[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6723605B2 - Measuring method of Young's modulus of wood and its equipment - Google Patents

Measuring method of Young's modulus of wood and its equipment Download PDF

Info

Publication number
JP6723605B2
JP6723605B2 JP2016193588A JP2016193588A JP6723605B2 JP 6723605 B2 JP6723605 B2 JP 6723605B2 JP 2016193588 A JP2016193588 A JP 2016193588A JP 2016193588 A JP2016193588 A JP 2016193588A JP 6723605 B2 JP6723605 B2 JP 6723605B2
Authority
JP
Japan
Prior art keywords
young
modulus
density
wood
probability distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016193588A
Other languages
Japanese (ja)
Other versions
JP2018054550A (en
Inventor
加納 喜代継
喜代継 加納
康寿 佐々木
康寿 佐々木
敬多 小川
敬多 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2016193588A priority Critical patent/JP6723605B2/en
Publication of JP2018054550A publication Critical patent/JP2018054550A/en
Application granted granted Critical
Publication of JP6723605B2 publication Critical patent/JP6723605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、木材等のヤング率を推定するためのヤング率推定方法と装置に関する。 The present invention relates to a Young's modulus estimation method and apparatus for estimating the Young's modulus of wood or the like.

森林資源の保全の面から、国産材の構造部材としての木造家屋への有効利用の促進が望まれている。新しい木材を新築家屋に使用する場合であっては当然使用する生物資材である木材の強度を一本一本評価しておく必要があり、今後ますます簡便な木材の強度の評価法は重要な課題となる。 From the viewpoint of conservation of forest resources, promotion of effective use of domestic timber as a structural member for wooden houses is desired. In the case of using new wood in a new house, it is necessary to evaluate the strength of wood, which is a biological material to be used, one by one, and a simpler method for evaluating the strength of wood will become more important in the future. It becomes an issue.

また木造建築物の修理・改築・建替え等においては、使用されている構造部材の継続使用、再使用が可能かどうかを判定する必要があり、その構造部材の保有強度性能を知る必要がある。従来は、その判定を熟練大工の経験等に基づく主観的な評価によって行われていることが多かったが、構造部材の強度を客観的に、すなわち数値的に評価することが求められている。 When repairing, reconstructing or rebuilding a wooden building, it is necessary to determine whether or not the structural members used can be used or reused, and it is necessary to know the strength performance of the structural members. .. In the past, the judgment was often made by a subjective evaluation based on the experience of a skilled carpenter, but it is required to evaluate the strength of the structural member objectively, that is, numerically.

木材の変形強度を評価するための指標の一つとしてヤング率がある。すなわち単位面積当たりの加えた力に対する単位長さ当たりの変形の比として表される。ヤング率を計測する装置は種々あり、市販もされているが、構造部材の木材のヤング率を測定する、あるいは、出荷前の木材のヤング率を測定するについては、簡易な装置が求められ、その要望に対応しようとして種々の方法が提案されている。 Young's modulus is one of the indexes for evaluating the deformation strength of wood. That is, it is expressed as the ratio of the deformation per unit length to the applied force per unit area. There are various devices for measuring the Young's modulus, which are commercially available, but for measuring the Young's modulus of the wood of the structural member, or for measuring the Young's modulus of the wood before shipping, a simple device is required, Various methods have been proposed in an attempt to meet the demand.

(1)「周波数解析法(打撃法)」:構造部材をハンマーで打撃し、打撃音をマイクロフォンで集音し、周波数分析器を用いて固有振動数を測定し、他方構造部材の重量・体積を測定し、これより密度をもとめ、所定の関係式によりヤング率を算出する方法(下記特許文献1参照)。 (1) "Frequency analysis method (striking method)": striking a structural member with a hammer, collecting impact sound with a microphone, measuring a natural frequency using a frequency analyzer, and measuring the weight and volume of the other structural member. Is calculated, the density is determined from this, and the Young's modulus is calculated by a predetermined relational expression (see Patent Document 1 below).

(2)「超音波法」:超音波センサによって構造部材内の超音波の音速を測定するとともに、構造部材の密度を測定し、これより密度をもとめ、これらの超音波の音速及び密度から所定の関係式によりヤング率を算出する方法。 (2) "Ultrasonic method": The ultrasonic sensor is used to measure the sound velocity of ultrasonic waves in the structural member, the density of the structural member is measured, the density is determined from this, and a predetermined value is determined from the sound velocity and density of these ultrasonic waves. A method of calculating Young's modulus by the relational expression of.

(3)「応力波法」:応力波伝播速度測定器を用いて構造部材内における応力波伝播速度を測定するとともに、構造部材の密度を測定し、これより密度をもとめ、これらの応力波伝播速度及び密度から所定の関係式によりヤング率を算出する方法(下記特許文献2参照)。 (3) "Stress wave method": A stress wave propagation velocity measuring instrument is used to measure the stress wave propagation velocity in a structural member, and the density of the structural member is measured. A method of calculating Young's modulus from speed and density by a predetermined relational expression (see Patent Document 2 below).

(4)測定した応力波伝播速度を用い、モンテカルロシュミレーションによりヤング率及び密度を推定する方法(特開2007−232698号)。 (4) A method of estimating Young's modulus and density by Monte Carlo simulation using the measured stress wave propagation velocity (JP 2007-232698 A).

特公平6−78974号公報Japanese Patent Publication No. 6-78974 特公昭40−18194号公報Japanese Examined Patent Publication No. 40-18194 特開2007−232698号公報JP, 2007-232698, A

ところで上記した従来の周波数解析法、超音波法及び応力波法(1)〜(3)では、いずれも構造部材の密度を把握する必要がある。しかしながら、密度の測定は必ずしも簡単ではない。例えば測定の対象が多い場合には、重量測定は多大な労力を要する。また、建築物中の部材を測定する際、構造体を維持したままで密度を測定することはほとんど不可能である。 By the way, in the above-mentioned conventional frequency analysis method, ultrasonic method, and stress wave method (1) to (3), it is necessary to grasp the density of structural members. However, measuring the density is not always easy. For example, when there are many objects to be measured, the weight measurement requires a lot of labor. Further, when measuring members in a building, it is almost impossible to measure the density while maintaining the structure.

また、超音波法では、構造部材と超音波センサとの密着度に応じて超音波が減衰するため、両者の密着性が問題となり、未だ実験室レベルを超えておらず、実用性に欠ける。 Further, in the ultrasonic method, the ultrasonic waves are attenuated according to the degree of adhesion between the structural member and the ultrasonic sensor, and thus the adhesion between the two becomes a problem, and it does not exceed the laboratory level and is not practical.

更に、モンテカルロシュミレーション法を用いる方法は、密度を測定せずに、ヤング率と密度を推定する方法であるが、推定精度に付いての情報を得ることができない上、計算が複雑すぎて理解し難い面があり、計算ソフトをCPUに組み込むについて相当のコストを要することになる。 Furthermore, the method using the Monte Carlo simulation method is a method of estimating the Young's modulus and the density without measuring the density, but it is impossible to obtain information on the estimation accuracy, and the calculation is too complicated to understand. There is a difficulty, and it will require a considerable cost to incorporate the calculation software into the CPU.

本発明は上記のような事情に基づいて提案されたものであって、簡単な方法で木材のヤング率を推定する方法と装置を提供することを目的とする。 The present invention has been proposed based on the above circumstances, and an object thereof is to provide a method and apparatus for estimating the Young's modulus of wood by a simple method.

本発明は、上記目的を達成するために、以下の手段を採用している。 The present invention employs the following means in order to achieve the above object.

木材のヤング率と密度のデータベースより、ヤング率-密度座標平面上に、その確率密度を縦軸とした確率分布曲面を表す式(2変量正規分布の式)のパラメータを求めておく。 From the database of Young's modulus and density of wood, the parameters of the equation (bivariate normal distribution) representing the probability distribution curved surface with the probability density as the vertical axis are obtained on the Young's modulus-density coordinate plane.

上記の状態で、測定対象の木材の応力波伝播速度vを求めておき、当該応力波伝播速度より、前記ヤング率(E)-密度(ρ)座標面上のE=ρvの直線を求める。 In the above state, the stress wave propagation velocity v of the wood to be measured is obtained in advance, and the straight line of E=ρv 2 on the Young's modulus (E)-density (ρ) coordinate plane is obtained from the stress wave propagation velocity. ..

前記直線に対応する座標面に垂直な面と、前記確率分布曲面との交わりより生じる曲線(以下交曲線と記す)より得られるピークpよりヤング率と密度の推定点を求める。この場合、前記確率分布曲面を表す式と、前記直線の式より計算で前記推定点は求められる。 Estimated points of Young's modulus and density are obtained from a peak p obtained from a curve (hereinafter referred to as an intersection curve) generated by the intersection of a plane perpendicular to the coordinate plane corresponding to the straight line and the probability distribution curved surface. In this case, the estimated point is obtained by calculation from the equation expressing the probability distribution curved surface and the equation of the straight line.

尚、前記確率分布曲面を表す式は、2変量正規分布を仮定した後述の(2)式のようにあらわされ、式中の各パラメータはベイズ統計の例えばハミルトニアン・モンテカルロ法(HMC法)で求めることができる。 The equation representing the probability distribution surface is expressed as the equation (2) described below assuming a bivariate normal distribution, and each parameter in the equation is obtained by Bayesian statistics, for example, the Hamiltonian Monte Carlo method (HMC method). be able to.

上記の方法により測定対象の木材の応力波伝播速度を求めるだけで、密度を測定することなくヤング率と密度を推定することができ、構造物に組み込まれている木材であっても、これから出荷する木材であっても簡単にヤング率を求めることができることになる。 The Young's modulus and density can be estimated without measuring the density by simply obtaining the stress wave propagation velocity of the wood to be measured by the above method. Even if the wood is incorporated in the structure, it will be shipped from now on. Even for wood that can be used, Young's modulus can be easily obtained.

本発明に使用する応力波伝播速度測定装置。A stress wave propagation velocity measuring device used in the present invention. ヤング率―密度座標上の確率分布曲線。Young's modulus-Probability distribution curve on the density coordinate. 確率分布曲線にヤング率線を反映させた図。The figure which reflected the Young's modulus line in the probability distribution curve. ヤング率軸に平行な確率分布曲線。Probability distribution curve parallel to Young's modulus axis. 本発明による推定と真値との誤差を示す図。The figure which shows the error of the estimation and true value by this invention. 本発明による推定ヤング率と含水率の関係を示す図。The figure which shows the relationship between the estimated Young's modulus and water content by this invention.

物質のヤング率E(GPa)と密度ρ(kg/m3)の関係は、その物質の応力波伝播速度をv(m/s)とすると、下記(1)式で示され、木材のヤング率Eと密度ρの関係も基本的にはこの原則が当てはまることになる。 The relationship between the Young's modulus E (GPa) of a material and the density ρ (kg/m 3 ) is shown by the following equation (1), where the stress wave velocity of the material is v (m/s). This principle basically applies to the relationship between the rate E and the density ρ.

<式1>

Figure 0006723605
<Formula 1>
Figure 0006723605

従って、木材のヤング率Eを得るためには、当然のことながら測定対象の木材の密度ρと応力波伝播速度vを得る必要があるが、本発明では以下に説明するように、応力波伝播速度を得ることによって、密度とヤング率を同時に推定することができる。すなわち密度を測定することなく応力波伝播速度を得ることによりヤング率を推定することができる。 Therefore, in order to obtain the Young's modulus E of the wood, it is naturally necessary to obtain the density ρ and the stress wave propagation velocity v of the wood to be measured. However, in the present invention, as described below, the stress wave propagation By obtaining the velocity, the density and Young's modulus can be estimated simultaneously. That is, the Young's modulus can be estimated by obtaining the stress wave propagation velocity without measuring the density.

図2は、木材のヤング率と密度の明らかなデータベース(表1)を基に、ヤング率と密度の確率分布を2変量正規分布と仮定して求めた確率分布である。すなわち、ヤング率と密度の座標面に垂直に確率密度pを取って3次元の確率分布曲面Mとして表したものである。密度500kg/m3、ヤング率15GPa近辺に確率のピークが存在する曲面が得られる。ここで、表1はデータベースの一部を示したものであり、データベースのサンプル数に制限はないが、多い程精度が上がることはもちろんである。 FIG. 2 is a probability distribution obtained by assuming that the probability distribution of Young's modulus and density is a bivariate normal distribution based on a clear database of Young's modulus and density of wood (Table 1). That is, the probability density p is taken perpendicularly to the Young's modulus and density coordinate planes and expressed as a three-dimensional probability distribution curved surface M. A curved surface with a density of 500 kg/m 3 and a probability peak near Young's modulus of 15 GPa is obtained. Here, Table 1 shows a part of the database, and the number of samples in the database is not limited, but it goes without saying that the larger the number, the higher the accuracy.

なお、2変量正規分布は(2)式のようにあらわされ、式中μは平均、σは標準偏差、Rは相関係数である。またそれぞれの添え字Eとρはその属性(すなわち、Eはヤング率、ρは密度)を示す。 The bivariate normal distribution is expressed as in equation (2), where μ is the average, σ is the standard deviation, and R is the correlation coefficient. Each subscript E and ρ indicates its attribute (that is, E is Young's modulus and ρ is density).

(2)式の5つのパラメータμE、μρ、σE、σρ、Rはベイズ統計の例えばハミルトニアン・モンテカルロ法(HMC法)で求めることができ、その結果を表2に示す。 The five parameters μ E , μ ρ , σ E , σ ρ , and R of the equation (2) can be obtained by the Bayesian statistics, for example, the Hamiltonian Monte Carlo method (HMC method), and the results are shown in Table 2.

Figure 0006723605
Figure 0006723605

<式2>

Figure 0006723605
<Formula 2>
Figure 0006723605

表2HMC法より求めたEとρの2変量正規分布のパラメータの値。 Table 2 Values of E and ρ bivariate normal distribution parameters obtained by the HMC method.

Figure 0006723605
Figure 0006723605

木材には年輪もあり、節もあり密度が均一ではないところから、前記したように基本的には(1)式に従うとしても、個体によっては部分的にヤング率にバラツキがあるが、ここでは個体の密度を均一と考える。 Since wood has annual rings and nodes and the density is not uniform, even if the formula (1) is basically followed as described above, there are some variations in Young's modulus depending on the individual. Consider the density of individuals to be uniform.

前記確率分布曲面を得た状態で、以下に説明する装置で測定対象の木材の応力波伝播速度を実測する。 With the probability distribution curved surface obtained, the stress wave propagation velocity of the wood to be measured is measured by the device described below.

これによって前記(1)式の傾きv2が得られたことになり、前記ヤング率‐密度座標系に(1)式に対応する直線Slを図3に示すように描くことができる。但し図3では、確率密度軸方向に当該直線を延ばして面Suとしている。 As a result, the slope v 2 of the equation (1) is obtained, and the straight line Sl corresponding to the equation (1) can be drawn on the Young's modulus-density coordinate system as shown in FIG. However, in FIG. 3, the straight line is extended in the direction of the probability density axis to form the surface Su.

前記、確率分布曲面Mと交差する位置に、応力波伝播速度がvであるときのヤング率Eと密度ρの確率曲線L(以下交曲線と記す)が得られることになる。この交曲線のピークpが測定対象の木材のヤング率と密度の推定点というこことになる。 A probability curve L (hereinafter referred to as an intersection curve) of Young's modulus E and density ρ when the stress wave propagation velocity is v is obtained at a position intersecting the probability distribution curved surface M. The peak p of this intersection curve is the estimation point of Young's modulus and density of the wood to be measured.

図1は本発明に係るヤング率推定装置一例を示すものである。2本のプルーブ11・11と音速測定手段12で測定された応力波伝播速度は、交曲線演算手段30に入力される。 FIG. 1 shows an example of a Young's modulus estimation device according to the present invention. The stress wave propagation velocities measured by the two probes 11 and the sound velocity measuring means 12 are input to the intersection curve calculating means 30.

すなわち、1対の針状のプローブ11,11がヤング率推定装置より導出され、当該2つのプローブ11、11を測定対象木材上の所定距離を保って打ち込んで、一方のプローブ11を図示しないハンマー等で打撃すると、当該一方のプローブ11での衝撃音が検知されてから他方のプローブ11で衝撃音が検知されるまでの時間が音速測定手段12で測定されるようになっている。これによって、音速測定手段12で木材を伝播する応力波の速度が求められることになる。 That is, a pair of needle-shaped probes 11 and 11 are derived from a Young's modulus estimating device, and the two probes 11 and 11 are driven while maintaining a predetermined distance on the measurement target wood, and one probe 11 is hammered (not shown). When hit with an impact sound, the sound velocity measuring means 12 measures the time from when the impact sound is detected by the one probe 11 to when the impact sound is detected by the other probe 11. As a result, the velocity of the stress wave propagating through the wood is obtained by the sound velocity measuring means 12.

応力波の速度を得るための上記の構成は一例であって、上記構成に限定されずに、結果として応力波速度vが得られれば足りる(特許文献1参照)。 The above configuration for obtaining the velocity of the stress wave is an example, and the present invention is not limited to the above configuration, and it is sufficient if the stress wave velocity v is obtained as a result (see Patent Document 1).

このようにして得られた応力波音速は直線演算手段30に送られ、ここで(1)式に対応する直線を得ることになる。 The stress wave sonic velocity thus obtained is sent to the straight line calculating means 30 where the straight line corresponding to the equation (1) is obtained.

一方、記憶手段20には、前記した確率曲面が予め、前記(2)式と5つのパラメータとして記憶されている。 On the other hand, the above-mentioned probability curved surface is stored in the storage means 20 in advance as the equation (2) and five parameters.

この状態で、前記のように(1)式に対応する直線が得られると、当該直線は推定値演算手段40に送られる。推定値演算手段40は記憶手段20から前記確率曲面を現す(2)式を読み出して前記(1)式に対応する面との交差位置に現れる交曲線を求め、当該交曲線のピークを対象木材のヤング率と密度の推定点とする。この推定点は(2)式の5つのパラメータと音速に対応する(1)式より解析的に求めることができる。 In this state, when the straight line corresponding to the equation (1) is obtained as described above, the straight line is sent to the estimated value calculation means 40. The estimated value calculation means 40 reads out the equation (2) representing the probability curved surface from the storage means 20, obtains an intersection curve appearing at the intersection position with the surface corresponding to the equation (1), and determines the peak of the intersection curve as the target wood. The Young's modulus and density are estimated. This estimated point can be analytically obtained from the equation (1) corresponding to the five parameters of the equation (2) and the sound velocity.

具体的には以下(3)式のようになる。 Specifically, it is expressed by the following equation (3).

<式3>

Figure 0006723605
<Formula 3>
Figure 0006723605

このようにして得られた推定点のヤング率と密度は、表示手段50に数値として、あるいは、前記(2)式に対応する確率曲面および、(1)式に対応する面Suとともに表示されることになる。 The Young's modulus and the density of the estimated points thus obtained are displayed as numerical values on the display unit 50 or together with the probability curved surface corresponding to the equation (2) and the surface Su corresponding to the equation (1). It will be.

以上のようにして得られたヤング率を評価する。 The Young's modulus obtained as described above is evaluated.

図4は図3をヤング率の軸側から見た図であり、交曲線Lは正規分布の形を示している。このことより分散σ2を計算することができ、推定の精度、例えば95%の信用区間(すなわち±2σの範囲)等が示せる。 FIG. 4 is a view of FIG. 3 as viewed from the Young's modulus axis side, and the intersecting curve L shows the shape of a normal distribution. From this, the variance σ 2 can be calculated, and the accuracy of the estimation, for example, the 95% credit interval (that is, the range of ±2σ) can be shown.

図5は、ヤング率の真値に対して、前記解析によって推定したヤング率をプロットしたものである。これに示すように非常に良い相関を示している。また図6は図5に特開2007−232698号に開示のモンテカルロシュミレーション法で求めた値を重ね書きしたものである。推定法としてほぼ等価であることを示している。 FIG. 5 is a plot of the Young's modulus estimated by the above analysis with respect to the true value of the Young's modulus. As shown here, it shows a very good correlation. Further, FIG. 6 is an overwriting of the values obtained by the Monte Carlo simulation method disclosed in Japanese Patent Laid-Open No. 2007-232698 in FIG. It is shown that the estimation methods are almost equivalent.

尚、上記確率分布式としてはどのような式を用いてもかまわないが、一般的な確率分布が概ね正規分布を採ることから、本願発明においても2変量正規分布式を用いている。これによって、交曲線のピーク位置をヤング率および密度の推定点とすることができる。 Although any formula may be used as the above probability distribution formula, the bivariate normal distribution formula is also used in the present invention because a general probability distribution is generally a normal distribution. Thereby, the peak position of the intersection curve can be used as the Young's modulus and density estimation point.

また、パラメータを決める方法としてハミルトニアン・モンテカルロ法を採用しているが、他の方法を採用することを否定するものではない。 Moreover, although the Hamiltonian Monte Carlo method is adopted as a method for determining the parameters, it does not deny that other methods are adopted.

以上説明したように本願は、構造物に組み込まれている木材であっても、応力波伝播速度を求めるだけで木材のヤング率、密度を推定することができるので、当該木材の評価を簡単に求めることができる。また、装置としての構造が簡単であるので、製材現場等に持ち込んで簡単に木材の評価ができることになる。 As described above, the present application makes it possible to easily estimate the Young's modulus and the density of the wood even if the wood is incorporated in the structure because the Young's modulus and the density of the wood can be estimated simply by obtaining the stress wave propagation velocity. You can ask. Moreover, since the structure of the device is simple, it is possible to easily carry out the evaluation of the wood by bringing it into a lumbering site or the like.

11・・プローブ
12・・音速測定手段
20・・記憶手段
30・・直線演算手段
40・・推定値演算手段
50・・表示手段
M・・確率曲面
L・・確率曲線
p・・ピーク(推定値)
11-Probe 12-Sonic velocity measuring means 20-Storage means 30-Straight line calculating means 40-Estimated value calculating means 50-Display means M-Probability surface L-Probability curve p-Peak (estimated value )

Claims (4)

木材のヤング率と密度のデータベースより、ヤング率-密度座標平面上に、その確率密度を縦軸とした確率分布曲面を表す式をそのパラメータとともにもとめておくステップ、
上記の状態で、測定対象の木材の応力波伝播速度vを求めておき、当該応力波伝播速度vより、前記ヤング率E-密度ρ座標面上のE=ρvの直線を求めるステップ
前記直線に対応する座標面に垂直な面と、前記確率分布曲面との交曲線より得られるピークよりヤング率と密度の推定点を求めるステップ
を備えたことを特徴とするヤング率推定方法。
From the database of Young's modulus and density of wood, the step of obtaining the formula expressing the probability distribution curved surface with its probability density as the vertical axis on the Young's modulus-density coordinate plane along with its parameters,
In the above state, the stress wave propagation velocity v of the measurement target wood is obtained in advance, and the step of obtaining a straight line of E=ρv 2 on the Young's modulus E-density ρ coordinate plane from the stress wave propagation velocity v A Young's modulus estimation method comprising a step of obtaining Young's modulus and density estimation points from a peak obtained from an intersection curve of a plane perpendicular to the coordinate plane corresponding to and the probability distribution curved surface.
前記確率分布曲面を表す式は、2変量正規分布を表す式であり、式中の各パラメータはハミルトニアン・モンテカルロ法で求める請求項1に記載のヤング率推定方法。 The Young's modulus estimation method according to claim 1, wherein the equation representing the probability distribution surface is an equation representing a bivariate normal distribution, and each parameter in the equation is obtained by the Hamiltonian Monte Carlo method. 木材のヤング率と密度のデータベースより、ヤング率-密度座標平面上に、その確率密度を縦軸とする確率分布曲面を得て記憶する記憶手段と、
測定対象の木材の応力波伝播速度を求める音速測定手段と、
前記応力波伝播速度vより前記ヤング率E-密度ρ座標面上のE=ρvの直線を求める直線演算手段と、
前記直線に対応する座標面に垂直な面と、前記確率分布曲面との交曲線より得られるピークよりヤング率と密度の推定点を求める推定演算手段と
を備えたことを特徴とする木材のヤング率推定装置。
From a database of Young's modulus and density of wood, Young's modulus-on the density coordinate plane, a storage means for obtaining and storing a probability distribution curved surface having the probability density as the vertical axis,
Sound velocity measuring means for determining the stress wave propagation velocity of the measurement target wood;
Straight line calculating means for obtaining a straight line of E=ρv 2 on the Young's modulus E-density ρ coordinate plane from the stress wave propagation velocity v,
Young's body of wood, comprising: a plane perpendicular to the coordinate plane corresponding to the straight line; and an estimation calculation means for obtaining an estimation point of Young's modulus and density from a peak obtained from an intersection curve of the probability distribution curved surface. Rate estimator.
前記確率分布曲面を表す式は、2変量正規分布を表す式であり、式中の各パラメータはハミルトニアン・モンテカルロ法で求める請求項3に記載のヤング率推定装置。 The Young's modulus estimator according to claim 3, wherein the equation representing the probability distribution curved surface is an equation representing a bivariate normal distribution, and each parameter in the equation is obtained by the Hamiltonian Monte Carlo method.
JP2016193588A 2016-09-30 2016-09-30 Measuring method of Young's modulus of wood and its equipment Expired - Fee Related JP6723605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193588A JP6723605B2 (en) 2016-09-30 2016-09-30 Measuring method of Young's modulus of wood and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193588A JP6723605B2 (en) 2016-09-30 2016-09-30 Measuring method of Young's modulus of wood and its equipment

Publications (2)

Publication Number Publication Date
JP2018054550A JP2018054550A (en) 2018-04-05
JP6723605B2 true JP6723605B2 (en) 2020-07-15

Family

ID=61836494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193588A Expired - Fee Related JP6723605B2 (en) 2016-09-30 2016-09-30 Measuring method of Young's modulus of wood and its equipment

Country Status (1)

Country Link
JP (1) JP6723605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118111862A (en) * 2024-02-01 2024-05-31 南京林业大学 Online detection system and method for elastic modulus of wood sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678974B2 (en) * 1989-09-27 1994-10-05 名古屋大学長 Young's modulus automatic measuring device
TW509782B (en) * 2001-11-20 2002-11-11 Taiwan Forestry Res Inst Nondestructive testing technique for wood stress wave
JP3740547B2 (en) * 2003-02-05 2006-02-01 行政院農業委員會林業試験所 Wood stress wave nondestructive testing method
JP4696243B2 (en) * 2006-03-03 2011-06-08 国立大学法人名古屋大学 Young's modulus estimation method, Young's modulus estimation program, and Young's modulus estimation apparatus

Also Published As

Publication number Publication date
JP2018054550A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
Krause et al. Elastic wave modes for the assessment of structural timber: ultrasonic echo for building elements and guided waves for pole and pile structures
Lee et al. Determination and extraction of Rayleigh-waves for concrete cracks characterization based on matched filtering of center of energy
Ogam et al. Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonicwaves
JP2004150946A (en) Nondestructive measuring instrument and method for concrete rigidity by ball hammering
US20030131674A1 (en) Pole testing system
JP6723605B2 (en) Measuring method of Young&#39;s modulus of wood and its equipment
JP6944147B2 (en) Non-contact acoustic exploration method and non-contact acoustic exploration system
Cui et al. Structural fatigue crack localisation based on spatially distributed entropy and wavelet transform
WO2006016520A1 (en) Nondestructive method and system of inspecting inside of tree by employing acoustic tomography
Alves et al. Determination of the transverse Young’s modulus (TYM) of wood by means of an input power technique
Lacroix et al. Nondestructive condition assessment of concrete slabs with artificial defects using wireless impact echo
JP4696243B2 (en) Young&#39;s modulus estimation method, Young&#39;s modulus estimation program, and Young&#39;s modulus estimation apparatus
JP6364742B2 (en) Structure diagnosis apparatus, structure diagnosis method, and program
JP2001004604A (en) Inspecting method for flaw in concrete structure
JP4565449B2 (en) Quality evaluation apparatus for concrete structure and quality evaluation method for concrete structure
JP6920729B2 (en) Moisture content estimation method for wood and its equipment
Medina et al. Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity
JP2001337077A (en) Device for non-destructively inspecting exfoliation in concrete structure
Minda et al. Methods of interpreting the Results of Vibration Measurements to locate Damages in Beams
JP7582903B2 (en) Pile damage assessment method
Kachanov et al. A multichannel multiplicative method for acoustic testing of large-size compact concrete building constructions
JP2012233771A (en) Method for determining material of laid cast iron pipe and system for determining material of laid cast iron pipe
JP2015021749A (en) Inspection device and inspection method
Mukherjee et al. Analysis of signal for determination of crack distance from acoustic emission sensor of a steel bridge
De Nicolo et al. Non invasive acoustic measurements for faults detecting in building materials and structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6723605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees