JP6720014B2 - Hexagonal boron nitride primary particle aggregate, resin composition and use thereof - Google Patents
Hexagonal boron nitride primary particle aggregate, resin composition and use thereof Download PDFInfo
- Publication number
- JP6720014B2 JP6720014B2 JP2016153197A JP2016153197A JP6720014B2 JP 6720014 B2 JP6720014 B2 JP 6720014B2 JP 2016153197 A JP2016153197 A JP 2016153197A JP 2016153197 A JP2016153197 A JP 2016153197A JP 6720014 B2 JP6720014 B2 JP 6720014B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- hexagonal boron
- primary particle
- nitride primary
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052582 BN Inorganic materials 0.000 title claims description 113
- 239000011164 primary particle Substances 0.000 title claims description 113
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 112
- 239000011342 resin composition Substances 0.000 title claims description 31
- 239000002245 particle Substances 0.000 claims description 75
- 239000000463 material Substances 0.000 claims description 29
- 229920005989 resin Polymers 0.000 description 30
- 239000011347 resin Substances 0.000 description 30
- -1 alkaline earth metal carbonates Chemical class 0.000 description 29
- 239000002243 precursor Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 25
- 239000002002 slurry Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 21
- 238000005259 measurement Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 238000010304 firing Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 8
- 238000011049 filling Methods 0.000 description 7
- 238000010079 rubber tapping Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229920000877 Melamine resin Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- LTSWUFKUZPPYEG-UHFFFAOYSA-N 1-decoxydecane Chemical compound CCCCCCCCCCOCCCCCCCCCC LTSWUFKUZPPYEG-UHFFFAOYSA-N 0.000 description 1
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- GEGLCBTXYBXOJA-UHFFFAOYSA-N 1-methoxyethanol Chemical compound COC(C)O GEGLCBTXYBXOJA-UHFFFAOYSA-N 0.000 description 1
- CSHOPPGMNYULAD-UHFFFAOYSA-N 1-tridecoxytridecane Chemical compound CCCCCCCCCCCCCOCCCCCCCCCCCCC CSHOPPGMNYULAD-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 239000012905 visible particle Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、六方晶窒化ホウ素一次粒子凝集体に関する。また本発明は、前記六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物とその用途に関する。 The present invention relates to hexagonal boron nitride primary particle aggregates. The present invention also relates to a resin composition containing the hexagonal boron nitride primary particle aggregate and its use.
従来から、パワーデバイス、トランジスタ、サイリスタ、CPU等に代表される発熱性電子部品は、大電力化が年々進みつつあり、また他方では電子機器類の軽薄短小化にも伴い、発熱性電子部品の実装密度も増加する一方であり、電子機器内部の発熱密度も年々増加している。そのため、発熱性電子部品を使用する際に発生する熱を効率的に放熱させる方法や、放熱材料に関する研究開発は継続的に進められている。 2. Description of the Related Art Conventionally, heat-generating electronic components represented by power devices, transistors, thyristors, CPUs, etc. have been increasing in power year by year, and on the other hand, along with the miniaturization of electronic devices, heat-generating electronic components have become The mounting density is also increasing, and the heat generation density inside electronic devices is also increasing year by year. Therefore, research and development on a method for efficiently radiating heat generated when using a heat-generating electronic component and a heat-dissipating material have been continuously advanced.
発熱性電子部品の発生する熱を放熱する方法としては、発熱性電子部品または発熱性電子部品を実装したプリント配線板に、電気絶縁性備えた平板状またはシート状の熱インターフェース材を介して、ヒートシンク等の放熱部材を取り付ける方法などが一般的である。また、プリント配線板には、その中間に電気絶縁層が通常設けられているが、この電気絶縁層も、同時に優れた熱インターフェース材であることが求められる。この熱インターフェース材としては、例えばセラミックス粒子と熱硬化性樹脂とを含む組成物が好ましく用いられている。 As a method of radiating the heat generated by the heat-generating electronic component, a heat-generating electronic component or a printed wiring board on which the heat-generating electronic component is mounted, through a flat interface or sheet-like thermal interface material having electrical insulation, A general method is to attach a heat dissipation member such as a heat sink. Further, a printed wiring board is usually provided with an electric insulating layer in the middle thereof, and this electric insulating layer is also required to be an excellent thermal interface material at the same time. As the thermal interface material, for example, a composition containing ceramic particles and a thermosetting resin is preferably used.
前記セラミックス粒子としては、基本的に電気絶縁性を有し、熱伝導性にも優れる六方晶窒化ホウ素が注目され、好ましく用いられている。但し、その結晶構造に由来して、六方晶窒化ホウ素の一次粒子は鱗片状で、面内方向(a軸方向ともいう)の熱伝導率が約400W/(m・K)、厚み方向(c軸方向ともいう)の熱伝導率が約2W/(m・K)であり、熱伝導率の異方性が甚だしく大きい。そのため、六方晶窒化ホウ素の一次粒子をそのまま樹脂中に充填して、平板状またはシート状の熱インターフェース材の製造を試みると、鱗片状の一次粒子が、熱インターフェース材の面方向に沿って平面的に配向する傾向が強く、熱を伝達したい方向(即ち熱インターフェース材の厚み方向)と六方晶窒化ホウ素一次粒子の高い熱伝導率を有する方向とが必ずしも一致せず、むしろ直交するため、六方晶窒化ホウ素の面内方向の高い熱伝導性を十分に活かすことができなかった。 As the ceramic particles, hexagonal boron nitride, which basically has electrical insulation and is excellent in thermal conductivity, has attracted attention and is preferably used. However, due to its crystal structure, primary particles of hexagonal boron nitride are scaly, have a thermal conductivity of about 400 W/(m·K) in the in-plane direction (also referred to as a-axis direction), and a thickness direction (c The thermal conductivity (also referred to as the axial direction) is about 2 W/(m·K), and the anisotropy of the thermal conductivity is extremely large. Therefore, when the hexagonal boron nitride primary particles are directly filled in the resin and an attempt is made to manufacture a flat plate-shaped or sheet-shaped thermal interface material, the scale-shaped primary particles become flat along the surface direction of the thermal interface material. The direction in which heat is to be transferred (that is, the thickness direction of the thermal interface material) and the direction in which the hexagonal boron nitride primary particles have a high thermal conductivity do not necessarily coincide with each other, and are rather orthogonal. It was not possible to fully utilize the high in-plane thermal conductivity of crystalline boron nitride.
そのため、このような六方晶窒化ホウ素の一次粒子の形状に起因する熱伝導率の異方性を緩和し、等方的な熱伝導率を持たせるように意図された、六方晶窒化ホウ素一次粒子凝集体が開発されている。 Therefore, the hexagonal boron nitride primary particles intended to relax the anisotropy of the thermal conductivity due to the shape of the hexagonal boron nitride primary particles and to have isotropic thermal conductivity. Aggregates have been developed.
例えば特許文献1及び2では、六方晶窒化ホウ素一次粒子を、平板状またはシート状の熱インターフェース材中で同一方向に配向させないように、予め等方的に凝集させ、熱伝導率の異方性を緩和した六方晶窒化ホウ素一次粒子凝集体が提案されている。但し、ここに開示されている六方晶窒化ホウ素一次粒子凝集体の形状は、いびつな松かさ状(例えば、特許文献1:段落[0020]図6参照)や塊状(例えば、特許文献2:段落[0037]図3〜5参照)であるため、樹脂への充填割合にも限界が生じ、熱インターフェース材としたときの熱伝導率は、現在の要求水準を必ずしも満たさなくなっていた。 For example, in Patent Documents 1 and 2, the hexagonal boron nitride primary particles are preliminarily isotropically aggregated so as not to be oriented in the same direction in a flat plate-shaped or sheet-shaped thermal interface material, and the thermal conductivity anisotropy is increased. A hexagonal boron nitride primary particle agglomerate in which γ is relaxed has been proposed. However, the shape of the hexagonal boron nitride primary particle aggregates disclosed herein has a distorted pine cone shape (for example, see Patent Document 1: Paragraph [0020] FIG. 6) or a lump shape (for example, Patent Document 2: Paragraph [ 3 to 5)), the resin filling rate is also limited, and the thermal conductivity when used as a thermal interface material does not always meet the current required level.
凝集体の形状を改善する試みとして、特許文献3では、ホウ酸塩粒子を六方晶窒化ホウ素一次粒子で被覆した、平均球形度の高い六方晶窒化ホウ素被覆粒子の使用が提案されている。前記被覆粒子においては、熱伝導率の異方性の抑制と樹脂への充填性の向上には一定の効果がみられるものの、熱伝導率の低いホウ酸塩粒子を含有するため、六方晶窒化ホウ素の高い熱伝導率を十分に活かしきれない課題があった。 As an attempt to improve the shape of the aggregate, Patent Document 3 proposes the use of hexagonal boron nitride-coated particles having a high average sphericity, in which borate particles are coated with hexagonal boron nitride primary particles. The coated particles have a certain effect in suppressing the anisotropy of thermal conductivity and improving the filling property into the resin, but since they contain borate particles having a low thermal conductivity, they are hexagonal nitrided. There is a problem that the high thermal conductivity of boron cannot be fully utilized.
さらに、従来の六方晶窒化ホウ素一次粒子凝集体の表面から内部にかけては、空隙もまだ多く存在していると考えられ、凝集体単体の熱伝導率が十分高くなりきれてなく、またその凝集体の粒子強度も不十分で、例えば凝集体と樹脂とを混合して樹脂組成物とする際に、一次粒子凝集体が混練時に受ける力に耐え切れずに破壊することもあった。 Furthermore, from the surface to the inside of the conventional hexagonal boron nitride primary particle aggregate, it is considered that there are still many voids, and the thermal conductivity of the aggregate alone cannot be sufficiently high. The particle strength of (1) was insufficient, and when the agglomerate and the resin were mixed to form a resin composition, for example, the primary particle agglomerate sometimes failed to withstand the force applied during kneading and was destroyed.
特許文献4には、凝集粒子の空隙率範囲を規定することにより、これを含む樹脂組成物の非誘電率を低く保つと共に、凝集窒化ホウ素粉末のカルシウム含有量が規定された、樹脂との混練時の凝集粒子の破壊防止を図った窒化ホウ素粉末が開示されている。特許文献4の凝集粒子は空隙率をやや高めに設定しているため、粒子強度や熱伝導率の面ではさらなる改善余地があった。 In Patent Document 4, by defining the porosity range of the agglomerated particles, the non-dielectric constant of the resin composition containing the agglomerated particles is kept low, and the calcium content of the agglomerated boron nitride powder is specified and kneaded with the resin. A boron nitride powder is disclosed which is intended to prevent the destruction of aggregated particles at the time. Since the agglomerated particles of Patent Document 4 have a slightly higher porosity, there is room for further improvement in terms of particle strength and thermal conductivity.
特許文献5には、凝集窒化ホウ素の一次粒子や凝集体の構造が記載されているが、一次粒子の平均径径が小さく、また粉体のバルク密度も低いため、樹脂組成物に高充填するには課題があった。 Patent Document 5 describes the structure of primary particles or aggregates of agglomerated boron nitride, but since the average diameter of the primary particles is small and the bulk density of the powder is low, it is highly filled in the resin composition. Had challenges.
以上示したように、近年の発熱性電子部品を用いた電子機器類の放熱性要求水準を満たすような、実用的には許容できる非誘電率の範囲内で、熱伝導率の改善に特に重きをおいた、即ち、六方晶窒化ホウ素一次粒子凝集体の球形度をより高め、空隙率をさらに低くし、粒子強度もさらに高めることにより、従来よりも樹脂組成物としてさらに高充填することを可能とする凝集体はそもそも得られておらず、従って、それを用いた樹脂組成物や熱インターフェース材も開発されてなかった。 As shown above, it is particularly important to improve the thermal conductivity within the practically allowable range of the non-dielectric constant that satisfies the heat dissipation requirement level of electronic devices using recent heat-generating electronic components. That is, by further increasing the sphericity of the hexagonal boron nitride primary particle agglomerates, further decreasing the porosity, and further increasing the particle strength, it is possible to further fill the resin composition with a higher content than before. No aggregate was obtained in the first place, and therefore a resin composition or a thermal interface material using the same was not developed.
本発明は、従来技術の課題に鑑み、充填特性が良好となる形状を有し、その結果として窒化ホウ素一次粒子凝集体を高密度で充填することが可能で、また二次加工時に想定される外力を受けても破壊されないような高い粒子強度を有する六方晶窒化ホウ素一次粒子凝集体を提供することである。またそれによりパワーデバイスなどの発熱性電子部品が実装されるプリント配線板の電気絶縁層や、熱を放熱部材に伝達する熱インターフェース材に用いられる、前記六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物、並びに前記樹脂組成物を用いた熱インターフェース材の提供を目的とする。 In view of the problems of the prior art, the present invention has a shape that provides good filling characteristics, and as a result, it is possible to pack the boron nitride primary particle aggregates at a high density, and is also envisioned during secondary processing. An object is to provide a hexagonal boron nitride primary particle aggregate having a high particle strength so that it is not broken even when subjected to an external force. A resin containing the hexagonal boron nitride primary particle agglomerates, which is used as an electrical insulating layer of a printed wiring board on which heat-generating electronic components such as power devices are mounted and a thermal interface material that transfers heat to a heat dissipation member. It is intended to provide a composition and a thermal interface material using the resin composition.
本発明者らは、樹脂組成物中に高充填することが可能で、高密度に凝集している高強度の六方晶窒化ホウ素一次粒子凝集体について鋭意検討し、一次粒子凝集体が満たすべき要件を鋭意検討することにより本発明に到った。 The present inventors diligently studied high-strength hexagonal boron nitride primary particle aggregates that can be highly filled in a resin composition and are densely aggregated, and the requirements that the primary particle aggregates must satisfy The present invention has been achieved through intensive studies.
上記の課題を解決する本発明は、即ち六方晶窒化ホウ素一次粒子凝集体を、平均球形度が0.80以上、空隙率が40%以下、タップ密度(タップかさ密度ともいう)が1.0g/cm3以上、粒子強度が5.0MPa以上である、六方晶窒化ホウ素一次粒子凝集体であるとする。なお本発明においては、一次粒子の長径と厚さのアスペクト比が10を越え20以下の鱗片状である一次粒子が凝集している、六方晶窒化ホウ素一次粒子凝集体であることが好ましい。また本発明においては、平均粒子径が20〜100μmである、六方晶窒化ホウ素一次粒子凝集体であることが好ましい。さらに本発明は、前記六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物であり、またさらに前記樹脂組成物を用いた熱インターフェース材である。 Means for Solving the Problems The present invention, which solves the above-mentioned problems, provides a hexagonal boron nitride primary particle aggregate having an average sphericity of 0.80 or more, a porosity of 40% or less, and a tap density (also referred to as tap bulk density) of 1.0 g. /Cm 3 or more and the particle strength is 5.0 MPa or more, and the hexagonal boron nitride primary particles are assumed to be aggregates. In the present invention, a hexagonal boron nitride primary particle aggregate in which primary particles in the form of flakes having an aspect ratio of major axis and thickness of the primary particles of more than 10 and 20 or less are aggregated is preferable. Further, in the present invention, the hexagonal boron nitride primary particle aggregate having an average particle diameter of 20 to 100 μm is preferable. Further, the present invention is a resin composition containing the hexagonal boron nitride primary particle aggregate, and a thermal interface material using the resin composition.
本発明の実施により、産業上有用な、高い熱伝導率を発現する六方晶窒化ホウ素一次粒子凝集体、及び前記六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物、前記樹脂組成物を用いた電気絶縁部材を提供することができる。 According to the practice of the present invention, industrially useful, a hexagonal boron nitride primary particle aggregate that exhibits high thermal conductivity, and a resin composition containing the hexagonal boron nitride primary particle aggregate, the resin composition was used. An electrically insulating member can be provided.
本発明の六方晶窒化ホウ素一次粒子凝集体は、鱗片状の六方晶窒化ホウ素の一次粒子同士が、球形近い形状で、高強度に焼結している凝集体であり、樹脂と合わせて混練する程度の外力では容易に破壊されない高い粒子強度をも備える六方晶窒化ホウ素一次粒子凝集体である。 The hexagonal boron nitride primary particle aggregate of the present invention is an aggregate in which scaly primary particles of hexagonal boron nitride are in a spherical shape and are sintered with high strength, and are kneaded together with a resin. It is a hexagonal boron nitride primary particle aggregate having a high particle strength that is not easily broken by an external force of a certain degree.
本発明の六方晶窒化ホウ素一次粒子凝集体は、平均球形度、タップ密度、粒子強度を規定することにより、従来の技術では達成できなかった、高熱伝導率を達成する窒化ホウ素粉末、及び窒化ホウ素粉末を含有してなる樹脂組成物を得ることができる。 The hexagonal boron nitride primary particle agglomerate of the present invention has an average sphericity, a tap density, and a particle strength that are unachievable by conventional techniques, thereby achieving a high thermal conductivity, and a boron nitride powder, and boron nitride. A resin composition containing powder can be obtained.
本発明の六方晶窒化ホウ素一次粒子凝集体は、特に製造方法を限定するものではないが、例えば、六方晶窒化ホウ素一次粒子凝集体の前駆体を準備する前駆体準備工程と、前記前駆体を含むスラリーを得るスラリー化工程と、前記スラリーを噴霧して前駆体の乾燥粉体(以下、前駆体乾燥粉体という)となす噴霧乾燥工程と、前記前駆体乾燥粉体を焼成して六方晶窒化ホウ素一次粒子凝集体を得る焼成工程と、を含む諸工程を経る製造方法を、好ましく採用することができる。 The hexagonal boron nitride primary particle aggregate of the present invention is not particularly limited to the production method, for example, a precursor preparation step of preparing a precursor of the hexagonal boron nitride primary particle aggregate, and the precursor Slurrying step for obtaining a slurry containing, spray drying step for spraying the slurry to obtain a precursor dry powder (hereinafter referred to as precursor dry powder), and firing the precursor dry powder for hexagonal crystal A manufacturing method that includes various steps including a firing step for obtaining a boron nitride primary particle aggregate can be preferably employed.
<前駆体準備工程>
前駆体準備工程は、六方晶窒化ホウ素一次粒子凝集体の前駆体を準備する工程である。前記前駆体は、それを原料として用いることにより窒化ホウ素一次粒子凝集体が得られる物質であれば、特に制限はないが、例えばメラミンとホウ酸を含む混合物を焼成して得た窒化ホウ素が、平均球形度が0.80以上で球形度が高く、また平均径と平均厚さのアスペクト比が10を越え20以下である一次粒子が凝集している六方晶窒化ホウ素一次粒子凝集体を得やすい前駆体として好ましく準備される。平均球形度が0.8以上になると、樹脂への充填性が増し、熱伝導性の高い熱インターフェース材を得ることができる。なお、メラミンとホウ酸を含む混合物を焼成する条件により、得られる窒化ホウ素の結晶性が、アモルファス状態から結晶化が進んだ状態まで変化することがあるが、特に前記前駆体としての窒化ホウ素の結晶性に関する限定はなく、結晶性の異なる窒化ホウ素を複数準備して、それらを混合したものも、粒子強度が5.0MPa以上となる高い六方晶窒化ホウ素一次粒子凝集体を得やすい前駆体として好ましく用いることができる。
<Precursor preparation step>
The precursor preparation step is a step of preparing a precursor of hexagonal boron nitride primary particle aggregates. The precursor is not particularly limited as long as it is a substance that can obtain a boron nitride primary particle aggregate by using it as a raw material, for example, boron nitride obtained by firing a mixture containing melamine and boric acid, A hexagonal boron nitride primary particle aggregate in which primary particles having an average sphericity of 0.80 or more and a high sphericity and an aspect ratio of average diameter and average thickness of more than 10 and 20 or less are aggregated are easily obtained. It is preferably prepared as a precursor. When the average sphericity is 0.8 or more, the filling property into the resin is increased, and a thermal interface material having high thermal conductivity can be obtained. Incidentally, depending on the conditions for firing a mixture containing melamine and boric acid, the crystallinity of the obtained boron nitride may change from an amorphous state to a state where crystallization has advanced, but especially of boron nitride as the precursor. There is no limitation on the crystallinity, and a mixture of a plurality of boron nitrides having different crystallinities prepared and mixed together is also a precursor that easily obtains a high hexagonal boron nitride primary particle aggregate having a particle strength of 5.0 MPa or more. It can be preferably used.
<スラリー化工程>
スラリー化工程は、前記前駆体を含むスラリーを得る工程である。スラリーの液体成分の種類に特に限定はないが、液体成分としては水や、アルコール等の水溶性有機溶媒が一般的に用いられる。スラリーの好ましい組成割合として、例えば液体成分の濃度は55質量%以下であることが好ましく、50質量%以下であることがさらに好ましい。また、前駆体の焼結を促進させるための0.5〜5.0質量%の焼結助剤をスラリー中に好ましく添加することができ、残りが六方晶窒化ホウ素一次粒子凝集体の前駆体の質量割合となる。焼結助剤の種類としては、アルカリ金属、アルカリ土類金属の炭酸塩、硝酸塩、酸化物、窒化物が好ましく用いられ、炭酸カルシウムが特に好ましい。さらに前記スラリー100質量部に対し、前駆体同士の結着剤やスラリー安定化剤を、を0.1〜2質量部の割合で好ましく添加することができる。前記結着剤としては、ポリビニルアルコール(PVAとも標記される)やカルボキシメチルセルロース(CMCとも標記される)が好ましく用いられる。また前記スラリー安定化剤は、硫酸エステル型、リン酸エステル型、カルボン酸型、スルホン酸型の各種アニオン型界面活性剤、例えばポリオキシエチレントリデシルエーテルリン酸エステル、ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、ポリオキシエチレンアルキル(C10)エーテルリン酸エステル、ポリオキシエチレンアルキル(C12、13)エーテルリン酸エステル、ポリオキシエチレンラウリルエーテルリン酸エステル、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルや、ポリオキシアルキレン分岐デシルエーテル型、ポリオキシアルキレントリデシルエーテル型、ポリオキシアルキレンアルキルエーテル型、ポリオキシエチレンスチレン化フェニルエーテル型、ポリオキシエチレンナフチルエーテル型、ポリオキシエチレンフェニルエーテル型、ポリオキシエチレンラウリルエーテル型のノニオン型界面活性剤、及び高分子型界面活性剤、例えばナフタレンスルホン酸ナトリウムホルマリン縮合物、から選ばれる少なくとも一種以上の界面活性剤を含むスラリー安定化剤が好ましく用いられる。列記した界面活性剤の中では、特にリン酸エステル型の界面活性剤を含む界面活性剤が好ましく、リン酸エステル型の中では、特にポリオキシエチレンアルキル(C8)エーテルリン酸エステル、ポリオキシエチレンアルキル(C10)エーテルリン酸エステル、ポリオキシエチレンアルキル(C12、13)エーテルリン酸エステル、ポリオキシエチレンラウリルエーテルリン酸エステルが好ましく用いられる。
<Slurry process>
The slurry forming step is a step of obtaining a slurry containing the precursor. The type of liquid component of the slurry is not particularly limited, but water or a water-soluble organic solvent such as alcohol is generally used as the liquid component. As a preferable composition ratio of the slurry, for example, the concentration of the liquid component is preferably 55% by mass or less, and more preferably 50% by mass or less. Further, 0.5 to 5.0% by mass of a sintering aid for promoting sintering of the precursor can be preferably added to the slurry, and the remainder is a precursor of hexagonal boron nitride primary particle aggregates. It becomes the mass ratio of. As the type of sintering aid, alkali metal, alkaline earth metal carbonates, nitrates, oxides, and nitrides are preferably used, and calcium carbonate is particularly preferable. Further, the binder of the precursors and the slurry stabilizer can be preferably added in a ratio of 0.1 to 2 parts by mass with respect to 100 parts by mass of the slurry. As the binder, polyvinyl alcohol (also referred to as PVA) and carboxymethyl cellulose (also referred to as CMC) are preferably used. Further, the slurry stabilizer is a sulfate ester type, phosphate ester type, carboxylic acid type, sulfonic acid type anionic surfactant, such as polyoxyethylene tridecyl ether phosphate ester, polyoxyethylene alkyl (C8). Ether phosphate ester, polyoxyethylene alkyl (C10) ether phosphate ester, polyoxyethylene alkyl (C12, 13) ether phosphate ester, polyoxyethylene lauryl ether phosphate ester, polyoxyethylene styrenated phenyl ether phosphate ester , Polyoxyalkylene branched decyl ether type, polyoxyalkylene tridecyl ether type, polyoxyalkylene alkyl ether type, polyoxyethylene styrenated phenyl ether type, polyoxyethylene naphthyl ether type, polyoxyethylene phenyl ether type, polyoxy A slurry stabilizer containing at least one surfactant selected from ethylene lauryl ether type nonionic surfactants and polymer type surfactants such as sodium naphthalenesulfonate formalin condensate is preferably used. Among the listed surfactants, those containing a phosphoric acid ester type surfactant are preferable, and among the phosphoric acid ester type surfactants, polyoxyethylene alkyl (C8) ether phosphoric acid ester and polyoxyethylene are particularly preferable. Alkyl (C10) ether phosphate, polyoxyethylene alkyl (C12, 13) ether phosphate, and polyoxyethylene lauryl ether phosphate are preferably used.
さらに、スラリー化工程においては、ボールミルなどを用いてスラリー中の固形成分、即ち六方晶窒化ホウ素一次粒子凝集体の前駆体や焼結助剤を微粉化し、より均一で安定なスラリーとなすことも好ましく実施される。 Further, in the slurry forming step, a solid component in the slurry, that is, a precursor of hexagonal boron nitride primary particle aggregates and a sintering aid may be finely pulverized by using a ball mill or the like to form a more uniform and stable slurry. It is preferably carried out.
<噴霧乾燥工程>
噴霧乾燥工程では、例えば一般に回転式アトマイザーと呼称される装置を用い、前記六方晶窒化ホウ素一次粒子凝集体の前駆体を含むスラリーを、例えば高温の容器中にアトマイザーを用いて噴霧することにより、その液体成分を除去した前駆体乾燥粉体を好ましく得ることができる。容器内の温度は特に限定はないが、通常150〜250℃の範囲が好ましい。アトマイザーの噴霧方式などは特に限定はない。
<Spray drying process>
In the spray drying step, for example, using a device generally called a rotary atomizer, a slurry containing a precursor of the hexagonal boron nitride primary particle aggregates, for example, by spraying using a atomizer in a high temperature container, The precursor dry powder from which the liquid component is removed can be preferably obtained. The temperature in the container is not particularly limited, but is usually preferably in the range of 150 to 250°C. The atomizing method of the atomizer is not particularly limited.
<焼成工程>
焼成工程では、前記前駆体乾燥粉体を通常1600〜2300℃、好ましくは1700〜1900℃の炉で焼成する。本発明の六方晶窒化ホウ素一次粒子凝集体を最終的に得る工程である。炉の形式等は特に限定はなく、公知の抵抗式発熱体加熱炉、高周波炉の種類や、またバッチ式炉でも連続式炉でもどちらを選定しても良い。
<Firing process>
In the firing step, the precursor dry powder is usually fired in a furnace at 1600 to 2300°C, preferably 1700 to 1900°C. It is a step of finally obtaining the hexagonal boron nitride primary particle aggregate of the present invention. The type of the furnace is not particularly limited, and either a known resistance heating element heating furnace, a known type of high frequency furnace, or a batch type furnace or a continuous type furnace may be selected.
次に焼成工程で得られた、本発明の六方晶窒化ホウ素一次粒子凝集体の平均球形度、タップ密度、粒子強度、平均粒子径、及び一次粒子の長径と厚さのアスペクト比について、それぞれの定義および測定方法について以下に記載する。 Next, obtained in the firing step, the average sphericity of the hexagonal boron nitride primary particle aggregate of the present invention, tap density, particle strength, average particle diameter, and the aspect ratio of the major axis and thickness of the primary particles, respectively, The definition and measurement method are described below.
<平均球形度>
本発明でいう六方晶窒化ホウ素一次粒子凝集体の平均球形度は、多数の前記一次粒子凝集体を実際に撮影した2次元画像を基にして、画像解析の手法により算出した個々の球形度の平均値であり、1個の一次粒子凝集体の球形度は、例えば以下のような手順で測定する。即ち、試料台上の導電性両面テープに固定された任意の1個の六方晶窒化ホウ素一次粒子凝集体(P1とする)を、走査型電子顕微鏡を用いて撮影し、得られた2次元画像から、画像解析ソフトウェアを利用して、P1の投影面積(S1とする)と周囲長(L1とする)を測定する。本発明の、P1の球形度(R1とする)は、S1と同じ長さの周囲長を有する半径(r1とする)の真円の面積(即ちπr1 2)を基準にして、R1=S1/πr1 2で示されるものとすると、別にL1=2πr1の関係も成立していることから、R1=4πS1/L1 2の式に、前記S1、L1の測定値をそれぞれ代入して算出することができる。本発明では、このようにして任意の六方晶窒化ホウ素一次粒子凝集体100個の球形度をそれぞれ求め、その平均値をもって、本発明の平均球形度とした。なお、真球の球形度は1であることから、この値に近い方がより真球に近い形となり、樹脂組成物中への充填性が良好となる。本発明の六方晶窒化ホウ素一次粒子凝集体の平均球形度は0.80以上である。平均球形度が0.8より小さいと樹脂組成物中への充填性が劣り、熱伝導率が低下する。平均球形度は0.85以上であると更に好ましい。
<Average sphericity>
The average sphericity of the hexagonal boron nitride primary particle agglomerates referred to in the present invention is calculated based on a two-dimensional image obtained by actually photographing a large number of the primary particle agglomerates, and the average sphericity is calculated by an image analysis method. It is an average value, and the sphericity of one primary particle aggregate is measured by the following procedure, for example. That is, any one hexagonal boron nitride primary particle aggregate (referred to as P 1 ) fixed to the conductive double-sided tape on the sample table was photographed using a scanning electron microscope, and the obtained two-dimensional From the image, the projected area of P1 (denoted by S 1 ) and the perimeter (denoted by L 1 ) are measured using image analysis software. The sphericity of P 1 (denoted by R 1 ) of the present invention is based on the area of a perfect circle (that is, πr 1 2 ) having a radius (denoted by r 1 ) having the same perimeter as S1. Assuming that R 1 =S 1 /πr 1 2 is satisfied, the relationship of L 1 =2πr 1 is also established. Therefore, in the formula of R 1 =4πS 1 /L 1 2 , the above S 1 , L It can be calculated by substituting each of the measured values of 1 . In the present invention, the sphericity of 100 arbitrary hexagonal boron nitride primary particle agglomerates was determined in this manner, and the average value was used as the average sphericity of the present invention. Since the sphericity of a true sphere is 1, a value closer to this value is closer to a true sphere, and the filling property into the resin composition is good. The average sphericity of the hexagonal boron nitride primary particle aggregate of the present invention is 0.80 or more. When the average sphericity is less than 0.8, the filling property into the resin composition is poor and the thermal conductivity is low. The average sphericity is more preferably 0.85 or more.
<空隙率>
本発明でいう空隙率は、本発明の六方晶窒化ホウ素一次粒子凝集体に存在する空隙の割合のことであり、空隙率は40%以下であることが必要である。空隙率は水銀圧入法により水銀ポロシメーターを用いて測定することができる。充填密度を高くする観点からは空隙率は低い方が好ましいが、本発明に到る検討中に得られた値は、29%以上であった。なお、空隙率が小さくなると、比誘電率が小さい空気の占める体積が小さくなり、全体の比誘電率も高くなる傾向があるが、
<Porosity>
The porosity referred to in the present invention is the ratio of the voids present in the hexagonal boron nitride primary particle aggregate of the present invention, and the porosity needs to be 40% or less. The porosity can be measured by a mercury porosimeter using a mercury porosimeter. From the viewpoint of increasing the packing density, it is preferable that the porosity is low, but the value obtained during the study of the present invention was 29% or more. When the porosity is small, the volume occupied by air having a small relative dielectric constant tends to be small, and the overall relative dielectric constant tends to be high.
<タップ密度>
本発明の六方晶窒化ホウ素一次粒子凝集体のタップ密度は、JIS R1628に準拠して測定した値で、市販の装置を用いて測定することができ、六方晶窒化ホウ素一次粒子凝集体を100cm3の専用容器に充填し、タッピングタイム180秒、タッピング回数180回、タップリフト18mmの条件でタッピングを行った後のかさ密度を測定し、タップ密度とした。本発明の六方晶窒化ホウ素一次粒子凝集体のタップ密度は、1.0g/cm3以上である。タップ密度が1.0g/cm3未満であると樹脂に充填したときの粘度が上昇するため、実際の製造に適さなくなる問題がある。なお、空隙率が低くなるほど、タップ密度が高くなる傾向があるが、低いスラリー濃度で焼結助剤の配合割合を増やした場合では、空隙率が比較的低くてもタップ密度が高くならない粒子となる場合もあり、従って、少なくとも空隙率とタップ密度の両方の規定を設けて共に満たしていることが必要である。
<Tap density>
The tap density of the hexagonal boron nitride primary particle agglomerate of the present invention is a value measured according to JIS R1628 and can be measured using a commercially available device, and the hexagonal boron nitride primary particle agglomerate is 100 cm 3 The bulk density after the tapping was performed in a dedicated container of No. 1 and tapping was performed under the conditions of a tapping time of 180 seconds, a tapping frequency of 180 times, and a tap lift of 18 mm, and the tap density was obtained. The tap density of the hexagonal boron nitride primary particle aggregate of the present invention is 1.0 g/cm 3 or more. If the tap density is less than 1.0 g/cm 3 , the viscosity of the resin when it is filled increases, which is not suitable for actual production. Incidentally, the lower the porosity, the higher the tap density tends to be, but in the case where the mixing ratio of the sintering aid is increased at a low slurry concentration, the tap density is not high even if the porosity is relatively low. Therefore, it is necessary that at least both the porosity and the tap density are defined and both are satisfied.
<粒子強度>
本発明でいう、六方晶窒化ホウ素一次粒子凝集体の粒子強度は、実際に個々の粒子の圧縮強度の測定値を基にした値である。粒子強度の測定は、市販されている微少粒子の圧縮強度測定が可能な圧縮試験器を用い、JIS R1639−5に準拠して測定することができる。このとき六方晶窒化ホウ素一次粒子凝集体の粒子径をd(単位はmm)、破壊試験力をP(単位はN)とすると、破壊強度をCs(単位はMPa)は、Cs=2.48P/πd2の式から算出される。なお本発明では、10個の粒子の破壊強度の平均値を粒子強度とした。本発明の六方晶窒化ホウ素一次粒子凝集体においては、粒子強度は5.0MPa以上であることが必要である。粒子強度が、5.0MPaより小さいと、例えば樹脂と混練して組成物なす際に、凝集体粒子が破壊されてしまうので、好ましくない。
<Particle strength>
The particle strength of the hexagonal boron nitride primary particle aggregate referred to in the present invention is a value actually based on the measured value of the compressive strength of individual particles. The particle strength can be measured according to JIS R1639-5 using a commercially available compression tester capable of measuring the compression strength of fine particles. At this time, assuming that the particle size of the hexagonal boron nitride primary particle aggregate is d (unit is mm) and the breaking test force is P (unit is N), the breaking strength Cs (unit MPa) is Cs=2.48P. It is calculated from the formula of /πd 2 . In the present invention, the average value of the breaking strengths of 10 particles is defined as the particle strength. In the hexagonal boron nitride primary particle aggregate of the present invention, the particle strength needs to be 5.0 MPa or more. When the particle strength is less than 5.0 MPa, for example, when kneading with a resin to form a composition, the aggregate particles are broken, which is not preferable.
<平均粒子径>
本発明の六方晶窒化ホウ素一次粒子凝集体の平均粒子径は、JIS Z8825に準拠し、レーザー回折光散乱法による粒度分布測定において、累積粒度分布の累積値50%の粒径で、20〜100μmであることが好ましい。20μmより小さいと、窒化ホウ素粒子と樹脂界面の総数の増加にともなう接触熱抵抗の増加により熱伝導率が低下する。100μmより大きいと、窒化ホウ素粒子の粒子強度が低下する傾向にあるため、樹脂への混練時に受ける剪断応力により、六方晶窒化ホウ素一次粒子凝集体の一部が一次粒子に近い形状の粒子にまで破壊され、その破壊された粒子が同一方向に配向するため、熱伝導性が低下する傾向がある。また、厚みの厚い樹脂に配合する時には、平均粒子径の大きさによる影響は少ないが、放熱シートのようなシート状に成形する場合では、シート厚みが制限され、100μmまでの大きさが好適である。
<Average particle size>
The average particle size of the hexagonal boron nitride primary particle agglomerates of the present invention is 20 to 100 μm in accordance with JIS Z8825, in a particle size distribution measurement by a laser diffraction light scattering method, with a particle size at a cumulative value of 50% of the cumulative particle size distribution. Is preferred. If it is less than 20 μm, the thermal conductivity decreases due to an increase in contact thermal resistance with an increase in the total number of boron nitride particles and resin interfaces. If it is larger than 100 μm, the particle strength of the boron nitride particles tends to decrease, and therefore, due to the shear stress received during the kneading with the resin, a part of the hexagonal boron nitride primary particle agglomerates is converted into particles having a shape close to the primary particles. Since the particles are broken and the broken particles are oriented in the same direction, the thermal conductivity tends to decrease. Further, when compounded in a thick resin, the influence of the average particle size is small, but in the case of molding into a sheet shape such as a heat dissipation sheet, the sheet thickness is limited, and a size up to 100 μm is preferable. is there.
本発明の平均粒子径は、市販の粒度分布測定装置を用いることができる。測定に際しては、溶媒には水、分散剤としてはヘキサメタリン酸を用いた。なお、平均粒子径の測定時においては、六方晶窒化ホウ素一次粒子凝集体が解砕され、実際の凝集体の粒子径が変化することを避けるために、スラリーが良好に分散していることは確認したが、敢えて超音波処理による分散処理は実施しなかった。水の屈折率には1.33を用い、窒化ホウ素粉末の屈折率については1.80を用いた。 For the average particle diameter of the present invention, a commercially available particle size distribution measuring device can be used. In the measurement, water was used as the solvent and hexametaphosphoric acid was used as the dispersant. Incidentally, at the time of measuring the average particle diameter, hexagonal boron nitride primary particle aggregates are crushed, in order to avoid changing the particle diameter of the actual aggregate, the slurry is well dispersed Although it was confirmed, the dispersion treatment by ultrasonic treatment was not intentionally carried out. The refractive index of water was 1.33, and the refractive index of the boron nitride powder was 1.80.
<長径と厚みのアスペクト比>
本発明でいう一次粒子の長径と厚みのアスペクト比は、六方晶窒化ホウ素一次粒子凝集体を構成する一次粒子の断面写真画像を実測して算出した値である。即ち、樹脂に包埋されて精密にカットされた六方晶窒化ホウ素一次粒子凝集体の断面の粒子像を走査型電子顕微鏡にてSEM像を撮影し、短冊状に写る鱗片状一次粒子を、画像解析装置に取り込みソフトウエアで解析することにより算出した値である。なお、樹脂に包埋された六方晶窒化ホウ素一次粒子凝集体は、任意の断面でカットされるため、アスペクト比は、任意に選んだ粒子の測定値から求めた平均値ではなく、短冊状に見える粒子を100個を観察した上で、長径が長い方から10位以内に入る粒子を10個選定し、前記10個の粒子の長径と厚みの長さを測り、アスペクト比=長径/厚みとする計算式より各10個の粒子のアスペクト比を算出し、それらの平均値をアスペクト比とした。
<Aspect ratio of major axis and thickness>
The aspect ratio of the major axis and the thickness of the primary particles in the present invention is a value calculated by actually measuring a cross-sectional photographic image of the primary particles forming the hexagonal boron nitride primary particle aggregate. That is, a SEM image of a particle image of a cross section of a hexagonal boron nitride primary particle aggregate which is embedded in a resin and precisely cut is taken by a scanning electron microscope, and the scaly primary particles reflected in strips are imaged. It is a value calculated by importing it into an analyzer and analyzing it with software. Since the hexagonal boron nitride primary particle aggregates embedded in the resin are cut in any cross section, the aspect ratio is not an average value obtained from the measurement values of arbitrarily selected particles, but a strip shape. After observing 100 visible particles, 10 particles that fall within the 10th place from the longer major axis are selected, the major axis and thickness of the 10 particles are measured, and the aspect ratio = major axis/thickness The aspect ratio of each of the 10 particles was calculated by the following calculation formula, and the average value thereof was used as the aspect ratio.
<六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物>
次に本発明の第2の実施形態である、六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物について説明する。前記樹脂組成物中に含まれる前記一次粒子凝集体の割合は、20体積%以上80体積%以下であることが好ましい。20体積%未満だと樹脂組成物の熱伝導率が低く、80体積%を越えると樹脂組成物の成形や成型が難しくなるので好ましくない。
<Resin Composition Containing Hexagonal Boron Nitride Primary Particle Aggregate>
Next, a resin composition containing a hexagonal boron nitride primary particle aggregate, which is a second embodiment of the present invention, will be described. The proportion of the primary particle aggregates contained in the resin composition is preferably 20% by volume or more and 80% by volume or less. If it is less than 20% by volume, the thermal conductivity of the resin composition is low, and if it exceeds 80% by volume, molding or molding of the resin composition becomes difficult, which is not preferable.
なお、このときに本発明の六方晶窒化ホウ素一次粒子凝集体より平均粒子径の小さい各種セラミックミックス粉末(以下、各種セラミックス粉末と称する)、例えば窒化アルミニウム、六方晶窒化ホウ素、窒化ホウ素、窒化ケイ素、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、二酸化ケイ素、炭化ケイ素の粉末を、本発明の目的を損なわない範囲において、1種類以上適宜添加しても良い。各種セラミックス粉末の適切な平均粒子径は、本発明の窒化ホウ素粉末の凝集体の平均粒子径によって変化するが、本発明の窒化ホウ素粉末の凝集体の平均粒子径に対して40%以下であることが好ましく、20%以下であることがさらに好ましい。例えば本発明の窒化ホウ素粉末の凝集体の平均粒子径が50μmの場合は、20μm以下が好ましく、10μm以下がさらに好ましい。粒子の充填構造をより密にすることができるので、充填性が向上し、結果として樹脂組成物の熱伝導率を向上させることができる。各種セラミックス粉末の平均粒子径は本発明の六方晶窒化ホウ素一次粒子凝集体と同様の手順で測定される。 At this time, various ceramic mix powders having an average particle size smaller than that of the hexagonal boron nitride primary particle aggregate of the present invention (hereinafter referred to as various ceramic powders), for example, aluminum nitride, hexagonal boron nitride, boron nitride, silicon nitride Powders of aluminum oxide, zinc oxide, magnesium oxide, magnesium hydroxide, silicon dioxide, and silicon carbide may be appropriately added in an amount not less than the range of the object of the present invention. The appropriate average particle size of various ceramic powders varies depending on the average particle size of the aggregate of the boron nitride powder of the present invention, but is 40% or less with respect to the average particle size of the aggregate of the boron nitride powder of the present invention. It is preferably 20% or less, more preferably 20% or less. For example, when the average particle diameter of the aggregate of the boron nitride powder of the present invention is 50 μm, it is preferably 20 μm or less, more preferably 10 μm or less. Since the packing structure of the particles can be made denser, the packing property is improved, and as a result, the thermal conductivity of the resin composition can be improved. The average particle size of various ceramic powders is measured by the same procedure as that for the hexagonal boron nitride primary particle aggregate of the present invention.
<樹脂>
本発明の第2の実施形態である、六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物に用いることのできる樹脂の種類には、特に限定はないが、例えばエポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール、ナイロン樹脂等を好ましく挙げることができる。これら樹脂、特に熱硬化性樹脂には適宜、硬化剤、無機フィラー、シランカップリング剤、さらに濡れ性やレベリング性の向上及び粘度低下を促進して加熱加圧成形時の欠陥の発生を低減する添加剤を含有することができる。この添加剤としては、例えば、消泡剤、表面調整剤、湿潤分散剤等がある。また、エポキシ樹脂は、耐熱性と銅箔回路への接着強度が優れていることから、プリント配線板の絶縁層として好適である。さらにシリコーン樹脂及びシリコーンゴムは耐熱性、柔軟性及びヒートシンク等への密着性が優れていることから熱インターフェース材として好適である。なお、熱硬化性樹脂を用いた熱インターフェース材については、それを実際に使用する前の段階で、予め熱硬化性樹脂をBステージ化しておいても良い。
<Resin>
The type of resin that can be used in the resin composition containing the hexagonal boron nitride primary particle aggregates, which is the second embodiment of the present invention, is not particularly limited, and examples thereof include epoxy resin, silicone resin, and silicone rubber. , Acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyimide such as polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic Group polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin , Polyphthalamide, polyacetal, nylon resin and the like can be preferably mentioned. For these resins, particularly thermosetting resins, a curing agent, an inorganic filler, a silane coupling agent, and further improvement of wettability and leveling property and promotion of viscosity reduction are promoted to reduce the occurrence of defects during heat and pressure molding. Additives can be included. Examples of this additive include a defoaming agent, a surface conditioner, and a wetting and dispersing agent. Further, the epoxy resin is suitable as an insulating layer of a printed wiring board because it has excellent heat resistance and adhesive strength to a copper foil circuit. Further, silicone resin and silicone rubber are suitable as a thermal interface material because they have excellent heat resistance, flexibility and adhesion to a heat sink and the like. Regarding the thermal interface material using the thermosetting resin, the thermosetting resin may be B-staged in advance before actually using it.
本発明の六方晶窒化ホウ素一次粒子凝集体と樹脂とを混合して樹脂組成物となす場合には、両者を混合しやすくするため、必要に応じて有機溶剤を加えても良い。有機溶剤としては、例えば、エタノール及びイソプロパノール等のアルコール類、2−メトキシエタノール、1−メトキシエタノール、2−エトキシエタノール、1−エトキシ−2−プロパノール、2−ブトキシエタノール、2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール及び2−(2−ブトキシエトキシ)エタノール等のエーテルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びジイソブチルケトンケトン等のケトン類、トルエン及びキシレン等の炭化水素類が挙げられる。なお、これらの希釈剤は、単独で使用しても、2種以上を混合して使用してもよい。 When the hexagonal boron nitride primary particle agglomerate of the present invention is mixed with a resin to form a resin composition, an organic solvent may be added if necessary in order to facilitate mixing of the two. Examples of the organic solvent include alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxyethoxy). ) Ethanol, ether alcohols such as 2-(2-ethoxyethoxy)ethanol and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone And ketones such as diisobutyl ketone ketone, and hydrocarbons such as toluene and xylene. These diluents may be used alone or in combination of two or more.
本発明の第3の実施形態である電気絶縁部材は、第2の実施形態である六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を成形加工或いは成型加工し、さらに必要に応じて他の素材等と組み合わせてなした、熱インターフェース材である。 The electrical insulating member according to the third embodiment of the present invention is formed by molding or molding the resin composition containing the hexagonal boron nitride primary particle aggregates according to the second embodiment, and if necessary, other It is a thermal interface material made by combining it with materials.
<熱インターフェース材の熱伝導性の評価>
本発明の熱インターフェース材の熱伝導率H(単位はW/(m・K))は、前記熱インターフェース材の、熱拡散率A(単位はm2/秒)、密度B(単位はkg/m3)及び比熱容量C(単位はJ/(kg・K))から、H=A×B×Cとして算出することができる。なお、前記熱拡散率Aは、JIS R1611に準拠し、市販の装置を用いたレーザーフラッシュ法に従い測定した値である。また、密度Bは、JIS K6268に準拠し、アルキメデス法を用いて求めた値である。さらに、比熱容量Cは、JIS K7123に準拠し、DSC測定装置を用いて求めた値である。
<Evaluation of thermal conductivity of thermal interface material>
The thermal conductivity H (unit: W/(m·K)) of the thermal interface material of the present invention is the thermal diffusivity A (unit: m 2 /sec), density B (unit: kg/) of the thermal interface material. It can be calculated as H=A×B×C from m 3 ) and the specific heat capacity C (unit is J/(kg·K)). The thermal diffusivity A is a value measured according to JIS R1611, according to the laser flash method using a commercially available device. The density B is a value obtained by using the Archimedes method according to JIS K6268. Further, the specific heat capacity C is a value obtained by using a DSC measuring device in accordance with JIS K7123.
以下、本発明を、実施例、比較例を挙げてさらに具体的に説明する。
<実施例1>
<六方晶窒化ホウ素一次粒子凝集体の作製>
ホウ酸(日東電工社製)52kgとメラミン(DSM社製)50kgを混合し、バッチ式高周波炉(富士電波社製)にて窒素雰囲気下で、1000℃で4時間焼成後、さらに1600℃で4時間焼成して、アモルフォス状態である六方晶窒化ホウ素一次粒子凝集体の前駆体(イ)と、ホウ酸52kgとメラミン50kgを混合し、バッチ式高周波炉にて窒素雰囲気下で1000℃で4時間焼成後、さらに2000℃で4時間焼成した結晶状態である六方晶窒化ホウ素一次粒子凝集体の前駆体(ロ)を得た。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
<Example 1>
<Preparation of hexagonal boron nitride primary particle aggregate>
52 kg of boric acid (manufactured by Nitto Denko) and 50 kg of melamine (manufactured by DSM) were mixed and baked in a batch type high-frequency furnace (manufactured by Fuji Denpa) under nitrogen atmosphere at 1000°C for 4 hours, and then at 1600°C. After firing for 4 hours, a precursor (a) of hexagonal boron nitride primary particle aggregates in an amorphous state, 52 kg of boric acid and 50 kg of melamine were mixed, and the mixture was mixed in a batch type high-frequency furnace at 1000° C. in a nitrogen atmosphere at 4° C. for 4 hours. After the firing for 4 hours, it was further fired at 2000° C. for 4 hours to obtain a precursor (b) of a hexagonal boron nitride primary particle aggregate in a crystalline state.
前記前駆体(イ)の粉末15.72kgと、前記前駆体(ロ)の粉末5.24kgと、焼結助剤の炭酸カルシウム(白石工業社製、PC−700)0.54kg及び水78.5kgを、ヘンシェルミキサーを用いて混合した後、容器内径50cm、ボール直径10cmのボールミルで5時間粉砕して、水スラリーを得た。さらに前記水スラリー100質量部に対して、ポリビニルアルコール樹脂(製品名ゴーセノール、日本合成化学社製)0.5質量部と、アニオン界面活性剤(製品名プライサーフA219B、第一工業製薬社製)0.5質量部を添加し、溶解するまで50℃で加熱撹拌した後、7000rpmの回転数で運転させた回転式アトマイザー(PK−05番、プリス社製)を通して温度230℃の噴霧乾燥機中に噴出させた。回収された前記水スラリー乾燥処理物を、さらにバッチ式高周波炉にて窒素雰囲気下で、1850〜1950℃で4時間焼成した後、解砕して実施例1の六方晶窒化ホウ素一次粒子凝集体を得た。このときの条件を表1にまとめて記した。 15.72 kg of the powder of the precursor (a), 5.24 kg of the powder of the precursor (b), 0.54 kg of calcium carbonate (PC-700 manufactured by Shiraishi Industry Co., Ltd.) as a sintering aid, and 78. 5 kg was mixed using a Henschel mixer, and then pulverized for 5 hours in a ball mill having a container inner diameter of 50 cm and a ball diameter of 10 cm to obtain a water slurry. Further, with respect to 100 parts by mass of the water slurry, 0.5 part by mass of polyvinyl alcohol resin (product name Gohsenol, manufactured by Nippon Gosei Kagaku Co., Ltd.) and an anionic surfactant (product name: PRYSURF A219B, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). 0.5 parts by mass was added, and the mixture was heated and stirred at 50° C. until dissolved, and then was passed through a rotary atomizer (PK-05, Pris) operated at a rotation speed of 7000 rpm in a spray dryer at a temperature of 230° C. Squirted out. The recovered water-slurry dried product was further calcined in a batch type high-frequency furnace under a nitrogen atmosphere at 1850 to 1950° C. for 4 hours, and then crushed to obtain hexagonal boron nitride primary particle aggregates of Example 1. Got The conditions at this time are summarized in Table 1.
<平均球形度の測定>
作製した実施例1の六方晶窒化ホウ素一次粒子凝集体の平均球形度は、以下のような手順で測定した。試料台上の導電性両面テープに固定した各粗化処理済み凝集体を、走査型電子顕微鏡(JSM−6010LA、日本電子社製)にて撮影し、得られた凝集体2次元画像を画像解析ソフトウェア(Mac−View、マウンテック社製)に取り込み、写真から先述した手順によって凝集体2次元画像の投影面積と周囲長を測定し、凝集体の一個の球形度を算出した。この際の画像の倍率は100倍、画像解析の画素数は1510万画素であった。この操作を繰り返して、任意の凝集体100個の球形度を求め、その平均値を実施例1の平均球形度とした。この値は表1に記載した。
<Measurement of average sphericity>
The average sphericity of the produced hexagonal boron nitride primary particle aggregate of Example 1 was measured by the following procedure. Each roughening-treated aggregate fixed to the conductive double-sided tape on the sample table was photographed with a scanning electron microscope (JSM-6010LA, manufactured by JEOL Ltd.), and the obtained two-dimensional image of the aggregate was subjected to image analysis. The projected area and the perimeter of the aggregate two-dimensional image were measured by the procedure described above from the photograph by importing into software (Mac-View, manufactured by Mountech Co., Ltd.), and the sphericity of each aggregate was calculated. The magnification of the image at this time was 100 times, and the number of pixels for image analysis was 15.1 million pixels. By repeating this operation, the sphericity of 100 arbitrary aggregates was determined, and the average value was used as the average sphericity of Example 1. This value is shown in Table 1.
<空隙率>
作製した実施例1の六方晶窒化ホウ素一次粒子凝集体の空隙率は、水銀ポロシメーター(PASCAL 140−440、FISONS INSTRUMENTS社製)を用いて細孔体積を測定することにより求めた値である。前記空隙率をεg(%)とすると、εg=Vg/(Vg+1/ρt)×100の式から算出することができる。Vgは、水銀ポロシメーターで測定された全細孔体積から、粒子間空隙体積を差し引いた値(cm3/g)である。なお粒子間空隙体積は、水銀ポロシメーターによる細孔体積の積算分布曲線における変曲点の積算容積とした。またρtは、六方晶窒化ホウ素一次粒子の真比重であり、2.34(g/cm3)とした。
<Porosity>
The porosity of the produced hexagonal boron nitride primary particle aggregate of Example 1 is a value obtained by measuring the pore volume using a mercury porosimeter (PASCAL 140-440, manufactured by FISONS INSTRUMENTS). If the porosity is εg (%), it can be calculated from the equation εg=Vg/(Vg+1/ρt)×100. Vg is a value (cm 3 /g) obtained by subtracting the interparticle void volume from the total pore volume measured by a mercury porosimeter. The interparticle void volume was the cumulative volume at the inflection point in the cumulative distribution curve of the pore volume measured by the mercury porosimeter. Further, ρt is the true specific gravity of the hexagonal boron nitride primary particles and is set to 2.34 (g/cm 3 ).
<タップ密度>
作製した実施例1の六方晶窒化ホウ素一次粒子凝集体のタップ密度は、粉体特性評価装置(商品名パウダーテスター PT−E型、ホソカワミクロン社製)を用い、前記一次粒子凝集体を100cm3の専用容器に充填し、タッピングタイム180秒、タッピング回数180回、タップリフト18mmの条件でタッピングを行った後のかさ密度を測定し、実施例1のタップ密度とした。この値は表1に記載した。
<Tap density>
The tap density of the produced hexagonal boron nitride primary particle aggregate of Example 1 was measured by using a powder property evaluation device (trade name: Powder Tester PT-E type, manufactured by Hosokawa Micron Co., Ltd.), and the primary particle aggregate of 100 cm 3 The bulk density after filling in a container and performing tapping under the conditions of a tapping time of 180 seconds, a tapping frequency of 180 times, and a tap lift of 18 mm was determined as the tap density of Example 1. This value is shown in Table 1.
<粒子強度>
作製した実施例1の六方晶ホウ素一次粒子凝集体の粒子強度の測定は、微小圧縮試験機(MCT−510、島津製作所社製)を用い、φ200μmの平面圧子を用いて、粒子径d(mm)の六方晶窒化ホウ素一次粒子凝集体の破壊試験力P(N)を求めた。破壊強度Cs(MPa)は、Cs=2.48P/πd2の式から求めた。粒子を変えて同じ測定を10回繰り返した平均値を、実施例1の強度とした。この値は表1に記載した。
<Particle strength>
The measurement of the particle strength of the produced hexagonal boron primary particle aggregate of Example 1 was carried out using a micro compression tester (MCT-510, manufactured by Shimadzu Corporation) using a plane indenter of φ200 μm, and the particle diameter d(mm The fracture test force P(N) of the hexagonal boron nitride primary particle agglomerates in () was determined. The breaking strength Cs (MPa) was obtained from the equation of Cs=2.48P/πd 2 . The average value obtained by repeating the same measurement 10 times with different particles was used as the strength of Example 1. This value is shown in Table 1.
<平均粒子径の測定>
作製した実施例1の六方晶窒化ホウ素一次粒子凝集体の平均粒子径を、粒度分布測定機(MT3300EX、日機装社製)を用いて測定した。一回当たりの測定時間は30秒である。粒度分布測定に際し、前記凝集体を分散させる溶媒には水を、分散剤にはヘキサメタリン酸を用いた。このとき水の屈折率には1.33を、また、窒化ホウ素粉末の屈折率については1.80の数値を用いた。実施例1の平均粒子径の測定値は表1に示した。
<Measurement of average particle size>
The average particle size of the produced hexagonal boron nitride primary particle aggregates of Example 1 was measured using a particle size distribution analyzer (MT3300EX, manufactured by Nikkiso Co., Ltd.). The measurement time for each measurement is 30 seconds. In measuring the particle size distribution, water was used as the solvent for dispersing the aggregate and hexametaphosphoric acid was used as the dispersant. At this time, the refractive index of water was 1.33, and the refractive index of the boron nitride powder was 1.80. The measured values of the average particle diameter of Example 1 are shown in Table 1.
<一次粒子の長径と平均厚みのアスペクト比の測定>
アスペクト比の測定は、観察の前処理として、六方晶窒化ホウ素一次粒子凝集体を樹脂で包埋後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。その後、走査型電子顕微鏡、例えば「JSM−6010LA」(日本電子社製)にてSEM像を撮影し、得られた断面の粒子像を画像解析ソフトウェア、例えば「A像くん」(旭化成エンジニアリング社製)に取り込み、測定することができる。この際の画像の倍率は100倍、画像解析の画素数は1510万画素であった。マニュアル測定で、短冊状に見える粒子を100個を観察した上で、長径が長い方から10位以内に入る粒子を10個選定し、前記10個の粒子の長径と厚みの長さを測り、アスペクト比=長径/厚みとする計算式より各10個の粒子のアスペクト比を算出し、それらの平均値をアスペクト比とした。この方法で測定した、実施例1の六法晶窒化ホウ素一次粒子凝集体を構成している一次粒子のアスペクト比は、13.8であった。
<Measurement of major axis of primary particles and aspect ratio of average thickness>
For the measurement of the aspect ratio, as a pretreatment for observation, the hexagonal boron nitride primary particle aggregates were embedded in a resin, processed by a CP (cross section polisher) method, fixed on a sample stage, and then subjected to osmium coating. Then, a scanning electron microscope, for example, "JSM-6010LA" (manufactured by JEOL Ltd.) was used to take an SEM image, and the obtained cross-sectional particle image was analyzed by image analysis software, for example, "A image-kun" (manufactured by Asahi Kasei Engineering Co., Ltd.). ) And can measure. The magnification of the image at this time was 100 times, and the number of pixels for image analysis was 15.1 million pixels. In manual measurement, after observing 100 particles that look like strips, select 10 particles that fall within the 10th place from the longer major axis, measure the major axis and the length of the 10 particles, The aspect ratio of each 10 particles was calculated from the calculation formula of aspect ratio=major axis/thickness, and the average value thereof was used as the aspect ratio. The aspect ratio of the primary particles constituting the hexagonal boron nitride primary particle aggregate of Example 1 measured by this method was 13.8.
<実施例2〜11>
実施例2〜11の六方晶窒化ホウ素一次粒子凝集体は、スラリー化工程におけるスラリーの配合条件、噴霧乾燥工程におけるアトマイザーの回転数条件、及び焼成工程における焼成温度条件を、実施例1と変えて作製したものである。これらの条件、及び得られた六方晶窒化ホウ素一次粒子凝集体の測定値を表1に示した。
<Examples 2 to 11>
The hexagonal boron nitride primary particle agglomerates of Examples 2 to 11 were different from those of Example 1 except that the mixing conditions of the slurry in the slurry forming process, the rotation speed condition of the atomizer in the spray drying process, and the baking temperature condition in the baking process were changed. It was made. Table 1 shows these conditions and the measured values of the obtained hexagonal boron nitride primary particle aggregates.
<比較例1〜12>
比較例1〜12の六方晶窒化ホウ素一次粒子凝集体は、スラリー化工程におけるスラリーの配合条件、噴霧乾燥工程におけるアトマイザーの回転数条件、及び焼成工程における焼成温度条件を、実施例1と変えて作製したものである。但し、比較例3の条件では、噴霧工程が実施できず、六方晶窒化ホウ素一次粒子凝集体は得られなかった。これらの条件、及び得られた六方晶窒化ホウ素一次粒子凝集体の測定値を表2に示した。
<Comparative Examples 1 to 12>
The hexagonal boron nitride primary particle agglomerates of Comparative Examples 1 to 12 were different from those of Example 1 except that the slurry compounding conditions in the slurry forming process, the atomizer rotation speed conditions in the spray drying process, and the baking temperature conditions in the baking process were changed. It was made. However, under the conditions of Comparative Example 3, the spraying step could not be performed, and a hexagonal boron nitride primary particle aggregate could not be obtained. Table 2 shows these conditions and the measured values of the obtained hexagonal boron nitride primary particle aggregates.
<比較例13>
炭化ホウ素粉末(#1200、デンカ社製)を、窒素ガスを圧力0.1MPaとした雰囲気中2250℃で処理して窒化ホウ素前駆体を取得し、以後の操作は実施例と同様にして、比較例13の六法晶窒化ホウ素一次粒子凝集体を作製した。得られた六方晶窒化ホウ素一次粒子凝集体の測定値を表2に示した。
<Comparative Example 13>
Boron carbide powder (#1200, manufactured by Denka Co., Ltd.) was treated at 2250° C. in an atmosphere of nitrogen gas at a pressure of 0.1 MPa to obtain a boron nitride precursor. A hexagonal boron nitride primary particle aggregate of Example 13 was prepared. Table 2 shows the measured values of the obtained hexagonal boron nitride primary particle aggregates.
<樹脂組成物、及び熱インターフェース材の作製>
熱インターフェース材としての実用特性を評価するため、実施例1〜11、比較例1〜13(但し比較例3を除く)の六方晶窒化ホウ素一次粒子凝集体を60体積%、エポキシ樹脂(商品名エピコート807、三菱化学社製)が36体積%、硬化剤(商品名アクメックスH−84B、日本合成化工社製)が4体積%、となるように混合して樹脂組成物となし、さらにPET製シート上に厚みが1.0mmになるように塗布した後、500PaAの減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm2条件で60分間のプレス加熱加圧して厚さ0.5mmのシート状とし、実施例1〜11、及び比較例1〜13(但し比較例3を除く)の熱インターフェース材を作製した。
<Production of resin composition and thermal interface material>
In order to evaluate the practical properties as a thermal interface material, the hexagonal boron nitride primary particle aggregates of Examples 1 to 11 and Comparative Examples 1 to 13 (excluding Comparative Example 3) were used in an amount of 60% by volume, an epoxy resin (trade name). 36% by volume of Epicoat 807, manufactured by Mitsubishi Chemical Co., Ltd., and 4% by volume of a curing agent (trade name Acmex H-84B, manufactured by Nippon Gohsei Co., Ltd.) to form a resin composition, and further PET. After being applied on the sheet to have a thickness of 1.0 mm, vacuum degassing at 500 PaA was performed for 10 minutes. After that, press heating and pressurization under conditions of a temperature of 150° C. and a pressure of 160 kg/cm 2 for 60 minutes to form a sheet having a thickness of 0.5 mm, and Examples 1 to 11 and Comparative Examples 1 to 13 (excluding Comparative Example 3). ) Was prepared.
<熱伝導率の測定>
実施例1〜11、及び比較例1〜13(但し比較例3を除く)の熱インターフェース材の熱伝導率H(単位はW/(m・K))を、幅10mm×10mm×厚み0.5mmの大きさに切り出した測定用試料を用い、キセノンフラッシュアナライザ(LFA447NanoFlash、NETZSCH社製)によるレーザーフラッシュ法による熱拡散率A(単位はm2/秒)、比重測定キット(エー・アンド・デイ社製)を用いて測定した密度B(単位はkg/m3)、DSC測定装置(ThermoPlusEvo DSC8230、リガク社製)を用いて測定した比熱容量C(単位はJ/(kg・K))の各測定値から、H=A×B×Cとして求めた。これらの結果も、表1及び表2に併せて示した。なお、熱インターフェース材の熱伝導率が10W/(m・K)以上あれば、従来技術水準よりも改善されたと判断した。
<Measurement of thermal conductivity>
The thermal conductivity H (unit: W/(m·K)) of the thermal interface materials of Examples 1 to 11 and Comparative Examples 1 to 13 (excluding Comparative Example 3) was 10 mm width×10 mm×thickness 0. Using a measurement sample cut into a size of 5 mm, a thermal diffusivity A (unit: m 2 /sec) by a laser flash method using a xenon flash analyzer (LFA447 NanoFlash, manufactured by NETZSCH), a specific gravity measurement kit (A&D) Density B (unit: kg/m 3 ) measured using a DSC measuring device (ThermoPlusEvo DSC8230, manufactured by Rigaku) of specific heat capacity C (unit: J/(kg·K)) From each measured value, H=A×B×C was obtained. These results are also shown in Tables 1 and 2. If the thermal conductivity of the thermal interface material was 10 W/(m·K) or more, it was judged that the thermal interface material was improved from the conventional level.
実施例と比較例の対比から明らかなように、本発明の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を用いた熱インターフェース材は、優れた熱伝導率を有することがわかる。 As is clear from the comparison between the examples and the comparative examples, it is understood that the thermal interface material using the resin composition containing the hexagonal boron nitride primary particle aggregate of the present invention has excellent thermal conductivity.
本発明の六方晶窒化ホウ素一次粒子凝集体は、高い熱伝導性を示し、これを含む樹脂組成物を用いた電気絶縁部材は、プリント配線板の熱インターフェース材として好ましく用いることができる。
The hexagonal boron nitride primary particle agglomerate of the present invention exhibits high thermal conductivity, and an electrical insulating member using a resin composition containing the same can be preferably used as a thermal interface material for a printed wiring board.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016153197A JP6720014B2 (en) | 2016-08-03 | 2016-08-03 | Hexagonal boron nitride primary particle aggregate, resin composition and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016153197A JP6720014B2 (en) | 2016-08-03 | 2016-08-03 | Hexagonal boron nitride primary particle aggregate, resin composition and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018020932A JP2018020932A (en) | 2018-02-08 |
JP6720014B2 true JP6720014B2 (en) | 2020-07-08 |
Family
ID=61165225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016153197A Active JP6720014B2 (en) | 2016-08-03 | 2016-08-03 | Hexagonal boron nitride primary particle aggregate, resin composition and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6720014B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6901327B2 (en) * | 2017-06-12 | 2021-07-14 | 株式会社フジミインコーポレーテッド | Fillers, moldings, and heat dissipation materials |
WO2020004600A1 (en) * | 2018-06-29 | 2020-01-02 | デンカ株式会社 | Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member |
JP6923493B2 (en) * | 2018-07-26 | 2021-08-18 | 住友電気工業株式会社 | Insulated wire |
JP7431574B2 (en) * | 2018-12-21 | 2024-02-15 | 積水化学工業株式会社 | laminate |
JP7304167B2 (en) * | 2019-02-13 | 2023-07-06 | デンカ株式会社 | Method for manufacturing insulating sheet, method for manufacturing metal-based circuit board, and insulating sheet |
KR20210135997A (en) * | 2019-02-27 | 2021-11-16 | 미쯔비시 케미컬 주식회사 | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device |
WO2020196643A1 (en) * | 2019-03-27 | 2020-10-01 | デンカ株式会社 | Boron nitride aggregated particles, thermal conductive resin composition, and heat dissipation member |
JP7566917B2 (en) | 2020-09-07 | 2024-10-15 | デンカ株式会社 | Insulating resin composition, cured insulating resin body, laminate and circuit board |
JP7357181B1 (en) * | 2021-12-27 | 2023-10-05 | デンカ株式会社 | Boron nitride particles and heat dissipation sheet |
JP7357180B1 (en) * | 2021-12-27 | 2023-10-05 | デンカ株式会社 | Boron nitride particles and heat dissipation sheet |
WO2023162641A1 (en) * | 2022-02-22 | 2023-08-31 | デンカ株式会社 | Powder, powder manufacturing method, and heat dissipation sheet |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5036696B2 (en) * | 2008-12-26 | 2012-09-26 | 三菱電機株式会社 | Thermally conductive sheet and power module |
JPWO2012070289A1 (en) * | 2010-11-26 | 2014-05-19 | 三菱電機株式会社 | Thermally conductive sheet and power module |
JP5969314B2 (en) * | 2012-08-22 | 2016-08-17 | デンカ株式会社 | Boron nitride powder and its use |
US9656868B2 (en) * | 2013-03-07 | 2017-05-23 | Denka Company Limited | Boron-nitride powder and resin composition containing same |
JP6565157B2 (en) * | 2014-10-06 | 2019-08-28 | 住友ベークライト株式会社 | Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member |
WO2016092952A1 (en) * | 2014-12-08 | 2016-06-16 | 昭和電工株式会社 | Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet |
TWI710595B (en) * | 2014-12-08 | 2020-11-21 | 日商昭和電工材料股份有限公司 | Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device |
-
2016
- 2016-08-03 JP JP2016153197A patent/JP6720014B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018020932A (en) | 2018-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6720014B2 (en) | Hexagonal boron nitride primary particle aggregate, resin composition and use thereof | |
JP6815152B2 (en) | Hexagonal Boron Nitride Primary Particle Aggregates | |
JP6296568B2 (en) | Boron nitride powder and resin composition containing the same | |
JP6704271B2 (en) | Hexagonal boron nitride primary particle aggregate, resin composition and use thereof | |
TWI634094B (en) | Resin impregnated boron nitride sintered body and use thereof | |
JP5969314B2 (en) | Boron nitride powder and its use | |
JP7069485B2 (en) | Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it. | |
TWI644855B (en) | Hexagonal crystal boron nitride powder, its manufacturing method, resin composition and resin flake | |
KR20210022569A (en) | Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member | |
JP6683715B2 (en) | Thermally conductive resin composition | |
JP6875854B2 (en) | Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications | |
JP6125282B2 (en) | Boron nitride composite powder and thermosetting resin composition using the same | |
JP5647945B2 (en) | Insulating resin composition for circuit board, insulating sheet for circuit board, laminated board for circuit board, and metal base circuit board | |
KR20170127186A (en) | Manufacturing method of boron nitride nano sheet powder and manufacturing method of boron nitride nano sheet/polymer nano composite film using the same | |
US20230312343A1 (en) | Spherical aln particles and method of production of same, and composite material containing same | |
JP2015167181A (en) | Method of manufacturing heat dissipation sheet | |
JP3572692B2 (en) | α-Alumina powder-containing resin composition and rubber composition | |
CN112789327A (en) | Thermally conductive sheet precursor, thermally conductive sheet obtained from precursor, and method for producing thermally conductive sheet | |
JP7203290B2 (en) | Sheet-like hexagonal boron nitride sintered body and method for producing the same | |
JP2020066563A (en) | Boron nitride secondary aggregated particle, heat radiation sheet containing the same, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200305 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6720014 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |