[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6710590B2 - Ceramic heater manufacturing method - Google Patents

Ceramic heater manufacturing method Download PDF

Info

Publication number
JP6710590B2
JP6710590B2 JP2016121871A JP2016121871A JP6710590B2 JP 6710590 B2 JP6710590 B2 JP 6710590B2 JP 2016121871 A JP2016121871 A JP 2016121871A JP 2016121871 A JP2016121871 A JP 2016121871A JP 6710590 B2 JP6710590 B2 JP 6710590B2
Authority
JP
Japan
Prior art keywords
ceramic base
ceramic
groove
electrode pad
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016121871A
Other languages
Japanese (ja)
Other versions
JP2017228368A (en
Inventor
義道 中島
義道 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016121871A priority Critical patent/JP6710590B2/en
Publication of JP2017228368A publication Critical patent/JP2017228368A/en
Application granted granted Critical
Publication of JP6710590B2 publication Critical patent/JP6710590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

本発明は、セラミックヒータに関する。 The present invention relates to a ceramic heater.

従来から、酸素センサ等の固体電解質体を用いるガスセンサにおいて、固体電解質体を加熱するためにセラミックヒータが配置されている(特許文献1)。
図1に示すように、このセラミックヒータ100としては、軸線BX方向に延びるアルミナ等の円筒状のセラミック基体102中にタングステンやモリブデン等の金属からなる発熱抵抗体141を埋設したものが広く用いられている。さらに、セラミック基体102の外表面には、発熱抵抗体141と電気的に接続された1対の電極パッド121が設けられている。この電極パッド121には、発熱抵抗体141に外部から電圧を印加するための金属製の接続端子130が、ろう付け接合されている。
Conventionally, in a gas sensor using a solid electrolyte body such as an oxygen sensor, a ceramic heater is arranged to heat the solid electrolyte body (Patent Document 1).
As shown in FIG. 1, as the ceramic heater 100, one in which a heating resistor 141 made of a metal such as tungsten or molybdenum is embedded in a cylindrical ceramic substrate 102 made of alumina or the like extending in the direction of the axis BX is widely used. ing. Further, on the outer surface of the ceramic base 102, a pair of electrode pads 121 electrically connected to the heating resistor 141 is provided. A metal connection terminal 130 for externally applying a voltage to the heating resistor 141 is brazed to the electrode pad 121.

図2に示すように、セラミック基体102は、丸棒状(円柱形状)のアルミナセラミック製の碍管101の外周にアルミナセラミック製のグリーンシート140,146が、碍管101とグリーンシート140の間にグリーンシート146を挟んで巻き付けられ、これらを焼成することにより製造される。ここで、グリーンシート140,146の周長は碍管101の周長より短いので、図6に示すように、グリーンシート140,146の両端の間に、軸線BX方向に延びる切れ目102hが形成される。
グリーンシート140上には、発熱抵抗体141が形成されている。発熱抵抗体141は、発熱部142と、発熱部142の両端に接続される一対のリード部143とを備える。グリーンシート140の後端側にはスルーホール144が設けられ、スルーホール144に充填された導電性ペーストを介して、電極パッド121とリード部143とが電気的に接続される。
一方、接続端子130は、接続部134と、接続部134の一端に設けられた接合端部133と、接続部134の他端に設けられた加締部135と、を有している。接合端部133は、電極パッド121のほぼ中央に配置されて、ろう付け接合により電気的に接続される。2つの加締部135は、ヒータリード線(図示せず)の芯線を加締めて把持し、発熱抵抗体141とヒータリード線とを電気的に接続する。
As shown in FIG. 2, in the ceramic substrate 102, alumina ceramic green sheets 140 and 146 are provided on the outer periphery of a round rod-shaped (cylindrical) alumina ceramic porcelain tube 101, and a green sheet is provided between the porcelain tube 101 and the green sheet 140. It is manufactured by being wound with 146 sandwiched therebetween and firing them. Here, since the perimeter of the green sheets 140 and 146 is shorter than the perimeter of the porcelain bushing 101, a cut 102h extending in the axis BX direction is formed between both ends of the green sheets 140 and 146, as shown in FIG. .
A heating resistor 141 is formed on the green sheet 140. The heating resistor 141 includes a heating portion 142 and a pair of lead portions 143 connected to both ends of the heating portion 142. A through hole 144 is provided on the rear end side of the green sheet 140, and the electrode pad 121 and the lead portion 143 are electrically connected via the conductive paste filled in the through hole 144.
On the other hand, the connection terminal 130 has a connection part 134, a joining end part 133 provided at one end of the connection part 134, and a caulking part 135 provided at the other end of the connection part 134. The joint end 133 is arranged substantially in the center of the electrode pad 121 and electrically connected by brazing. The two caulking portions 135 caulk and grip a core wire of a heater lead wire (not shown) to electrically connect the heating resistor 141 and the heater lead wire.

従来、このセラミックヒータ100の製造に当たっては、図5に示すように、セラミック基体102の電極パッド121と、接続端子130との位置を合わせた上で、両者をろう付けする。
まず、軸方向に並び互いに逆回転する2つの回転ローラ501、502の間に、セラミック基体102の軸方向を回転ローラ501、502の軸方向に揃えてセラミック基体102を載置する。セラミック基体102は回転ローラ501、502に接触しながら回転する。そして、回転ローラ501、502の上方の画像センサにて切れ目102hを検出した時点で回転ローラ501、502の回転を止める。これにより、セラミック基体102の各電極パッド121を所定の位置(図5の例では、各電極パッド121が互いに水平に並ぶ向き)に位置決めする。
そして、図6に示すように、各電極パッド121の向きを保つようにして所定の治具540でセラミック基体102を保持しながら、別の治具520に所定の向きで保持された一対の接続端子130の間にセラミック基体102を配置する。このとき、各電極パッド121と各接続端子130とが対向するように位置が決められており、接続端子130側に予め配置されている固化したろう材150xが電極パッド121に接する。
次に、セラミック基体102と各接続端子130とろう材150xとをこの配置状態で所定の加熱炉に装入し、ろう材150xを溶融させて電極パッド121へ接続端子130をろう付けする。
Conventionally, in manufacturing the ceramic heater 100, as shown in FIG. 5, the electrode pads 121 of the ceramic base 102 and the connection terminals 130 are aligned with each other, and then both are brazed.
First, the ceramic base 102 is placed between the two rotating rollers 501 and 502 arranged in the axial direction and rotating in opposite directions with the axial direction of the ceramic base 102 aligned with the axial directions of the rotating rollers 501 and 502. The ceramic base 102 rotates while contacting the rotating rollers 501 and 502. Then, when the image sensor above the rotary rollers 501 and 502 detects the break 102h, the rotation of the rotary rollers 501 and 502 is stopped. As a result, the electrode pads 121 of the ceramic base 102 are positioned at predetermined positions (in the example of FIG. 5, the electrode pads 121 are aligned horizontally).
Then, as shown in FIG. 6, while holding the ceramic substrate 102 by a predetermined jig 540 so as to maintain the orientation of each electrode pad 121, a pair of connections held by another jig 520 in a predetermined orientation. The ceramic substrate 102 is arranged between the terminals 130. At this time, the positions are determined so that each electrode pad 121 and each connection terminal 130 face each other, and the solidified brazing material 150x previously arranged on the connection terminal 130 side contacts the electrode pad 121.
Next, the ceramic substrate 102, the connection terminals 130, and the brazing material 150x are placed in a predetermined heating furnace in this arrangement, the brazing material 150x is melted, and the connection terminals 130 are brazed to the electrode pads 121.

特許第5019545号公報Japanese Patent No. 5019545

しかしながら、従来のセラミックヒータ100の製造の場合、回転するセラミック基体102の切れ目102hを画像センサで検出しているため、位置決めに時間がかかったり、位置を誤認するという問題がある。又、回転ローラ501、502にセラミック基体102が接触しながら回転するため、セラミック基体102にキズや汚れが付着するおそれがある。 However, in the case of manufacturing the conventional ceramic heater 100, since the cut 102h of the rotating ceramic base 102 is detected by the image sensor, there is a problem that it takes time to position the position or the position is mistakenly recognized. Further, since the ceramic base 102 rotates while making contact with the rotary rollers 501 and 502, scratches and dirt may be attached to the ceramic base 102.

