, 10c, 10d are connected in parallel. The pipe A and the pipe B are refrigerant pipes that conduct a refrigerant (heat source side refrigerant).

室外機20は、圧縮機1と、四方弁等の流路切替装置2と、熱源側熱交換器3a、3bと、アキュムレーター5とが配管で接続されている。圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして冷媒回路に搬送するものであり、例えば容量制御可能なインバータ圧縮機で構成される。流路切替装置2は、暖房運転モード時における冷媒の流れと冷房運転モード時における冷媒の流れとを切り替えるものである。熱源側熱交換器3a、3bは、暖房運転モード時には蒸発器として機能し、冷房運転モード時とデフロスト運転モード時には放熱器として機能し、ファン等の送風機(図示せず)によって供給される空気と冷媒との間で熱交換を行う。熱源側熱交換器3a、3bは、室外機20の冷媒配管において並列に接続されている。また、熱源側熱交換器3a、3bはL字型の外形形状を有しており、室外機20の筐体内において全体として矩形状の枠体を形成するよう配置されている。アキュムレーター5は、圧縮機1の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化における余剰冷媒を蓄えるものである。 In the outdoor unit 20, the compressor 1, the flow path switching device 2 such as a four-way valve, the heat source side heat exchangers 3a and 3b, and the accumulator 5 are connected by piping. The compressor 1 sucks in a refrigerant, compresses the refrigerant into a high temperature and high pressure state, and conveys the refrigerant to a refrigerant circuit. The compressor 1 is composed of, for example, a capacity-controllable inverter compressor. The flow path switching device 2 switches the flow of the refrigerant in the heating operation mode and the flow of the refrigerant in the cooling operation mode. The heat source side heat exchangers 3a and 3b function as an evaporator in the heating operation mode, function as a radiator in the cooling operation mode and the defrost operation mode, and supply air from a blower (not shown) such as a fan. Heat exchange with the refrigerant. The heat source side heat exchangers 3a and 3b are connected in parallel in the refrigerant pipe of the outdoor unit 20. The heat source side heat exchangers 3 a and 3 b have an L-shaped outer shape and are arranged so as to form a rectangular frame body as a whole in the housing of the outdoor unit 20. The accumulator 5 is provided on the suction side of the compressor 1 and stores the excess refrigerant due to the difference between the heating operation mode and the cooling operation mode, and the excess refrigerant due to a transient change in operation.

室外機20の配管にはバイパス回路6a、6bが接続されている。室外機20の配管において、バイパス回路6a、6bは、それぞれ、一方は圧縮機1の吐出側に接続され、他方は吸入側に接続されている。さらに、バイパス回路6aは熱源側熱交換器3aの下部を通るよう構成され、バイパス回路6bは熱源側熱交換器3bの下部を通るよう構成されている。また、バイパス回路6a、6bには開閉手段としての電磁弁4が配管を介して接続されている。配管内の冷媒は、電磁弁4が閉じられているとき、バイパス回路6a、6bへ流入せず、電磁弁4が開放されると、バイパス回路6a、6bへ流入する。バイパス回路6a、6b、電磁弁4は、空気調和装置100がデフロスト運転された後の融解した霜の再氷結の防止のために使用される。 Bypass circuits 6 a and 6 b are connected to the piping of the outdoor unit 20. In the piping of the outdoor unit 20, one of the bypass circuits 6a and 6b is connected to the discharge side of the compressor 1 and the other is connected to the suction side. Further, the bypass circuit 6a is configured to pass through the lower portion of the heat source side heat exchanger 3a, and the bypass circuit 6b is configured to pass through the lower portion of the heat source side heat exchanger 3b. Further, a solenoid valve 4 as an opening/closing means is connected to the bypass circuits 6a and 6b via a pipe. The refrigerant in the pipe does not flow into the bypass circuits 6a and 6b when the solenoid valve 4 is closed, and flows into the bypass circuits 6a and 6b when the solenoid valve 4 is opened. The bypass circuits 6a and 6b and the solenoid valve 4 are used to prevent re-freezing of the melted frost after the air conditioner 100 is defrosted.

室内機10aにおいて、利用側熱交換器(室内側熱交換器)12aおよび絞り装置11aが直列に接続されている。室内機10bにおいて、利用側熱交換器12bおよび絞り装置11bが直列に接続されている。室内機10cにおいて、利用側熱交換器12cおよび絞り装置11cが直列に接続されている。室内機10dにおいて、利用側熱交換器12dおよび絞り装置11dが直列に接続されている。利用側熱交換器12a、12b、12c、12dは、暖房運転モード時には凝縮器、冷房運転モード時には蒸発器として機能し、ファン等の送風機(図示せず)で供給される空気と冷媒との間で熱交換を行い、空調対象空間に供給するための冷房用空気又は暖房用空気を発生させる。絞り装置11a、11b、11c、11dは、減圧弁や膨張弁としての機能を有しており、冷媒を減圧して膨張させるものであり、例えば、開度が可変に制御可能な電子式膨張弁で構成される。空気調和装置100では、4台の室内機10a、10b、10c、10dが並列に接続されているが、これは一例であり、室内機の台数は4台には限定されない。 In the indoor unit 10a, the use side heat exchanger (indoor side heat exchanger) 12a and the expansion device 11a are connected in series. In the indoor unit 10b, the use side heat exchanger 12b and the expansion device 11b are connected in series. In the indoor unit 10c, the use side heat exchanger 12c and the expansion device 11c are connected in series. In the indoor unit 10d, the use side heat exchanger 12d and the expansion device 11d are connected in series. The utilization side heat exchangers 12a, 12b, 12c, 12d function as a condenser in the heating operation mode and as an evaporator in the cooling operation mode, and are provided between the air and the refrigerant supplied by a blower (not shown) such as a fan. Heat exchange is performed to generate cooling air or heating air to be supplied to the air-conditioned space. The expansion devices 11a, 11b, 11c, and 11d have a function as a pressure reducing valve or an expansion valve, and decompress the refrigerant to expand it. For example, an electronic expansion valve whose opening can be variably controlled. Composed of. In the air conditioner 100, four indoor units 10a, 10b, 10c, 10d are connected in parallel, but this is an example, and the number of indoor units is not limited to four.

ここで、空気調和装置100で実行される各運転モードについて説明する。 Here, each operation mode executed in the air conditioner 100 will be described.

[暖房運転モード]
図2は、空気調和装置の暖房運転時の冷媒の流れを示す図である。図2において、暖房運転時における冷媒の流れは矢印で示されている。図2を参照しながら、室内機10a、10b、10c、10dの全てが駆動している場合について説明する。低温低圧のガス冷媒が圧縮機1へ吸入されると圧縮機1で圧縮され、高温高圧のガス冷媒となり、圧縮機1から吐出される。圧縮機1から吐出されたガス冷媒は、流路切替装置2および配管Aを介して室外機20から流出され、利用側熱交換器12a、12b、12c、12dに流入する。
[Heating operation mode]
FIG. 2 is a diagram showing the flow of the refrigerant during the heating operation of the air conditioner. In FIG. 2, the flow of the refrigerant during the heating operation is indicated by an arrow. A case where all the indoor units 10a, 10b, 10c, and 10d are driven will be described with reference to FIG. When the low-temperature low-pressure gas refrigerant is sucked into the compressor 1, the low-temperature low-pressure gas refrigerant is compressed by the compressor 1, becomes high-temperature high-pressure gas refrigerant, and is discharged from the compressor 1. The gas refrigerant discharged from the compressor 1 flows out of the outdoor unit 20 via the flow path switching device 2 and the pipe A, and flows into the use side heat exchangers 12a, 12b, 12c, 12d.

利用側熱交換器12a、12b、12c、12dに流入した高温高圧のガス冷媒は、不図示の送風機から供給される空気と熱交換することで液冷媒となる。利用側熱交換器12a、12b、12c、12dは、周囲空気へ放熱し、熱交換器配管内の冷媒温度を降下させる凝縮器として機能する。利用側熱交換器12a、12b、12c、12dから流出した高温高圧の液冷媒は、絞り装置11a、11b、11c、11dで膨張、減圧され、低温低圧の気液二相冷媒となり、室内機10a、10b、10c、10dから流出する。室内機10a、10b、10c、10dから流出した冷媒は、配管Bを通って室外機20へ流入する。室外機20に流入した気液二相冷媒は、熱源側熱交換器3a、3bにおいて送風機(図示せず)によって供給される空気と熱交換することで、低温低圧のガス冷媒となる。熱源側熱交換器3a、3bは、周囲空気から吸熱し、配管内の冷媒が蒸発する蒸発器として作用する。熱源側熱交換器3a、3bから流出したガス冷媒は、室外機20内の配管および流路切替装置2を通ってアキュムレーター5に流入する。アキュムレーター5に流入した冷媒は、液冷媒とガス冷媒に分離され、ガス冷媒は再び圧縮機1へ吸入される。 The high-temperature and high-pressure gas refrigerant that has flowed into the use side heat exchangers 12a, 12b, 12c, 12d becomes a liquid refrigerant by exchanging heat with the air supplied from a blower (not shown). The utilization side heat exchangers 12a, 12b, 12c, 12d function as condensers that radiate heat to the ambient air and lower the refrigerant temperature in the heat exchanger pipes. The high-temperature high-pressure liquid refrigerant flowing out from the use side heat exchangers 12a, 12b, 12c, 12d is expanded and decompressed by the expansion devices 11a, 11b, 11c, 11d to become low-temperature low-pressure gas-liquid two-phase refrigerant, and the indoor unit 10a. 10b, 10c, 10d. The refrigerant flowing out from the indoor units 10a, 10b, 10c, 10d flows into the outdoor unit 20 through the pipe B. The gas-liquid two-phase refrigerant that has flowed into the outdoor unit 20 exchanges heat with the air supplied by the blower (not shown) in the heat source side heat exchangers 3a and 3b to become a low-temperature low-pressure gas refrigerant. The heat source side heat exchangers 3a and 3b function as evaporators that absorb heat from the ambient air and evaporate the refrigerant in the pipes. The gas refrigerant flowing out from the heat source side heat exchangers 3a and 3b flows into the accumulator 5 through the pipe in the outdoor unit 20 and the flow path switching device 2. The refrigerant flowing into the accumulator 5 is separated into a liquid refrigerant and a gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.

低外気温度下で連続で暖房運転(蒸発温度が0℃以下)をすると、熱源側熱交換器3a、3bの表面は着霜する。熱源側熱交換器3a、3bにおいて熱交換される空気に含まれる水分が、蒸発器として機能している熱源側熱交換器3a、3bの表面で結露し、外気温が低いため霜が発生するためである。熱源側熱交換器3a、3bにおける着霜量が多くなると熱抵抗が大きくなると共に、風量が低下するため、熱源側熱交換器3a、3b内の配管温度(蒸発温度)が降下し、暖房能力を十分に発揮することができなくなる。そのため、デフロストを実行して除霜することが必要となる。 When the heating operation is continuously performed (evaporation temperature is 0° C. or less) under a low outside air temperature, the surfaces of the heat source side heat exchangers 3a and 3b are frosted. Moisture contained in the air that is heat-exchanged in the heat source side heat exchangers 3a and 3b is condensed on the surface of the heat source side heat exchangers 3a and 3b functioning as an evaporator, and frost is generated because the outside air temperature is low. This is because. When the amount of frost in the heat source side heat exchangers 3a, 3b increases, the thermal resistance increases and the air volume decreases, so that the pipe temperature (evaporation temperature) in the heat source side heat exchangers 3a, 3b decreases, and the heating capacity increases. Can not be fully exerted. Therefore, it is necessary to perform defrost to defrost.

[デフロスト運転モード]
図3は、空気調和装置のデフロスト運転時の冷媒の流れを示す図である。図3において、デフロスト運転モード時における冷媒の流れは矢印で示されている。デフロスト運転モード時、通常の暖房運転は中断され、冷媒の循環方向は流路切替装置2によって冷房運転モード時と同じ循環方向に切り替えられる。低温低圧のガス冷媒が圧縮機1へ吸入されると圧縮機1で圧縮され、高温高圧のガス冷媒となり、圧縮機1から吐出される。圧縮機1から吐出されたガス冷媒は、流路切替装置2を通り、熱源側熱交換器3a、3bに流入する。熱源側熱交換器3a、3bに流入した高温高圧のガス冷媒は、周囲の空気と熱交換することで液冷媒となる。熱源側熱交換器3a、3bは、周囲空気へ放熱し、配管内の冷媒温度を降下させる凝縮器として機能する。従って、熱源側熱交換器3a、3bの空気中への放熱によって、熱源側熱交換器3a、3bの表面に付着した霜が融解される。このとき、熱源側熱交換器3a、3bの近傍に配設されている送風機(図示せず)は停止していることが多い。熱源側熱交換器3a、3bから流出した液冷媒は、配管Bを通って室内機10a、10b、10c、10dへ流入する。
[Defrost operation mode]
FIG. 3 is a diagram showing the flow of the refrigerant during the defrost operation of the air conditioner. In FIG. 3, the flow of the refrigerant in the defrost operation mode is indicated by an arrow. In the defrost operation mode, the normal heating operation is interrupted, and the circulation direction of the refrigerant is switched to the same circulation direction as in the cooling operation mode by the flow path switching device 2. When the low-temperature low-pressure gas refrigerant is sucked into the compressor 1, the low-temperature low-pressure gas refrigerant is compressed by the compressor 1, becomes a high-temperature high-pressure gas refrigerant, and is discharged from the compressor 1. The gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the heat source side heat exchangers 3a and 3b. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchangers 3a and 3b becomes a liquid refrigerant by exchanging heat with the surrounding air. The heat source side heat exchangers 3a and 3b function as condensers that radiate heat to the ambient air and lower the refrigerant temperature in the pipes. Therefore, the frost adhered to the surfaces of the heat source side heat exchangers 3a and 3b is melted by the heat radiation of the heat source side heat exchangers 3a and 3b into the air. At this time, the blower (not shown) arranged near the heat source side heat exchangers 3a and 3b is often stopped. The liquid refrigerant flowing out of the heat source side heat exchangers 3a, 3b flows through the pipe B into the indoor units 10a, 10b, 10c, 10d.

室内機10a、10b、10c、10dへ流入した液冷媒は、絞り装置11a、11b、11c、11dで膨張、減圧され、低温低圧の気液二相冷媒となる。気液二相冷媒は、利用側熱交換器12a、12b、12c、12dで熱交換されることなく室内機10a、10b、10c、10dから流出する。室内機10a、10b、10c、10dから流出した気液二相冷媒は、配管Aを通って再び室外機20に流入する。室外機20に流入した気液二相冷媒は、流路切替装置2を通り、アキュムレーター5に流入する。アキュムレーター5に流入した冷媒は、液冷媒とガス冷媒に分離され、ガス冷媒が再び圧縮機1へ吸入される。 The liquid refrigerant that has flowed into the indoor units 10a, 10b, 10c, and 10d is expanded and depressurized by the expansion devices 11a, 11b, 11c, and 11d to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows out of the indoor units 10a, 10b, 10c, 10d without being heat-exchanged in the use side heat exchangers 12a, 12b, 12c, 12d. The gas-liquid two-phase refrigerant flowing out from the indoor units 10a, 10b, 10c, 10d passes through the pipe A and flows into the outdoor unit 20 again. The gas-liquid two-phase refrigerant that has flowed into the outdoor unit 20 passes through the flow path switching device 2 and flows into the accumulator 5. The refrigerant flowing into the accumulator 5 is separated into a liquid refrigerant and a gas refrigerant, and the gas refrigerant is sucked into the compressor 1 again.

[デフロスト運転中]
図4は、空気調和装置の熱源側熱交換器の概略図である。図4には熱源側熱交換器3aを側面から見た図が示されている。図5は、空気調和装置のデフロスト運転時、バイパス回路用の電磁弁を開いたときの冷媒の流れを示す図である。熱源側熱交換器3aは、複数のフィンに対して、ヘアピン曲げした複数の伝熱管が垂直方向に差し込まれた構造を有している。バイパス回路6aは熱源側熱交換器3aの下部に配設されている。熱源側熱交換器3aは段方向に長いため、デフロスト運転後にバイパス回路6aが配設される部分に除霜水が溜まり、再氷結することが懸念される。そこで、図5に示すように、デフロスト運転中、若しくはデフロスト運転終盤に電磁弁4を開放し、バイパス回路6aに配管内の冷媒を流入させる。上述のように、デフロスト運転時、室外機20の配管内の冷媒は高温高圧状態である。従って、バイパス回路6aに冷媒を流入させることにより、熱源側熱交換器3aの下部の加熱を強化することができる。その結果、熱源側熱交換器3aの下部における霜の再氷結が防止される。同様に、バイパス回路6bは熱源側熱交換器3bの下部に配設されており、電磁弁4が接続される。従って、デフロスト運転の終盤に電磁弁4を開放することによりバイパス回路6bに高温高圧の冷媒が流入し、下部における霜の再氷結が防止される。
[During defrost operation]
FIG. 4 is a schematic diagram of a heat source side heat exchanger of the air conditioner. FIG. 4 shows a side view of the heat source side heat exchanger 3a. FIG. 5: is a figure which shows the flow of a refrigerant at the time of the defrost operation of an air conditioning apparatus, when the solenoid valve for bypass circuits is opened. The heat source side heat exchanger 3a has a structure in which a plurality of hairpin-bent heat transfer tubes are vertically inserted into a plurality of fins. The bypass circuit 6a is arranged below the heat source side heat exchanger 3a. Since the heat source side heat exchanger 3a is long in the stage direction, there is a concern that defrosting water may accumulate in the portion where the bypass circuit 6a is arranged after the defrost operation and re-freezing. Therefore, as shown in FIG. 5, the solenoid valve 4 is opened during the defrosting operation or at the end of the defrosting operation to allow the refrigerant in the pipe to flow into the bypass circuit 6a. As described above, during the defrost operation, the refrigerant in the pipe of the outdoor unit 20 is in a high temperature and high pressure state. Therefore, by flowing the refrigerant into the bypass circuit 6a, it is possible to enhance the heating of the lower portion of the heat source side heat exchanger 3a. As a result, re-freezing of frost in the lower part of the heat source side heat exchanger 3a is prevented. Similarly, the bypass circuit 6b is arranged below the heat source side heat exchanger 3b, and the solenoid valve 4 is connected thereto. Therefore, by opening the solenoid valve 4 at the final stage of the defrost operation, the high temperature and high pressure refrigerant flows into the bypass circuit 6b, and re-freezing of frost in the lower portion is prevented.

デフロスト運転は、通常、熱源側熱交換器3a、3bに設置されている温度検知手段(図示せず)の検知結果に基づいて、熱源側熱交換器3a、3bに付着したすべての霜が融解しきったことを確認されたら終了される。デフロスト運転が終了すると、流路切替装置2を切り替え、上述の暖房運転に戻る。デフロスト運転終了は、例えば、すべての霜が除かれたことに起因する熱源側熱交換器3a、3bの配管温度の上昇を確認することにより判断される。 In the defrost operation, all the frost adhering to the heat source side heat exchangers 3a and 3b is usually melted based on the detection result of the temperature detecting means (not shown) installed in the heat source side heat exchangers 3a and 3b. If it is confirmed that it has finished, it will be terminated. When the defrost operation ends, the flow path switching device 2 is switched, and the above heating operation is resumed. The end of the defrost operation is determined by, for example, confirming the rise in the pipe temperature of the heat source side heat exchangers 3a and 3b due to the removal of all frost.

デフロスト運転後の霜の再氷結を防止するために、図5に示すようにバイパス回路6a、6bを用いて冷媒を循環させる構成を有する空気調和装置100は、設置環境の影響を検討しなければならない場合がある。ビル用マルチエアコンは、その用途から大規模な建物、施設で使用されるため、屋上に室外機を大量に設置されることが多い。本明細書では、このようなビル用マルチエアコンにおける室外機の設置を集中設置と呼ぶ。 In order to prevent re-freezing of frost after the defrosting operation, the air conditioner 100 having a configuration in which the refrigerant is circulated by using the bypass circuits 6a and 6b as shown in FIG. 5 has to consider the influence of the installation environment. It may not happen. Since the multi air conditioner for buildings is used in a large-scale building or facility due to its use, a large number of outdoor units are often installed on the rooftop. In this specification, the installation of the outdoor unit in such a building multi-air conditioner is referred to as centralized installation.

図6は、本発明の実施の形態1における室外機の集中設置の一例を示す図である。図6(a)は、室外機の側面から集中設置の態様を示す図、図6(b)〜図6(e)は、室外機の上面から集中設置の態様を示す図である。図6(b)〜図6(e)において、各室内機は、前面が紙面の上側を向き、背面が紙面の下側を向いているものとする。また、これらの図中、矢印は風の向きを示している。 FIG. 6 is a diagram showing an example of centralized installation of outdoor units according to Embodiment 1 of the present invention. FIG. 6A is a diagram showing a mode of centralized installation from the side surface of the outdoor unit, and FIGS. 6B to 6E are diagrams showing a mode of centralized installation from the upper surface of the outdoor unit. In FIGS. 6B to 6E, it is assumed that the front surface of each indoor unit faces the upper side of the paper surface and the back surface faces the lower side of the paper surface. Further, in these figures, the arrow indicates the direction of the wind.

図6(a)に示されるように、集中設置では、室外機同士の左右の設置間隔が非常に狭くなることが多い。両側面に他の室外機が配置されている室外機においては、側面に隣の室外機の側面が隣接している一方、前面および背面は常に外気にさらされている。また、集中設置の両端部に配置されている室外機においては、隣に室外機が配置されている側の側面には隣の室外機の側面が隣接している一方、隣に室外機が配置されていない側の側面、前面および背面は常に外気にさらされている。従って、外気の風の向きによっては、各室外機器において風から受ける影響は異なってくる。 As shown in FIG. 6A, in centralized installation, the left and right installation intervals between outdoor units are often very narrow. In an outdoor unit in which other outdoor units are arranged on both side faces, the side faces of the adjacent outdoor units are adjacent to the side faces, while the front face and the back face are always exposed to the outside air. Also, in the outdoor units located at both ends of the central installation, the side face of the adjacent outdoor unit is adjacent to the side face on the side where the outdoor unit is located next to it, while the outdoor unit is placed next to it. The side, front and back of the unopened side are always exposed to the atmosphere. Therefore, the influence of the wind on each outdoor device differs depending on the direction of the wind of the outside air.

例えば、図6(b)のように風が流れる場合、各室外機は前面において、他の面よりも大きく風の影響を受け、図6(c)のように風が当たる場合、各室外機は背面において、他の面より大きく風の影響を受ける。また、図6(d)のように風が流れる場合、図中の左端に配置された室外機は左側面において、他の面および他の室外機よりも大きく風の影響を受け、図6(e)のように風が流れる場合、図中の右端に配置された室外機は右側面において、他の面および他の室外機よりも大きく風の影響を受ける。 For example, when the wind flows as shown in FIG. 6B, each outdoor unit is more affected by the wind on the front side than the other faces, and when the wind hits as shown in FIG. 6C, each outdoor unit is affected. Is more affected by the wind on the back surface than on other surfaces. Further, when the wind flows as shown in FIG. 6D, the outdoor unit arranged at the left end in the figure is more affected by the wind on the left side surface than the other surfaces and the other outdoor units. When the wind flows as in e), the outdoor unit arranged at the right end in the figure is more affected by the wind on the right side surface than on the other surfaces and the other outdoor units.

通常、空気調和装置が冷房運転、暖房運転される場合、送風機を運転し、強制的に熱源側熱交換器に風を通過させるが、上述のデフロスト運転では室外機の送風機は停止される。デフロスト運転時、図6(b)のように風が流れると、室外機の他の面よりも前面に外気が多く当たり、6(c)のように風が流れると、室外機の他の面よりも背面に外気が多く当たる。また、デフロスト運転時、図6(d)のように風が流れると、図中の左端に配置された室外機の左側面に、当該室外機の他の側面および他の室外機の各面よりも多くの外気が当たり、図6(e)のように風が流れると、図中の右端に配置された室外機の右側面に、当該室外機の他の側面および他の室外機の各面よりも多くの外気が当たる。 Normally, when the air conditioner is in the cooling operation or the heating operation, the blower is operated to force the air to pass through the heat source side heat exchanger, but in the defrost operation, the blower of the outdoor unit is stopped. During defrost operation, when the wind flows as shown in FIG. 6(b), more outside air hits the front surface than the other surface of the outdoor unit, and when the wind flows as shown in 6(c), the other surface of the outdoor unit. A lot of outside air hits the back side. Further, when the wind flows as shown in FIG. 6D during the defrost operation, the left side surface of the outdoor unit arranged at the left end in the figure is separated from the other side surface of the outdoor unit and each surface of the other outdoor unit. When a large amount of outside air hits and the wind flows as shown in FIG. 6(e), the other side surface of the outdoor unit and each surface of the other outdoor unit are attached to the right side surface of the outdoor unit arranged at the right end in the figure. More outside air hits.

強制対流の場合、風速の0.5乗で熱伝導率に比例するため、風速がA倍になると放熱量は√A倍となる。従って、デフロスト運転モード時、図6(b)若しくは6(c)のように風が流れると、室外機の他の面によりも前面若しくは背面において、放熱量が大きくなり、熱が奪われるため、デフロスト運転により発生した除霜水が再氷結する可能性が高くなる。また、図6(d)のように風が流れると、図中の左端に配置された室外機の左側面における放熱量が、当該室外機の他の側面および他の室外機の各面における放熱量よりも大きくなり、熱が奪われるため、デフロスト運転により発生した除霜水が左端に配置された室外機の左側面において再氷結する可能性が高くなる。また、図6(e)のように風が流れると、図中の右端に配置された室外機の右側面における放熱量が、当該室外機の他の側面および他の室外機の各面における放熱量よりも大きくなり、熱が奪われるため、デフロスト運転により発生した除霜水が右端に配置された室外機の右側面において再氷結する可能性が高くなる。 In the case of forced convection, the 0.5th power of the wind speed is proportional to the thermal conductivity, so that when the wind speed becomes A times, the heat radiation amount becomes √A times. Therefore, in the defrost operation mode, when the wind flows as shown in FIG. 6(b) or 6(c), the amount of heat radiation is increased at the front surface or the back surface of the outdoor unit and the heat is taken away. There is a high possibility that the defrost water generated by the defrost operation will be frozen again. Further, when the wind flows as shown in FIG. 6D, the heat radiation amount on the left side surface of the outdoor unit arranged at the left end in the figure is released on the other side surface of the outdoor unit and each surface of the other outdoor unit. Since the amount of heat becomes larger than the amount of heat and the heat is taken away, there is a high possibility that the defrost water generated by the defrost operation will be re-iced on the left side surface of the outdoor unit arranged at the left end. Further, when the wind flows as shown in FIG. 6(e), the amount of heat radiation on the right side surface of the outdoor unit arranged at the right end in the figure is released on the other side surface of the outdoor unit and each surface of the other outdoor unit. Since the amount of heat becomes larger than the amount of heat and the heat is taken away, there is a high possibility that the defrost water generated by the defrost operation will be re-iced on the right side surface of the outdoor unit arranged at the right end.

実施の形態1.
図7は、本発明の実施の形態1に係る空気調和装置の冷媒回路の概略図である。上述の図1〜図3で示した冷媒回路と同一の構成要素には同一の符号が付されおり、ここでは説明を省略する。本実施の形態1の空気調和装置200において、バイパス回路6aには流量調節機構としての電子式膨張弁7aと、温度検知手段としてのサーミスタ8aが設けられている。電子式膨張弁7aおよびサーミスタ8aは、熱源側熱交換器3aを介してバイパス回路6aの二次側に設けられている。同様に、バイパス回路6bには流量調節機構としての電子式膨張弁7bと、温度検知手段としてのサーミスタ8bが設けられている。電子式膨張弁7bおよびサーミスタ8bは、熱源側熱交換器3bを介してバイパス回路6bの二次側に設けられている。熱源側熱交換器3aには冷媒が流出する出口の出口温度を検出するための温度センサー9aが設けられ、熱源側熱交換器3bには冷媒が流出する出口の出口温度を検出するための温度センサー9bが設けられている。
Embodiment 1.
FIG. 7 is a schematic diagram of a refrigerant circuit of the air-conditioning apparatus according to Embodiment 1 of the present invention. The same components as those of the refrigerant circuit shown in FIGS. 1 to 3 described above are designated by the same reference numerals, and description thereof will be omitted here. In the air conditioner 200 of Embodiment 1, the bypass circuit 6a is provided with an electronic expansion valve 7a as a flow rate adjusting mechanism and a thermistor 8a as a temperature detecting means. The electronic expansion valve 7a and the thermistor 8a are provided on the secondary side of the bypass circuit 6a via the heat source side heat exchanger 3a. Similarly, the bypass circuit 6b is provided with an electronic expansion valve 7b as a flow rate adjusting mechanism and a thermistor 8b as a temperature detecting means. The electronic expansion valve 7b and the thermistor 8b are provided on the secondary side of the bypass circuit 6b via the heat source side heat exchanger 3b. The heat source side heat exchanger 3a is provided with a temperature sensor 9a for detecting the outlet temperature of the outlet through which the refrigerant flows, and the heat source side heat exchanger 3b has a temperature for detecting the outlet temperature of the outlet through which the refrigerant flows. A sensor 9b is provided.

電磁弁4が開放され、かつ電子式膨張弁7aが所定の開度となると、バイパス回路6aに高温高圧のガス冷媒が流れ始める。バイパス回路6aに流れたガス冷媒は、熱源側熱交換器3aの下部において除霜水と熱交換される。その結果、高温高圧のガス冷媒は液状態に変化しながら、熱源側熱交換器3aのバイパス回路6aを加熱するため、除霜水の再氷結が防止される。電磁弁4が開放され、かつ電子式膨張弁7bが所定の開度となると、バイパス回路6bに高温高圧のガス冷媒が流れ始める。バイパス回路6bに流れたガス冷媒は、熱源側熱交換器3bの下部において除霜水と熱交換される。その結果、高温高圧のガス冷媒は液状態に変化しながら、熱源側熱交換器3bのバイパス回路6bを加熱するため、除霜水の再氷結が防止される。 When the solenoid valve 4 is opened and the electronic expansion valve 7a reaches a predetermined opening degree, the high-temperature and high-pressure gas refrigerant starts flowing into the bypass circuit 6a. The gas refrigerant flowing into the bypass circuit 6a is heat-exchanged with the defrost water in the lower part of the heat source side heat exchanger 3a. As a result, the high-temperature and high-pressure gas refrigerant heats the bypass circuit 6a of the heat source side heat exchanger 3a while changing to a liquid state, so that re-freezing of defrost water is prevented. When the solenoid valve 4 is opened and the electronic expansion valve 7b has a predetermined opening degree, the high-temperature and high-pressure gas refrigerant starts flowing into the bypass circuit 6b. The gas refrigerant flowing into the bypass circuit 6b is heat-exchanged with the defrost water in the lower part of the heat source side heat exchanger 3b. As a result, the high-temperature and high-pressure gas refrigerant heats the bypass circuit 6b of the heat source side heat exchanger 3b while changing to a liquid state, so that re-freezing of defrost water is prevented.

図8は、空気調和装置200の制御ブロック図である。コントローラ201は空気調和装置200の全体を制御する。コントローラ201には、温度センサー9aと、温度センサー9bと、サーミスタ8aと、サーミスタ8bとが接続されている。また、コントローラ201には、電磁弁4と、電子式膨張弁7aと、電子式膨張弁7bとが接続されている。コントローラ201は、デフロスト運転開始直後、若しくはデフロスト運転開始から予め設定された時間が経過した後、温度センサー9aが検知した熱源側熱交換器3aの出口温度が所定温度以上になったら、電磁弁4を開放する信号を電磁弁4に出力する。また、コントローラ201は、サーミスタ8aの温度を検知し、電子式膨張弁7aの開度を決定し、その結果に基づく制御信号を電子式膨張弁7aに出力する。同様に、コントローラ201は、温度センサー9bが検知した熱源側熱交換器3bの出口温度が所定温度以上になったら、電磁弁4を開放する信号を電磁弁4に出力する。また、コントローラ201は、サーミスタ8bの温度を検知し、電子式膨張弁7bの開度を決定し、その結果に基づく制御信号を電子式膨張弁7bに出力する。具体的には、目標温度Tとサーミスタ8a、8bの検知温度Tとの差(ΔT=T―T)に基づいて、電子式膨張弁7a、7bの開度を決定する。コントローラ201は、ΔT>0の場合、電子式膨張弁7a、7bの開度をアップさせる制御信号を出力し、ΔT<0の場合、電子式膨張弁7a、7bの開度をダウンさせる制御信号を出力する。FIG. 8 is a control block diagram of the air conditioner 200. The controller 201 controls the entire air conditioning apparatus 200. The temperature sensor 9a, the temperature sensor 9b, the thermistor 8a, and the thermistor 8b are connected to the controller 201. Further, the controller 201 is connected to the solenoid valve 4, the electronic expansion valve 7a, and the electronic expansion valve 7b. When the outlet temperature of the heat source side heat exchanger 3a detected by the temperature sensor 9a becomes equal to or higher than a predetermined temperature immediately after the start of the defrost operation or after a preset time has elapsed from the start of the defrost operation, the controller 201 determines that the solenoid valve 4 Is output to the solenoid valve 4. The controller 201 also detects the temperature of the thermistor 8a, determines the opening degree of the electronic expansion valve 7a, and outputs a control signal based on the result to the electronic expansion valve 7a. Similarly, the controller 201 outputs a signal for opening the solenoid valve 4 to the solenoid valve 4 when the outlet temperature of the heat source side heat exchanger 3b detected by the temperature sensor 9b becomes equal to or higher than a predetermined temperature. Further, the controller 201 detects the temperature of the thermistor 8b, determines the opening degree of the electronic expansion valve 7b, and outputs a control signal based on the result to the electronic expansion valve 7b. Specifically, the opening degrees of the electronic expansion valves 7a and 7b are determined based on the difference (ΔT=T * −T) between the target temperature T * and the detected temperature T of the thermistors 8a and 8b. The controller 201 outputs a control signal for increasing the opening degree of the electronic expansion valves 7a, 7b when ΔT>0, and a control signal for decreasing the opening degree of the electronic expansion valves 7a, 7b when ΔT<0. Is output.

以上のように、本実施の形態1によれば、電磁弁4の開放制御に加え、サーミスタ8a、8bの検知結果に基づく電子式膨張弁7a、7bの開度制御が行われ、バイパス回路6a、6bへの冷媒の流量が熱源側熱交換器3a、3bの周辺環境に応じて調節される。換言すると、熱源側熱交換器3a、3bのデフロスト能力がそれぞれの周辺環境に応じて調節される。従って、バイパス回路6a、6bのデフロスト負荷に応じてバイパス回路6a、6bへの冷媒流量を最適化することができる。その結果、図6(a)〜(e)を参照して説明したように、集中設置における室外機の配置位置に起因して、熱源側熱交換器3a、3bの各面への外気の風の影響に相違があったとしても、それぞれの影響の度合いに応じて除霜水の再氷結を確実に防止することができる。 As described above, according to the first embodiment, in addition to the opening control of the solenoid valve 4, the opening control of the electronic expansion valves 7a and 7b based on the detection results of the thermistors 8a and 8b is performed, and the bypass circuit 6a is performed. , 6b is adjusted according to the surrounding environment of the heat source side heat exchangers 3a, 3b. In other words, the defrost capability of the heat source side heat exchangers 3a and 3b is adjusted according to the surrounding environment. Therefore, the refrigerant flow rate to the bypass circuits 6a and 6b can be optimized according to the defrost load of the bypass circuits 6a and 6b. As a result, as described with reference to FIGS. 6A to 6E, the wind of the outside air on each surface of the heat source side heat exchangers 3a and 3b is caused by the arrangement position of the outdoor unit in the centralized installation. Even if there is a difference in the effect of, the re-freezing of the defrosted water can be surely prevented according to the degree of each effect.

実施の形態2.
図10は、本発明の実施の形態2に係る空気調和装置の冷媒回路の概略図である。上述の図1〜図3で示した冷媒回路と同一の構成要素には同一の符号が付されおり、ここでは説明を省略する。本実施の形態2の空気調和装置300において、バイパス回路6aには配管抵抗15aが設けられ、バイパス回路6bには配管抵抗15bが設けられている。配管抵抗15a、15bは、例えば毛細管(キャピラリチューブ)である。バイパス回路6aへの冷媒の流入量は配管抵抗15aにより定まり、バイパス回路6bへの冷媒の流入量は配管抵抗15bにより定まっている。バイパス回路6a、6bへの冷媒の流量に差が生じるよう、配管抵抗15aと配管抵抗15bの冷媒の流動抵抗には差がつけられている。
Embodiment 2.
FIG. 10 is a schematic diagram of the refrigerant circuit of the air-conditioning apparatus according to Embodiment 2 of the present invention. The same components as those of the refrigerant circuit shown in FIGS. 1 to 3 described above are designated by the same reference numerals, and description thereof will be omitted here. In the air-conditioning apparatus 300 of Embodiment 2, the bypass circuit 6a is provided with the pipe resistance 15a, and the bypass circuit 6b is provided with the pipe resistance 15b. The piping resistors 15a and 15b are, for example, capillaries (capillary tubes). The amount of refrigerant flowing into the bypass circuit 6a is determined by the pipe resistance 15a, and the amount of refrigerant flowing into the bypass circuit 6b is determined by the pipe resistance 15b. The flow resistances of the refrigerant of the piping resistance 15a and the piping resistance 15b are different so that the flow rates of the refrigerant to the bypass circuits 6a and 6b are different.

ここで、ビル用マルチエアコンにおいて複数の室外機20が集中設置される環境が、外気の風の向きが図6(b)若しくは図6(c)に示すような向きである場合を例にとって説明する。図9は、本発明の実施の形態2における熱源側熱交換器を上方から示す概略図である。L字型の熱源側熱交換器3a、3bは、室外機20の筐体内において、上方視で略矩形の枠体を形成するよう配置され、熱源側熱交換器3aが室外機20の正面側に位置決めされている。図9では、室外機20の正面は紙面の下側に向いている。図9中、入口13a、出口13bは、それぞれ熱源側熱交換器3aのバイパス回路6aの入口と出口であり、入口14a、出口14bは、それぞれ熱源側熱交換器3bのバイパス回路6bの入口と出口である。外気の風の向きが図6(b)若しくは図6(c)に示すような向きである場合、熱源側熱交換器3aの面16aは、熱源側熱交換器3aが風を受ける面、熱源側熱交換器3aの面16bは、熱源側熱交換器3bが風を受ける面となる。 Here, the environment in which a plurality of outdoor units 20 are centrally installed in a multi air conditioner for a building will be described as an example in which the direction of the wind of the outside air is the direction shown in FIG. 6B or 6C. To do. FIG. 9 is a schematic view showing a heat source side heat exchanger according to the second embodiment of the present invention from above. The L-shaped heat source side heat exchangers 3a and 3b are arranged in the housing of the outdoor unit 20 so as to form a substantially rectangular frame body when viewed from above, and the heat source side heat exchanger 3a is located on the front side of the outdoor unit 20. It is located at. In FIG. 9, the front of the outdoor unit 20 faces the lower side of the paper surface. In FIG. 9, an inlet 13a and an outlet 13b are respectively an inlet and an outlet of the bypass circuit 6a of the heat source side heat exchanger 3a, and an inlet 14a and an outlet 14b are respectively an inlet of the bypass circuit 6b of the heat source side heat exchanger 3b. It is the exit. When the direction of the wind of the outside air is as shown in FIG. 6(b) or FIG. 6(c), the surface 16a of the heat source side heat exchanger 3a is a surface on which the heat source side heat exchanger 3a receives the wind. The surface 16b of the side heat exchanger 3a is a surface on which the heat source side heat exchanger 3b receives wind.

熱源側熱交換器3aのバイパス回路6aの入口13aは、風を受ける面16aの側に位置しており、熱源側熱交換器3aの風を受ける面16aの部位には冷媒ガスが温度の高い状態で流れ込む。一方、熱源側熱交換器3bのバイパス回路6bの入口14aは、風を受ける面16bと交差する側面の側に位置しており、冷媒ガスは熱源側熱交換器3bの側面の部位を通って、風を受ける面16bの部位に流れ込む。そのため、熱源側熱交換器3bの面16bの部位に流れ込む冷媒ガスの温度は、熱源側熱交換器3aの面16aの部位に流れ込む冷媒ガスの温度に比べて低下する。従って、熱源側熱交換器3bのデフロスト能力を熱源側熱交換器3aのデフロスト能力よりも大きくしなければならない。本実施の形態2では、配管抵抗15bの流動抵抗を配管抵抗15aの流動抵抗より小さくしている。 The inlet 13a of the bypass circuit 6a of the heat source side heat exchanger 3a is located on the side of the wind-receiving surface 16a, and the refrigerant gas has a high temperature at the site of the wind receiving surface 16a of the heat source-side heat exchanger 3a. It flows in the state. On the other hand, the inlet 14a of the bypass circuit 6b of the heat source side heat exchanger 3b is located on the side of the side surface that intersects the wind receiving surface 16b, and the refrigerant gas passes through the side surface portion of the heat source side heat exchanger 3b. , Flows into the part of the surface 16b that receives the wind. Therefore, the temperature of the refrigerant gas flowing into the portion of the surface 16b of the heat source side heat exchanger 3b is lower than the temperature of the refrigerant gas flowing into the portion of the surface 16a of the heat source side heat exchanger 3a. Therefore, the defrost ability of the heat source side heat exchanger 3b must be made larger than the defrost ability of the heat source side heat exchanger 3a. In the second embodiment, the flow resistance of the pipe resistance 15b is smaller than the flow resistance of the pipe resistance 15a.

このように、本実施の形態2では、ビル用マルチエアコンの集中設置において、室外機20の熱源側熱交換器3aおよび熱源側熱交換器3bのそれぞれに要求されるデフロスト能力の大小が分かっている場合、要求されるデフロスト能力に応じて流動抵抗を設定した配管抵抗15aと配管抵抗15bが設けられている。 As described above, in the second embodiment, in the centralized installation of the multi-air conditioning system for buildings, the magnitude of the defrost capacity required for each of the heat source side heat exchanger 3a and the heat source side heat exchanger 3b of the outdoor unit 20 is known. In this case, the piping resistance 15a and the piping resistance 15b are set so that the flow resistance is set according to the required defrosting ability.

本実施の形態2によれば、部品点数の増加を抑えることができる。従って、集中設置において、配置位置により予め要求されるデフロスト能力の大小がわかっている場合に、製品コストを抑えつつ、熱源側熱交換器3a、3bにおける除霜水の再氷結を防止することができる。 According to the second embodiment, an increase in the number of parts can be suppressed. Therefore, in the centralized installation, when the magnitude of the defrosting ability required in advance depending on the arrangement position is known, it is possible to prevent re-freezing of defrost water in the heat source side heat exchangers 3a and 3b while suppressing the product cost. it can.

1 圧縮機、2 流路切替装置、3a 熱源側熱交換器、3b 熱源側熱交換器、4 電磁弁、5 アキュムレーター、6a バイパス回路、6b バイパス回路、7a 電子式膨張弁、7b 電子式膨張弁、8a サーミスタ、8b サーミスタ、9a 温度センサー、9b 温度センサー、10a 室内機、10b 室内機、10c 室内機、10d 室内機、11a 絞り装置、11b 絞り装置、11c 絞り装置、11d 絞り装置、12a 利用側熱交換器、12b 利用側熱交換器、12c 利用側熱交換器、12d 利用側熱交換器、13a 入口、13b 出口、14a 入口、14b 出口、15a 配管抵抗、15b 配管抵抗、16a 面、16b 面、20 室外機、100 空気調和装置、200 空気調和装置、201 コントローラ、300 空気調和装置。 1 compressor, 2 flow path switching device, 3a heat source side heat exchanger, 3b heat source side heat exchanger, 4 solenoid valve, 5 accumulator, 6a bypass circuit, 6b bypass circuit, 7a electronic expansion valve, 7b electronic expansion Valve, 8a thermistor, 8b thermistor, 9a temperature sensor, 9b temperature sensor, 10a indoor unit, 10b indoor unit, 10c indoor unit, 10d indoor unit, 11a throttling device, 11b throttling device, 11c throttling device, 11d throttling device, 12a use Side heat exchanger, 12b utilization side heat exchanger, 12c utilization side heat exchanger, 12d utilization side heat exchanger, 13a inlet, 13b outlet, 14a inlet, 14b outlet, 15a piping resistance, 15b piping resistance, 16a surface, 16b Surface, 20 outdoor unit, 100 air conditioner, 200 air conditioner, 201 controller, 300 air conditioner.

Claims (2)

圧縮機と、流路切替装置と、複数の熱源側熱交換器とを有し、これらが配管接続されている室外機と、前記室外機に接続され、対象空間の空調を行う室内機とを備える空気調和装置であって、
前記室外機は、
前記室外機の配管接続において一方は前記圧縮機の吐出側に接続され他方は前記圧縮機の吸入側に接続されている複数のバイパス回路であって、前記空気調和装置のデフロスト運転時に前記複数の熱源側熱交換器のそれぞれの下部に冷媒が流入するよう構成されている複数のバイパス回路と、
前記複数のバイパス回路にそれぞれ設けられ、前記複数のバイパス回路に流入する冷媒の流量を調節する流量調節機構と、
制御手段と、
前記複数の熱源側熱交換器の周辺温度を検知する検知手段と、を有し、
前記制御手段は、前記空気調和装置のデフロスト運転開始直後若しくはデフロスト運転開始から設定時間経過後、前記複数の熱源側熱交換器のそれぞれの前記検知手段により検知された周辺温度に基づいて前記流量調節機構を制御し、前記複数のバイパス回路に流入する冷媒の流量を調節する空気調和装置。
A compressor, a flow path switching device, and a plurality of heat-source-side heat exchangers, an outdoor unit in which these are connected by piping, and an indoor unit that is connected to the outdoor unit and performs air conditioning of the target space. An air conditioner equipped with,
The outdoor unit is
In the piping connection of the outdoor unit, one is a plurality of bypass circuits connected to the discharge side of the compressor and the other is connected to the suction side of the compressor, the plurality of bypass circuits during defrost operation of the air conditioner. A plurality of bypass circuits configured so that the refrigerant flows into the lower part of each of the heat source side heat exchangers,
A flow rate adjusting mechanism that is provided in each of the plurality of bypass circuits and adjusts the flow rate of the refrigerant flowing into the plurality of bypass circuits,
Control means,
A detection means for detecting the ambient temperature of the plurality of heat source side heat exchangers,
The control means adjusts the flow rate based on the ambient temperature detected by the detection means of each of the plurality of heat source side heat exchangers immediately after the start of the defrost operation of the air conditioner or after a lapse of a set time from the start of the defrost operation. An air conditioner that controls a mechanism to adjust the flow rate of the refrigerant flowing into the plurality of bypass circuits.
前記流量調節機構は電子式膨張弁であり、前記制御手段は前記電子式膨張弁の開度を調節する請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the flow rate adjusting mechanism is an electronic expansion valve, and the control unit adjusts an opening degree of the electronic expansion valve.
JP2018516266A 2016-05-11 2016-05-11 Air conditioner Active JP6727296B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064006 WO2017195296A1 (en) 2016-05-11 2016-05-11 Air conditioning apparatus

Publications (2)

Publication Number Publication Date
JPWO2017195296A1 JPWO2017195296A1 (en) 2018-11-29
JP6727296B2 true JP6727296B2 (en) 2020-07-22

Family

ID=60266467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516266A Active JP6727296B2 (en) 2016-05-11 2016-05-11 Air conditioner

Country Status (4)

Country Link
US (1) US20190056160A1 (en)
JP (1) JP6727296B2 (en)
GB (1) GB2563536B8 (en)
WO (1) WO2017195296A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686969B2 (en) * 1984-12-07 1994-11-02 株式会社日立製作所 Air-cooled heat pump type refrigeration cycle
JPS6291759A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Defrostation system of refrigeration cycle for heat pump
JPH03177765A (en) * 1989-12-06 1991-08-01 Hitachi Ltd Air conditioner
JP4812606B2 (en) * 2006-11-30 2011-11-09 三菱電機株式会社 Air conditioner
JP2013155964A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Air conditionning apparatus
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device

Also Published As

Publication number Publication date
US20190056160A1 (en) 2019-02-21
WO2017195296A1 (en) 2017-11-16
JPWO2017195296A1 (en) 2018-11-29
GB2563536A (en) 2018-12-19
GB201814863D0 (en) 2018-10-31
GB2563536B (en) 2021-06-09
GB2563536B8 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
EP3062031B1 (en) Air conditioner
JP5714128B2 (en) Air conditioner
CN101600929B (en) Multichannel heat exchanger with dissimilar tube spacing
CN109312971B (en) Refrigeration cycle device
JP6479181B2 (en) Air conditioner
WO2014083650A1 (en) Air conditioning device
US10480837B2 (en) Refrigeration apparatus
JP6524670B2 (en) Air conditioner
EP2375187A2 (en) Heat pump apparatus and operation control method of heat pump apparatus
US11913694B2 (en) Heat pump system
US11378290B2 (en) Water source heat pump dual functioning condensing coil
JP6049324B2 (en) Air conditioner
WO2023058438A1 (en) Heat source unit and air conditioner
JP6727296B2 (en) Air conditioner
JP2002243319A (en) Air conditioner
JP6573723B2 (en) Air conditioner
CA3019773A1 (en) Water source heat pump dual functioning condensing coil
WO2021014520A1 (en) Air-conditioning device
JP2010230288A (en) Branch unit
JP6608946B2 (en) Air conditioner and outdoor unit of air conditioner
WO2018037452A1 (en) Air conditioning device
JP5854873B2 (en) Air conditioner
WO2024166938A1 (en) Refrigeration cycle device
CN114110738A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250