JP6713117B1 - Plant pathogen control agent - Google Patents
Plant pathogen control agent Download PDFInfo
- Publication number
- JP6713117B1 JP6713117B1 JP2019026042A JP2019026042A JP6713117B1 JP 6713117 B1 JP6713117 B1 JP 6713117B1 JP 2019026042 A JP2019026042 A JP 2019026042A JP 2019026042 A JP2019026042 A JP 2019026042A JP 6713117 B1 JP6713117 B1 JP 6713117B1
- Authority
- JP
- Japan
- Prior art keywords
- plant
- control
- fungus
- spp
- infection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000000003 plant pathogen Species 0.000 title description 20
- 241000233866 Fungi Species 0.000 claims abstract description 73
- 230000003032 phytopathogenic effect Effects 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 65
- 241000894006 Bacteria Species 0.000 claims description 20
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 claims description 20
- 229960000306 zinc gluconate Drugs 0.000 claims description 20
- 235000011478 zinc gluconate Nutrition 0.000 claims description 20
- 239000011670 zinc gluconate Substances 0.000 claims description 20
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 239000004480 active ingredient Substances 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- 239000011701 zinc Substances 0.000 claims description 9
- 239000004471 Glycine Substances 0.000 claims description 6
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 claims description 5
- 230000001276 controlling effect Effects 0.000 abstract description 23
- 150000001875 compounds Chemical class 0.000 abstract description 21
- 238000010586 diagram Methods 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 72
- 208000015181 infectious disease Diseases 0.000 description 60
- 229910052751 metal Inorganic materials 0.000 description 60
- 239000002184 metal Substances 0.000 description 60
- 230000000694 effects Effects 0.000 description 37
- 201000010099 disease Diseases 0.000 description 34
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 34
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 31
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 29
- 239000013522 chelant Substances 0.000 description 29
- 240000003768 Solanum lycopersicum Species 0.000 description 26
- 108090000623 proteins and genes Proteins 0.000 description 26
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 25
- 230000002401 inhibitory effect Effects 0.000 description 21
- 240000009088 Fragaria x ananassa Species 0.000 description 19
- 230000002458 infectious effect Effects 0.000 description 17
- 240000008067 Cucumis sativus Species 0.000 description 16
- 235000016623 Fragaria vesca Nutrition 0.000 description 16
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 16
- 206010027146 Melanoderma Diseases 0.000 description 15
- 230000007480 spreading Effects 0.000 description 15
- 241000219193 Brassicaceae Species 0.000 description 14
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 14
- 238000013459 approach Methods 0.000 description 14
- 238000011282 treatment Methods 0.000 description 13
- 241000221785 Erysiphales Species 0.000 description 12
- 231100000674 Phytotoxicity Toxicity 0.000 description 12
- 238000011081 inoculation Methods 0.000 description 12
- 238000003757 reverse transcription PCR Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 235000013311 vegetables Nutrition 0.000 description 12
- 244000052616 bacterial pathogen Species 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 241000219195 Arabidopsis thaliana Species 0.000 description 10
- 208000035143 Bacterial infection Diseases 0.000 description 10
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical compound [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 10
- 229940108925 copper gluconate Drugs 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- 241000219194 Arabidopsis Species 0.000 description 9
- 208000022362 bacterial infectious disease Diseases 0.000 description 9
- 230000003902 lesion Effects 0.000 description 9
- 238000005507 spraying Methods 0.000 description 9
- 241000700605 Viruses Species 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 7
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 7
- 244000061176 Nicotiana tabacum Species 0.000 description 7
- 240000007594 Oryza sativa Species 0.000 description 7
- 238000011529 RT qPCR Methods 0.000 description 7
- 241000209140 Triticum Species 0.000 description 7
- 235000021307 Triticum Nutrition 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 244000052769 pathogen Species 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 238000009331 sowing Methods 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 7
- 229960001763 zinc sulfate Drugs 0.000 description 7
- 229910000368 zinc sulfate Inorganic materials 0.000 description 7
- 101150105864 CBP20 gene Proteins 0.000 description 6
- 235000010469 Glycine max Nutrition 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 6
- 235000007164 Oryza sativa Nutrition 0.000 description 6
- 229910000365 copper sulfate Inorganic materials 0.000 description 6
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 235000009566 rice Nutrition 0.000 description 6
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 5
- 241000589623 Pseudomonas syringae pv. syringae Species 0.000 description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 description 5
- 244000061456 Solanum tuberosum Species 0.000 description 5
- 238000004925 denaturation Methods 0.000 description 5
- 230000036425 denaturation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 235000021012 strawberries Nutrition 0.000 description 5
- 241000123650 Botrytis cinerea Species 0.000 description 4
- 240000007124 Brassica oleracea Species 0.000 description 4
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 4
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 4
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 240000005979 Hordeum vulgare Species 0.000 description 4
- 235000007340 Hordeum vulgare Nutrition 0.000 description 4
- 244000070406 Malus silvestris Species 0.000 description 4
- 208000031888 Mycoses Diseases 0.000 description 4
- 241000896238 Oidium Species 0.000 description 4
- 241000233679 Peronosporaceae Species 0.000 description 4
- 235000002597 Solanum melongena Nutrition 0.000 description 4
- 244000061458 Solanum melongena Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000575 pesticide Substances 0.000 description 4
- 101150102864 rpoD gene Proteins 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 3
- 241000234282 Allium Species 0.000 description 3
- 101100063004 Arabidopsis thaliana PDF1.2A gene Proteins 0.000 description 3
- 241000193738 Bacillus anthracis Species 0.000 description 3
- 235000002566 Capsicum Nutrition 0.000 description 3
- 244000205754 Colocasia esculenta Species 0.000 description 3
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000510928 Erysiphe necator Species 0.000 description 3
- 241000223218 Fusarium Species 0.000 description 3
- 235000003228 Lactuca sativa Nutrition 0.000 description 3
- 240000008415 Lactuca sativa Species 0.000 description 3
- 241000896221 Leveillula taurica Species 0.000 description 3
- 241000588702 Pectobacterium carotovorum subsp. carotovorum Species 0.000 description 3
- 241000220324 Pyrus Species 0.000 description 3
- 206010039509 Scab Diseases 0.000 description 3
- 241000219095 Vitis Species 0.000 description 3
- 235000009754 Vitis X bourquina Nutrition 0.000 description 3
- 235000012333 Vitis X labruscana Nutrition 0.000 description 3
- 235000014787 Vitis vinifera Nutrition 0.000 description 3
- 235000021016 apples Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000004665 defense response Effects 0.000 description 3
- 244000000004 fungal plant pathogen Species 0.000 description 3
- 239000000174 gluconic acid Substances 0.000 description 3
- 235000012208 gluconic acid Nutrition 0.000 description 3
- 231100000053 low toxicity Toxicity 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 2
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 2
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 2
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 241000223600 Alternaria Species 0.000 description 2
- 241001157812 Alternaria brassicicola Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000233685 Bremia lactucae Species 0.000 description 2
- 241000556421 Brenneria nigrifluens Species 0.000 description 2
- 241001345409 Colletotrichum aenigma Species 0.000 description 2
- 241001529387 Colletotrichum gloeosporioides Species 0.000 description 2
- 235000006481 Colocasia esculenta Nutrition 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 235000009849 Cucumis sativus Nutrition 0.000 description 2
- 235000009854 Cucurbita moschata Nutrition 0.000 description 2
- 241000219104 Cucurbitaceae Species 0.000 description 2
- 244000307700 Fragaria vesca Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241001330975 Magnaporthe oryzae Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 102000001745 Nuclear Cap-Binding Protein Complex Human genes 0.000 description 2
- 108010029782 Nuclear Cap-Binding Protein Complex Proteins 0.000 description 2
- 241001223281 Peronospora Species 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000233614 Phytophthora Species 0.000 description 2
- 241000233622 Phytophthora infestans Species 0.000 description 2
- 241000233626 Plasmopara Species 0.000 description 2
- 241001337898 Podosphaera aphanis Species 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241001464820 Pseudomonas viridiflava Species 0.000 description 2
- 241000221300 Puccinia Species 0.000 description 2
- 241000221662 Sclerotinia Species 0.000 description 2
- 241000208292 Solanaceae Species 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 2
- 241000723613 Tomato mosaic virus Species 0.000 description 2
- 241000082085 Verticillium <Phyllachorales> Species 0.000 description 2
- 241000520892 Xanthomonas axonopodis Species 0.000 description 2
- 241000589649 Xanthomonas campestris pv. campestris Species 0.000 description 2
- 241001272684 Xanthomonas campestris pv. oryzae Species 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 230000037444 atrophy Effects 0.000 description 2
- SHFGJEQAOUMGJM-UHFFFAOYSA-N dialuminum dipotassium disodium dioxosilane iron(3+) oxocalcium oxomagnesium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Na+].[Na+].[Al+3].[Al+3].[K+].[K+].[Fe+3].[Fe+3].O=[Mg].O=[Ca].O=[Si]=O SHFGJEQAOUMGJM-UHFFFAOYSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 235000021017 pears Nutrition 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 235000021018 plums Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- HGSXDBRNFBJIMX-UHFFFAOYSA-N 2-aminoacetic acid;zinc Chemical compound [Zn].NCC(O)=O HGSXDBRNFBJIMX-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000726119 Acidovorax Species 0.000 description 1
- 241001600124 Acidovorax avenae Species 0.000 description 1
- 241001600126 Acidovorax citrulli Species 0.000 description 1
- 235000009436 Actinidia deliciosa Nutrition 0.000 description 1
- 244000298697 Actinidia deliciosa Species 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000589176 Agrobacterium vitis Species 0.000 description 1
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 1
- 241000223602 Alternaria alternata Species 0.000 description 1
- 241001149961 Alternaria brassicae Species 0.000 description 1
- 241000266416 Alternaria japonica Species 0.000 description 1
- 241000213004 Alternaria solani Species 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 101100464971 Arabidopsis thaliana At2g14610 gene Proteins 0.000 description 1
- 101100025889 Arabidopsis thaliana CBP20 gene Proteins 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241000208838 Asteraceae Species 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 241001450781 Bipolaris oryzae Species 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 241001480061 Blumeria graminis Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241001465180 Botrytis Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 241000233684 Bremia Species 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 241000589638 Burkholderia glumae Species 0.000 description 1
- 241000134107 Burkholderia plantarii Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 240000008574 Capsicum frutescens Species 0.000 description 1
- 241001157813 Cercospora Species 0.000 description 1
- 241000530549 Cercospora beticola Species 0.000 description 1
- 241001658057 Cercospora kikuchii Species 0.000 description 1
- 241000437818 Cercospora vignicola Species 0.000 description 1
- 235000004391 Chenopodium capitatum Nutrition 0.000 description 1
- 244000038022 Chenopodium capitatum Species 0.000 description 1
- 244000241235 Citrullus lanatus Species 0.000 description 1
- 235000012828 Citrullus lanatus var citroides Nutrition 0.000 description 1
- 241000186650 Clavibacter Species 0.000 description 1
- 241001464977 Clavibacter michiganensis subsp. michiganensis Species 0.000 description 1
- 241000228437 Cochliobolus Species 0.000 description 1
- 241000222199 Colletotrichum Species 0.000 description 1
- 241001480648 Colletotrichum dematium Species 0.000 description 1
- 241001639769 Colletotrichum fructicola Species 0.000 description 1
- 241001429695 Colletotrichum graminicola Species 0.000 description 1
- 241001600676 Colletotrichum higginsianum Species 0.000 description 1
- 241000987550 Colletotrichum incanum Species 0.000 description 1
