[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6716136B2 - Fluid flow former and non-contact transfer device - Google Patents

Fluid flow former and non-contact transfer device Download PDF

Info

Publication number
JP6716136B2
JP6716136B2 JP2016104583A JP2016104583A JP6716136B2 JP 6716136 B2 JP6716136 B2 JP 6716136B2 JP 2016104583 A JP2016104583 A JP 2016104583A JP 2016104583 A JP2016104583 A JP 2016104583A JP 6716136 B2 JP6716136 B2 JP 6716136B2
Authority
JP
Japan
Prior art keywords
hole
fluid
ejection port
passage
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016104583A
Other languages
Japanese (ja)
Other versions
JP2017209752A (en
Inventor
斉 岩坂
斉 岩坂
裕二 河西
裕二 河西
克洋 輿石
克洋 輿石
英幸 徳永
英幸 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmotec Co Ltd
Original Assignee
Harmotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmotec Co Ltd filed Critical Harmotec Co Ltd
Priority to JP2016104583A priority Critical patent/JP6716136B2/en
Publication of JP2017209752A publication Critical patent/JP2017209752A/en
Application granted granted Critical
Publication of JP6716136B2 publication Critical patent/JP6716136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、負圧を発生させて部材を吸引する流体流形成体に関する。 The present invention relates to a fluid flow former that generates a negative pressure and sucks a member.

近年、半導体ウェハやガラス基板等の板状部材を非接触で搬送するための装置が利用されている。例えば特許文献1には、ベルヌーイ効果を利用して板状部材を非接触で搬送する装置が記載されている。この装置は、装置下面に開口する円筒室内に旋回流を発生させて旋回流中心部の負圧によって板状部材を吸引する一方で、当該円等室から流出する流体によって当該装置と板状部材との間に一定の距離を保つことで板状部材の非接触での搬送を可能としている。 2. Description of the Related Art In recent years, a device for non-contact transfer of plate-shaped members such as semiconductor wafers and glass substrates has been used. For example, Patent Document 1 describes a device that conveys a plate-shaped member in a non-contact manner by using the Bernoulli effect. In this device, a swirl flow is generated in a cylindrical chamber opened on the lower surface of the device and the plate-shaped member is sucked by a negative pressure at the center of the swirl flow, while the device and the plate-shaped member are discharged by a fluid flowing out from the circular chamber It is possible to carry the plate-shaped member in a non-contact manner by keeping a constant distance between the plate-shaped member and.

特開2005−51260号公報JP, 2005-512260, A

本発明は、各々孔内に流体を供給して負圧を発生させる複数の流体通路を備える流体流形成体であって、当該負圧により吸引される部材が、各流体通路から供給される流体により移動させられる方向が略同一となる流体流形成体を提供することを目的とする。 The present invention is a fluid flow former, comprising a plurality of fluid passages each of which supplies a fluid to a hole to generate a negative pressure, wherein a member sucked by the negative pressure is a fluid supplied from each fluid passage. It is an object of the present invention to provide a fluid flow forming body in which the moving directions are substantially the same.

上記の課題を解決するため、本発明は、本体と、前記本体に形成された平坦状の端面と、前記端面に形成された孔と、前記孔に面する前記本体の内側面に形成された第1噴出口と、前記第1噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第1流体通路と、前記孔に面する前記本体の内側面に形成された第2噴出口と、前記第2噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第2流体通路とを備え、前記第1及び第2流体通路は、前記第1噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向が、前記第2噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向と略同一となるように形成されている流体流形成体を提供する。 In order to solve the above-mentioned problems, the present invention is formed on a main body, a flat end surface formed on the main body, a hole formed on the end surface, and an inner surface of the main body facing the hole. A first jet port, a first fluid passage for supplying a fluid from the first jet port into the hole to generate a negative pressure in the hole, and an inner surface of the body facing the hole. A second fluid passage for supplying a fluid from the second ejection outlet into the hole to generate a negative pressure in the hole; and the first and second fluid passages include the first fluid passage and the second fluid passage. (1) The outflow direction of the fluid supplied from the ejection port into the hole and outflowing from the hole along the end face is supplied from the second ejection port into the hole and outflows from the hole along the end face. Provided is a fluid flow former which is formed to be substantially the same as the outflow direction of a fluid.

好ましい態様において、前記第1及び第2流体通路は、前記第1流体通路が延びる方向と前記第2流体通路が延びる方向とが略直交するように形成されている。 In a preferred aspect, the first and second fluid passages are formed such that a direction in which the first fluid passage extends and a direction in which the second fluid passage extends are substantially orthogonal to each other.

さらに好ましい態様において、前記孔の底面は、前記第1又は第2噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向に沿って上方に傾斜又は湾曲するように形成されている。 In a further preferred aspect, the bottom surface of the hole is inclined or curved upward along the outflow direction of the fluid supplied from the first or second ejection port into the hole and outflowing from the hole along the end face. Is formed.

さらに好ましい態様において、前記孔に面する前記本体の内側面に形成された第3噴出口と、前記第3噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第3流体通路と、前記孔に面する前記本体の内側面に形成された第4噴出口と、前記第4噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第4流体通路とを備え、前記第3及び第4流体通路は、前記第3噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向が、前記第4噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向と略同一となるように形成されている。 In a further preferred aspect, a third ejection port formed on the inner surface of the main body facing the hole, and a third nozzle for supplying a fluid into the hole from the third ejection port to generate a negative pressure in the hole A third fluid passage, a fourth ejection port formed on the inner surface of the main body facing the hole, and a fluid supplied from the fourth ejection port into the hole to generate a negative pressure in the hole. And a fourth fluid passage, wherein the third and fourth fluid passages have a fourth ejection direction in which the fluid is supplied from the third ejection port into the hole and flows out from the hole along the end face. It is formed so as to be substantially the same as the outflow direction of the fluid supplied from the outlet into the hole and flowing out from the hole along the end face.

さらに好ましい態様において、前記第1及び第3噴出口は前記孔を挟んで対向し、前記第2及び第4噴出口は前記孔を挟んで対向する。 In a further preferred aspect, the first and third ejection ports face each other across the hole, and the second and fourth ejection ports face each other across the hole.

また本発明は、板状の基体と、前記基体に設置される1以上の上記の流体流形成体とを備える非接触搬送装置を提供する。 The present invention also provides a non-contact transfer device including a plate-shaped base and one or more of the above-described fluid flow formers mounted on the base.

本発明によれば、各々孔内に流体を供給して負圧を発生させる複数の流体通路を備える流体流形成体であって、当該負圧により吸引される部材が、各流体通路から供給される流体により移動させられる方向が略同一となる流体流形成体を提供することができる。 According to the present invention, there is provided a fluid flow forming body including a plurality of fluid passages each of which supplies a fluid to the inside of the hole to generate a negative pressure, and a member sucked by the negative pressure is supplied from each fluid passage. It is possible to provide a fluid flow former in which the directions in which the fluid is moved are substantially the same.

非接触搬送装置1の構造の一例を示す図である。It is a figure which shows an example of a structure of the non-contact conveyance apparatus 1. 旋回流形成体3の構造の一例を示す図である。It is a figure which shows an example of a structure of the swirl flow forming body 3. 流体流形成体4の構造の一例を示す図である。It is a figure which shows an example of the structure of the fluid flow formation body 4. 流体流形成体4Aの平面図である。It is a top view of fluid flow formation object 4A. 流体流形成体4Bの平面図である。It is a top view of fluid flow formation object 4B. 流体流形成体4Cの平面図である。It is a top view of fluid flow formation object 4C. 流体流形成体4Dの平面図である。It is a top view of fluid flow formation object 4D. 流体流形成体4Eの平面図である。It is a top view of fluid flow formation object 4E. 流体流形成体6の平面図である。It is a top view of the fluid flow formation body 6. 流体流形成体7の平面図である。3 is a plan view of a fluid flow former 7. FIG. 流体流形成体4Fの構造の一例を示す図である。It is a figure which shows an example of the structure of the fluid flow formation body 4F. 流体流形成体8の構造の一例を示す図である。It is a figure which shows an example of the structure of the fluid flow formation body 8.

以下、本発明の実施の形態について図面を参照しつつ説明する。
1.実施形態
図1は、本発明の一実施形態に係る非接触搬送装置1の構造の一例を示す図である。図1(a)は非接触搬送装置1の平面図であり、図1(b)は非接触搬送装置1の側面図である。非接触搬送装置1は、半導体ウェハやガラス基板等の板状の部材を吸引保持して搬送するための装置である。この非接触搬送装置1は、板状の基体2と、基体2のおもて面に設置され流体の旋回流を形成する複数の旋回流形成体3と、基体2のおもて面に設置され流体流を形成する流体流形成体4と、基体2のおもて面に設置され被搬送物の位置決めを行う複数のガイド部材5とを備える。ここで流体とは、具体的には圧縮空気等の気体や、純水や炭酸水等の液体である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1. Embodiment FIG. 1 is a diagram showing an example of the structure of a non-contact transfer device 1 according to an embodiment of the present invention. FIG. 1A is a plan view of the non-contact transfer device 1, and FIG. 1B is a side view of the non-contact transfer device 1. The non-contact transfer device 1 is a device for suction-holding and transferring a plate-shaped member such as a semiconductor wafer or a glass substrate. This non-contact transfer apparatus 1 is installed on the front surface of a base body 2 and a plurality of swirl flow forming bodies 3 that are installed on the front surface of the base body 2 to form a swirling flow of fluid. A fluid flow forming body 4 that forms a fluid flow is provided, and a plurality of guide members 5 that are installed on the front surface of the base body 2 to position the transported object. Here, the fluid is specifically a gas such as compressed air or a liquid such as pure water or carbonated water.

基体2は二股のフォーク形状を有し、矩形の把持部21と、把持部21から分岐する2つの腕部22とからなる。把持部21の長手方向の一端側には、流体流形成体4を収容するための円形の凹部(図示なし)が形成され、流体流形成体4はその凹部内に接着剤等により固定される。把持部21の裏面には供給口211が形成され、この供給口211を介して流体が基体2内に供給される。腕部22には、旋回流形成体3を収容するための複数の円形の凹部(図示なし)が形成され、各旋回流形成体3はその凹部内に接着剤等により固定される。旋回流形成体3と流体流形成体4とは同一円周上に等間隔に配置される。また、各腕部22は、把持部21の長手方向に対して約45度の角度で突出する突出部221を有し、この突出部221にはガイド部材5が固定される。基体2の内部には流体通路23が形成され、この流体通路23を通じて、供給口211から供給された流体が旋回流形成体3及び流体流形成体4に供給される。 The base body 2 has a bifurcated fork shape and includes a rectangular grip portion 21 and two arm portions 22 branched from the grip portion 21. A circular recess (not shown) for accommodating the fluid flow former 4 is formed on one end side in the longitudinal direction of the grip portion 21, and the fluid flow former 4 is fixed in the recess by an adhesive or the like. .. A supply port 211 is formed on the back surface of the grip portion 21, and the fluid is supplied into the base 2 through the supply port 211. The arm 22 is formed with a plurality of circular recesses (not shown) for accommodating the swirl flow-forming bodies 3, and each swirl flow-forming body 3 is fixed in the recesses with an adhesive or the like. The swirl flow former 3 and the fluid flow former 4 are arranged at equal intervals on the same circumference. Further, each arm portion 22 has a protruding portion 221 protruding at an angle of about 45 degrees with respect to the longitudinal direction of the grip portion 21, and the guide member 5 is fixed to the protruding portion 221. A fluid passage 23 is formed inside the base body 2, and the fluid supplied from the supply port 211 is supplied to the swirl flow former 3 and the fluid flow former 4 through the fluid passage 23.

図2は、旋回流形成体3の構造の一例を示す図である。図2(a)は旋回流形成体3の斜視図であり、図2(b)は旋回流形成体3の平面図である。旋回流形成体3は、ベルヌーイ効果を利用して板状部材を非接触で吸引保持する装置である。旋回流形成体3は、その裏面が、腕部22に形成された上記凹部の底面に固定される。この旋回流形成体3は、中央に円形の貫通孔32を有する環状の板体である本体31と、本体31のおもて面に形成された平坦状の端面33と、貫通孔32に面する本体31の内側面に形成された2つの噴出口34と、本体31の外側面に形成された2つの供給口35と、本体31の裏面に形成され噴出口34と供給口35とを連通する溝状の2つの流体通路36とを有する。 FIG. 2 is a diagram showing an example of the structure of the swirl flow forming body 3. 2A is a perspective view of the swirl flow forming body 3, and FIG. 2B is a plan view of the swirl flow forming body 3. The swirl flow forming body 3 is a device that sucks and holds the plate-shaped member in a non-contact manner by utilizing the Bernoulli effect. The back surface of the swirl flow forming body 3 is fixed to the bottom surface of the recess formed in the arm portion 22. The swirl flow forming body 3 includes a main body 31 which is an annular plate having a circular through hole 32 in the center, a flat end surface 33 formed on the front surface of the main body 31, and a surface of the through hole 32. The two ejection ports 34 formed on the inner side surface of the main body 31, the two supply ports 35 formed on the outer side surface of the main body 31, and the ejection ports 34 formed on the back surface of the main body 31 and the supply port 35 communicate with each other. And two groove-shaped fluid passages 36.

2つの噴出口34は本体31の中心に対して点対称となるように形成される。同様に、2つの供給口35は本体31の中心に対して点対称となるように形成される。供給口35は、基体2の内部に形成される流体通路23と連通する。2つの流体通路36は本体31の内周に対して接線方向に延びるように形成され、噴出口34から貫通孔32内に流体を供給する。貫通孔32内に供給された流体はコアンダ効果により本体31の内側面に沿って流れ、貫通孔32内において旋回流を形成する。形成された旋回流を構成する流体分子のうち大部分は、その流体分子が供給された流体通路36が延びる方向に対して約45度の角度で貫通孔32から端面33に沿って流出する。言い換えると、貫通孔32から端面33に沿って流出する流体分子の流速ベクトルの合成ベクトルは、その流体分子が供給された流体通路36が延びる方向に対して約45度の角度をもつ。貫通孔32内に形成された旋回流は貫通孔32の中央部の静止流体を巻き込むこと(エントレインメント)により貫通孔32の中央部に負圧を発生させる。 The two ejection ports 34 are formed so as to be point-symmetric with respect to the center of the main body 31. Similarly, the two supply ports 35 are formed so as to be point-symmetric with respect to the center of the main body 31. The supply port 35 communicates with the fluid passage 23 formed inside the base body 2. The two fluid passages 36 are formed so as to extend tangentially to the inner circumference of the main body 31, and supply the fluid from the ejection ports 34 into the through holes 32. The fluid supplied into the through hole 32 flows along the inner surface of the main body 31 due to the Coanda effect, and forms a swirling flow in the through hole 32. Most of the fluid molecules constituting the formed swirling flow flow out from the through hole 32 along the end face 33 at an angle of about 45 degrees with respect to the direction in which the fluid passage 36 to which the fluid molecules are supplied extends. In other words, the composite vector of the flow velocity vectors of the fluid molecules flowing out from the through hole 32 along the end face 33 has an angle of about 45 degrees with respect to the direction in which the fluid passage 36 to which the fluid molecules are supplied extends. The swirling flow formed in the through hole 32 entrains stationary fluid in the central portion of the through hole 32 (entrainment) to generate a negative pressure in the central portion of the through hole 32.

2つの流体通路36は互いに略平行に延びるように形成される。そのため、一方の流体通路36から貫通孔32内に供給されて端面33に沿って流出する流体の流速ベクトルは、他方の流体通路36から貫通孔32内に供給されて端面33に沿って流出する流体の流速ベクトルと略逆となる。2つの流速ベクトルが逆ベクトルの関係となる結果、旋回流形成体3により吸引される板状部材は理論上は旋回流により移動させられることはない。
また、2つの流体通路36は貫通孔32において同一方向の旋回流を形成するように形成される。
The two fluid passages 36 are formed so as to extend substantially parallel to each other. Therefore, the flow velocity vector of the fluid supplied from one fluid passage 36 into the through hole 32 and flowing out along the end face 33 is supplied from the other fluid passage 36 into the through hole 32 and flows out along the end face 33. It is almost opposite to the fluid velocity vector. As a result of the two flow velocity vectors having an inverse vector relationship, the plate-like member sucked by the swirl flow forming body 3 is theoretically not moved by the swirl flow.
The two fluid passages 36 are formed in the through hole 32 so as to form a swirling flow in the same direction.

図3は、流体流形成体4の構造の一例を示す図である。図3(a)は流体流形成体4の斜視図であり、図3(b)は流体流形成体4の平面図である。流体流形成体4は、ベルヌーイ効果を利用して板状部材を非接触で吸引保持するとともに、当該板状部材を一の方向に向けて移動させる装置である。言い換えると、一方向流形成体または直交流形成体である。流体流形成体4は、その裏面が、把持部21に形成された上記凹部の底面に固定される。この流体流形成体4は、中央に円形の貫通孔42を有する環状の板体である本体41と、本体41のおもて面に形成された平坦状の端面43と、貫通孔42に面する本体41の内側面に形成された2つの噴出口44A及び44Bと、本体41の外側面に形成された供給口45と、本体41の裏面に形成され2つの噴出口44A及び44Bと供給口45とを連通する溝状かつY字形の流体通路46とを有する。 FIG. 3 is a diagram showing an example of the structure of the fluid flow former 4. FIG. 3A is a perspective view of the fluid flow former 4 and FIG. 3B is a plan view of the fluid flow former 4. The fluid flow former 4 is a device that uses the Bernoulli effect to suck and hold a plate-shaped member in a non-contact manner, and moves the plate-shaped member in one direction. In other words, one-way flow formers or cross-flow formers. The back surface of the fluid flow former 4 is fixed to the bottom surface of the recess formed in the grip portion 21. The fluid flow forming body 4 includes a main body 41 that is an annular plate having a circular through hole 42 in the center, a flat end surface 43 formed on the front surface of the main body 41, and a surface of the through hole 42. Two ejection ports 44A and 44B formed on the inner side surface of the main body 41, a supply port 45 formed on the outer side surface of the main body 41, two ejection ports 44A and 44B formed on the back surface of the main body 41, and a supply port And a groove-shaped and Y-shaped fluid passage 46 communicating with 45.

供給口45は、基体2の内部に形成される流体通路23と連通する。流体通路46は、供給口45から本体41の中心に向かって径方向に延びる第1通路部461と、第1通路部461から分岐する第2通路部462及び第3通路部463とからなる。第1通路部461は供給口45と第2通路部462及び第3通路部463とを連通する。第2通路部462は第1通路部461と噴出口44Aとを連通する。第3通路部463は第1通路部461と噴出口44Bとを連通する。 The supply port 45 communicates with the fluid passage 23 formed inside the base body 2. The fluid passage 46 includes a first passage portion 461 that extends in the radial direction from the supply port 45 toward the center of the main body 41, and a second passage portion 462 and a third passage portion 463 that branch from the first passage portion 461. The first passage portion 461 communicates the supply port 45 with the second passage portion 462 and the third passage portion 463. The second passage portion 462 connects the first passage portion 461 and the ejection port 44A. The third passage portion 463 connects the first passage portion 461 and the ejection port 44B.

第2通路部462は本体41の内周に対して接線方向に延びるように形成され、噴出口44Aから貫通孔42内に流体を供給する。貫通孔42内に供給された流体はコアンダ効果により本体41の内側面に沿って流れ、貫通孔42内において流体流を形成する。形成された流体流を構成する流体分子のうち大部分は貫通孔42内を旋回せずに、第2通路部462が延びる方向に対して約45度の角度で貫通孔42から端面43に沿って流出する(矢印A参照)。言い換えると、貫通孔42から端面43に沿って流出する流体分子の流速ベクトルの合成ベクトルが、第2通路部462が延びる方向に対して約45度の角度をもつ。一方、一部の流体分子は貫通孔42内において旋回流を形成する(矢印B参照)。貫通孔42内に形成された流体流は貫通孔42の中央部の静止流体を巻き込むこと(エントレインメント)により貫通孔42の中央部に負圧を発生させる。第2通路部462は本発明に係る第1流体通路の一例である。噴出口44Aは本発明に係る第1噴出口の一例である。 The second passage portion 462 is formed so as to extend tangentially to the inner circumference of the main body 41, and supplies the fluid from the ejection port 44A into the through hole 42. The fluid supplied into the through hole 42 flows along the inner surface of the main body 41 due to the Coanda effect, and forms a fluid flow in the through hole 42. Most of the fluid molecules that form the formed fluid flow do not swirl in the through hole 42, but along the end surface 43 from the through hole 42 at an angle of about 45 degrees with respect to the direction in which the second passage portion 462 extends. Flow out (see arrow A). In other words, the combined vector of the flow velocity vectors of the fluid molecules flowing out from the through hole 42 along the end surface 43 has an angle of about 45 degrees with respect to the direction in which the second passage portion 462 extends. On the other hand, some of the fluid molecules form a swirling flow in the through hole 42 (see arrow B). The fluid flow formed in the through hole 42 entrains the stationary fluid in the central portion of the through hole 42 (entrainment) to generate a negative pressure in the central portion of the through hole 42. The second passage portion 462 is an example of the first fluid passage according to the present invention. The ejection port 44A is an example of the first ejection port according to the present invention.

第3通路部463は本体41の内周に対して接線方向に延びるように形成され、噴出口44Bから貫通孔42内に流体を供給する。貫通孔42内に供給された流体はコアンダ効果により本体41の内側面に沿って流れ、貫通孔42内において流体流を形成する。形成された流体流を構成する流体分子のうち大部分は貫通孔42を旋回せずに、第3通路部463が延びる方向に対して約45度の角度で貫通孔42から端面43に沿って流出する(矢印C参照)。言い換えると、貫通孔42から端面43に沿って流出する流体分子の流速ベクトルの合成ベクトルが、第3通路部463が延びる方向に対して約45度の角度をもつ。一方、一部の流体分子は貫通孔42内において旋回流を形成する(矢印D参照)。貫通孔42内に形成された流体流は貫通孔42の中央部の静止流体を巻き込むこと(エントレインメント)により貫通孔42の中央部に負圧を発生させる。第3通路部463は本発明に係る第2流体通路の一例である。噴出口44Bは本発明に係る第2噴出口の一例である。 The third passage portion 463 is formed so as to extend in a tangential direction with respect to the inner circumference of the main body 41, and supplies the fluid from the ejection port 44B into the through hole 42. The fluid supplied into the through hole 42 flows along the inner surface of the main body 41 due to the Coanda effect, and forms a fluid flow in the through hole 42. Most of the fluid molecules that form the formed fluid flow do not swirl through the through hole 42, but along the end surface 43 from the through hole 42 at an angle of about 45 degrees with respect to the direction in which the third passage portion 463 extends. It flows out (see arrow C). In other words, the combined vector of the flow velocity vectors of the fluid molecules flowing out from the through hole 42 along the end face 43 has an angle of about 45 degrees with respect to the extending direction of the third passage portion 463. On the other hand, some of the fluid molecules form a swirling flow in the through hole 42 (see arrow D). The fluid flow formed in the through hole 42 entrains the stationary fluid in the central portion of the through hole 42 (entrainment) to generate a negative pressure in the central portion of the through hole 42. The third passage portion 463 is an example of the second fluid passage according to the present invention. The ejection port 44B is an example of the second ejection port according to the present invention.

第2通路部462と第3通路部463とは、第2通路部462が延びる方向と第3通路部463が延びる方向とが略直交するように形成される。これは言い換えると、第2通路部462と第3通路部463とは、噴出口44Aから貫通孔42内に供給されて当該貫通孔から端面43に沿って流出する流体の流出方向が、噴出口44Bから貫通孔42内に供給されて当該貫通孔から端面43に沿って流出する流体の流出方向と略同一となるように形成されるとも言える。ここで両流出方向は当然に略平行となっている。両流出方向が略同一となっている結果、流体流形成体4は被吸引部材を一の方向に向けて移動させる(矢印E参照)。ここで一の方向とは具体的には、噴出口44A又は44Bから供給されて貫通孔42から流出する流体の流出方向である。言い換えると、噴出口44Aから噴出時の流体分子の流速ベクトルと、噴出口44Bから噴出時の流体分子の流速ベクトルの合成ベクトルの方向である。流体流形成体4は、この一の方向が、把持部21上において当該流体流形成体が設置された位置から把持部21の長手方向中央部へと向かう方向と略同一となるように把持部21上に設置される。また、第2通路部462と第3通路部463とは貫通孔42において互いに逆方向の旋回流を形成するように形成される。 The second passage portion 462 and the third passage portion 463 are formed so that the extending direction of the second passage portion 462 and the extending direction of the third passage portion 463 are substantially orthogonal to each other. In other words, in the second passage portion 462 and the third passage portion 463, the outflow direction of the fluid that is supplied from the ejection port 44A into the through hole 42 and flows out from the through hole along the end face 43 is the ejection port. It can also be said that it is formed so as to be substantially the same as the outflow direction of the fluid supplied from 44B into the through hole 42 and flowing out from the through hole along the end surface 43. Both outflow directions are naturally substantially parallel here. As a result of the two outflow directions being substantially the same, the fluid flow forming body 4 moves the attracted member in one direction (see arrow E). Here, the one direction is specifically the outflow direction of the fluid supplied from the ejection port 44A or 44B and flowing out from the through hole 42. In other words, it is the direction of the combined vector of the flow velocity vector of the fluid molecules when ejected from the ejection port 44A and the flow velocity vector of the fluid molecules when ejected from the ejection port 44B. The fluid flow former 4 has a gripping portion such that this one direction is substantially the same as the direction from the position where the fluid flow former is installed on the gripping portion 21 to the central portion in the longitudinal direction of the gripping portion 21. 21 is installed. Further, the second passage portion 462 and the third passage portion 463 are formed so as to form swirling flows in opposite directions in the through hole 42.

なお、上記の2つの流出方向が略同一となるのであれば、第2通路部462が延びる方向と第3通路部463が延びる方向とは必ずしも直交する必要はない。流体の流量や貫通孔42の深さによっては、第2通路部462が延びる方向と第3通路部463が延びる方向とが必ずしも直交しなくても上記の2つの流出方向が略同一となる場合が考えられる。 If the above two outflow directions are substantially the same, the direction in which the second passage portion 462 extends and the direction in which the third passage portion 463 extend do not necessarily need to be orthogonal. Depending on the flow rate of the fluid and the depth of the through hole 42, the two outflow directions may be substantially the same even if the extending direction of the second passage portion 462 and the extending direction of the third passage portion 463 are not necessarily orthogonal. Is possible.

ガイド部材5は円板形状を有し、その外周が被搬送物の縁部と接触することにより被搬送物の位置決めを行う。 The guide member 5 has a disc shape, and the outer periphery of the guide member 5 comes into contact with the edge portion of the transported object to position the transported object.

以上説明した非接触搬送装置1に対して供給口211を介して流体が供給されると、当該流体は流体通路23を通じて旋回流形成体3と流体流形成体4とに到達する。旋回流形成体3に到達した流体は供給口35及び流体通路36を通って噴出口34から貫通孔32内に吐出される。貫通孔32内に吐出された流体は貫通孔32内において旋回流として清流され、その後貫通孔32から流出する。その際、端面33に対向して板状部材が存在する場合には、貫通孔32への外部流体(具体的には、気体や液体)の流入が制限された状態において、旋回流の遠心力と巻き込みにより旋回流の中心部の単位体積あたりの流体分子の密度が小さくなる。すなわち、旋回流の中心部に負圧が発生する。その結果、板状部材は周囲の流体によって押圧されて端面33側に引き寄せられる。その一方で、端面33と板状部材とが近づくにつれて貫通孔32から流出する流体の量が制限され、旋回流中心部の圧力が上昇する。その結果、板状部材は端面33とは接触せず、板状部材と端面33との間には一定の距離が保たれる。 When the fluid is supplied to the non-contact transfer apparatus 1 described above through the supply port 211, the fluid reaches the swirl flow former 3 and the fluid flow former 4 through the fluid passage 23. The fluid that has reached the swirl flow forming body 3 is discharged from the ejection port 34 into the through hole 32 through the supply port 35 and the fluid passage 36. The fluid discharged into the through hole 32 is cleared as a swirl flow in the through hole 32 and then flows out from the through hole 32. At that time, when a plate-like member is present facing the end surface 33, the centrifugal force of the swirling flow is generated in a state where the inflow of the external fluid (specifically, gas or liquid) into the through hole 32 is restricted. And the entrainment reduces the density of fluid molecules per unit volume at the center of the swirling flow. That is, negative pressure is generated in the center of the swirling flow. As a result, the plate-shaped member is pressed by the surrounding fluid and drawn toward the end face 33. On the other hand, as the end surface 33 and the plate member approach each other, the amount of fluid flowing out from the through hole 32 is limited, and the pressure at the center of the swirling flow increases. As a result, the plate member does not come into contact with the end surface 33, and a constant distance is maintained between the plate member and the end surface 33.

一方、流体流形成体4に到達した流体は供給口45及び流体通路46を通って噴出口44A及び44Bから貫通孔42内に吐出される。貫通孔42内に吐出された流体は貫通孔42内において流体流を形成し、その後貫通孔42から流出する。その際、端面43に対向して板状部材が存在する場合には、貫通孔42への外部流体(具体的には、気体や液体)の流入が制限された状態において、流体流の遠心力と巻き込みにより貫通孔42の中心部の単位体積あたりの流体分子の密度が小さくなる。すなわち、貫通孔42の中心部に負圧が発生する。その結果、板状部材は周囲の流体によって押圧されて端面43側に引き寄せられる。その一方で、端面43と板状部材とが近づくにつれて貫通孔42から流出する流体の量が制限され、貫通孔42中心部の圧力が上昇する。その結果、板状部材は端面43とは接触せず、板状部材と端面43との間には一定の距離が保たれる。 On the other hand, the fluid that has reached the fluid flow former 4 passes through the supply port 45 and the fluid passage 46 and is discharged from the ejection ports 44A and 44B into the through hole 42. The fluid discharged into the through hole 42 forms a fluid flow in the through hole 42 and then flows out from the through hole 42. At that time, when the plate-like member is present facing the end surface 43, the centrifugal force of the fluid flow is generated in a state where the inflow of the external fluid (specifically, gas or liquid) into the through hole 42 is restricted. Due to the entrainment, the density of fluid molecules per unit volume in the central portion of the through hole 42 decreases. That is, negative pressure is generated in the central portion of the through hole 42. As a result, the plate-shaped member is pressed by the surrounding fluid and drawn toward the end face 43 side. On the other hand, as the end surface 43 and the plate member approach each other, the amount of fluid flowing out from the through hole 42 is limited, and the pressure at the center of the through hole 42 rises. As a result, the plate member does not come into contact with the end face 43, and a constant distance is maintained between the plate member and the end face 43.

旋回流形成体3は板状部材を吸引保持する際、理論上は板状部材を移動させることはない。これは、上記のように、旋回流形成体3の2つの流体通路36から供給されて貫通孔32から流出する流体の流速ベクトルが互いに逆となり、打ち消し合うためである。しかし、実際上は互いの大きさや方向が一致せず、微小な力で板状部材をいずれかの方向に移動させてしまう場合が多い。そのため、旋回流形成体3全体では板状部材をどちらかの方向に回転させてしまうことが多々発生する。一方、流体流形成体4は板状部材を吸引保持する際、上記のように、板状部材を一の方向に向けて移動させる。具体的には、板状部材を腕部22側から把持部21側へと移動させる(図1の矢印F参照)。流体流形成体4により把持部21側へと移動させられた板状部材はガイド部材5と2点で接触して制止され、位置決めされる。また、板状部材はガイド部材5との間の摩擦力によりその回転が抑制される。そのため、非接触搬送装置1によれば、板状部材の回転を抑制しつつ板状部材を非接触で搬送することができる。また、この非接触搬送装置1では腕部22の先端側にガイド部材5が設けられておらず非接触搬送装置1の先端部の厚みが抑えられるため、ウェハカセットへの出し入れが容易となる。 The swirl flow forming body 3 theoretically does not move the plate-shaped member when holding the plate-shaped member by suction. This is because, as described above, the flow velocity vectors of the fluids supplied from the two fluid passages 36 of the swirl flow forming body 3 and flowing out from the through holes 32 are opposite to each other and cancel each other out. However, in reality, their sizes and directions do not coincide with each other, and the plate-like member is often moved in either direction by a small force. Therefore, in many cases, the plate member in the entire swirl flow forming body 3 is rotated in either direction. On the other hand, the fluid flow former 4 moves the plate-shaped member in one direction as described above when sucking and holding the plate-shaped member. Specifically, the plate member is moved from the arm portion 22 side to the grip portion 21 side (see arrow F in FIG. 1 ). The plate-shaped member moved to the grip portion 21 side by the fluid flow forming body 4 contacts the guide member 5 at two points and is stopped and positioned. Further, the rotation of the plate-shaped member is suppressed by the frictional force between the plate-shaped member and the guide member 5. Therefore, according to the non-contact conveyance device 1, the plate-shaped member can be conveyed in a non-contact manner while suppressing the rotation of the plate-shaped member. Further, since the guide member 5 is not provided on the tip end side of the arm portion 22 in the non-contact transfer apparatus 1, the thickness of the front end section of the non-contact transfer apparatus 1 is suppressed, so that the wafer cassette can be easily taken in and out.

2.変形例
上記の実施形態は下記のように変形してもよい。下記の変形例は互いに組み合わせてもよい。
2. Modifications The above embodiment may be modified as follows. The following modifications may be combined with each other.

2−1.変形例1
流体流形成体4の流体通路46の形状はY字形に限られない。貫通孔42の大きさに応じてその形状を変更してもよい。例えばV字形としてもよい。図4は、Y字形の流体通路46に代えてV字形の流体通路47を有する流体流形成体4Aの平面図である。この流体流形成体4Aにおいて流体通路47は、供給口45から分岐する第1通路部471及び第2通路部472からなる。第1通路部471は供給口45と噴出口44Aとを連通する。第2通路部472は供給口45と噴出口44Bとを連通する。
2-1. Modification 1
The shape of the fluid passage 46 of the fluid flow former 4 is not limited to the Y shape. The shape may be changed according to the size of the through hole 42. For example, it may be V-shaped. FIG. 4 is a plan view of the fluid flow former 4A having a V-shaped fluid passage 47 in place of the Y-shaped fluid passage 46. In the fluid flow former 4A, the fluid passage 47 includes a first passage portion 471 and a second passage portion 472 that branch from the supply port 45. The first passage portion 471 connects the supply port 45 and the ejection port 44A. The second passage portion 472 connects the supply port 45 and the ejection port 44B.

第1通路部471は、上記の第2通路部462と同様に、本体41の内周に対して接線方向に延びるように形成され、噴出口44Aから貫通孔42内に流体を供給して貫通孔42内に負圧を発生させる。第1通路部471は本発明に係る第1流体通路の一例である。第2通路部472は、上記の第3通路部463と同様に、本体41の内周に対して接線方向に延びるように形成され、噴出口44Bから貫通孔42内に流体を供給して貫通孔42内に負圧を発生させる。第2通路部472は本発明に係る第2流体通路の一例である。 The first passage portion 471 is formed so as to extend tangentially to the inner circumference of the main body 41 in the same manner as the second passage portion 462 described above, and supplies the fluid into the through hole 42 from the ejection port 44A to penetrate the through hole 42. A negative pressure is generated in the hole 42. The first passage portion 471 is an example of the first fluid passage according to the present invention. The second passage portion 472 is formed so as to extend tangentially to the inner circumference of the main body 41, like the above-described third passage portion 463, and supplies the fluid from the ejection port 44B into the through hole 42 to penetrate therethrough. A negative pressure is generated in the hole 42. The second passage portion 472 is an example of the second fluid passage according to the present invention.

第1通路部471と第2通路部472とは、上記の第2通路部462と第3通路部463の配置関係と同様に、第1通路部471が延びる方向と第2通路部472が延びる方向とが略直交するように形成される。言い換えると、第1通路部471と第2通路部472とは、噴出口44Aから貫通孔42内に供給されて当該貫通孔から端面43に沿って流出する流体の流出方向が、噴出口44Bから貫通孔42内に供給されて当該貫通孔から端面43に沿って流出する流体の流出方向と略同一となるように形成される。両流出方向が略同一となっている結果、流体流形成体4Aは被吸引部材を一の方向に向けて移動させる(矢印G参照)。ここで一の方向とは具体的には、噴出口44A又は44Bから供給されて貫通孔42から流出する流体の流出方向である。また、第1通路部471と第2通路部472とは貫通孔42において互いに逆方向の旋回流を形成するように形成される。 The first passage portion 471 and the second passage portion 472 extend in the direction in which the first passage portion 471 extends and the second passage portion 472 extend in the same manner as the arrangement relationship between the second passage portion 462 and the third passage portion 463 described above. It is formed so that the directions thereof are substantially orthogonal to each other. In other words, in the first passage portion 471 and the second passage portion 472, the outflow direction of the fluid that is supplied from the ejection port 44A into the through hole 42 and flows out from the through hole along the end face 43 is from the ejection port 44B. It is formed so as to be substantially the same as the outflow direction of the fluid that is supplied into the through hole 42 and flows out from the through hole along the end surface 43. As a result of the two outflow directions being substantially the same, the fluid flow forming body 4A moves the member to be attracted in one direction (see arrow G). Here, the one direction is specifically the outflow direction of the fluid supplied from the ejection port 44A or 44B and flowing out from the through hole 42. Further, the first passage portion 471 and the second passage portion 472 are formed in the through hole 42 so as to form swirling flows in mutually opposite directions.

なお、図4に示す例では第1通路部471と第2通路部472とは共通の供給口である供給口45に接続されているが、それぞれ異なる供給口に接続されてもよい。図5は、それぞれ異なる供給口に接続される第1通路部471と第2通路部472とを有する流体流形成体4Bの平面図である。この流体流形成体4Bでは、第1通路部471は供給口45Aと噴出口44Aとを連通する。一方、第2通路部472は供給口45Bと噴出口44Bとを連通する。 In addition, in the example shown in FIG. 4, the first passage portion 471 and the second passage portion 472 are connected to the supply port 45 that is a common supply port, but may be connected to different supply ports. FIG. 5 is a plan view of the fluid flow former 4B having a first passage portion 471 and a second passage portion 472 that are connected to different supply ports. In this fluid flow forming body 4B, the first passage portion 471 connects the supply port 45A and the ejection port 44A. On the other hand, the second passage portion 472 connects the supply port 45B and the ejection port 44B.

2−2.変形例2
流体流形成体4の本体41の形状は円環状に限られない。例えば本体41の外周及び内周を楕円形状や長円形状(言い換えると角丸長方形の形状)としてもよい。図6は、円環状の本体41に代えて外周及び内周が長円形状の本体41Aを有する流体流形成体4Cの平面図である。別の例として本体41の内周を半円形状としてもよい。図7は、円環状の本体41に代えて内周が半円形状の本体41Bを有する流体流形成体4Dの平面図である。また別の例として本体41の内周をハート形状としてもよい。図8は、円環状の本体41に代えて内周がハート形状の本体41Cを有する流体流形成体4Eの平面図である。
2-2. Modification 2
The shape of the main body 41 of the fluid flow former 4 is not limited to the annular shape. For example, the outer circumference and the inner circumference of the main body 41 may have an elliptical shape or an oval shape (in other words, a rounded rectangular shape). FIG. 6 is a plan view of a fluid flow former 4C having an oval-shaped main body 41A in the outer and inner circumferences instead of the annular main body 41. As another example, the inner circumference of the main body 41 may be semicircular. FIG. 7 is a plan view of a fluid flow former 4D having a main body 41B having an inner circumference of a semicircular shape instead of the main body 41 having an annular shape. As another example, the inner circumference of the main body 41 may have a heart shape. FIG. 8 is a plan view of a fluid flow former 4E having a heart-shaped main body 41C whose inner circumference is replaced with the annular main body 41.

また別の例として本体41の外周及び内周を略8の字の形状としてもよい。図9は、外周及び内周が略8の字形状の本体61を有する流体流形成体6の平面図である。この流体流形成体6は、中央に略8の字形状の貫通孔62を有する環状の板体である本体61と、本体61のおもて面に形成された平坦状の端面63と、貫通孔62に面する本体61の内側面に形成された2つの噴出口64A及び64Bと、本体61の外側面に形成された2つの供給口65A及び65Bと、本体61の裏面に形成された溝状の流体通路66A及び66Bとを有する。 As another example, the outer circumference and the inner circumference of the main body 41 may be formed into a substantially eight shape. FIG. 9 is a plan view of the fluid flow former 6 having a main body 61 having an approximately 8-shaped outer and inner circumferences. The fluid flow forming body 6 includes a main body 61 which is an annular plate body having a through hole 62 having a substantially 8-shape in the center, a flat end surface 63 formed on the front surface of the main body 61, and a through-hole. Two ejection ports 64A and 64B formed on the inner surface of the body 61 facing the hole 62, two supply ports 65A and 65B formed on the outer surface of the body 61, and a groove formed on the back surface of the body 61. Shaped fluid passages 66A and 66B.

貫通孔62は、各々外周の一部を直線状に切り欠いた円の形状を有する第1孔部621及び第2孔部622からなる。第1孔部621と第2孔部622は外周の直線部分同士が互いに接するように配置される。直線部分の長さは第1孔部621又は第2孔部622の半径の長さと略同一である。本体61の外周は略長円形状(言い換えると角丸長方形の形状)を有し、貫通孔62の形状に沿って長手方向中央がくびれた形状となっている。供給口65A及び65Bは、基体2の内部に形成される流体通路23と連通する。 The through hole 62 is composed of a first hole portion 621 and a second hole portion 622 each having a circular shape with a part of the outer periphery cut out in a linear shape. The first hole portion 621 and the second hole portion 622 are arranged such that the straight line portions on the outer circumference are in contact with each other. The length of the straight line portion is substantially the same as the radius length of the first hole portion 621 or the second hole portion 622. The outer periphery of the main body 61 has a substantially oval shape (in other words, a rounded rectangular shape), and the center of the longitudinal direction is narrowed along the shape of the through hole 62. The supply ports 65A and 65B communicate with the fluid passage 23 formed inside the base 2.

流体通路66Aは供給口65Aと噴出口64Aとを連通する。また、流体通路66Aは第1孔部621の外周(円弧部分)に対して接線方向に延びるように形成され、噴出口64Aから第1孔部621内に流体を供給して第1孔部621内に負圧を発生させる。流体通路66Aは本発明に係る第1流体通路の一例である。一方、流体通路66Bは供給口65Bと噴出口64Bとを連通する。また、流体通路66Bは第2孔部622の外周(円弧部分)に対して接線方向に延びるように形成され、噴出口64Bから第2孔部622内に流体を供給して第2孔部622内に負圧を発生させる。流体通路66Bは本発明に係る第2流体通路の一例である。 The fluid passage 66A connects the supply port 65A and the ejection port 64A. Further, the fluid passage 66A is formed so as to extend tangentially to the outer periphery (arc portion) of the first hole portion 621, and supplies the fluid from the ejection port 64A into the first hole portion 621 to supply the first hole portion 621. Negative pressure is generated inside. The fluid passage 66A is an example of the first fluid passage according to the present invention. On the other hand, the fluid passage 66B connects the supply port 65B and the ejection port 64B. Further, the fluid passage 66B is formed so as to extend tangentially to the outer periphery (arc portion) of the second hole portion 622, and supplies the fluid from the ejection port 64B into the second hole portion 622 to form the second hole portion 622. Negative pressure is generated inside. The fluid passage 66B is an example of the second fluid passage according to the present invention.

流体通路66A及び66Bは、流体通路66Aが延びる方向と流体通路66Bが延びる方向とが略直交するように形成される。言い換えると、流体通路66A及び66Bは、噴出口64Aから第1孔部621内に供給されて当該第1孔部から端面63に沿って流出する流体の流出方向が、噴出口64Bから第2孔部622内に供給されて当該第2孔部から端面63に沿って流出する流体の流出方向と略同一となるように形成される。両流出方向が略同一となっている結果、流体流形成体6は被吸引部材を一の方向に向けて移動させる(矢印H参照)。ここで一の方向とは具体的には、噴出口64Aから供給されて第1孔部621から流出する流体の流出方向または噴出口64Bから供給されて第2孔部622から流出する流体の流出方向である。また、流体通路66A及び66Bは互いに逆方向の旋回流を形成するように形成される。 The fluid passages 66A and 66B are formed such that the extending direction of the fluid passage 66A and the extending direction of the fluid passage 66B are substantially orthogonal to each other. In other words, in the fluid passages 66A and 66B, the outflow direction of the fluid supplied from the ejection port 64A into the first hole portion 621 and flowing out from the first hole portion along the end surface 63 is from the ejection port 64B to the second hole. It is formed to be substantially the same as the outflow direction of the fluid that is supplied into the portion 622 and flows out from the second hole portion along the end surface 63. As a result of the two outflow directions being substantially the same, the fluid flow former 6 moves the member to be attracted in one direction (see arrow H). Here, the one direction is specifically the outflow direction of the fluid supplied from the ejection port 64A and flowing out from the first hole portion 621 or the outflow of the fluid supplied from the ejection port 64B and flowing out from the second hole portion 622. Direction. Further, the fluid passages 66A and 66B are formed so as to form swirling flows in directions opposite to each other.

2−3.変形例3
流体流形成体4は、流体通路46に加えて、流体通路46と同じ構造の流体通路71をさらに有してもよい。図10は、流体通路71をさらに有する流体流形成体7の平面図である。この流体流形成体7において流体通路71は、供給口72から本体41の中心に向かって径方向に延びる第1通路部711と、第1通路部711から分岐する第2通路部712及び第3通路部713とからなる。第1通路部711は供給口72と第2通路部712及び第3通路部713とを連通する。第2通路部712は第1通路部711と噴出口73Aとを連通する。第3通路部713は第1通路部711と噴出口73Bとを連通する。ここで、供給口72は本体41の外側面に形成される。また、供給口72は、基体2の内部に形成される、流体通路23とは異なる流体通路(図示なし)と連通する。この流体通路は、供給口211とは異なる供給口(図示なし)と連通し、この供給口を介して流体の供給を受ける。噴出口73A及び73Bは、貫通孔42に面する本体41の内側面に形成される。
2-3. Modification 3
The fluid flow former 4 may further have a fluid passage 71 having the same structure as the fluid passage 46, in addition to the fluid passage 46. FIG. 10 is a plan view of the fluid flow former 7 further having a fluid passage 71. In the fluid flow former 7, the fluid passage 71 includes a first passage portion 711 that extends radially from the supply port 72 toward the center of the main body 41, a second passage portion 712 that branches from the first passage portion 711, and a third passage portion 712. And a passage portion 713. The first passage portion 711 communicates the supply port 72 with the second passage portion 712 and the third passage portion 713. The second passage portion 712 connects the first passage portion 711 and the ejection port 73A. The third passage portion 713 connects the first passage portion 711 and the ejection port 73B. Here, the supply port 72 is formed on the outer surface of the main body 41. Further, the supply port 72 communicates with a fluid passage (not shown) formed inside the base body 2 and different from the fluid passage 23. This fluid passage communicates with a supply port (not shown) different from the supply port 211, and receives the supply of fluid via this supply port. The spouts 73A and 73B are formed on the inner surface of the main body 41 facing the through hole 42.

第2通路部712は本体41の内周に対して接線方向に延びるように形成され、噴出口73Aから貫通孔42内に流体を供給して貫通孔42内に負圧を発生させる。第2通路部712は本発明に係る第3流体通路の一例である。噴出口73Aは本発明に係る第3噴出口の一例である。第3通路部713は本体41の内周に対して接線方向に延びるように形成され、噴出口73Bから貫通孔42内に流体を供給して貫通孔42内に負圧を発生させる。第3通路部713は本発明に係る第4流体通路の一例である。噴出口73Bは本発明に係る第4噴出口の一例である。 The second passage portion 712 is formed so as to extend tangentially to the inner circumference of the main body 41, and supplies a fluid from the ejection port 73A into the through hole 42 to generate a negative pressure in the through hole 42. The second passage portion 712 is an example of the third fluid passage according to the present invention. The ejection port 73A is an example of the third ejection port according to the present invention. The third passage portion 713 is formed so as to extend tangentially to the inner circumference of the main body 41, and supplies a fluid from the ejection port 73B into the through hole 42 to generate a negative pressure in the through hole 42. The third passage portion 713 is an example of the fourth fluid passage according to the present invention. The jet 73B is an example of the fourth jet according to the present invention.

第2通路部712と第3通路部713とは、第2通路部712が延びる方向と第3通路部713が延びる方向とが略直交するように形成される。言い換えると、第2通路部712と第3通路部713とは、噴出口73Aから貫通孔42内に供給されて当該貫通孔から端面43に沿って流出する流体の流出方向が、噴出口73Bから貫通孔42内に供給されて当該貫通孔から端面43に沿って流出する流体の流出方向と略同一となるように形成される。両流出方向が略同一となっている結果、流体流形成体7は、供給口72に流体が供給されると、被吸引部材を一の方向に向けて移動させる(矢印I参照)。ここで一の方向とは具体的には、噴出口73A又は73Bから供給されて貫通孔42から流出する流体の流出方向である。また、第2通路部712と第3通路部713とは貫通孔42において互いに逆方向の旋回流を形成するように形成される。 The second passage portion 712 and the third passage portion 713 are formed such that the extending direction of the second passage portion 712 and the extending direction of the third passage portion 713 are substantially orthogonal to each other. In other words, in the second passage portion 712 and the third passage portion 713, the outflow direction of the fluid that is supplied from the ejection port 73A into the through hole 42 and flows out from the through hole along the end face 43 is from the ejection port 73B. It is formed so as to be substantially the same as the outflow direction of the fluid that is supplied into the through hole 42 and flows out from the through hole along the end surface 43. As a result of the two outflow directions being substantially the same, when the fluid is supplied to the supply port 72, the fluid flow former 7 moves the aspirated member in one direction (see arrow I). Here, the one direction is specifically the outflow direction of the fluid supplied from the ejection port 73A or 73B and flowing out from the through hole 42. Further, the second passage portion 712 and the third passage portion 713 are formed in the through hole 42 so as to form swirling flows in mutually opposite directions.

流体通路71と流体通路46とは本体41の中心に対して点対称となるように配置される。そのため、流体通路71の第2通路部712は流体通路46の第2通路部462と略直交し、かつ第3通路部463と略平行となる。流体通路71の第3通路部713は流体通路46の第3通路部463と略直交し、かつ第2通路部462と略平行となる。また、噴出口73Aと噴出口44Aとは貫通孔42を挟んで対向し、噴出口73Bと噴出口44Bとは貫通孔42を挟んで対向する。 The fluid passage 71 and the fluid passage 46 are arranged so as to be point-symmetric with respect to the center of the main body 41. Therefore, the second passage portion 712 of the fluid passage 71 is substantially orthogonal to the second passage portion 462 of the fluid passage 46 and substantially parallel to the third passage portion 463. The third passage portion 713 of the fluid passage 71 is substantially orthogonal to the third passage portion 463 of the fluid passage 46, and is substantially parallel to the second passage portion 462. Further, the ejection port 73A and the ejection port 44A face each other across the through hole 42, and the ejection port 73B and the ejection port 44B face each other across the through hole 42.

以上説明した流体流形成体7の供給口45に対して流体が供給されると、上記の実施形態で述べたように、流体流形成体7は、板状部材を基体2の腕部22側から把持部21側へと移動させる(図1参照)。一方、流体流形成体7の供給口72に対して流体が供給されると、流体流形成体7は板状部材を把持部21側から腕部22側へと移動させる。すなわち逆方向に板状部材を移動させる。このように流体流形成体7は供給口45と供給口72に対して選択的に流体を供給することで板状部材の移動方向を制御することができる。 When the fluid is supplied to the supply port 45 of the fluid flow former 7 described above, the fluid flow former 7 causes the plate-shaped member to move toward the arm portion 22 side of the base body 2 as described in the above embodiment. To the grip portion 21 side (see FIG. 1). On the other hand, when the fluid is supplied to the supply port 72 of the fluid flow former 7, the fluid flow former 7 moves the plate member from the grip portion 21 side to the arm portion 22 side. That is, the plate member is moved in the opposite direction. Thus, the fluid flow former 7 can control the moving direction of the plate member by selectively supplying the fluid to the supply port 45 and the supply port 72.

なお、流体流形成体7を基体2に対して略90度回転させて設置すると、把持部21の長手方向の移動に代えて板状部材の回転方向を制御することができる。 When the fluid flow former 7 is installed by rotating it about 90 degrees with respect to the base body 2, it is possible to control the rotation direction of the plate-shaped member instead of moving the grip portion 21 in the longitudinal direction.

また、流体流形成体7の流体通路46及び71のうち少なくともいずれか一方の形状を、図4又は5に示すように、V字形としてもよい。 Further, at least one of the fluid passages 46 and 71 of the fluid flow former 7 may be V-shaped as shown in FIG. 4 or 5.

また、流体通路71と流体通路46の配置関係は本体41の中心に対して点対称となる配置関係に限られない。例えば、第1通路部461が延びる方向と第1通路部711が延びる方向とが略直交するように配置されてもよい。 The arrangement relationship between the fluid passage 71 and the fluid passage 46 is not limited to the arrangement relationship that is point-symmetric with respect to the center of the main body 41. For example, the extending direction of the first passage portion 461 and the extending direction of the first passage portion 711 may be arranged to be substantially orthogonal to each other.

2−4.変形例4
流体流形成体4は貫通孔42に代えて非貫通孔(言い換えると凹部)を有してもよい。図11は、貫通孔42に代えて凹部48を有する流体流形成体4Fの構造の一例を示す図である。図11(a)は流体流形成体4Fの平面図であり、図11(b)は図11(a)のI−I線断面図である。この流体流形成体4Fにおいて凹部48は略円板形状を有し、円板状の本体41Dの裏面中央に形成される。凹部48は本発明に係る孔の一例である。凹部48の底面481は本体41Dの端面43に対して傾斜している。より具体的には、噴出口44A又は44Bから凹部48内に供給されて当該凹部から端面43に沿って流出する流体の流出方向に沿って上方に傾斜している。凹部48の底面481が傾斜していることで、凹部48から端面43への流体の流出がスムーズになる。
2-4. Modification 4
The fluid flow former 4 may have a non-through hole (in other words, a recess) instead of the through hole 42. FIG. 11 is a diagram showing an example of the structure of the fluid flow former 4F having a recess 48 in place of the through hole 42. 11A is a plan view of the fluid flow former 4F, and FIG. 11B is a sectional view taken along the line I-I of FIG. 11A. In the fluid flow forming body 4F, the recess 48 has a substantially disc shape and is formed at the center of the back surface of the disc-shaped main body 41D. The recess 48 is an example of a hole according to the present invention. The bottom surface 481 of the recess 48 is inclined with respect to the end surface 43 of the main body 41D. More specifically, it is inclined upward along the outflow direction of the fluid that is supplied from the ejection port 44A or 44B into the recess 48 and flows out from the recess along the end surface 43. Since the bottom surface 481 of the recess 48 is inclined, the fluid flows out smoothly from the recess 48 to the end surface 43.

2−5.変形例5
流体流形成体4の噴出口44の数は2つに限られない。例えば3つであってもよい。図12は、3つの噴出口84A、84B及び84Cを有する流体流形成体8の構造の一例を示す図である。図12(a)は流体流形成体8の斜視図であり、図12(b)は流体流形成体8の底面図である。流体流形成体8は、円板状の本体81と、本体81の裏面に形成された平坦状の端面83と、端面83の中央部に形成された半球形状の凹部82と、凹部82に面する本体81の半球内側面811に形成された3つの噴出口84A、84B及び84Cと、本体81の外側面に形成された供給口85と、三股のフォーク形状を有する流体通路86とを有する。
2-5. Modification 5
The number of ejection ports 44 of the fluid flow former 4 is not limited to two. For example, the number may be three. FIG. 12: is a figure which shows an example of the structure of the fluid flow formation body 8 which has three ejection openings 84A, 84B, and 84C. 12A is a perspective view of the fluid flow former 8 and FIG. 12B is a bottom view of the fluid flow former 8. The fluid flow former 8 includes a disk-shaped main body 81, a flat end surface 83 formed on the back surface of the main body 81, a hemispherical recess 82 formed in the center of the end surface 83, and a surface of the recess 82. The main body 81 has three ejection ports 84A, 84B and 84C formed on the inner surface 811 of the hemisphere, a supply port 85 formed on the outer side surface of the main body 81, and a fluid passage 86 having a three-pronged fork shape.

半球内側面811(言い換えると凹部82の底面)は、噴出口84A、84B又は84Cから凹部82内に供給されて当該凹部から端面83に沿って流出する流体の流出方向に沿って上方に湾曲する部分を有する。ここで、凹部82は本発明に係る孔の一例である。流体通路86は、本体81の裏面に形成され供給口85から本体81の中心に向かって径方向に延びる溝状の第1通路部861と、第1通路部861から分岐し端面83に対して傾いて延びるように形成された第2通路部862、第3通路部863及び第4通路部864とからなる。第1通路部861は供給口85と第2通路部862、第3通路部863及び第4通路部864とを連通する。第2通路部862は第1通路部861と噴出口84Aとを連通する。第3通路部863は第1通路部861と噴出口84Bとを連通する。第4通路部864は第1通路部861と噴出口84Cとを連通する。 The inner surface 811 of the hemisphere (in other words, the bottom surface of the recess 82) is curved upward along the outflow direction of the fluid that is supplied into the recess 82 from the ejection openings 84A, 84B or 84C and flows out from the recess along the end surface 83. Have parts. Here, the concave portion 82 is an example of the hole according to the present invention. The fluid passage 86 is formed in the back surface of the main body 81, and has a groove-shaped first passage portion 861 extending in the radial direction from the supply port 85 toward the center of the main body 81, and branched from the first passage portion 861 to the end surface 83. It is composed of a second passage portion 862, a third passage portion 863, and a fourth passage portion 864 that are formed so as to extend at an inclination. The first passage portion 861 communicates the supply port 85 with the second passage portion 862, the third passage portion 863, and the fourth passage portion 864. The second passage portion 862 connects the first passage portion 861 and the ejection port 84A. The third passage portion 863 connects the first passage portion 861 and the ejection port 84B. The fourth passage portion 864 connects the first passage portion 861 and the ejection port 84C.

第2通路部862は半球内側面811に対して接線方向に延びるように形成され、噴出口84Aから凹部82内に流体を供給して凹部82内に負圧を発生させる。第2通路部862は本発明に係る第1流体通路の一例である。第3通路部863は半球内側面811に対して接線方向に延びるように形成され、噴出口84Bから凹部82内に流体を供給して凹部82内に負圧を発生させる。第3通路部863は流体流形成体8を平面視したときに第1通路部861と同一直線状に配置されるように形成される。第4通路部864は半球内側面811に対して接線方向に延びるように形成され、噴出口84Cから凹部82内に流体を供給して凹部82内に負圧を発生させる。第4通路部864は本発明に係る第2流体通路の一例である。 The second passage portion 862 is formed so as to extend tangentially to the hemispherical inner surface 811, and supplies a fluid from the ejection port 84A into the recess 82 to generate a negative pressure in the recess 82. The second passage portion 862 is an example of the first fluid passage according to the present invention. The third passage portion 863 is formed so as to extend tangentially to the hemispherical inner surface 811, and supplies a fluid from the ejection port 84B into the recess 82 to generate a negative pressure in the recess 82. The third passage portion 863 is formed so as to be arranged in the same straight line as the first passage portion 861 when the fluid flow former 8 is viewed in a plan view. The fourth passage portion 864 is formed so as to extend tangentially to the hemispherical inner surface 811, and supplies a fluid from the ejection port 84C into the recess 82 to generate a negative pressure in the recess 82. The fourth passage portion 864 is an example of the second fluid passage according to the present invention.

第2通路部862と第4通路部864とは、流体流形成体8を平面視したときに第2通路部862が延びる方向と第4通路部864が延びる方向とが略直交するように形成される。言い換えると、第2通路部862と第4通路部864とは、噴出口84Aから凹部82内に供給されて当該凹部から端面83に沿って流出する流体の流出方向が、噴出口84Cから凹部82内に供給されて当該凹部から端面83に沿って流出する流体の流出方向と略同一となるように形成される。両流出方向は、噴出口84Bから凹部82内に供給されて当該凹部から端面83に沿って流出する流体の流出方向と略同一である。その結果、流体流形成体8は被吸引部材を一の方向に向けて移動させる(矢印J参照)。ここで一の方向とは具体的には、噴出口84A、84B又は84Cから供給されて凹部82から流出する流体の流出方向である。また、第2通路部862と第4通路部864とは凹部82において互いに逆方向の旋回流を形成するように形成される。 The second passage portion 862 and the fourth passage portion 864 are formed such that the direction in which the second passage portion 862 extends and the direction in which the fourth passage portion 864 extend are substantially orthogonal when the fluid flow former 8 is viewed in plan view. To be done. In other words, in the second passage portion 862 and the fourth passage portion 864, the outflow direction of the fluid that is supplied from the ejection port 84A into the concave portion 82 and flows out from the concave portion along the end surface 83 is from the ejection port 84C to the concave portion 82. It is formed so as to be substantially in the same direction as the outflow direction of the fluid that is supplied inside and flows out along the end surface 83 from the recess. Both outflow directions are substantially the same as the outflow direction of the fluid that is supplied from the ejection port 84B into the recess 82 and flows out from the recess along the end surface 83. As a result, the fluid flow former 8 moves the member to be attracted in one direction (see arrow J). Here, the one direction is specifically the outflow direction of the fluid supplied from the ejection ports 84A, 84B or 84C and flowing out from the recessed portion 82. The second passage portion 862 and the fourth passage portion 864 are formed in the recess 82 so as to form swirling flows in opposite directions.

2−6.変形例6
非接触搬送装置1の搬送対象は半導体ウェハやガラス基板等の部材に限られず、用紙や写真等のシート状の物体であってもよい。または海苔等のシート状の食材であってもよい。
2-6. Modification 6
The object to be transferred by the non-contact transfer device 1 is not limited to a member such as a semiconductor wafer or a glass substrate, and may be a sheet-shaped object such as paper or a photograph. Alternatively, a sheet-shaped food material such as seaweed may be used.

2−7.変形例7
非接触搬送装置1に設置される流体流形成体4の位置を、同装置に設置されるいずれかの旋回流形成体3の位置と入れ替えてもよい。その際、流体流形成体4は、その被吸引部材の移動方向が、非接触搬送装置1の腕部22側から把持部21側へと向かう方向と略同一となるように腕部22に設置される。
2-7. Modification 7
The position of the fluid flow former 4 installed in the non-contact transfer device 1 may be replaced with the position of any of the swirl flow formers 3 installed in the same device. At that time, the fluid flow forming body 4 is installed on the arm portion 22 so that the moving direction of the suctioned member is substantially the same as the direction from the arm portion 22 side of the non-contact transfer apparatus 1 toward the gripping portion 21 side. To be done.

別の例として、非接触搬送装置1に設置される旋回流形成体3のうち1以上の旋回流形成体3を流体流形成体4により代替してもよい。その際、設置される流体流形成体4は、その被吸引部材の移動方向が、非接触搬送装置1の腕部22側から把持部21側へと向かう方向と略同一となるように腕部22に設置される。 As another example, one or more swirl flow formers 3 of the swirl flow formers 3 installed in the non-contact transfer apparatus 1 may be replaced with the fluid flow former 4. At this time, the fluid flow forming body 4 to be installed has arm portions such that the moving direction of the member to be attracted is substantially the same as the direction from the arm portion 22 side of the non-contact transfer apparatus 1 toward the gripping portion 21 side. It is installed at 22.

2−8.変形例8
非接触搬送装置1の基体2の形状は二股のフォーク形状に限られない。例えば円形(例えば特許5908136号公報参照)や楕円形や矩形であってもよい。また別の例として、非接触搬送装置1の基体2を、地面に固定的に設置する台(例えば特開2014−019514号公報参照)として構成し、基体2上に複数の流体流形成体4を設置することでベルトコンベヤの代用としてもよい。
2-8. Modification 8
The shape of the base body 2 of the non-contact transfer device 1 is not limited to the bifurcated fork shape. For example, it may be circular (see, for example, Japanese Patent No. 5908136), oval, or rectangular. As another example, the base body 2 of the non-contact transfer device 1 is configured as a base fixedly installed on the ground (see, for example, JP-A-2014-019514), and a plurality of fluid flow formers 4 are formed on the base body 2. May be installed to replace the belt conveyor.

非接触搬送装置1に設置される旋回流形成体3及び流体流形成体4の個数は7個に限られない。旋回流形成体3及び流体流形成体4の個数は7個未満であっても8個以上であってもよい。 The number of swirl flow formers 3 and fluid flow formers 4 installed in the non-contact carrier device 1 is not limited to seven. The number of the swirl flow formers 3 and the fluid flow formers 4 may be less than 7 or 8 or more.

2−9.変形例9
旋回流形成体3の端面33に、貫通孔32への被吸引物の進入を阻害する周知の邪魔板(例えば特許5908136号公報参照)を取り付けてもよい。同様に、流体流形成体4の端面43に、貫通孔42への被吸引物の進入を阻害する邪魔板を取り付けてもよい。
2-9. Modification 9
A well-known baffle (see, for example, Japanese Patent No. 5908136) that inhibits the suctioned object from entering the through hole 32 may be attached to the end surface 33 of the swirl flow forming body 3. Similarly, on the end surface 43 of the fluid flow forming body 4, a baffle plate that inhibits the inhalation object from entering the through hole 42 may be attached.

2−10.変形例10
旋回流形成体3を周知の放射流形成体(例えば特許5908136号公報参照)や周知の電動ファン(例えば特開2011−138948号公報参照)と置換してもよい。
2-10. Modification 10
The swirl flow forming body 3 may be replaced with a known radial flow forming body (see, for example, Japanese Patent No. 5908136) or a known electric fan (see, for example, Japanese Patent Laid-Open No. 2011-138948).

2−11.変形例11
ガイド部材5の形状、数及び配置は図1に例示したものに限られない。ガイド部材5の形状、数及び配置は、被搬送物の形状に応じて決定されてよい。
2-11. Modification 11
The shape, number and arrangement of the guide members 5 are not limited to those illustrated in FIG. The shape, number and arrangement of the guide members 5 may be determined according to the shape of the transported object.

1…非接触搬送装置、2…基体、3…旋回流形成体、4、4A、4B、4C、4D、4E、4F…流体流形成体、5…ガイド部材、6…流体流形成体、7…流体流形成体、8…流体流形成体、21…把持部、22…腕部、23…流体通路、31…本体、32…貫通孔、33…端面、34…噴出口、35…供給口、36…流体通路、41、41A、41B、41C、41D…本体、42…貫通孔、43…端面、44A、44B…噴出口、45…供給口、46…流体通路、47…流体通路、48…凹部、61…本体、62…貫通孔、63…端面、64A、64B…噴出口、65A、65B…供給口、66A、66B…流体通路、71…流体通路、72…供給口、73A、73B…噴出口、81…本体、82…凹部、83…端面、84A、84B、84C…噴出口、85…供給口、86…流体通路、211…供給口、221…突出部、461…第1通路部、462…第2通路部、463…第3通路部、471…第1通路部、472…第2通路部、481…底面、621…第1孔部、622…第2孔部、711…第1通路部、712…第2通路部、713…第3通路部、811…半球内側面、861…第1通路部、862…第2通路部、863…第3通路部、864…第4通路部 DESCRIPTION OF SYMBOLS 1... Non-contact conveyance device, 2... Substrate, 3... Swirl flow former, 4, 4A, 4B, 4C, 4D, 4E, 4F... Fluid flow former, 5... Guide member, 6... Fluid flow former, 7 ... Fluid flow former, 8... Fluid flow former, 21... Gripping portion, 22... Arm portion, 23... Fluid passage, 31... Main body, 32... Through hole, 33... End face, 34... Jet port, 35... Supply port , 36... Fluid passage, 41, 41A, 41B, 41C, 41D... Main body, 42... Through hole, 43... End face, 44A, 44B... Jet port, 45... Supply port, 46... Fluid passage, 47... Fluid passage, 48 ... Recesses, 61... Main body, 62... Through holes, 63... End faces, 64A, 64B... Jet ports, 65A, 65B... Supply ports, 66A, 66B... Fluid passages, 71... Fluid passages, 72... Supply ports, 73A, 73B ... Jet port, 81... Main body, 82... Recessed portion, 83... End face, 84A, 84B, 84C... Jet port, 85... Supply port, 86... Fluid passage, 211... Supply port, 221... Projection portion, 461... First passage Part, 462... second passage part, 463... third passage part, 471... first passage part, 472... second passage part, 481... bottom face, 621... first hole part, 622... second hole part, 711... 1st passage part, 712... 2nd passage part, 713... 3rd passage part, 811... Hemisphere inner side surface, 861... 1st passage part, 862... 2nd passage part, 863... 3rd passage part, 864... 4th Aisle

Claims (5)

本体と、
前記本体に形成された平坦状の端面と、
前記端面に形成された孔と、
前記孔に面する前記本体の内側面に形成された第1噴出口と、
前記第1噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第1流体通路と、
前記孔に面する前記本体の内側面に形成された第2噴出口と、
前記第2噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第2流体通路と
を備え、
前記第1及び第2流体通路は、前記第1噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向が、前記第2噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向と略同一となり得るように形成されており、
前記孔の底面は、前記第1又は第2噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向に沿って上方に傾斜又は湾曲するように形成されていることを特徴とする流体流形成体。
Body,
A flat end surface formed on the main body,
A hole formed in the end face,
A first ejection port formed on the inner surface of the main body facing the hole;
A first fluid passage for supplying a fluid from the first ejection port into the hole to generate a negative pressure in the hole;
A second ejection port formed on the inner surface of the main body facing the hole;
A second fluid passage for supplying a fluid from the second ejection port into the hole to generate a negative pressure in the hole;
Equipped with
In the first and second fluid passages, the outflow direction of the fluid that is supplied from the first ejection port into the hole and flows out from the hole along the end face is supplied from the second ejection port into the hole. And is formed so as to be substantially the same as the outflow direction of the fluid flowing out from the hole along the end surface,
The bottom surface of the hole is formed so as to be inclined or curved upward along the outflow direction of the fluid supplied from the first or second ejection port into the hole and flowing out from the hole along the end surface. it characterized in that there flow body flow forming member.
本体と、
前記本体に形成された平坦状の端面と、
前記端面に形成された孔と、
前記孔に面する前記本体の内側面に形成された第1噴出口と、
前記第1噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第1流体通路と、
前記孔に面する前記本体の内側面に形成された第2噴出口と、
前記第2噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第2流体通路と、
前記孔に面する前記本体の内側面に形成された第3噴出口と、
前記第3噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第3流体通路と、
前記孔に面する前記本体の内側面に形成された第4噴出口と、
前記第4噴出口から前記孔内に流体を供給して前記孔内に負圧を発生させる第4流体通路と
を備え、
前記第1及び第2流体通路は、前記第1噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向が、前記第2噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向と略同一となり得るように形成されており、
前記第3及び第4流体通路は、前記第3噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向が、前記第4噴出口から前記孔内に供給されて前記孔から前記端面に沿って流出する流体の流出方向と略同一となり得るように形成されていることを特徴とする流体流形成体。
Body,
A flat end surface formed on the main body,
A hole formed in the end face,
A first ejection port formed on the inner surface of the main body facing the hole;
A first fluid passage for supplying a fluid from the first ejection port into the hole to generate a negative pressure in the hole;
A second ejection port formed on the inner surface of the main body facing the hole;
A second fluid passage for supplying a fluid from the second ejection port into the hole to generate a negative pressure in the hole;
A third ejection port formed on the inner surface of the main body facing the hole;
A third fluid passage for supplying a fluid from the third ejection port into the hole to generate a negative pressure in the hole;
A fourth ejection port formed on the inner surface of the main body facing the hole;
A fourth fluid passage for supplying a fluid from the fourth ejection port into the hole to generate a negative pressure in the hole,
In the first and second fluid passages, the outflow direction of the fluid that is supplied from the first ejection port into the hole and flows out from the hole along the end face is supplied from the second ejection port into the hole. And is formed so as to be substantially the same as the outflow direction of the fluid flowing out from the hole along the end surface,
In the third and fourth fluid passages, the outflow direction of the fluid that is supplied from the third ejection port into the hole and flows out from the hole along the end face is supplied from the fourth ejection port into the hole. outflow direction and flow you characterized in that it is formed as can be the substantially the same body flow forming body fluid flowing along said end surface from said hole being.
前記第1及び第3噴出口は前記孔を挟んで対向し、前記第2及び第4噴出口は前記孔を挟んで対向することを特徴とする請求項に記載の流体流形成体。 The fluid flow former according to claim 2 , wherein the first and third ejection ports face each other across the hole, and the second and fourth ejection ports face each other across the hole. 前記第1及び第2流体通路は、前記第1流体通路が延びる方向と前記第2流体通路が延びる方向とが略直交するように形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の流体流形成体。The first and second fluid passages are formed so that a direction in which the first fluid passage extends and a direction in which the second fluid passage extend are substantially orthogonal to each other. The fluid flow former according to item 1. 板状の基体と、
前記基体に設置される、請求項1乃至のいずれか1項に記載の1以上の流体流形成体と
を備える非接触搬送装置。
A plate-shaped substrate,
A non-contact transfer apparatus, comprising: one or more fluid flow formers according to any one of claims 1 to 4 , which are installed on the substrate.
JP2016104583A 2016-05-25 2016-05-25 Fluid flow former and non-contact transfer device Active JP6716136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016104583A JP6716136B2 (en) 2016-05-25 2016-05-25 Fluid flow former and non-contact transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016104583A JP6716136B2 (en) 2016-05-25 2016-05-25 Fluid flow former and non-contact transfer device

Publications (2)

Publication Number Publication Date
JP2017209752A JP2017209752A (en) 2017-11-30
JP6716136B2 true JP6716136B2 (en) 2020-07-01

Family

ID=60474344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104583A Active JP6716136B2 (en) 2016-05-25 2016-05-25 Fluid flow former and non-contact transfer device

Country Status (1)

Country Link
JP (1) JP6716136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924488B2 (en) * 2018-04-12 2021-08-25 株式会社ハーモテック Swirling flow forming body
CN111268424B (en) * 2019-12-31 2021-04-16 南京理工大学 Concentric double-vortex non-contact vacuum suction device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320439U (en) * 1989-07-04 1991-02-28
US6322116B1 (en) * 1999-07-23 2001-11-27 Asm America, Inc. Non-contact end effector
JP2002264064A (en) * 2001-03-08 2002-09-18 Ricoh Co Ltd Parts holding hand
JP2007214529A (en) * 2006-01-13 2007-08-23 Fluoro Mechanic Kk Bernoulli chuck
JP4684171B2 (en) * 2006-06-01 2011-05-18 株式会社ハーモテック Swirl flow forming body and non-contact transfer device
JP2007324442A (en) * 2006-06-02 2007-12-13 Smc Corp Noncontact transfer apparatus
US20080129064A1 (en) * 2006-12-01 2008-06-05 Asm America, Inc. Bernoulli wand
JP5380980B2 (en) * 2008-09-29 2014-01-08 セイコーエプソン株式会社 Work moving table and droplet discharge apparatus equipped with the same
TWI569355B (en) * 2014-07-23 2017-02-01 Harmotec Co Ltd Control device and control method

Also Published As

Publication number Publication date
JP2017209752A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP5908136B1 (en) Suction device
JP5887469B2 (en) HOLDING DEVICE, HOLDING SYSTEM, CONTROL METHOD, AND CONVEYING DEVICE
KR100843726B1 (en) Non-contact transport apparatus
JP5110480B2 (en) Non-contact transfer device
JP5921323B2 (en) Transport holding tool and transport holding device
JP4684171B2 (en) Swirl flow forming body and non-contact transfer device
TWI665146B (en) Non-contact transferring device and non-contact suction plate
WO2013027828A1 (en) Noncontact conveyance device
KR102428108B1 (en) Transfer device and sucking device
TW201002596A (en) Swirl flow forming body and non-contact conveying device
JP6716136B2 (en) Fluid flow former and non-contact transfer device
WO2015083609A1 (en) Conveyance device
JP6302758B2 (en) Chuck table
JP2009032744A (en) Bernoulli chuck
KR101187684B1 (en) Non-contact air pads for chucking a substrate by using the radial flow
CN110785270B (en) Suction device
KR102315301B1 (en) Conveying pad and method for conveying wafer
JP2018098450A (en) Baffle
KR101223543B1 (en) Non contact transport apparatus
JP2014227260A (en) Transfer device
TWI660450B (en) Cyclone forming body and suction device
JP5422680B2 (en) Substrate holding device
JP2021084214A (en) Suction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200603

R150 Certificate of patent or registration of utility model

Ref document number: 6716136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150