そこで、本発明は、電極パッドと接続端子とをろう付けする際の両者の位置合わせを確実かつ短時間で行い、生産性を向上させたセラミックヒータの製造方法の提供を目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a ceramic heater in which the electrode pad and the connection terminal are reliably positioned in a short time when brazing and the productivity is improved.

上記課題を解決するため、本発明のセラミックヒータの製造方法は、発熱抵抗体が内部に埋設され、表面に金属製の電極パッドを有する円筒状のセラミック基体における前記電極パッドに、外部回路と電気的に接続する接続端子を、ろう付け接合するセラミックヒータの製造方法であって、前記セラミック基体の重心が軸心とずれており、前記セラミック基体の少なくとも一部を収容可能な溝に該セラミック基体を設置した後、前記溝と前記セラミック基体との間に空気を吹き出して前記セラミック基体を前記溝から浮上させ、前記重心が前記軸心の下側に安定して位置するよう前記セラミック基体の前記電極パッドを位置決めする位置決め工程と、前記位置決め工程で位置決めされた前記電極パッドに、前記接続端子をろう付け接合する接合工程と、を有する。 In order to solve the above-mentioned problems, a method for manufacturing a ceramic heater according to the present invention is characterized in that a heating resistor is embedded inside and the electrode pad in a cylindrical ceramic substrate having a metal electrode pad on the surface is connected to an external circuit and an electric circuit. A method of manufacturing a ceramic heater, in which connecting terminals that are electrically connected to each other are brazed together, wherein a center of gravity of the ceramic base is deviated from an axis, and the ceramic base is provided in a groove that can accommodate at least a part of the ceramic base. After installation, air is blown between the groove and the ceramic base to levitate the ceramic base from the groove, and the center of gravity of the ceramic base is stably positioned below the axis. The method includes a positioning step of positioning the electrode pad, and a joining step of brazing and joining the connection terminal to the electrode pad positioned in the positioning step.

このセラミックヒータの製造方法によれば、溝とセラミック基体との間に空気を吹き出して、セラミック基体を溝から浮上させて電極パッドを位置決めするので、セラミック基体が位置決め治具に非接触となり、セラミック基体にキズや汚れが付着することを抑制できる。
又、セラミック基体の重心と軸心のずれを利用して、位置決めを重力により自律的に行うので、位置決めを誤認することがなく位置決めを正確に行えると共に、位置決めを短時間で行うことができる。
According to this method for manufacturing a ceramic heater, air is blown between the groove and the ceramic base to float the ceramic base from the groove to position the electrode pad. It is possible to prevent scratches and stains from adhering to the substrate.
Further, since the positioning is autonomously performed by gravity by utilizing the shift between the center of gravity and the axis of the ceramic base, the positioning can be accurately performed without misrecognizing the positioning, and the positioning can be performed in a short time.

前記溝の曲率半径が前記セラミック基体の曲率半径よりも大きくてもよい。
このセラミックヒータの製造方法によれば、溝とセラミック基体との接触面積が小さくなるので、セラミック基体にキズや汚れが付着することをさらに抑制できると共に、セラミック基体が溝から浮上し易くなる。
なお、セラミック基体の曲率半径は、電極パッドを除くセラミック基体の外表面の曲率半径とする。
The radius of curvature of the groove may be larger than the radius of curvature of the ceramic substrate.
According to this method for manufacturing a ceramic heater, the contact area between the groove and the ceramic base is reduced, so that scratches and dirt can be further suppressed from adhering to the ceramic base, and the ceramic base can be easily floated from the groove.
The radius of curvature of the ceramic base is the radius of curvature of the outer surface of the ceramic base excluding the electrode pads.

前記位置決め工程の後、前記溝と前記セラミック基体との間に吹き出す空気の流量を徐々に低下させるとよい。
このセラミックヒータの製造方法によれば、セラミック基体が溝にゆっくりと着地するので、セラミック基体にキズや汚れが付着することをさらに抑制できると共に、セラミック基体が急激に着地して位置決め状態が振れる(位置ずれが生じる)ことを抑制できる。
After the positioning step, the flow rate of air blown between the groove and the ceramic base may be gradually reduced.
According to this method for manufacturing a ceramic heater, since the ceramic base is slowly landed in the groove, it is possible to further prevent the scratches and dirt from adhering to the ceramic base, and the ceramic base is abruptly landed and the positioning state is fluctuated ( It is possible to suppress the occurrence of misalignment).

この発明によれば、電極パッドと接続端子とをろう付けする際の両者の位置合わせを確実かつ短時間で行い、セラミックヒータの生産性を向上させることができる。 According to the present invention, when the electrode pad and the connection terminal are brazed, the both can be aligned reliably and in a short time, and the productivity of the ceramic heater can be improved.

セラミックヒータを示す斜視図である。It is a perspective view which shows a ceramic heater. セラミックヒータの内部構成を示す分解斜視図である。It is an exploded perspective view showing an internal configuration of a ceramic heater. 本発明の実施形態に係るセラミックヒータの製造方法に用いることができる位置決め治具の斜視図である。It is a perspective view of a positioning jig which can be used for a manufacturing method of a ceramic heater concerning an embodiment of the present invention. セラミックヒータの位置決め方法を示す工程図である。It is process drawing which shows the positioning method of a ceramic heater. 従来のセラミックヒータの位置決め方法を示す図である。It is a figure which shows the positioning method of the conventional ceramic heater. 位置決めしたセラミックヒータの電極パッドに接続端子をろう付けする方法を示す図である。It is a figure which shows the method of brazing the connection terminal to the electrode pad of the positioned ceramic heater.

以下に、本発明の実施形態を図面と共に説明する。
図3は本発明の実施形態に係るセラミックヒータ100の製造方法に用いることができる位置決め治具50の斜視図、図4はセラミックヒータ100の位置決め方法を示す工程図である。なお、図4は、図3の側面(A方向)から見た図である。セラミックヒータ100自身の構成は従来と同様であるので、図1、図2を引用し、セラミックヒータ100についての説明を省略する。
セラミックヒータ100の長手方向の両端側のうち、発熱部分を備える側(図1下側)を「先端側」とし、これと反対側を「後端側」として説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3 is a perspective view of a positioning jig 50 that can be used in the method of manufacturing the ceramic heater 100 according to the embodiment of the present invention, and FIG. 4 is a process diagram showing the method of positioning the ceramic heater 100. Note that FIG. 4 is a view seen from the side surface (direction A) of FIG. 3. Since the structure of the ceramic heater 100 itself is the same as the conventional one, the description of the ceramic heater 100 will be omitted with reference to FIGS. 1 and 2.
Of the both ends in the longitudinal direction of the ceramic heater 100, the side having the heat generating portion (the lower side in FIG. 1) is referred to as the “front end side”, and the opposite side is referred to as the “rear end side”.

本実施形態では、セラミックヒータ100のセラミック基体102は、φ3mm、全長50mmの丸棒状である。又、接続端子130は、ニッケルを用いた合金、銅や鉄やそれらの合金等の種々の導体材料を採用可能である。ろう付け用のロウ材としては、例えばAu−Cu合金、Ag−Cu合金や、種々の導体材料(例えば、Cu(銅)やAg(銀))を採用可能である。電極パッド121としては、タングステン及びモリブデンの少なくとも一方を主成分とする組成が挙げられる。 In the present embodiment, the ceramic base 102 of the ceramic heater 100 has a round bar shape with a diameter of 3 mm and a total length of 50 mm. Further, for the connection terminal 130, various conductor materials such as an alloy using nickel, copper or iron, or an alloy thereof can be adopted. As the brazing material for brazing, for example, an Au-Cu alloy, an Ag-Cu alloy, or various conductor materials (for example, Cu (copper) or Ag (silver)) can be used. Examples of the electrode pad 121 include a composition containing at least one of tungsten and molybdenum as a main component.

図3に示すように、位置決め治具50は、断面が略半円形の溝50rを表面に複数設け、各溝50rには、セラミック基体102の軸方向を溝50rの軸方向に揃えて1個のセラミック基体102の下半分を収容可能になっている。又、各溝50rの底面には、軸方向に沿って複数の吹出し孔50hが開口している。各吹出し孔50hは、空気配管系60にそれぞれ接続され、コンプレッサ65により供給される空気を、空気配管系60を介して各吹出し孔50hから吹き出すようになっている。
位置決め治具50は、各種金属、樹脂、セラミック等から形成することができる。
As shown in FIG. 3, the positioning jig 50 is provided with a plurality of grooves 50r each having a substantially semicircular cross section on the surface thereof. The lower half of the ceramic base 102 can be accommodated. In addition, a plurality of blowout holes 50h are opened on the bottom surface of each groove 50r along the axial direction. Each of the blowout holes 50h is connected to the air piping system 60, and the air supplied by the compressor 65 is blown out from each of the blowout holes 50h via the air piping system 60.
The positioning jig 50 can be formed of various metals, resins, ceramics and the like.

なお、空気配管系60は、複数(図3では3つ)の副配管62、64、66からなる。一方、各吹出し孔50hには、それぞれ吹き出し配管60L1、60L2・・・が接続され、各吹き出し配管60L1、60L2・・・に各副配管62、64、66が接続されている。各副配管62、64、66とコンプレッサ65との間には、流量調整バルブVが配置されており、各副配管62、64、66を流れる空気の流量を調整可能になっている。
又、本実施形態では、各溝50rの後端側に、セラミック基体102の電極パッド121がはみ出している。これにより、セラミック基体102の外表面から突出する電極パッド121が各溝50rに接触することがなく、電極パッド121が擦れることを防止できる。
The air piping system 60 is composed of a plurality (three in FIG. 3) of sub piping 62, 64, 66. On the other hand, outlet pipes 60L1, 60L2,... Are connected to the outlet holes 50h, and sub pipes 62, 64, 66 are connected to the outlet pipes 60L1, 60L2,. A flow rate adjusting valve V is arranged between each of the sub pipes 62, 64, 66 and the compressor 65, and the flow rate of the air flowing through each of the sub pipes 62, 64, 66 can be adjusted.
Further, in the present embodiment, the electrode pad 121 of the ceramic base 102 protrudes from the rear end side of each groove 50r. This prevents the electrode pads 121 protruding from the outer surface of the ceramic base 102 from coming into contact with the grooves 50r, and prevents the electrode pads 121 from being rubbed.

そして、図4に示すようにして、セラミックヒータ100の電極パッド121を位置決めする。
まず、位置決め治具50の溝50rにセラミック基体102を設置する(図4(a))。このとき、セラミック基体102(電極パッド121)の向きはランダムである。
次に、吹出し孔50hから空気を吹出すと、溝50rとセラミック基体102との間に空気が吹き出し、セラミック基体102が溝50rから浮上する。ここで、発熱抵抗体141は、セラミック基体102中の一方向に偏って埋設されており、金属からなる発熱抵抗体141の方がセラミック基体102よりも比重が大きい。このため、セラミック基体102の重心Gが軸心Cとずれている。
従って、空気を吹き出してセラミック基体102を溝50rから浮上させると、重心Gが軸心Cの下側に安定して位置するまでセラミック基体102が軸回りに回転する(図4(b):位置決め工程)。これにより、セラミック基体102の各電極パッド121を所定の位置(図4(bの例では、各電極パッド121が互いに水平に並ぶ向き)に位置決めすることができる。
Then, as shown in FIG. 4, the electrode pad 121 of the ceramic heater 100 is positioned.
First, the ceramic base 102 is set in the groove 50r of the positioning jig 50 (FIG. 4A). At this time, the orientation of the ceramic base 102 (electrode pad 121) is random.
Next, when air is blown out from the blowout hole 50h, air is blown out between the groove 50r and the ceramic base 102, and the ceramic base 102 floats from the groove 50r. Here, the heating resistors 141 are embedded in the ceramic base 102 in a biased manner in one direction, and the heating resistors 141 made of metal have a larger specific gravity than the ceramic base 102. Therefore, the center of gravity G of the ceramic base 102 is deviated from the axis C.
Therefore, when air is blown out to levitate the ceramic base 102 from the groove 50r, the ceramic base 102 rotates around the axis until the center of gravity G is stably positioned below the axis C (FIG. 4(b): positioning). Process). As a result, the electrode pads 121 of the ceramic base 102 can be positioned at predetermined positions (in the example of FIG. 4B, the electrode pads 121 are aligned horizontally with each other).

次に、吹出し孔50hから空気の吹出し流量を低下させる(止める)と、各電極パッド121が位置決めされた状態で、セラミック基体102が溝50rに着地する(図4(c))。
そして、図6で述べたのと同様にして、電極パッド121へ接続端子130をろう付けする(接合工程)。
なお、位置決め治具50の各溝50rにそれぞれセラミック基体102を設置して一度に複数のセラミック基体102(の電極パッド121)の位置決めをした後、治具540で複数のセラミック基体102をまとめて保持し、別の治具520に同様に複数組保持された各組の接続端子130の間に各セラミック基体102を配置すれば、一度に複数のセラミック基体102にろう付けすることができる。
Next, when the flow rate of air blown out from the blowout holes 50h is reduced (stopped), the ceramic base 102 lands on the groove 50r in a state where each electrode pad 121 is positioned (FIG. 4C).
Then, in the same manner as described with reference to FIG. 6, the connection terminal 130 is brazed to the electrode pad 121 (bonding step).
It should be noted that, after the ceramic base bodies 102 are installed in the respective grooves 50r of the positioning jig 50 and the plurality of ceramic base bodies 102 (the electrode pads 121 of the ceramic base bodies 102) are positioned at once, the plurality of ceramic base bodies 102 are put together by the jig 540. If each ceramic base 102 is held between the connection terminals 130 of each set that is held and similarly held in another jig 520, a plurality of ceramic bases 102 can be brazed at one time.

以上のように、溝50rとセラミック基体102との間に空気を吹き出して、セラミック基体102を溝50rから浮上させて電極パッド121を位置決めするので、セラミック基体102が位置決め治具50に非接触となり、セラミック基体102にキズや汚れが付着することを抑制できる。
又、セラミック基体102の重心Gと軸心Cのずれを利用して、位置決めを重力により自律的に行うので、位置決めを誤認することがなく位置決めを正確に行えると共に、位置決めを短時間で行うことができる。
As described above, air is blown between the groove 50r and the ceramic base 102 to float the ceramic base 102 from the groove 50r and position the electrode pad 121, so that the ceramic base 102 does not come into contact with the positioning jig 50. Thus, it is possible to prevent the scratches and dirt from adhering to the ceramic base 102.
Further, since the positioning is autonomously performed by gravity by utilizing the deviation between the center of gravity G and the axis C of the ceramic base 102, the positioning can be accurately performed without misrecognizing the positioning, and the positioning can be performed in a short time. You can

また、本実施形態では、図4(a)に示すように、溝50rの曲率半径R1がセラミック基体102の曲率半径R2よりも大きい。このようにすると、溝50rとセラミック基体102との接触面積が小さくなるので、セラミック基体102にキズや汚れが付着することをさらに抑制できると共に、セラミック基体102が溝50rから浮上し易くなる。
なお、セラミック基体102の曲率半径R2は、電極パッド121を除くセラミック基体102の外表面の曲率半径とする。
Further, in the present embodiment, as shown in FIG. 4A, the radius of curvature R1 of the groove 50r is larger than the radius of curvature R2 of the ceramic base 102. By doing so, the contact area between the groove 50r and the ceramic base 102 becomes smaller, so that scratches and dirt can be further prevented from adhering to the ceramic base 102, and the ceramic base 102 can easily float from the groove 50r.
The radius of curvature R2 of the ceramic base 102 is the radius of curvature of the outer surface of the ceramic base 102 excluding the electrode pads 121.

また、位置決め工程の後、図4(c)でセラミック基体102を溝50rに着地させる際、溝50rから吹き出す空気の流量を徐々に低下させるとよい。このようにすると、セラミック基体102が溝50rにゆっくりと着地するので、セラミック基体102にキズや汚れが付着することをさらに抑制できると共に、セラミック基体102が急激に着地して位置決め状態が振れる(位置ずれが生じる)ことを抑制できる。
なお、溝50rから吹き出す空気の流量を徐々に低下させる方法としては、図3の各副配管62、64、66のうち、まず1つ(例えば副配管66)を止めることで流量を低下させ、その後、副配管64、62を順に止めることで、流量を徐々に低下させることができる。
又、所定の絞り弁で流量を徐々に低下させてもよい。
After the positioning step, when the ceramic base 102 is landed in the groove 50r in FIG. 4C, the flow rate of air blown out from the groove 50r may be gradually reduced. By doing so, the ceramic base 102 slowly lands on the groove 50r, so that it is possible to further suppress the scratches and dirt from adhering to the ceramic base 102, and the ceramic base 102 abruptly lands and the positioning state fluctuates (position). Deviation can be suppressed.
As a method of gradually reducing the flow rate of the air blown out from the groove 50r, first of all the sub-pipes 62, 64, 66 of FIG. 3, one (for example, the sub-pipe 66) is stopped to reduce the flow rate. After that, the flow rates can be gradually reduced by stopping the auxiliary pipes 64 and 62 in order.
Further, the flow rate may be gradually reduced by a predetermined throttle valve.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
上記実施形態では、発熱抵抗体141によってセラミック基体102の重心Gが軸心Cとずれていたが、これに限らず、例えば所定のウェイトを設けて重心Gが軸心Cとずれるようにしてもよい。
溝50rとセラミック基体102との間に空気を吹き出してセラミック基体102を溝50rから浮上させる手段は、上記位置決め治具50に限定されない。
It is needless to say that the present invention is not limited to the above-described embodiments and covers various modifications and equivalents included in the concept and scope of the present invention.
In the above-described embodiment, the center of gravity G of the ceramic base 102 is deviated from the axis C by the heating resistor 141. However, the present invention is not limited to this. Good.
The means for blowing air between the groove 50r and the ceramic base 102 to float the ceramic base 102 from the groove 50r is not limited to the positioning jig 50.

セラミックヒータ100は、例えばガスセンサに配置されるが、その他の装置に配置されても良い。又、ガスセンサとしては、特性のガス成分又はガス成分の濃度を検知する種々のガスセンサ(酸素センサ、NOxセンサ等)を例示できる。 The ceramic heater 100 is arranged, for example, in the gas sensor, but may be arranged in another device. As the gas sensor, various gas sensors (oxygen sensor, NOx sensor, etc.) that detect the characteristic gas component or the concentration of the gas component can be exemplified.

50r 溝
100 セラミックヒータ
102 セラミック基体
106 外側電極
108 内側電極
121 電極パッド
130 接続端子
141 発熱抵抗体
C セラミック基体の軸心
G セラミック基体の重心
R1 溝の曲率半径
R2 セラミック基体の曲率半径
50r Groove 100 Ceramic heater 102 Ceramic base 106 Outer electrode 108 Inner electrode 121 Electrode pad 130 Connection terminal 141 Heating resistor C Ceramic base axis G Ceramic center of gravity R1 Groove radius R2 Curvature radius R2 Ceramic base radius of curvature

Claims (3)

発熱抵抗体が内部に埋設され、表面に金属製の電極パッドを有する円筒状のセラミック基体における前記電極パッドに、外部回路と電気的に接続する接続端子を、ろう付け接合するセラミックヒータの製造方法であって、
前記セラミック基体の重心が軸心とずれており、
前記セラミック基体の少なくとも一部を収容可能な溝に該セラミック基体を設置した後、前記溝と前記セラミック基体との間に空気を吹き出して前記セラミック基体を前記溝から浮上させ、前記重心が前記軸心の下側に安定して位置するよう前記セラミック基体の前記電極パッドを位置決めする位置決め工程と、
前記位置決め工程で位置決めされた前記電極パッドに、前記接続端子をろう付け接合する接合工程と、
を有するセラミックヒータの製造方法。
Manufacturing method of ceramic heater in which a heating resistor is embedded inside and a connecting terminal electrically connected to an external circuit is brazed to the electrode pad of a cylindrical ceramic substrate having a metal electrode pad on the surface. And
The center of gravity of the ceramic base is offset from the axis,
After installing the ceramic base in a groove capable of accommodating at least a part of the ceramic base, air is blown between the groove and the ceramic base to float the ceramic base from the groove, and the center of gravity is the axis. A positioning step of positioning the electrode pad of the ceramic base so as to be stably positioned below the core;
A bonding step of brazing and bonding the connection terminal to the electrode pad positioned in the positioning step,
And a method for manufacturing a ceramic heater.
前記溝の曲率半径が前記セラミック基体の曲率半径よりも大きい請求項1に記載のセラミックヒータの製造方法。 The method of manufacturing a ceramic heater according to claim 1, wherein a radius of curvature of the groove is larger than a radius of curvature of the ceramic base. 前記位置決め工程の後、前記溝と前記セラミック基体との間に吹き出す空気の流量を徐々に低下させ、前記セラミック基体を前記溝に着地させる請求項1又は2に記載のセラミックヒータの製造方法。 3. The method of manufacturing a ceramic heater according to claim 1, wherein after the positioning step, the flow rate of air blown between the groove and the ceramic base is gradually reduced to land the ceramic base on the groove.
JP2016121871A 2016-06-20 2016-06-20 Ceramic heater manufacturing method Active JP6710590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121871A JP6710590B2 (en) 2016-06-20 2016-06-20 Ceramic heater manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121871A JP6710590B2 (en) 2016-06-20 2016-06-20 Ceramic heater manufacturing method

Publications (2)

Publication Number Publication Date
JP2017228368A JP2017228368A (en) 2017-12-28
JP6710590B2 true JP6710590B2 (en) 2020-06-17

Family

ID=60892089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121871A Active JP6710590B2 (en) 2016-06-20 2016-06-20 Ceramic heater manufacturing method

Country Status (1)

Country Link
JP (1) JP6710590B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947525A (en) * 1982-09-09 1984-03-17 Koyo Seiko Co Ltd Positioning method of rotor and device thereof
JPH0537771U (en) * 1991-10-24 1993-05-21 三菱重工業株式会社 Magnetic levitation carrier
JPH05263827A (en) * 1992-03-13 1993-10-12 Ebara Corp Fluid sliding bearing
JP4553530B2 (en) * 2001-08-28 2010-09-29 日本特殊陶業株式会社 Manufacturing method of ceramic heater
JP2006294479A (en) * 2005-04-12 2006-10-26 Ngk Spark Plug Co Ltd Brazed junction and ceramic heater
DE202007008404U1 (en) * 2007-05-22 2007-09-06 Türk & Hillinger GmbH Heating cartridge with coupling element
JP6375841B2 (en) * 2014-10-02 2018-08-22 株式会社デンソー Gas sensor manufacturing method and assembly apparatus

Also Published As

Publication number Publication date
JP2017228368A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US10483136B2 (en) Ceramic heater and electrostatic chuck
JP4767788B2 (en) Electrostatic chuck device
TWI393869B (en) With wire temperature sensor
KR101784227B1 (en) Methods and apparatus for electrostatic chuck repair and refurbishment
US8356932B2 (en) Manufacturing method for a sensor of a thermal flow measuring device
JP5324170B2 (en) Fuse having slotted fuse body
US9437352B2 (en) Resistor and structure for mounting same
KR19980070688A (en) Joint structure of ceramic member and power supply connector
US20020135454A1 (en) Temperature sensor
JP2008098513A (en) Electrostatic chuck equipment
US20100066482A1 (en) Electronic component with lead wire
US10837839B2 (en) Method for manufacturing a temperature sensor
KR100512350B1 (en) Ceramic heaters
JP2015537381A (en) Resistor and manufacturing method thereof
WO2016068207A1 (en) Heater and fluid heating device using same
JP6710590B2 (en) Ceramic heater manufacturing method
US4752670A (en) Bobbin assembly for a soldering/desoldering device using an etched foil heater
JP2004311939A (en) Thermistor with symmetrical structure
JP7525569B2 (en) Heat exchange unit and cleaning device equipped with same
JP6276140B2 (en) Heater and fluid heating apparatus using the same
JP2018018671A (en) heater
JPH11129066A (en) Soldering iron
JPH0313993Y2 (en)
JP6841085B2 (en) Coiled electronic components
JPWO2018096778A1 (en) heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200527

R150 Certificate of patent or registration of utility model

Ref document number: 6710590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250