- 241000222235 Colletotrichum orbiculare Species 0.000 description 1
- 241001639768 Colletotrichum siamense Species 0.000 description 1
- 241000609458 Corynespora Species 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 240000004244 Cucurbita moschata Species 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 241001234009 Cucurbitales Species 0.000 description 1
- 241000203813 Curtobacterium Species 0.000 description 1
- 241000990232 Curtobacterium flaccumfaciens pv. flaccumfaciens Species 0.000 description 1
- 241000790430 Curtobacterium flaccumfaciens pv. oortii Species 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 241000522213 Dichilus lebeckioides Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000221787 Erysiphe Species 0.000 description 1
- 241001489205 Erysiphe pisi Species 0.000 description 1
- 241000896222 Erysiphe polygoni Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241001600161 Fulvia Species 0.000 description 1
- 241000122692 Fusarium avenaceum Species 0.000 description 1
- 241000221778 Fusarium fujikuroi Species 0.000 description 1
- 241000223195 Fusarium graminearum Species 0.000 description 1
- 241000223224 Fusarium oxysporum f. cucumerinum Species 0.000 description 1
- 241001443714 Fusarium oxysporum f. sp. fragariae Species 0.000 description 1
- 241000611205 Fusarium oxysporum f. sp. lycopersici Species 0.000 description 1
- 241000514420 Fusarium phaseoli Species 0.000 description 1
- 241001556359 Fusarium solani f. sp. glycines Species 0.000 description 1
- 241001400955 Gibellulopsis nigrescens Species 0.000 description 1
- 241000896246 Golovinomyces cichoracearum Species 0.000 description 1
- 241000549404 Hyaloperonospora parasitica Species 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 241000228456 Leptosphaeria Species 0.000 description 1
- 241000896235 Leveillula Species 0.000 description 1
- 241001344131 Magnaporthe grisea Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241001518729 Monilinia Species 0.000 description 1
- 241001518731 Monilinia fructicola Species 0.000 description 1
- 241000005782 Monographella Species 0.000 description 1
- 241001459558 Monographella nivalis Species 0.000 description 1
- 241001461023 Oidium lycopersici Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101150054548 PR1 gene Proteins 0.000 description 1
- 241000736122 Parastagonospora nodorum Species 0.000 description 1
- 241000222291 Passalora fulva Species 0.000 description 1
- 241001148142 Pectobacterium atrosepticum Species 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 241001523629 Pestalotiopsis Species 0.000 description 1
- 241000504151 Pestalotiopsis longiseta Species 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 241001149949 Phytophthora cactorum Species 0.000 description 1
- 241000626603 Phytophthora colocasiae Species 0.000 description 1
- 241000233647 Phytophthora nicotianae var. parasitica Species 0.000 description 1
- 241000031556 Phytophthora sp. Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 241000896242 Podosphaera Species 0.000 description 1
- 241000317981 Podosphaera fuliginea Species 0.000 description 1
- 241001294742 Podosphaera macularis Species 0.000 description 1
- 238000010806 PrimeScriptTM RT Reagent kit Methods 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000899394 Pseudocercospora Species 0.000 description 1
- 241001322464 Pseudocercospora fuligena Species 0.000 description 1
- 241000521936 Pseudomonas amygdali pv. lachrymans Species 0.000 description 1
- 241001634733 Pseudomonas cannabina pv. alisalensis Species 0.000 description 1
- 241000394642 Pseudomonas marginalis pv. marginalis Species 0.000 description 1
- 241000589612 Pseudomonas savastanoi pv. glycinea Species 0.000 description 1
- 241001478342 Pseudomonas syringae pv. actinidiae Species 0.000 description 1
- 241000609869 Pseudomonas syringae pv. maculicola Species 0.000 description 1
- 241000589626 Pseudomonas syringae pv. tomato Species 0.000 description 1
- 241001281805 Pseudoperonospora cubensis Species 0.000 description 1
- 241001624808 Pseudopestalotiopsis theae Species 0.000 description 1
- 241001123559 Puccinia hordei Species 0.000 description 1
- 241000312975 Puccinia horiana Species 0.000 description 1
- 241001123569 Puccinia recondita Species 0.000 description 1
- 241001123583 Puccinia striiformis Species 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 241000231139 Pyricularia Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 241000232299 Ralstonia Species 0.000 description 1
- 241000589771 Ralstonia solanacearum Species 0.000 description 1
- 235000005733 Raphanus sativus var niger Nutrition 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 240000001970 Raphanus sativus var. sativus Species 0.000 description 1
- 241001361634 Rhizoctonia Species 0.000 description 1
- 241000813090 Rhizoctonia solani Species 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 241001518705 Sclerotinia minor Species 0.000 description 1
- 241000221696 Sclerotinia sclerotiorum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000579741 Sphaerotheca <fungi> Species 0.000 description 1
- 241000579735 Sphaerotheca cucurbitae Species 0.000 description 1
- 229930182692 Strobilurin Natural products 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- 241000510929 Uncinula Species 0.000 description 1
- 241000317942 Venturia <ichneumonid wasp> Species 0.000 description 1
- 241000228452 Venturia inaequalis Species 0.000 description 1
- 241001123668 Verticillium dahliae Species 0.000 description 1
- 241001149503 Verticillium tricorpus Species 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 241000985670 Xanthomonas arboricola pv. pruni Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 239000000642 acaricide Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000000005 bacterial plant pathogen Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001390 capsicum minimum Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- RFKZUAOAYVHBOY-UHFFFAOYSA-M copper(1+);acetate Chemical compound [Cu+].CC([O-])=O RFKZUAOAYVHBOY-UHFFFAOYSA-M 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- PVTHJAPFENJVNC-MHRBZPPQSA-N kasugamycin Chemical compound N[C@H]1C[C@H](NC(=N)C(O)=O)[C@@H](C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H]1O PVTHJAPFENJVNC-MHRBZPPQSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005332 obsidian Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
【課題】 植物病原菌に対して優れた防除効果を有する化合物を同定し、当該化合物を利用した植物病原菌の防除剤および防除方法を提供すること【解決手段】 金属のキレートまたは塩が植物病原菌に対して優れた防除効果を有することを見出した。【選択図】 なしPROBLEM TO BE SOLVED: To identify a compound having an excellent controlling effect against phytopathogenic fungi, and to provide a controlling agent and a controlling method for the phytopathogenic fungus using the compound. It has been found that it has an excellent controlling effect. [Selection diagram] None
Description
本発明は、金属のキレートまたは塩を有効成分とする植物病原菌の防除剤、および当該防除剤を植物に施用することを含む植物病原菌の防除方法に関する。 The present invention relates to a phytopathogen control agent containing a metal chelate or a salt as an active ingredient, and a phytopathogen control method comprising applying the control agent to a plant.
人類は食料や有用物質の生産の多くを植物に依存している。糸状菌病、細菌病、植物ウイルス病などの植物病害は植物の生産力を大きく損なう主要な要因のひとつであり、仮に、植物病害に対する保護を実施せずに栽培を行うと収穫高が70%減収すると予想されている。このように植物病害の防除による作物収量の損失の削減は、作物の大量栽培による増産に匹敵する効果を有している。 Humans rely on plants for much of their food and useful substance production. Plant diseases such as filamentous fungal diseases, bacterial diseases, and plant viral diseases are one of the major factors that significantly reduce the productivity of plants, and if cultivated without protection against plant diseases, the yield would be 70%. It is expected that the revenue will decrease. Thus, the reduction of crop yield loss by controlling plant diseases has an effect comparable to the increase in production by mass cultivation of crops.
このため、植物病害から作物を保護するための、様々な防除剤が開発されてきた。例えば、糸状菌病や細菌病などの植物病原菌の感染による植物病害に対しては、抗生物質であるカスガマイシンやストレプトマイシンを主成分とする防除剤、ストロビルリン系殺菌剤(QoI剤)、コハク酸脱水素酵素阻害剤(SDHI剤)などの防除剤が利用されている。しかしながら、これら防除剤には、数年で耐性菌が発達し、病害防除が困難になるという問題が指摘されている。 Therefore, various control agents have been developed for protecting crops from plant diseases. For example, against plant diseases caused by infection with phytopathogenic fungi such as filamentous fungal disease and bacterial disease, control agents mainly containing antibiotics kasugamycin and streptomycin, strobilurin fungicides (QoI agents), succinic acid dehydrogenation Control agents such as enzyme inhibitors (SDHI agents) are used. However, it has been pointed out that these control agents have the problem that resistant bacteria develop in a few years, making disease control difficult.
一方、植物ウイルスの感染による植物病害の防除剤としては、日本においてレンテミンが農薬登録されているものの、特効薬となる化学農薬は、いまだ存在しない(レンテミンは、野田食菌工業(株)の登録商標。農薬登録第15584号、第17774号、第19439号、第19440号)。 On the other hand, as a control agent for plant diseases caused by plant virus infection, although lentemin has been registered as a pesticide in Japan, a chemical pesticide that is a silver bullet does not yet exist (lentemin is a registered trademark of Noda Shokuhin Kogyo Co., Ltd.). Agricultural Chemical Registration No. 15584, No. 17774, No. 19439, No. 19440).
このような状況下、本発明者は、金属キレートが植物ウイルスに対して防除効果があることを見出し、それらを植物ウイルスに対する防除剤として利用することを提案している(特許文献1)。 Under such circumstances, the present inventor has found that metal chelates have a controlling effect against plant viruses, and proposes to utilize them as a controlling agent against plant viruses (Patent Document 1).
本発明は、このような状況に鑑みてなされたものであり、その目的は、植物病原菌に対して優れた防除効果を有する化合物を同定し、当該化合物を利用した植物病原菌の防除剤および防除方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to identify a compound having an excellent control effect against plant pathogens, and a control agent for the plant pathogens using the compound and a control method. To provide.
本発明者は、上記課題を解決すべく鋭意検討を行った結果、種々の金属のキレートまたは塩が植物病原菌に対して優れた防除効果を有することを見出した。 As a result of intensive studies to solve the above problems, the present inventor has found that various metal chelates or salts have excellent control effects against phytopathogenic fungi.
金属キレートについては、これまで植物ウイルスに対して防除効果があることが報告されている(特許文献1)。しかしながら、植物ウイルスと植物病原菌とでは、植物への感染機序が全く異なるため、植物ウイルスに防除効果を発揮する薬剤が、植物病原菌に対しても防除効果を発揮するかは予測できない。この事は、植物ウイルス病に対する唯一の農薬であるレンテミンが糸状菌病を全く抑制しなかったことからも裏付けられる(参考例1を参照のこと)。従って、金属のキレートや塩が植物ウイルスのみならず、植物病原菌に対しても防除効果を発揮したことは、驚くべきことである。 It has been reported that metal chelates have a controlling effect against plant viruses (Patent Document 1). However, since the plant virus and the plant pathogen have completely different mechanisms of infecting the plant, it is not possible to predict whether a drug that exerts a control effect on the plant virus will also exert a control effect on the plant pathogen. This is supported by the fact that lentemin, which is the only pesticide against plant viral diseases, did not suppress filamentous fungal diseases at all (see Reference Example 1). Therefore, it is surprising that metal chelates and salts exerted a controlling effect not only on plant viruses but also on plant pathogens.
また、金属のキレートや塩による植物病原菌に対する防除効果は、非常に高く、しかも、シロイヌナズナ、チンゲンサイ、トマト、キュウリ、イチゴなどに感染する広範囲の植物病原菌に対して認められた。さらに、金属キレートを用いた場合には、高濃度で投与した場合でも植物への薬害は生じなかった。 In addition, the control effect against phytopathogenic fungi by metal chelate and salt was very high, and it was recognized against a wide range of phytopathogenic fungi that infects Arabidopsis thaliana, Pakchoi, tomato, cucumber, strawberry and the like. Furthermore, when a metal chelate was used, no phytotoxicity to plants occurred even when administered at high concentrations.
以上から、本発明者は、金属のキレートや塩が植物病原菌に対する防除剤として有効であり、特に金属のキレートについては、優れた防除効果と安全性を兼ね備えた防除剤になり得ることを見出し、本発明を完成するに至った。 From the above, the present inventor has found that metal chelates and salts are effective as control agents against phytopathogenic fungi, and particularly for metal chelates, they can be control agents having both excellent control effect and safety, The present invention has been completed.
本発明は、金属のキレートまたは塩を有効成分とする植物病原菌の防除剤、および当該防除剤を植物に施用することを含む植物病原菌の防除方法に関し、より詳しくは、以下の発明を提供するものである。 The present invention relates to a control agent for phytopathogenic fungi containing a metal chelate or salt as an active ingredient, and a method for controlling phytopathogenic fungi, which comprises applying the control agent to plants, and more specifically, to provide the following inventions. Is.
[1]金属のキレートまたは塩を有効成分とする、植物病原菌の防除剤。 [1] A plant pathogen control agent containing a metal chelate or salt as an active ingredient.
[2]金属が銅または亜鉛である、[1]に記載の防除剤。 [2] The control agent according to [1], wherein the metal is copper or zinc.
[3]金属のキレートが、グルコン酸をキレート剤として調製されるものである、[1]に記載の防除剤。 [3] The control agent according to [1], wherein the metal chelate is prepared using gluconic acid as a chelating agent.
[4]金属のキレートが、グルコン酸銅、グルコン酸亜鉛、およびグリシン亜鉛からなる群より選択される、[1]に記載の防除剤。 [4] The control agent according to [1], wherein the metal chelate is selected from the group consisting of copper gluconate, zinc gluconate, and zinc glycine.
[5]植物病原菌が植物病原細菌または植物病原真菌である、[1]〜[4]のいずれかに記載の防除剤。 [5] The control agent according to any of [1] to [4], wherein the plant pathogen is a plant pathogen or a plant pathogen.
[6][1]〜[4]のいずれかに記載の防除剤を植物に施用することを含む、植物病原菌の防除方法。 [6] A method for controlling phytopathogenic fungi, which comprises applying the control agent according to any one of [1] to [4] to plants.
[7]植物病原菌が植物病原真菌または植物病原細菌である、[6]に記載の防除方法。 [7] The control method according to [6], wherein the plant pathogen is a plant pathogen or a plant pathogen.
本発明の防除剤を用いれば、効果的に植物病原菌を防除することが可能である。特に金属のキレートを有効成分とする防除剤は、葉の萎縮や斑点の発生などの薬害を生じることがないため、安全性にも優れている。また、本発明の防除剤によれば、植物の防御応答遺伝子の発現を高めて、植物病原菌に対する植物の抵抗性を誘導することが可能であり、耐性菌を生じるリスクも少ない。さらに、植物体において、それを施用した部位のみならず、その周辺部位においても防除効果をもたらすことも可能である。 By using the control agent of the present invention, it is possible to effectively control phytopathogenic fungi. In particular, a control agent containing a metal chelate as an active ingredient does not cause phytotoxicity such as leaf atrophy and spotting, and is therefore excellent in safety. Further, according to the control agent of the present invention, it is possible to enhance the expression of the defense response gene of the plant and induce the resistance of the plant to the phytopathogenic bacterium, and the risk of producing a resistant bacterium is small. Furthermore, in the plant body, it is possible to bring about a controlling effect not only in the part to which it is applied but also in the peripheral part.
本発明の防除剤に用いる金属のキレートまたは塩としては、植物病原菌の防除効果を有するものであれば特に制限はない。 The metal chelate or salt used in the control agent of the present invention is not particularly limited as long as it has an effect of controlling plant pathogens.
本発明に用いる金属としては、例えば、銅、亜鉛、鉄、マンガン、モリブデン、マグネシウム、ケイ素、ホウ素、カルシウム、コバルト、ニッケルなどが挙げられるが、植物に対する毒性が低いことから、好ましくは銅または亜鉛である。 Examples of the metal used in the present invention include, for example, copper, zinc, iron, manganese, molybdenum, magnesium, silicon, boron, calcium, cobalt, nickel, etc., but since they have low toxicity to plants, copper or zinc is preferable. Is.
金属イオンをそのまま(無機のまま)土壌に与えた場合、その金属イオンは土壌中のリン酸などと化合して不溶性の沈殿を形成し、所望の効果を十分に得ることができない場合がある。そこで、予めキレート剤と化合させてキレートを作製し、それを施用することにより他の成分との化合を防止して本来の効果を発揮させることができる。また、金属のキレートは植物に吸収され易いという性質を持つ。このような観点から、本発明の防除剤の有効成分としては、金属のキレートが好ましい。 When the metal ion is applied to the soil as it is (inorganic form), the metal ion may combine with phosphoric acid in the soil to form an insoluble precipitate, and the desired effect may not be sufficiently obtained. Therefore, a chelate is prepared in advance by combining with a chelating agent, and by applying the chelate, the combination with other components can be prevented and the original effect can be exhibited. In addition, metal chelates have the property of being easily absorbed by plants. From such a viewpoint, a chelate of a metal is preferable as an active ingredient of the control agent of the present invention.
なお、本発明においては、キレート化合物またはキレート塩を一般的にキレートと称する。 In the present invention, a chelate compound or chelate salt is generally called a chelate.
金属のキレートを調製するためのキレート剤としては、例えば、グルコン酸、グリシン、EDTA(エチレンジアミン四酢酸、Ethylendiaminetetraacetic acid)、DTPA(ジエチレントリアミンペンタアセテート酸、Diethylenetriamine pentaacetic acid)、NTA(ニトリロ三酢酸、Nitrilotriacetic acid)、EDDS(エチレンジアミン-N,N'-ジコハク酸、Ethylenediamine-N,N’-disuccinic acid)、DOTA(1,4,7,10-テトラアザシクロドデカン-1,4,7,10-テトラ酢酸)、クエン酸、蟻酸、フィチン酸、エチレンジアミン、ビピリジン、フェナントロリンなどが挙げられるが、植物に対する毒性が低いことから、好ましくはグルコン酸またはグリシンである。グルコン酸銅、グルコン酸亜鉛、および、グリシン亜鉛は、優れた防除効果と毒性の低さを兼ね備えていることから、本発明の防除剤の有効成分として最も好適に用いることができる。 Examples of the chelating agent for preparing a metal chelate include gluconic acid, glycine, EDTA (Ethylenediaminetetraacetic acid), DTPA (Diethylenetriamine pentaacetic acid), NTA (Nitrilotriacetic acid, Nitrilotriacetic acid). ), EDDS (Ethylenediamine-N,N'-disuccinic acid, Ethylenediamine-N,N'-disuccinic acid), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid ), citric acid, formic acid, phytic acid, ethylenediamine, bipyridine, phenanthroline, etc., but gluconic acid or glycine is preferable because of its low toxicity to plants. Since copper gluconate, zinc gluconate, and zinc glycine have both excellent control effects and low toxicity, they can be most preferably used as active ingredients of the control agent of the present invention.
なお、汎用性の観点からは、EDTA系キレート剤を好適に用いることができ、自然分解性の観点からはEDDSなどを好適に用いることができる。 From the viewpoint of versatility, an EDTA-based chelating agent can be preferably used, and from the viewpoint of spontaneous decomposition, EDDS and the like can be preferably used.
金属の塩としては、例えば、硫酸塩、リン酸塩、硝酸塩、塩化物、炭酸塩などが挙げられるが、金属塩であれば特に限定されない。 Examples of metal salts include sulfates, phosphates, nitrates, chlorides and carbonates, but are not particularly limited as long as they are metal salts.
本発明の防除剤においては、上記有効成分を1種単独でまたは2種以上組み合わせて使用することができる。 In the control agent of the present invention, the above active ingredients can be used alone or in combination of two or more kinds.
また、本発明の防除剤は、植物病原菌の防除効果が阻害されない限り、他の任意の成分を含有していてもよい。他の任意成分としては、例えば、充填剤、増量剤、結合剤、付湿剤、崩壊剤、滑沢剤、稀釈剤、賦形剤、界面活性剤、展着剤、アミノ酸類、ペプチド、肥料要素、天然物由来成分等を挙げることができる。 Further, the control agent of the present invention may contain any other component as long as the control effect of phytopathogenic bacteria is not impaired. Other optional components include, for example, fillers, extenders, binders, moisturizers, disintegrants, lubricants, diluents, excipients, surfactants, spreading agents, amino acids, peptides, fertilizers. Elements, ingredients derived from natural products and the like can be mentioned.
植物病原菌に対する防除効果をさらに高めるため、あるいは、適用対象とする植物病原菌の範囲を広げるため、本発明の防除剤は、植物病原菌の防除に寄与する既知の薬剤と組み合わせて用いることができる。また、既知の殺虫剤、殺ダニ剤、植物ウイルス防除剤などと組み合わせて用いることもできる。 The control agent of the present invention can be used in combination with a known agent that contributes to the control of phytopathogenic fungi, in order to further enhance the control effect on phytopathogenic fungi or to expand the range of phytopathogenic fungi to be applied. It can also be used in combination with known insecticides, acaricides, plant virus control agents and the like.
本発明の防除剤の植物への施用方法は特に制限されず、例えば、散布、塗布、土壌潅注、土壌混和、育苗箱施用、種子消毒などが挙げられる。本発明の防除剤が施用されている領域では非常に高い感染防除効果が認められることから、施用方法としては、散布や塗布などによる植物体の全体や葉への施用、あるいは土壌潅注や土壌混和などによる根への施用が好ましい。本発明の防除剤は、施用された部位の周辺部位においても、植物病原菌に対する防除効果を示すことができる点で有利である。 The method for applying the control agent of the present invention to plants is not particularly limited, and examples thereof include spraying, coating, soil irrigation, soil admixture, application in nursery boxes, and seed disinfection. Since a very high infection control effect is observed in the area where the control agent of the present invention is applied, the application method includes application to the entire plant or leaves by spraying or application, or soil irrigation or soil admixture. It is preferable to apply it to the root by the method such as. The control agent of the present invention is advantageous in that it can exhibit a control effect against phytopathogenic bacteria even in the peripheral area of the applied area.
本発明の防除剤の剤型は、上記施用方法などに応じて各種の形態を採ることができ、例えば、乳剤、油剤、エアゾール、フロアブル剤などの液剤の他、水和剤、水溶剤、粉剤、粒剤などが挙げられる。散布などにより植物体へ施用する場合には、施用時に液状にすることができる剤型が好ましい。 The dosage form of the control agent of the present invention can take various forms depending on the application method and the like. For example, emulsions, oils, aerosols, liquid agents such as flowable agents, wettable powders, water solvents, and powders. , Granules and the like. When applied to plants by spraying or the like, a dosage form that can be liquefied at the time of application is preferable.
施用時における各薬剤の濃度は、植物病原菌に対して防除効果を有し、かつ、植物体への薬害が生じない濃度であれば特に制限はない。通常0.1〜50mMの範囲内であるが、例えば、グルコン酸亜鉛であれば、2〜20mMが好ましく、グルコン酸鉄であれば、0.2〜2mMが好ましく、グルコン酸銅であれば、0.1〜5mM、グリシン亜鉛であれば、2〜20mMが好ましい。また、硫酸亜鉛であれば、0.1〜5mMが好ましく、硫酸銅であれば、0.1〜5mMが好ましい。 The concentration of each drug at the time of application is not particularly limited as long as it has a controlling effect against phytopathogenic fungi and does not cause phytotoxicity to plants. Usually within the range of 0.1 to 50 mM, for example, if zinc gluconate, 2 to 20 mM is preferable, if iron gluconate, 0.2 to 2 mM is preferable, if copper gluconate, 0.1 to 5 mM, With glycine zinc, 2-20 mM is preferred. Moreover, 0.1-5 mM is preferable for zinc sulfate, and 0.1-5 mM is preferable for copper sulfate.
本発明の防除剤の植物への施用時期は特に制限されないが、予防的な防除が有効である。 The timing of application of the control agent of the present invention to plants is not particularly limited, but preventive control is effective.
本発明の防除剤における植物病原菌の防除作用は、植物病原菌の感染を抑制・阻害させる作用、増殖・伸展・移動を抑制または阻害する作用、および死滅させる作用を含む。本発明の防除剤が防除作用を示す植物病原菌は、特に制限されるものではなく、細菌であっても、糸状菌などの真菌であってもよい。 The control action of phytopathogenic bacteria in the control agent of the present invention includes an action of suppressing/inhibiting infection of phytopathogenic bacteria, an action of suppressing/inhibiting growth/extension/migration, and an action of killing. The phytopathogenic fungi on which the controlling agent of the present invention exerts a controlling action is not particularly limited, and may be bacteria or fungi such as filamentous fungi.
植物病原細菌としては、例えばPseudomonas属菌、Erwinia属菌、Xanthomonas属菌、Ralstonia属菌、Streptomyces属菌、Clavibacter属菌、Agrobacterium属菌、Curtobacterium属菌、Acidovorax属菌、Burkholderia属菌が挙げられるが、これらに制限されない。 Examples of phytopathogenic bacteria include Pseudomonas spp, Erwinia spp, Xanthomonas spp, Ralstonia spp, Streptomyces spp, Clavibacter spp, Agrobacterium spp, Curtobacterium spp, Acidovorax spp, Burkholderia spp. , Not limited to these.
具体的な植物病原細菌としては、例えば、アブラナ科植物黒斑細菌病菌(Pseudomonas syringae pv. maculicola、Pseudomonas cannabina pv. alisalensis)、トマト斑葉細菌病菌(Pseudomonas syringae pv. tomato)、レタス腐敗病菌(Pseudomonas cichorii、 Pseudomonas marginalis、Pseudomonas viridiflava)、モモせん孔細菌病菌(Xanthomonas arboricola pv. pruni、Pseudomonas syringae pv. syringae、Brenneria nigrifluens、Erwinia nigrifluens)、アカクローバ斑点細菌病菌・アズキ褐斑細菌病菌・カンキツ褐斑細菌病菌など(Pseudomonas syringae pv. syringae)、ダイズ斑点細菌病菌(Pseudomonas savastanoi pv. glycinea)、キュウリ斑点細菌病菌(Pseudomonas syringae pv. lachrymans)、タバコ野火病菌(Pseudomonas syringae pv. tabaci)、エンドウつる枯細菌病菌(Pseudomonas syringae pv. pisi)、キウイフルーツかいよう病菌(Pseudomonas syringae pv. actinidiae)、ハクサイ・キャベツ・ダイコン・レタス等軟腐病菌(Erwinia carotovora)、イネ白葉枯病菌(Xanthomonas oryzae pv. oryzae)、ダイズ葉焼病菌(Xanthomonas campestris pv. glycinea、Xanthomonas axonopodis pv. glycinea)、キャベツ・ブロッコリー等アブラナ科植物黒腐病菌(Xanthomonas campestris pv. campestris)、レタス斑点細菌病菌(Xanthomonas axonopodis pv. vitians)、カンキツかいよう病菌(Xanthomonas citri subsp. citri)、トマト・ナス・ピーマン・イチゴ・ショウガ青枯病菌(Ralstonia solanacearum)、ジャガイモそうか病菌(Streptomyces spp.)、トマトかいよう病菌(Clavibacter michiganensis subsp. michiganensis)、キク科・バラ科植物等根頭がんしゅ病菌(Agrobacterium tumefaciens)、メロン毛根病菌(Agrobacterium rhizogenes)、ブドウ根頭がんしゅ病菌(Agrobacterium vitis、Rhizobium radiobacter)、インゲンマメ萎ちょう細菌病菌(Curtobacterium flaccumfaciens pv. flaccumfaciens)、チューリップかいよう病(Curtobacterium flaccumfaciens pv. oortii)、スイカ果実汚斑細菌病菌(Acidovorax avenae subsp. citrulli)、イネ褐条病菌・トウモロコシ褐条病菌(Acidovorax avenae subsp. avenae)、イネもみ枯細菌病菌(Burkholderia glumae)、イネ苗立枯細菌病菌(Burkholderia plantarii)、ジャガイモ黒あし病菌(Pectobacterium carotovorum、Pectobacterium atrosepticum)が挙げられるが、これらに制限されない。 Specific plant pathogenic bacteria include, for example, Pseudomonas syringae pv. maculicola, Pseudomonas cannabina pv. alisalensis, Pseudomonas syringae pv. tomato, and lettuce spoilage fungus (Pseudomonas). cichorii, Pseudomonas marginalis, Pseudomonas viridiflava), Pseudomonas viridiflava, Xanthomonas arboricola pv. pruni, Pseudomonas syringae pv. syringae, Brenneria nigrifluens, Erwinia nigrifluens, etc. (Pseudomonas syringae pv. syringae), soybean spotted bacterial disease fungus (Pseudomonas savastanoi pv. glycinea), cucumber spotted bacterial disease fungus (Pseudomonas syringae pv. lachrymans), tobacco field fungus (Pseudomonas syringae pv. tabse bacterium) syringae pv. pisi), Kiwifruit canker (Pseudomonas syringae pv. actinidiae), Chinese cabbage, cabbage, Japanese radish, lettuce and other soft-rot fungi (Erwinia carotovora), rice white leaf blight (Xanthomonas oryzae pv. oryzae), soybean leaf burn fungus Xanthomonas campestris pv. glycinea, Xanthomonas axonopodis pv. glycinea), cabbage and broccoli, etc., Brassicaceae black rot (Xanthomonas campestris pv. campestris), lettuce spot bacterial fungus (Xanthomonas axonopodis pv. anthracis bacterium) citri subsp. citri), tomato, eggplant, pepper, strawberry, ginger wilt (Ralstonia solanacearum), potato scab (Streptomyces spp.), tomato canker (Clavibacter michiganensis subsp. michiganensis), Asteraceae, Rosaceae plant Agrobacterium tumefaciens, Agrobacterium rhizogenes, Agrobacterium rhizogenes, Grape root rot, Agrobacterium vitis, Rhizobium radiobacter, Kidney bean wilt bacterial disease, Curtobacterium flaccumfaciens pv. flaccumfaciens, Tulip Disease (Curtobacterium flaccumfaciens pv. oortii), watermelon fruit blotch bacterial disease fungus (Acidovorax avenae subsp. citrulli), rice brown streak bacterium/corn brown streak bacterium (Acidovorax avenae subsp. avenae), rice blast fungus (Burkholderia glumae), Examples thereof include, but are not limited to, Burkholderia plantarii of rice, and Pectobacterium carotovorum, Pectobacterium atrosepticum.
また、植物病原真菌としては、例えば、Colletotrichum属菌、Phytophthora属菌、Podosphaera属菌、Sphaerotheca属菌、Leveillula属菌、Oidium属菌、Oidiopsis属菌、Erysiphe属菌、Uncinula属菌、Botrytis属菌、Fusarium属菌、Pyricularia属菌、Fulvia属菌、Pseudocercospora属菌、Gibberella属菌、Monographella属菌、Pestalotiopsis属菌、Corynespora属菌、Puccinia属菌、Alternaria属菌、Plasmopara属菌、Bremia属菌、Peronospora属菌、Cochliobolus属菌、Rhizoctonia属菌、Sclerotinia属菌、Verticillium属菌、Venturia属菌、Monilinia属菌、Cercospora属菌、Leptosphaeria属菌が挙げられるが、これらに制限されない。 Further, as a plant pathogenic fungus, for example, Colletotrichum spp, Phytophthora spp, Podosphaera spp, Sphaerotheca spp, Leveillula spp, Oidium spp, Oidiopsis spp, Erysiphe spp, Uncinula spp, Botrytis spp, Fusarium spp, Pyricularia spp, Fulvia spp, Pseudocercospora spp, Gibberella spp, Monographella spp, Pestalotiopsis spp, Corynespora spp, Puccinia spp, Alternaria spp, Plasmopara spp, Bremia spp, Peronospora spp Bacteria, Cochliobolus spp., Rhizoctonia spp., Sclerotinia spp., Verticillium spp., Venturia spp., Monilinia spp., Cercospora spp., Leptosphaeria spp. are not limited to these.
具体的な植物病原真菌としては、例えば、アブラナ科類炭疽病菌(Colletotrichum higginsianum)、ウリ類炭疽病菌(Colletotrichum orbiculare)、イチゴ炭疸病菌(Colletotorichum acutatum、Colletotrichum gloeosporioides種複合体;C. aenigma、C. fructicola、C. siamense)、ダイコン炭疽病菌(Colletotrichum incanum、Colletotrichum dematium)、ブドウ晩腐病(Colletotrichum gloeosporioides)、イネ科植物炭疽病菌(Colletotrichum graminicola)、野菜・他の宿主植物の炭疽病菌(Colletotrichum spp.)、ジャガイモ・トマト疫病菌(Phytophthora infestans)、イチゴ疫病菌(Phytophthora nicotianae、Phytophthora cactorum、 Phytophthora sp.)、サトイモ疫病菌(Phytophthora colocasiae)、野菜・観賞植物・タバコ・他の宿主植物の疫病菌(Phytophthora spp.)、イチゴうどんこ病菌(Podosphaera aphanis、Sphaerotheca aphanis、Sphaerotheca humuli)、トマトうどんこ病菌(Leveillula taurica、Oidium sp.、Oidium lycopersici、Oidium neolycopersici)、キュウリうどんこ病菌(Sphaerotheca fuliginea、Sphaerotheca cucurbitae、Oidiopsis sicula、Erysiphe polygoni、Oidium sp.)、オオムギ・コムギうどんこ病菌(Erysiphe graminis)、ブドウうどんこ病菌(Erysiphe necator、Uncinula necator)、エンドウうどんこ病菌(Erysiphe pisi)、カボチャうどんこ病菌(Sphaerotheca cucurbitae、Oidium citrulli)、ナスうどんこ病菌(Erysiphe cichoracearum、Sphaerotheca fuliginea、Oidiopsis sicula)、野菜・観賞用植物・他の宿主植物のうどんこ病病菌、トマト・イチゴ・キュウリ・野菜・ブドウ・他の宿主植物の灰色かび病菌(Botrytis cinerea)、イチゴ萎黄病菌(Fusarium oxysporum f.sp.fragariae)、イネいもち病菌(Pyricularia grisea(P. oryzae))、トマト葉かび病菌(Fulvia fulva)、トマトすすかび病菌(Pseudocercospora fuligena)、コムギ赤かび病(Gibberella zeae、Fusarium avenaceum、Fusarium culmorum、Fusarium crookwellense、Monographella nivalis)、チャ輪斑病菌(Pestalotiopsis longiseta、Pestalotiopsis theae)、ダイズ急性枯死症菌(Fusarium tucumaniae、Fusarium virguliforme)、キュウリ褐斑病菌(Corynespora cassiicola)、オオムギ・コムギの黒さび病菌(Puccinia graminis)、オオムギ・コムギの黄さび病菌(Puccinia striiformis Westendorp var. striiformis)、オオムギの小さび病菌(Puccinia hordei Otth)、コムギの赤さび病菌(Puccinia recondita Roberge ex Desmazieres)、ネギ類さび病菌(Puccinia allii)、キク類白さび病菌(Puccinia horiana Hennings)、コーヒー・西洋なし・リンゴ・落花生・野菜・観賞用植物・他の宿主植物のさび病菌、ナシ黒斑病菌(Alternaria alternata)、キャベツ黒すす病菌(Alternaria brassicicola)、ハクサイ黒斑病菌(Alternaria brassicae、Alternaria brassicicola、Alternaria japonica)、その他の野菜(例えば、キュウリ・アブラナ科野菜)・リンゴ・トマト・他の宿主植物の黒斑病菌(Alternaria spp.)、ブドウベト病菌(Plasmopara viticola)、レタスベト病菌(Bremia lactucae)、キュウリべト病菌(Pseudoperonospora cubensis)、ハクサイベト病菌(Peronospora parasitica)、ダイズ・タバコ・タマネギ・他の宿主植物のべと病菌(Peronospora spp.)、イネごま葉枯病菌(Cochliobolus miyabeanus)、キュウリつる割病菌(Fusarium oxysporum f. sp. cucumerinum)、トマト萎ちょう病菌(Fusarium oxysporum f. sp. lycopersici)、イネばか苗病菌(Gibberella fujikuroi)、キュウリ、ナスなどリゾクトニア苗立枯病菌(Rhizoctonia solani)、トマト小粒菌核病菌(Sclerotinia minor)、ジャガイモ半身萎ちょう病菌(Verticillium albo-atrum、Verticillium dahliae、Verticillium nigrescens、Verticillium tricorpus)、トマト輪紋病菌(Alternaria solani)、野菜類菌核病菌(Sclerotinia sclerotiorum)、リンゴ黒星病菌(Venturia inaequalis)、モモ灰星病菌(Monilinia fructicola)、ダイズ紫斑病菌(Cercospora kikuchii)、テンサイ褐斑病菌(Cercospora beticola)、コムギふ枯病菌(Leptosphaeria nodorum)が挙げられるが、これらに制限されない。 Specific plant pathogenic fungi include, for example, Brassicaceae anthracnose fungus (Colletotrichum higginsianum), Cucurbitaceae anthracnose fungus (Colletotrichum orbiculare), strawberry anthrax fungus (Colletotorichum acutatum, Colletotrichum gloeosporioides species complex; C. aenigma, C. aenigma. fructicola, C. siamense), anthracnose anthracnose (Colletotrichum incanum, Colletotrichum dematium), late rot of grape (Colletotrichum gloeosporioides), anthracnose anthracnose (Colletotrichum graminicola), anthracnose sp. ), potato and tomato blight (Phytophthora infestans), strawberry blight (Phytophthora nicotianae, Phytophthora cactorum, Phytophthora sp.), taro blight (Phytophthora colocasiae), vegetables, ornamental plants, tobacco, and other host plant blight. Phytophthora spp.), strawberry powdery mildew (Podosphaera aphanis, Sphaerotheca aphanis, Sphaerotheca humuli), tomato powdery mildew (Leveillula taurica, Oidium sp., Oidium lycopersici, Oidium neolycolyci, powdery mildew). Oidiopsis sicula, Erysiphe polygoni, Oidium sp.), barley and wheat powdery mildew (Erysiphe graminis), grape powdery mildew (Erysiphe necator, Uncinula necator), pea powdery mildew (Erysiphe pisi), squash powdery mildew , Oidium cit rulli), powdery mildew of eggplant (Erysiphe cichoracearum, Sphaerotheca fuliginea, Oidiopsis sicula), powdery mildew of vegetables, ornamental plants, other host plants, gray of tomatoes, strawberries, cucumbers, vegetables, grapes, other host plants Botrytis cinerea, Fusarium oxysporum f.sp. fragariae), rice blast fungus (Pyricularia grisea (P. oryzae)), tomato leaf mold fungus (Fulvia fulva), tomato scab (Pseudocercospora fuligena), wheat leaf mold (Gibberella zeae, Fusarium avenaceum, Fuwellium crusarum, Fusarium crumorum) , Monographella nivalis), tea leaf spot fungus (Pestalotiopsis longiseta, Pestalotiopsis theae), soybean acute withdrawal fungus (Fusarium tucumaniae, Fusarium virguliforme), cucumber brown spot fungus (Corynespora cassiicola), barley and wheat black rust graminis , Barley and wheat stripe rust (Puccinia striiformis Westendorp var. striiformis), barley small rust fungus (Puccinia hordei Otth), wheat red rust fungus (Puccinia recondita Roberge ex Desmazieres), green onion rust fungus (Puccinia allium) White rust fungus (Puccinia horiana Hennings), coffee, western pears, apples, peanuts, vegetables, ornamental plants, other host plant rust fungus, pear black spot fungus (Alternaria alternata), cabbage black rust fungus (Alternaria brassicicola), Chinese cabbage leaf spot fungus (Alternaria brassicae, Alternaria brassicicola, Alternaria japonica), other vegetables (for example, cucumber and cruciferous vegetables), apples, tomatoes, and other host plant leaf spot fungus (Alternaria spp.), grape downy mildew (Plasmopara) viticola), lettuce downy mildew (Bremia lactucae), cucumber downy mildew (Pseudoperonospora cubensis), Chinese cabbage downy mildew (Peronospora parasitica) ), soybean, tobacco, onion, other host plant downy mildew (Peronospora spp.), rice sesame leaf blight (Cochliobolus miyabeanus), cucumber vine (Fusarium oxysporum f. sp. cucumerinum), tomato wilt fungus (Fusarium oxysporum f. sp. lycopersici), rice bacillus seedling fungus (Gibberella fujikuroi), cucumber, eggplant and other Rhizoctonia solani, tomato small grain bacterium (Sclerotinia minor), potato half-body wilt fungus (Verticillium) albo-atrum, Verticillium dahliae, Verticillium nigrescens, Verticillium tricorpus), tomato ring fungus (Alternaria solani), vegetable sclerotinia fungus (Sclerotinia sclerotiorum), apple scab (Venturia inaequalis), peach aphidosis fungus (Monilinia fructicola) Examples include, but are not limited to, soybean purpura fungus (Cercospora kikuchii), sugar beet brown spot fungus (Cercospora beticola), and wheat wilt fungus (Leptosphaeria nodorum).
植物病原菌の防除を行う植物の代表的なものとしては、例えば、トマト、ナス、ピーマン、トウガラシ、タバコ、ジャガイモなどのナス科植物、キュウリ、カボチャ、メロンなどのウリ科植物、イチゴ、リンゴ、ナシ、ウメ、モモなどのバラ科植物、ハクサイ、チンゲンサイ、キャベツ、コマツナ、シロイヌナズナなどのアブラナ科植物、ダイズなどのマメ科植物、イネ、コムギなどのイネ科植物、サトイモなどのサトイモ科植物などが挙げられるが、本発明は、上記植物病原菌が感染する、その他多くの植物にも広範に適用できる。 Representative examples of plants for controlling phytopathogenic fungi include, for example, tomato, eggplant, peppers, capsicum, tobacco, solanaceous plants such as potatoes, cucumber, pumpkin, melons and other cucurbitaceae plants, strawberries, apples, pears. , Rumeaceae plants such as plums, plums, rapeseed plants such as Chinese cabbage, bok choy, cabbage, komatsuna, Arabidopsis thaliana, legume plants such as soybean, rice plants such as rice and wheat, and taro plants such as taro. However, the present invention can be widely applied to many other plants infected with the above plant pathogens.
なお、植物病原菌と宿主植物との関係については、日本植物病名データベース(農業生物資源ジーンバンク)を参照のこと。 For the relationship between phytopathogenic fungi and host plants, refer to the Japanese Plant Disease Name Database (Agricultural Biological Resource Genebank).
以下、実施例に基づいて本発明をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
[実施例1] 各種金属キレート処理したシロイヌナズナにおける防御応答遺伝子の発現の解析
植物材料として、シロイヌナズナ(生態型:コロンビア)を、土(スーパーミックスA(サカタのタネ):ホワイトバーミキュライト(A-2、旭工業株式会社):黒曜石パーライト(フヨーライト3号)=2:1:1)に播種し、22℃にて24時間の明暗サイクル(明時間12時間および暗時間12時間)で栽培した。播種して1週間後に1鉢当たり5個体になるように植え替えを行い、同条件下でさらに3週間栽培した。0.01%の展着剤(マイリノー)を添加した各種薬剤を、上述したように栽培したシロイヌナズナに対し、1鉢当り3〜5mlで噴霧処理した。
[Example 1] Analysis of expression of defense response gene in Arabidopsis treated with various metal chelates Arabidopsis thaliana (ecological type: Colombia) was used as a plant material, and soil (Supermix A (Sakata seed)): white vermiculite (A-2, (Asahi Kogyo Co., Ltd.): Obsidian perlite (Fuyolite No. 3)=2:1:1) and seeds were cultivated at 22° C. for a 24-hour light-dark cycle (light time 12 hours and dark time 12 hours). One week after sowing, the plants were replanted so that there were 5 individuals per pot, and the plants were further cultivated for 3 weeks under the same conditions. Various chemicals containing 0.01% of a spreading agent (myrinose) were spray-treated at 3 to 5 ml per pot on the Arabidopsis cultivated as described above.
処理後、22℃にて、明時間12時間および暗時間12時間のサイクル条件下で静置し、2日後にサンプリングした。 After the treatment, the plate was left to stand at 22° C. under a cycle condition of a light time of 12 hours and a dark time of 12 hours, and sampled after 2 days.
サンプリングした植物体は液体窒素で凍結し、MaxwellTMRSC simplyRNA Tissue Kit(Promega社製)を用いて全RNAを抽出した。続いて、PrimeScript RT reagent Kit(タカラ社製)を用いて全RNAから一本鎖cDNAを合成した。さらに、SsoAdvancedTM Universal SYBRTM Green Supermix(バイオラッド社製)を用いて定量的RT-PCRを行った。また、定量的RT-PCRは、1×SsoAdvancedTM Universal SYBRTM Green Supermix、200nMのフォワードプライマーとリバースプライマーの反応液を、95℃で10秒間の変性ステップの後、95℃で5秒、65℃で20秒(CBP20については、60℃で20秒)のステップを1サイクルとし、40サイクル行った。 The sampled plant was frozen in liquid nitrogen, and total RNA was extracted using Maxwell ™ RSC simplyRNA Tissue Kit (Promega). Subsequently, single-stranded cDNA was synthesized from total RNA using PrimeScript RT reagent Kit (Takara). Furthermore, quantitative RT-PCR was performed using SsoAdvanced ™ Universal SYBR ™ Green Supermix (manufactured by Bio-Rad). Quantitative RT-PCR was performed using 1×SsoAdvanced ™ Universal SYBR ™ Green Supermix, 200 nM reaction mixture of forward primer and reverse primer at 95°C for 10 seconds, followed by denaturation step at 95°C for 5 seconds and 65°C. The cycle of 20 seconds (20 seconds at 60° C. for CBP20) was set as one cycle, and 40 cycles were performed.
各サンプル間の標準化は、シロイヌナズナで恒常的に発現しているCBP20遺伝子を用い、各サンプルにおける目的遺伝子の発現量をCBP20遺伝子の発現量で除することにより行った。 The standardization between samples was performed by using the CBP20 gene constitutively expressed in Arabidopsis thaliana and dividing the expression level of the target gene in each sample by the expression level of the CBP20 gene.
シロイヌナズナにおける各遺伝子の定量的RT-PCRに用いたプライマーの配列は以下の通りである。 The sequences of the primers used for quantitative RT-PCR of each gene in Arabidopsis are as follows.
CBP20(At5g44200;フォワードプライマー5'-TGTTTCGTCCTGTTCTACTC-3'/配列番号:1、リバースプライマー5'-CCCATTGTCTTCCTTCTTG-3'/配列番号:2)。 CBP20 (At5g44200; forward primer 5'-TGTTTCGTCCTGTTCTACTC-3'/SEQ ID NO: 1, reverse primer 5'-CCCATTGTCTTCCTTCTTG-3'/SEQ ID NO: 2).
PR1(At2g14610;フォワードプライマー5'-CCCACAAGATTATCTAAGGGTTCAC-3'/配列番号:3、リバースプライマー5'-CCCTCTCGTCCCACTGCAT-3'/配列番号:4)(Jirage et al. (2001) Plant J 26: 395-407)。 PR1 (At2g14610; forward primer 5'-CCCACAAGATTATCTAAGGGTTCAC-3'/SEQ ID NO: 3, reverse primer 5'-CCCTCTCGTCCCACTGCAT-3'/SEQ ID NO: 4) (Jirage et al. (2001) Plant J 26: 395-407) ..
PDF1.2(At5g44420;フォワードプライマー5'-TTGCTGCTTTCGACGCA-3'/配列番号:5、リバースプライマー5'-TGTCCCACTTGGCTTCTCG-3'/配列番号:6)。 PDF1.2 (At5g44420; forward primer 5'-TTGCTGCTTTCGACGCA-3'/SEQ ID NO:5, reverse primer 5'-TGTCCCACTTGGCTTCTCG-3'/SEQ ID NO:6).
試料は、定量的RT-PCR法により、PR1遺伝子とPDF1.2遺伝子の発現をモニターした。結果を図1に示す。 The samples were monitored for expression of PR1 gene and PDF1.2 gene by quantitative RT-PCR method. The results are shown in Figure 1.
[実施例2] 各種金属キレート処理したチンゲンサイにおける植物病原菌の感染抑制効果
(1)チンゲンサイにおけるアブラナ科植物黒斑細菌病の感染抑制
以下の方法で、黒斑細菌病菌に対する感染抑制効果を評価した。
[Example 2] Inhibitory effect of phytopathogenic fungus on Pak choi that was treated with various metal chelates (1) Inhibition of infection of Brassicaceae plant black spot bacterial disease on Pak choi The infection inhibitory effect against black spot bacterial disease was evaluated by the following method.
植物材料として、アブラナ科植物のチンゲンサイ(品種:青帝、シャオパオ)を、実施例1と同様の条件下で播種し、24℃にて24時間の明暗サイクル(明時間16時間および暗時間8時間)で栽培した。播種後10日間栽培したチンゲンサイに、0.1%の展着剤(アプローチBI)を添加した薬剤を茎葉散布した。薬剤散布から2日後、チンゲンサイに黒斑細菌病菌(1×108cfu/ml)を噴霧接種した。接種した植物は湿室下に静置した。接種から3日後、接種葉をサンプリングし、実施例1と同様の方法でqRT-PCR法により、黒斑細菌病菌のrpoD遺伝子(Psm-rpoD)の発現量を測定することでチンゲンサイへの感染量を定量した。ただし、RT-PCRの反応は、95℃で10秒間の変性ステップの後、95℃で5秒、60℃で20秒(BrACT2については、65℃で20秒)のステップを1サイクルとし、40サイクル行った。なお、コントロールとして、金属を含まない展着剤(0.1%アプローチBI)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。 As a plant material, a Brassicaceae plant, Pakchoi (variety: Qing, Xiao Pao), was sown under the same conditions as in Example 1, and a 24-hour light-dark cycle (light time 16 hours and dark time 8 hours was performed at 24°C. ). The agent to which 0.1% of the spreading agent (Approach BI) was added was applied to foliage plant which was cultivated for 10 days after sowing. Two days after the drug was sprayed, Pak choi was spray-inoculated with black spot bacterial pathogen (1×10 8 cfu/ml). The inoculated plant was allowed to stand in a moist chamber. Three days after the inoculation, the inoculated leaves were sampled, and the qRT-PCR method was performed in the same manner as in Example 1 to measure the expression level of the rpoD gene (Psm-rpoD) of the black spot bacterial pathogen, and thus the infectious dose to Qing bean plant. Was quantified. However, the RT-PCR reaction consisted of a denaturation step at 95°C for 10 seconds, followed by 5 seconds at 95°C and 20 seconds at 60°C (20 seconds at 65°C for BrACT2) as one cycle, and 40 Went through a cycle. As a control, only the spreading agent containing no metal (0.1% approach BI) was sprayed, and the same quantitative determination was performed. The relative infectious pathogen amount when the control infectious amount was 100 is shown.
各サンプル間の標準化は、チンゲンサイで恒常的に発現しているBrACT2遺伝子を用い、各サンプルにおける目的遺伝子の発現量をBrACT2遺伝子の発現量で除することにより行った。 The standardization between samples was performed by using the BrACT2 gene constitutively expressed in Pak choi and dividing the expression level of the target gene in each sample by the expression level of BrACT2 gene.
チンゲンサイにおける各遺伝子の定量的RT-PCRに用いたプライマーの配列は以下の通りである。 The sequences of the primers used for the quantitative RT-PCR of each gene in Pakchoi are as follows.
Psm-rpoD(フォワードプライマー5'-CCGAGATCAAGGACATCAAC-3'/配列番号:7、リバースプライマー5'-GAGATCACCAGACGCAAGTT-3'/配列番号:8)
BrACT2(フォワードプライマー5'-GCCGAGGCTGATGACATT-3'/配列番号:9、リバースプライマー5'-CATGATGTCTTGGCCTACCA-3'/配列番号:10)。
Psm-rpoD (forward primer 5'-CCGAGATCAAGGACATCAAC-3'/SEQ ID NO:7, reverse primer 5'-GAGATCACCAGACGCAAGTT-3'/SEQ ID NO:8)
BrACT2 (forward primer 5'-GCCGAGGCTGATGACATT-3'/SEQ ID NO: 9, reverse primer 5'-CATGATGTCTTGGCCTACCA-3'/SEQ ID NO: 10).
その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(図2)。なお、グルコン酸亜鉛(ZnGluc)処理では薬害が認められなかった。
(2)チンゲンサイにおけるアブラナ科植物黒斑細菌病の感染抑制
以下の方法で、黒斑細菌病菌に対する感染抑制効果を評価した。
As a result, compared with the control, the infection suppressing effect was significantly observed in the metal solution (Fig. 2). No phytotoxicity was observed in the treatment with zinc gluconate (ZnGluc).
(2) Suppression of infection of Brassicaceae plant black spot bacterial disease in Pakchoi (Pakchoi) The effect of inhibiting infection with black spot bacterial disease was evaluated by the following method.
植物材料として、アブラナ科植物のチンゲンサイ(品種:シャオパオ)を、実施例1と同様の条件下で播種し、24℃にて24時間の明暗サイクル(明時間16時間および暗時間8時間)で栽培した。播種後10日間栽培したチンゲンサイに、0.01%の展着剤(マイリノー)を添加した各種薬剤を茎葉散布した。薬剤散布から2日後、チンゲンサイに黒斑細菌病菌(1×108cfu/ml)を噴霧接種した。接種した植物は湿室下に静置した。接種から3日後、接種葉をサンプリングし、実施例2(1)と同様の方法でqRT-PCR法により、黒斑細菌病菌のrpoD遺伝子(Psm-rpoD)の発現量を測定することでチンゲンサイへの感染量を定量した。 As a plant material, a Brassicaceae bok choy (Pharmaceae) is sown under the same conditions as in Example 1 and cultivated at 24° C. in a 24-hour light-dark cycle (light time 16 hours and dark time 8 hours). did. To the bok choy cultivated for 10 days after sowing, various agents to which 0.01% of a spreading agent (mylino) was added were sprayed on foliage. Two days after the drug was sprayed, Pak choi was spray-inoculated with black spot bacterial pathogen (1×10 8 cfu/ml). The inoculated plant was allowed to stand in a moist chamber. Three days after the inoculation, the inoculated leaves were sampled, and the expression level of the rpoD gene (Psm-rpoD) of the black spot bacterial pathogen was measured by the qRT-PCR method in the same manner as in Example 2(1) to obtain the Pak-choi. The amount of infectious disease was quantified.
なお、コントロールとして、金属を含まない展着剤(0.01%マイリノー添加)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。 As a control, only a spreading agent containing no metal (0.01% mylino added) was sprayed, and the same quantitative determination was performed. The relative infectious pathogen amount when the control infectious amount was 100 is shown.
各サンプル間の標準化は、チンゲンサイで恒常的に発現しているBrACT2遺伝子を用い、各サンプルにおける目的遺伝子の発現量をBrACT2遺伝子の発現量で除することにより行った。 The standardization between samples was performed by using the BrACT2 gene constitutively expressed in Pak choi and dividing the expression level of the target gene in each sample by the expression level of BrACT2 gene.
その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(図3)。 As a result, in comparison with the control, the effect of suppressing infection was significantly observed in the metal solution (Fig. 3).
なお、硫酸銅(CuSO4)溶液および硫酸亜鉛(ZnSO4)溶液の処理区では薬剤処理のみで斑点などの薬害が認められたが、金属キレートであるグルコン酸銅(CuGluc)およびグルコン酸亜鉛(ZnGluc)の処理区では薬害が認められなかった。 Although chemical damage such as spots was observed only with the chemical treatment in the treatment groups of the copper sulfate (CuSO 4 ) solution and the zinc sulfate (ZnSO 4 ) solution, copper gluconate (CuGluc) and zinc gluconate (metal chelate) No phytotoxicity was observed in the treated area of ZnGluc).
(3)チンゲンサイにおけるアブラナ科野菜類炭疽病菌の感染抑制
以下の方法によりアブラナ科野菜類炭疽病菌に対する感染抑制効果を評価した。
(3) Suppression of Infection of Brassicaceae Vegetable Anthracnose in Pakchoi The infection control effect on Brassicaceae vegetable Anthracnose was evaluated by the following method.
植物材料として、アブラナ科植物のチンゲンサイ(品種:シャオパオ)を、実施例1と同様の条件下で播種し、24℃にて24時間の明暗サイクル(明時間16時間および暗時間8時間)で栽培した。播種後10日間栽培したチンゲンサイに、0.01%の展着剤(マイリノー)を添加した各種薬剤を茎葉散布した。薬剤散布から2日後、チンゲンサイにアブラナ科野菜類炭疽病菌(5×105胞子/ml)を噴霧接種した。接種した植物は湿室下に静置した。接種から5日後、接種葉をサンプリングし、実施例2(1)と同様の方法でqRT-PCR法により、アブラナ科野菜類炭疽病菌のアクチン遺伝子(Ch-ACT)の発現量を測ることでチンゲンサイへの感染量を定量した。ただし、RT-PCRの反応は、95℃で10秒間の変性ステップの後、95℃で5秒、65℃で20秒のステップを1サイクルとし、40サイクル行った。コントロールとして、金属を含まない展着剤(0.01%マイリノー添加)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。 As a plant material, Brassicaceae bok choy (cultivar: Xiao Pao) was sown under the same conditions as in Example 1, and cultivated at 24° C. in a 24-hour light-dark cycle (light time 16 hours and dark time 8 hours). did. To the bok choy cultivated for 10 days after sowing, various agents containing 0.01% of a spreading agent (mylino) were sprayed on the leaves. Two days after the spraying of the drug, bok choy was spray-inoculated with anthracnose anthracnose fungus (5×10 5 spores/ml). The inoculated plant was allowed to stand in a moist chamber. Five days after the inoculation, the inoculated leaves were sampled and the expression level of the actin gene (Ch-ACT) in the cruciferous anthracnose of Brassicaceae was measured by the qRT-PCR method in the same manner as in Example 2(1). The amount of infection was determined. However, the RT-PCR reaction was carried out for 40 cycles, with a denaturation step at 95°C for 10 seconds, a cycle of 95°C for 5 seconds and 65°C for 20 seconds as one cycle. As a control, only the spreading agent containing no metal (0.01% mylino added) was sprayed, and the same quantification was performed. The relative infectious pathogen amount when the infectious dose of the control was 100 was shown.
各サンプル間の標準化は、チンゲンサイで恒常的に発現しているBrACT2遺伝子を用い、各サンプルにおける目的遺伝子の発現量をBrACT2遺伝子の発現量で除することにより行った。 The standardization between samples was performed by using the BrACT2 gene constitutively expressed in Pak choi and dividing the expression level of the target gene in each sample by the expression level of BrACT2 gene.
チンゲンサイにおける各遺伝子の定量的RT-PCRに用いたプライマーの配列は以下の通りである。 The sequences of the primers used for the quantitative RT-PCR of each gene in Pakchoi are as follows.
Ch-ACT(フォワードプライマー5'-CTCGTTATCGACAATGGTTC-3'/配列番号:11、リバースプライマー5'-GAGTCCTTCTGGCCCATAC-3'/配列番号:12)。 Ch-ACT (forward primer 5'-CTCGTTATCGACAATGGTTC-3'/SEQ ID NO: 11, reverse primer 5'-GAGTCCTTCTGGCCCATAC-3'/SEQ ID NO: 12).
その結果、コントロールと比較して、金属キレート溶液において有意に感染抑制効果が認められた(図4)。 As a result, in comparison with the control, the metal chelate solution showed a significant infection suppressing effect (Fig. 4).
なお、硫酸銅(CuSO4)溶液および硫酸亜鉛(ZnSO4)溶液の処理区では薬剤処理のみで斑点などの薬害が認められたが、金属キレートであるグルコン酸銅(CuGluc)およびグルコン酸亜鉛(ZnGluc)の処理区では薬害が認められなかった。 Although chemical damage such as spots was observed only with the chemical treatment in the treatment groups of the copper sulfate (CuSO 4 ) solution and the zinc sulfate (ZnSO 4 ) solution, copper gluconate (CuGluc) and zinc gluconate (metal chelate) No phytotoxicity was observed in the treated area of ZnGluc).
[実施例3] 各種金属キレート処理したシロイヌナズナにおける植物病原菌の感染抑制効果
(1)シロイヌナズナにおけるアブラナ科野菜類炭疽病菌の感染抑制
植物材料として、シロイヌナズナ(生態型:コロンビア)を、実施例1と同様の条件下で栽培した。播種して1週間後に1鉢当たり5個体になるように植え替えを行い、同条件下でさらに3週間栽培した。0.01%の展着剤(マイリノー)を添加した各種薬剤を、1鉢当り3〜5mlで茎葉散布した。薬剤散布から2日後、シロイヌナズナにアブラナ科野菜類炭疽病菌(5×105胞子/ml)を噴霧接種した。接種した植物は湿室下に静置した。接種から5日後、接種葉をサンプリングし、実施例1および2(3)と同様の方法でqRT-PCR法により、アブラナ科野菜類炭疽病菌のアクチン遺伝子(Ch-ACT)の発現量を測ることでシロイヌナズナへの感染量を定量した。コントロールとして、金属を含まない展着剤(0.01%マイリノー)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。
[Example 3] Inhibitory effect of plant pathogens on Arabidopsis treated with various metal chelates (1) Inhibition of infection of cruciferous vegetables Anthracnose on Arabidopsis Arabidopsis thaliana (ecotype: Colombia) was used as a plant material in the same manner as in Example 1. It was cultivated under the conditions. One week after sowing, the seedlings were replanted so that there were 5 individuals per pot, and the plants were further cultivated for 3 weeks under the same conditions. Various chemicals containing 0.01% of spreading agent (myrinose) were sprayed on the leaves at 3 to 5 ml per pot. Two days after the drug application, Arabidopsis thaliana was spray-inoculated with anthracnose anthracnose (5×10 5 spores/ml). The inoculated plant was allowed to stand in a moist chamber. Five days after the inoculation, the inoculated leaves are sampled, and the expression level of the actin gene (Ch-ACT) in the cruciferous anthracnose of Brassicaceae is measured by the qRT-PCR method in the same manner as in Examples 1 and 2(3). The amount of infection to Arabidopsis was quantified by. As a control, only the spreading agent containing no metal (0.01% mylino) was sprayed, and the same quantitative determination was performed. The relative infectious pathogen amount when the control infectious amount was 100 is shown.
各サンプル間の標準化は、シロイヌナズナで恒常的に発現しているCBP20遺伝子を用い、各サンプルにおける目的遺伝子の発現量をCBP20遺伝子の発現量で除することにより行った。 The standardization between samples was performed by using the CBP20 gene constitutively expressed in Arabidopsis thaliana and dividing the expression level of the target gene in each sample by the expression level of the CBP20 gene.
その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(図5)。 As a result, compared with the control, the infection suppressing effect was significantly observed in the metal solution (Fig. 5).
なお、硫酸銅(CuSO4)溶液処理区と硫酸亜鉛(ZnSO4)溶液処理区では、薬剤処理のみで斑点などの薬害が認められたが、金属キレートであるグルコン酸銅(CuGluc)、グルコン酸亜鉛(ZnGluc)、グルコン酸鉄(FeGluc)では薬害が認められなかった。 In the copper sulfate (CuSO 4 ) solution treatment group and the zinc sulfate (ZnSO 4 ) solution treatment group, phytotoxicity such as spots was observed only by the chemical treatment, but metal chelates such as copper gluconate (CuGluc) and gluconate No phytotoxicity was observed with zinc (ZnGluc) or iron gluconate (FeGluc).
(2)シロイヌナズナにおけるアブラナ科植物黒斑細菌病菌の感染抑制
実施例1と同様に栽培したシロイヌナズナ(生態型:コロンビア)に対し、0.01%の展着剤(マイリノー)を添加した各種薬剤を、1鉢当り3〜5mlで茎葉散布した。薬剤散布から2日後、シロイヌナズナに黒斑細菌病菌(1×108cfu/ml)を噴霧接種した。接種した植物は湿室下に静置した。接種から3日後、接種葉をサンプリングし、実施例1および2(1)と同様の方法でqRT-PCR法により、黒斑細菌病菌のrpoD遺伝子(Psm-rpoD)の発現量を測定することでシロイヌナズナへの感染量を定量した。コントロールとして、金属を含まない展着剤(0.01%マイリノー添加)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。
(2) Inhibition of infection with cruciferous black spot bacterial pathogen in Arabidopsis thaliana Arabidopsis thaliana (ecotype: Colombia) cultivated in the same manner as in Example 1 was supplemented with various agents containing 0.01% of a spreading agent (myrinose). The foliage was sprayed at 3 to 5 ml per pot. Two days after spraying the drug, Arabidopsis thaliana was spray-inoculated with black spot bacterial pathogen (1×10 8 cfu/ml). The inoculated plant was allowed to stand in a moist chamber. Three days after the inoculation, the inoculated leaves were sampled, and the expression level of the rpoD gene (Psm-rpoD) of the black spot bacterial pathogen was measured by the qRT-PCR method in the same manner as in Examples 1 and 2(1). The amount of infection to Arabidopsis was quantified. As a control, only the spreading agent containing no metal (0.01% mylino added) was sprayed, and the same quantitative determination was performed. The relative infectious pathogen amount when the control infectious amount was 100 is shown.
各サンプル間の標準化は、シロイヌナズナで恒常的に発現しているCBP20遺伝子を用い、各サンプルにおける目的遺伝子の発現量をCBP20遺伝子の発現量で除することにより行った。 The standardization between samples was performed by using the CBP20 gene constitutively expressed in Arabidopsis thaliana and dividing the expression level of the target gene in each sample by the expression level of the CBP20 gene.
その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(図6)。 As a result, compared with the control, the infection suppressing effect was significantly observed in the metal solution (Fig. 6).
なお、硫酸亜鉛(ZnSO4)溶液処理区は、薬剤処理のみで斑点などの薬害が認められたが、金属キレートであるグルコン酸亜鉛(ZnGluc)では薬害が認められなかった。 In the zinc sulfate (ZnSO 4 ) solution-treated group, phytotoxicity such as spots was observed only with the chemical treatment, but no phytotoxicity was observed with the metal chelate zinc gluconate (ZnGluc).
[実施例4] 各種金属キレート処理したトマトにおける植物病原菌の感染抑制効果
(1)トマトにおける斑葉細菌病菌の感染抑制
植物材料として、ナス科植物のトマト(品種:レジナ)を、実施例1と同様の条件下で播種し、24℃にて24時間の明暗サイクル(明時間16時間および暗時間8時間)で栽培した。播種後3週間栽培したトマトに、各化合物(0.1%アプローチBI添加)を茎葉散布した。各化合物の散布から3日後、Pseudomonas syringae(1×108cfu/ml)を噴霧接種した。接種から3日後、接種葉をサンプリングし、実施例1および2(1)と同様の方法でqRT-PCR法により、Pseudomonas syringaeのrpoD遺伝子(Ps-rpoD)の発現量を測定することでトマトへの感染量を定量した。ただし、RT-PCRの反応は、95℃で10秒間の変性ステップの後、95℃で5秒、60℃で20秒のステップを1サイクルとし、40サイクル行った。なお、コントロールとして、化合物を含まない展着剤(0.1%アプローチBI添加)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。
[Example 4] Inhibition effect of phytopathogenic fungi on tomatoes treated with various metal chelates (1) Inhibition of infection of chlorophyll bacterial pathogens on tomatoes Tomatoes of the Solanaceae plants (variety: Regina) were used as Example 1 The seeds were sown under the same conditions and cultivated at 24° C. in a 24-hour light-dark cycle (light time 16 hours and dark time 8 hours). Each compound (0.1% approach BI added) was sprayed on the tomatoes cultivated for 3 weeks after sowing. Three days after spraying each compound, Pseudomonas syringae (1×10 8 cfu/ml) was spray-inoculated. Three days after the inoculation, the inoculated leaves were sampled, and the expression level of the rpoD gene (Ps-rpoD) of Pseudomonas syringae (Ps-rpoD) was measured by the qRT-PCR method in the same manner as in Examples 1 and 2(1) to give tomatoes. The amount of infectious disease was quantified. However, the RT-PCR reaction was carried out for 40 cycles with a denaturation step of 95° C. for 10 seconds, followed by a step of 95° C. for 5 seconds and 60° C. for 20 seconds as one cycle. As a control, only the spreading agent containing no compound (0.1% approach BI added) was sprayed and the same quantification was performed. The relative infectious pathogen amount when the control infectious amount was 100 is shown.
各サンプル間の標準化は、トマトで恒常的に発現しているSLTIP41遺伝子を用い、各サンプルにおける目的遺伝子の発現量をSLTIP41遺伝子の発現量で除することにより行った。 Standardization between samples was performed by using the SLTIP41 gene that is constantly expressed in tomato and dividing the expression level of the target gene in each sample by the expression level of the SLTIP41 gene.
トマトにおける各遺伝子の定量的RT-PCRに用いたプライマーの配列は以下の通りである。 The sequences of the primers used for the quantitative RT-PCR of each gene in tomato are as follows.
SLTIP41(フォワードプライマー5'-ATGGAGTTTTTGAGTCTTCTGC-3'/配列番号:13、リバースプライマー5'-GCTGCGTTTCTGGCTTAGG-3'/配列番号:14)。 SLTIP41 (forward primer 5'-ATGGAGTTTTTGAGTCTTCTGC-3'/SEQ ID NO: 13, reverse primer 5'-GCTGCGTTTCTGGCTTAGG-3'/SEQ ID NO: 14).
その結果、コントロールと比較して、金属キレート溶液において有意に感染抑制効果が認められた(図7)。
(2)トマトにおける灰色かび病菌の感染抑制
以下の方法によりトマト灰色かび病菌(Botrytis cinerea)に対する感染抑制効果を評価した。
As a result, in comparison with the control, the metal chelate solution showed a significant infection suppressing effect (Fig. 7).
(2) Suppression of infection by Botrytis cinerea in tomato The effect of inhibiting infection by Botrytis cinerea on tomato was evaluated by the following method.
トマトに、各化合物(0.1%アプローチBI添加)を茎葉散布した。各化合物の散布から3日後、1/2ジャガイモ煎汁培地にトマト灰色かび病菌の胞子を懸濁し(2x105個/mL)、トマト株に噴霧接種した。接種から6日後、病徴の調査によりトマト灰色かび病菌の感染量を評価した。コントロールとして、化合物を含まない展着剤(0.1%アプローチBI添加)のみを散布し、同様の評価を行った。 Each compound (0.1% approach BI added) was sprayed on tomatoes by foliage. Three days after spraying each compound, spores of Tomato Botrytis cinerea were suspended in 1/2 potato decoction medium (2×10 5 cells/mL), and the tomato strain was spray-inoculated. Six days after the inoculation, the infectious dose of gray mold of tomato was evaluated by investigating the symptom. As a control, only the spreader containing no compound (0.1% approach BI added) was sprayed and the same evaluation was performed.
発病度は以下の式で表される。
発病度={(1n1+2n2+3n3+4n4+5n5)/(5×調査数)}×100
発病調査は発病程度を以下の5つに区分して調査した。
0:病徴なし、1:調査株のごく一部に病斑が認められる、2:調査株の1/3未満に病斑が認められる、3:調査株の1/3以上2/3未満に病斑が認められる、4:調査株の2/3以上に病斑が認められる、5:枯死
n1からn5は個体数
防除価は以下の式で表される。
防除価={1-処理区の発病度/無処理区の発病度)}×100
その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(表1)。
The degree of disease is represented by the following formula.
Disease incidence = {(1n 1 +2n 2 +3n 3 +4n 4 +5n 5 )/(5 x number of surveys)} x 100
In the disease onset survey, the degree of onset was divided into the following five categories.
0: No symptom, 1: Spots are found in a small part of the surveyed strains, 2: Spots are found in less than 1/3 of the surveyed strains, 3: 1/3 or more and less than 2/3 of the surveyed strains Lesions are observed in 4: 4, lesions are observed in 2/3 or more of the investigated strains, 5: death
n 1 to n 5 are the number of individuals and the control value is expressed by the following formula.
Control value={1-the degree of disease in the treated area/the degree of disease in the untreated area)}×100
As a result, in comparison with the control, the effect of suppressing infection was significantly observed in the metal solution (Table 1).
[実施例5] 各種金属キレート処理したキュウリにおける植物病原菌の感染抑制効果
キュウリ(品種:新北星)に、各化合物(0.1%アプローチBI添加)を茎葉散布した。各化合物の散布から3日後、ウリ類炭疽病菌(5x105個/mL)を噴霧接種した。接種から7日後、接種葉をサンプリングし、実施例1と同様の方法でqRT-PCR法により、ウリ類炭疽病菌のアクチン遺伝子(Co-ACT)の発現量を測定することでキュウリへの感染量を定量した。ただし、RT-PCRの反応は、95℃で10秒間の変性ステップの後、95℃で5秒、65℃で20秒(CsEF1αについては、60℃で20秒)のステップを1サイクルとし、40サイクル行った。コントロールとして、化合物を含まない展着剤(0.1%アプローチBI)のみを散布し、同様の定量を行った。コントロールの感染量を100としたときの相対感染病原菌量を示した。
Example 5 Inhibitory Effect of Plant Pathogens on Cucumbers Treated with Various Metal Chelates Each compound (0.1% Approach BI added) was sprayed onto cucumber (variety: New Hokusei). Three days after the application of each compound, spray-inoculation was performed with an anthracnose fungus (5x10 5 cells/mL). Seven days after the inoculation, the inoculated leaves were sampled, and the qRT-PCR method was used in the same manner as in Example 1 to measure the expression level of the actin gene (Co-ACT) of the Cucurbital anthracnose bacterium, thereby infecting the cucumber. Was quantified. However, the RT-PCR reaction consisted of a denaturation step at 95°C for 10 seconds, followed by 5 seconds at 95°C and 20 seconds at 65°C (20 seconds at 60°C for CsEF1α) as one cycle. Went through a cycle. As a control, only the spreading agent containing no compound (0.1% approach BI) was sprayed and the same quantification was performed. The relative infectious pathogen amount when the control infectious amount was 100 is shown.
各サンプル間の標準化は、キュウリで恒常的に発現しているCsEF1α遺伝子を用い、各サンプルにおける目的遺伝子の発現量をCsEF1α遺伝子の発現量で除することにより行った。 Standardization between samples was performed by using the CsEF1α gene that is constitutively expressed in cucumber and dividing the expression level of the target gene in each sample by the expression level of the CsEF1α gene.
キュウリにおける各遺伝子の定量的RT-PCRに用いたプライマーの配列は以下の通りである。 The sequences of the primers used for the quantitative RT-PCR of each gene in cucumber are as follows.
Co-ACT(フォワードプライマー5'-CTCGTTATCGACAATGGTTC-3'/配列番号:15、リバースプライマー5'-GAGTCCTTCTGGCCCATAC-3'/配列番号:16)。 Co-ACT (forward primer 5'-CTCGTTATCGACAATGGTTC-3'/SEQ ID NO:15, reverse primer 5'-GAGTCCTTCTGGCCCATAC-3'/SEQ ID NO:16).
CsEF1α(フォワードプライマー5'-ACTGTGCTGTCCTCATTATTG-3'/配列番号:17、リバースプライマー5'-AGGGTGAAAGCAAGAAGAGC-3'/配列番号:18)。 CsEF1α (forward primer 5′-ACTGTGCTGTCCTCATTATTG-3′/SEQ ID NO: 17, reverse primer 5′-AGGGTGAAAGCAAGAAGAGC-3′/SEQ ID NO: 18).
その結果、コントロールと比較して、金属キレート溶液において有意に感染抑制効果が認められた(図8)。 As a result, in comparison with the control, the metal chelate solution showed a significant infection suppressing effect (Fig. 8).
[実施例6] 各種金属キレート処理したイチゴにおける植物病原菌の感染抑制効果
(1)イチゴにおける炭疽病菌の感染抑制
以下の方法によりイチゴ炭疽病菌(Colletotrichum fructicola)に対する感染抑制効果を評価した。
[Example 6] Inhibitory effect of phytopathogenic fungi on strawberries treated with various metal chelates (1) Inhibitory effect of anthracnose fungus infection on strawberries The inhibitory effect on strawberry anthracnose fungus (Colletotrichum fructicola) was evaluated by the following method.
イチゴ(品種:女峰)に、各化合物(0.1%アプローチBI添加)を茎葉散布した。各化合物の散布から3日後、イチゴ炭疽病菌(5x105個/mL)を噴霧接種した。接種から6日後、病徴の調査によりイチゴ炭疽病菌のイチゴへの感染量を評価した。コントロールとして、化合物を含まない展着剤(0.1%アプローチBI)のみを散布し、同様の評価を行った。 Strawberries (variety: Onamine) were sprayed with each compound (0.1% Approach BI added). Three days after spraying each compound, strawberry anthracnose (5×10 5 cells/mL) was spray-inoculated. Six days after the inoculation, the amount of strawberry B. anthracis infectious to the strawberry was evaluated by investigating the symptoms. As a control, only the spreader containing no compound (0.1% approach BI) was sprayed and the same evaluation was performed.
発病度は以下の式で表される。
発病度={(1n1+2n2+3n3+4n4+5n5)/(5×調査数)}×100
発病調査は発病程度を以下の5つに区分して調査した。
0:病徴なし、1:微小斑点、2:葉の25%未満の面積に病斑が認められる、3:葉の25%以上50%未満の面積に病斑が認められる、4:葉の50%以上の面積に病斑が認められるまたは葉柄が折れる、5:枯死
n1からn5は個体数
防除価は以下の式で表される。
防除価={1-処理区の発病度/無処理区の発病度)}×100
その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(図9)。
The degree of disease is represented by the following formula.
Disease incidence = {(1n 1 +2n 2 +3n 3 +4n 4 +5n 5 )/(5 x number of surveys)} x 100
In the disease onset survey, the degree of onset was divided into the following five categories.
0: No symptom, 1: Small spots, 2: Lesion is observed on less than 25% of the leaf area, 3: Lesion is found on more than 25% and less than 50% of leaf area, 4: Leaf Lesions are observed in 50% or more of the area or petiole is broken, 5: Death
n 1 to n 5 are the number of individuals and the control value is expressed by the following formula.
Control value={1-the degree of disease in the treated area/the degree of disease in the untreated area)}×100
As a result, in comparison with the control, the effect of suppressing infection was significantly observed in the metal solution (Fig. 9).
なお、硫酸銅(CuSO4)、酢酸銅(CuOAc)、硫酸亜鉛(ZnSO4)の各溶液処理区は薬剤処理のみで斑点などの薬害が認められたが、金属キレートであるグルコン酸銅(CuGluc)、グルコン酸亜鉛(ZnGluc)、グリシン亜鉛では薬害が認められなかった。 In addition, the chemical treatments of copper sulfate (CuSO 4 ), copper acetate (CuOAc), and zinc sulfate (ZnSO 4 ) showed chemical damages such as spots, but the metal chelate copper gluconate (CuGluc 4 ) was observed. ), zinc gluconate (ZnGluc), and zinc glycine did not show any phytotoxicity.
(2)イチゴにおけるうどんこ病菌の感染抑制
以下の方法によりイチゴうどんこ菌に対する感染抑制効果を評価した。
(2) Inhibition of powdery mildew infection in strawberry The following method was used to evaluate the effect of suppressing infection of strawberry powdery mildew.
イチゴうどんこ病がわずかに発生しはじめたイチゴ苗(品種:女峰)(複葉に1コロニー程度)に、各化合物(0.1%アプローチ添加)を茎葉散布した。散布から7日後、病徴の調査によりイチゴうどんこ病菌のイチゴへの感染量を評価した。コントロールとして、化合物を含まない展着剤(0.1%アプローチ添加)のみを散布し、同様の評価を行った。その結果、コントロールと比較して、金属溶液において有意に感染抑制効果が認められた(表2)。 Strawberry seedlings (cultivar: Onamine) (about 1 colony per compound leaf) in which slight strawberry powdery mildew had begun were sprayed with each compound (0.1% approach was added). Seven days after the spraying, the infection amount of strawberry powdery mildew fungus on strawberry was evaluated by investigating the symptom. As a control, only a spreading agent containing no compound (0.1% approach added) was sprayed and the same evaluation was performed. As a result, in comparison with the control, the effect of suppressing infection was significantly observed in the metal solution (Table 2).
[実施例7] 各種金属キレート処理したハクサイにおける植物病原菌の感染抑制効果
供試植物(ハクサイ品種:無双)を播種後、14日間栽培した。4mMグルコン酸銅、4mMグルコン酸亜鉛(0.1%アプローチBI添加)を茎葉散布し、散布3日後の苗に、1×105個/mlのハクサイ軟腐病菌(Erwinia carotovora subsp. carotovora)を傷接種した。接種6日後に、発病程度を調査した。発病程度から防除価を算出した。
発病度は以下の式で表される。
発病度={(1n1+2n2+3n3+4n4)/(4×調査数)}×100
発病調査は発病程度を以下の4つに区分して調査した。
0:病徴なし、1:葉の5%未満の面積に病斑が認められる、2:葉の5%以上25%未満の面積に病斑が認められる、3:葉の25%以上50%未満の面積に病斑が認められる、4:葉の50%以上の面積に病斑が認められる
n1からn4は個体数
防除価は以下の式で表される。
防除価={1-処理区の発病度/無処理区の発病度)}×100
その結果、上記化合物は、何れも軟腐病に対して30%の防除価を示した(表3)。
[Example 7] Inhibitory effect of plant pathogens on Chinese cabbage treated with various metal chelates After planting a test plant (Chinese cabbage variety: Musou), it was cultivated for 14 days. 4 mM copper gluconate and 4 mM zinc gluconate (with 0.1% approach BI added) were applied to the foliage, and 3 days after the application, the seedlings were inoculated with 1×10 5 cells/ml of the Chinese cabbage soft rot fungus (Erwinia carotovora subsp. carotovora). .. Six days after the inoculation, the degree of illness was investigated. The control value was calculated from the degree of disease onset.
The degree of disease is represented by the following formula.
Disease incidence = {(1n 1 +2n 2 +3n 3 +4n 4 )/(4 x number of surveys)} x 100
In the disease onset survey, the degree of onset was divided into the following four categories.
0: No symptom, 1: Lesion is observed on less than 5% of the leaf area, 2: Lesion is found on 5% or more and less than 25% of leaf area, 3: 25% or more and 50% of leaf Lesions are observed in areas of less than 4, 4: lesions are observed in more than 50% of the leaves
n 1 to n 4 are the number of individuals and the control value is expressed by the following formula.
Control value={1-the degree of disease in the treated area/the degree of disease in the untreated area)}×100
As a result, each of the above compounds showed a control value of 30% against soft rot (Table 3).
[実施例8] 各種金属キレート処理したベンサミアーナタバコにおける植物病原菌の感染抑制効果
播種後4週間のベンサミアーナタバコ(ナス科植物)にグルコン酸銅、グルコン酸亜鉛、グルコン酸鉄を含む溶液を葉面散布した。処理3日後にジャガイモ疫病菌の遊走子1000個を含む遊走子懸濁液の小滴(10-20μL)を点滴接種した。接種5日後に病徴を検定した。その結果、対照区に比して、キレート溶液処理区は発病を顕著に抑制した。
[Example 8] Inhibitory effect of phytopathogenic bacteria on Bensamiana tobacco treated with various metal chelates A solution containing copper gluconate, zinc gluconate, and iron gluconate in Bensamyana tobacco (Solanaceae plant) 4 weeks after sowing Was sprayed on the leaves. Three days after the treatment, a droplet (10-20 μL) of a zoospore suspension containing 1000 zoospores of Phytophthora infestans was instilled. Symptoms were examined 5 days after the inoculation. As a result, compared with the control group, the chelate solution treatment group significantly suppressed the disease onset.
[参考例1] 植物ウイルス病に対する防除効果と植物病原菌に対する防除効果の関係
植物病理学的見地からは、ウイルスと病原菌(糸状菌、細菌)は、それぞれ植物に対する感染行動が異なるため、ある薬剤が植物ウイルス病の防除効果があったとしても、植物病原菌に対しても防除効果があるか否かは、当業者に予測できないと考えられる。
[Reference Example 1] Relationship between control effect against plant viral disease and control effect against phytopathogenic fungi From a phytopathological standpoint, viruses and pathogenic fungi (filamentous fungi, bacteria) have different infection behaviors against plants. Even if there is a controlling effect against plant viral diseases, it is considered unpredictable to a person skilled in the art whether or not it has a controlling effect against phytopathogenic fungi.
この事を検証するために、本発明者は、植物ウイルス病を防除する唯一の農薬であるレンテミンの植物病原菌に対する防除効果を検証した。 In order to verify this, the present inventor verified the control effect of lentemin, which is the only pesticide for controlling plant viral diseases, against phytopathogenic fungi.
10倍希釈のレンテミン溶液(0.1%アプローチBI添加)を用いて、実施例6(1)と同様の評価を行ったところ、レンテミンでは、イチゴ炭疽病菌による感染を抑制せず、むしろ、コントロールよりも激しく感染した(表4)。 Using a 10-fold diluted lentemin solution (0.1% approach BI added), the same evaluation as in Example 6(1) was performed, and lentemin did not suppress the infection with B. anthracis, and rather than the control. It became severely infected (Table 4).
また、殺菌剤として市販されているZボルドー(銅を含む)またはジオゼット(亜鉛を含む)をベンサミアーナタバコに処理したところ、これら薬剤はトマトモザイクウイルス(ToMV)の感染を抑制しなかった(データは示していない)。 In addition, when Z bordeaux (containing copper) or Geozette (containing zinc), which are commercially available as fungicides, were applied to Bensamiana tobacco, these agents did not suppress the infection of tomato mosaic virus (ToMV) ( Data not shown).
これらの結果は、ある薬剤の植物ウイルス病に対する防除効果と植物病原菌に対する防除効果の間には、直接の相関がないことを裏付けるものである。 These results support that there is no direct correlation between the control effect of a drug on plant viral diseases and the control effect on plant pathogens.
この意味で、植物ウイルス病に対する防除効果が知られている金属キレート(特許文献1)が、本実施例において、植物病原菌に対しても防除効果を示したのは、予想外の驚くべきことであった。 In this sense, it is surprising and surprising that the metal chelate (Patent Document 1), which is known to have a controlling effect against plant viral diseases, also showed a controlling effect against plant pathogenic fungi in this example. there were.
上記の通り、本発明の防除剤は、植物病原菌に対して優れた防除効果を示すことができる。有効成分として金属のキレートを用いれば、葉の萎縮や斑点の発生などの薬害を生じることなく、植物病原菌に対して防除効果を発揮することができることから、安全性と効果を兼ね備えた農薬として、農業分野において大きく貢献しうるものである。 As described above, the control agent of the present invention can exhibit an excellent control effect against plant pathogens. By using a metal chelate as an active ingredient, it is possible to exert a controlling effect against phytopathogenic fungi without causing phytotoxicity such as leaf atrophy and spotting, and thus as an agricultural chemical having both safety and effect, It can greatly contribute to the agricultural field.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026042A JP6713117B1 (en) | 2019-02-15 | 2019-02-15 | Plant pathogen control agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026042A JP6713117B1 (en) | 2019-02-15 | 2019-02-15 | Plant pathogen control agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6713117B1 true JP6713117B1 (en) | 2020-06-24 |
JP2020132552A JP2020132552A (en) | 2020-08-31 |
Family
ID=71103940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019026042A Active JP6713117B1 (en) | 2019-02-15 | 2019-02-15 | Plant pathogen control agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6713117B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102262375B1 (en) * | 2020-11-03 | 2021-06-08 | 장동길 | Crop protection agent including chelating agent |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5111110B1 (en) * | 1969-05-09 | 1976-04-08 | ||
IL157139A0 (en) * | 2001-01-29 | 2004-02-08 | Agricare Ltd | Methods and compositions for controlling plant pathogen |
JP4993608B2 (en) * | 2004-09-24 | 2012-08-08 | バイオネクスト | Composition for use against one or more pathogens |
ES2303809B2 (en) * | 2008-04-09 | 2009-05-01 | Servalesa, S.L. | PRODUCT FOR AGRICULTURAL USE BASED ON ORGANIC COPPER COMPLEX. |
-
2019
- 2019-02-15 JP JP2019026042A patent/JP6713117B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020132552A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Enebe et al. | The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach | |
Sharma et al. | Future of bacterial disease management in crop production | |
Yassin et al. | The rise, fall and resurrection of chemical‐induced resistance agents | |
Gkizi et al. | The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae | |
Prashar et al. | Biocontrol of plant pathogens using plant growth promoting bacteria | |
Kumar et al. | Plant growth promoting rhizobacteria (PGPR). A promising approach for disease management | |
Expert et al. | Iron in plant–pathogen interactions | |
Rana et al. | Volatile organic compounds of the soil bacterium Bacillus halotolerans suppress pathogens and elicit defense-responsive genes in plants | |
Reignault et al. | Topical application of inducers for disease control | |
Bhakat et al. | Plant growth promotion and lipopeptide-mediated biological control of chilli pathogen Colletotrichum siamense by endophytic Bacillus sp. | |
JP6713117B1 (en) | Plant pathogen control agent | |
US9730442B2 (en) | Use of 4-phenylbutyric acid for improving the tolerance of plants to harmful biological organisms | |
Kothari et al. | Plant immunization | |
Akram et al. | Plant-microbe interactions: current perspectives of mechanisms behind symbiotic and pathogenic associations | |
Ajuna et al. | The prospect of antimicrobial peptides from Bacillus species with biological control potential against insect pests and diseases of economic importance in agriculture, forestry and fruit tree production | |
Kour et al. | Microbes mediated induced systemic response in plants: A review | |
Boonpa et al. | In silico analyses of rice thionin genes and the antimicrobial activity of OsTHION15 against phytopathogens | |
Thomas et al. | Microbe-mediated biotic stress signaling and resistance mechanisms in plants | |
Singh et al. | Plant growth promoting bacteria as biocontrol agents against diseases of cereal crops | |
Bhat et al. | Effectors-Role in Host-Pathogen Interaction | |
Hossain et al. | Cross-talks about hemibiotrophic-necrotrophic pathogens by endophytic Bacillus-based EMOs | |
AU2016220556A1 (en) | Coating formulation for seed and surface sterilization | |
Fallath et al. | Toward plant defense mechanisms against root pathogens | |
Bastas et al. | 19 Modern Trends of Plant Pathogenic Bacteria Control | |
Hassan et al. | Enhanced control of bacterial wilt of tomato by DL-3-aminobutyric acid and the fluorescent Pseudomonas isolate CW2/Effizientere Kontrolle der Bakterienwelke der Tomate durch DL-3-Aminobuttersäure und das fluoreszierende Pseudomonas-Isolat CW2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190328 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190425 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190425 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191018 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191107 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200305 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200507 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6713117 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |