[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6705716B2 - 電力需要予測方法および電力需要予測プログラム - Google Patents

電力需要予測方法および電力需要予測プログラム Download PDF

Info

Publication number
JP6705716B2
JP6705716B2 JP2016153449A JP2016153449A JP6705716B2 JP 6705716 B2 JP6705716 B2 JP 6705716B2 JP 2016153449 A JP2016153449 A JP 2016153449A JP 2016153449 A JP2016153449 A JP 2016153449A JP 6705716 B2 JP6705716 B2 JP 6705716B2
Authority
JP
Japan
Prior art keywords
temperature
power demand
prediction
power
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016153449A
Other languages
English (en)
Other versions
JP2018023227A (ja
Inventor
正人 國友
正人 國友
裕和 小幡
裕和 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2016153449A priority Critical patent/JP6705716B2/ja
Publication of JP2018023227A publication Critical patent/JP2018023227A/ja
Application granted granted Critical
Publication of JP6705716B2 publication Critical patent/JP6705716B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、電力需要予測方法および電力需要予測プログラムに関し、電力会社や鉄道事業者の電力供給システムにおける電力需要予測に利用して有効な技術に関する。
電力事業者等の電力供給者は、需要家に対して電力を安定且つ効率的に供給するために、将来の電力需要を予測し、予測した結果に基づいて電力の供給計画を策定している。
従来、電力需要予測方法としては様々な方法が提案されており、電力会社において重回帰式を利用して電力需要を予測する方法として例えば特許文献1に開示されているものがある。また、鉄道事業者の電力供給システムにおける電力負荷(電力消費)を予測する発明として、例えば特許文献2に開示されているものがある。
特開2015−104171号公報 特開平08−34268号公報
特許文献1に開示されている電力需要予測方法は重回帰式を利用して予測するため、コンピュータを用いて比較的精度の高い予測が可能であるが、電力事業者向けに開発された電力需要予測方法であり、一般の建物における電力需要を予測することに向けられており、鉄道設備における電力需要を反映していないため、鉄道設備における電力需要の占める割合が多い電力会社にとっては精度の高い予測値が得られない。また、鉄道事業者の電力供給システムにおける電力需要を予測するには適していない。
一方、特許文献2に開示されている発明は、鉄道事業者向けに開発された電力需要予測方法であるが、列車の車両数や走行距離、加速距離などをパラメータとして負荷電力量を予測しており、気温等を加味した電力需要予測ではないため、精度の高い予測結果が得られないという課題がある。
現在、鉄道事業者の電力供給システムでは、電力会社の発電所もしくは自社管理の発電所から電力供給を受け、電車の運転・空調・各種サービス機器、現業機関、駅ビル等の電力需要を賄っている。電力会社や鉄道事業者の発電所では、翌日以降の発電計画を基に発電業務を行なっており、発電計画の立案に際しては、 翌日の電力需要を予測して計画を立てることが行われている。
ところで、鉄道事業者管理下の発電所はもちろん電力会社において、発電の計画値を定める上では、翌日の電力需要を正確に予測することが不可欠であり、従来は担当者が手作業で需要予測を行なっていることがあるが、その場合、長年の勘と経験に依存する部分が大きく、誰もが同等の精度を出せる手法としては確立されていない。また、人に依存する需要予測では予測結果が得られるまでに時間がかかってしまうという課題があった。
本発明は上記のような課題に着目してなされたもので、人の勘と経験によらず電力需要を短時間で高精度に予測することが可能な電力需要予測方法および電力需要予測プログラムを提供することを目的とする。
本発明の他の目的は、鉄道事業者や電力会社が発電所における発電計画を立案するのに利用して有効な電力需要予測方法および電力需要予測プログラムを提供することにある。
上記課題を解決するために、本出願の発明に係る電力需要予測方法は、
重回帰分析によって所定時間単位で電力の需要を予測する電力需要予測方法であって、
目的変数を電力負荷とするとともに、説明変数として、少なくとも、気温、気温の2乗、曜日、繁忙期、直近数週間負荷平均値、直近数週間気温平均値を使用し、基本演算式として、次の回帰式
目的変数=a+b*X1+c*X2+d*X3+e*X4+f*X5+g*X6
を、平日と平日以外の条件と、温度境界条件と、時間帯条件とに応じて分割して複数の予測式を作成し、該複数の予測式の前記目的変数と前記説明変数X1,X2,X3,X4,X5,X6に、過去数年分の実績値を入れて、各予測式に対応した定数aおよび係数b,c,d,e,f,gの値を得た後、
予測対象の説明変数X1,X2,X3,X4,X5,X6を対応する予測式に代入して、電力需要の予測値を算出するようにしたものである。
上記のような方法によれば、人の勘と経験に頼ることなく、従来の人による電力需要予測と比べても遜色のない電力需要予測を行うことができる。特に、本発明方法は、重回帰分析による予測式の説明変数に、一般的な「気温」の他に「気温の2乗」を含んでいるため、精度の高い電力需要予測が可能である。また、コンピュータを利用して予測を行うことができるため、短時間に予測結果が得られるとともに、省力化を達成することができる。なお、本明細書において、「実績」なる語は「実測」と同義である。また、「過去数年」には1年も含まれる。
ここで、望ましくは、鉄道事業者の電力供給システムにおける電力の需要を予測する場合において、前記温度境界条件を負荷−気温特性の最小点近傍の温度とするようにする。
上記のような方法によれば、鉄道事業者が発電所における発電計画を立案する際に、冷房運転や暖房運転の影響を考慮した電力需要を、人の勘と経験によらず短時間に高精度で予測することができる。
さらに、望ましくは、前記説明変数のうち気温および気温の2乗について、前日の予報気温もしくは当日の予報気温、または前日の予報気温および当日の予報気温、を説明変数として予測式を作成し、作成した前記予測式を用いて電力需要を予測するようにする。
このような方法とすることにより、従来の人による電力需要予測よりも高精度に電力需要を予測することができる。
また、望ましくは、前記電力負荷の実績値を記憶する記憶装置には、異常値であることを示すフラグを付記した実績データを格納しておいて、前記基本演算式を用いて定数aおよび係数b,c,d,e,f,gの値を得る際に、前記フラグが付いている実績データを除いたデータを用いるようにする。
かかる方法によれば、異常発生時の実績データを除いた状態で電力需要の予測式の定数や係数を決定することができ、それによって電力需要をより高精度に予測することができる。
本発明によれば、人の勘と経験によらず電力需要を短時間で高精度に予測することが可能な電力需要予測方法および電力需要予測プログラムを提供することができる。また、鉄道事業者が発電所における発電計画を立案するのに利用して有効な電力需要予測方法および電力需要予測プログラムを提供できるという効果がある。
本発明に係る電力需要予測方法を実施するためのシステムの一構成例を示すブロック図である。 実施形態における予測式の分け方(パターン分割)の一例を示すイメージ図である。 年間の気温と電力負荷(電力使用量)との関係の一例を示す図である。 実施形態の電力需要予測手法によって行なった予測値と実際に計測された実績値との関係を示した図である。
以下、図面を参照しながら、本発明に係る電力需要予測方法の実施の形態について説明する。本実施形態においては、図1に示すような機能ブロックからなるシステムを利用して電力需要予測を行うことができる。
図1に示すシステムは、一般的なコンピュータシステムにより実現することができるもので、マイクロプロセッサ(MPU)のようなプログラム方式の演算処理装置11およびROM(読出し専用メモリ)12やRAM(随時読出し書込み可能なメモリ)13のような記憶手段を備えた電力需要予測実行部10と、電力需要予測に必要なデータを記憶した記憶装置21と、ユーザインタフェース(ユーザI/F)22と、キーボードやマウスなどの入力装置23と、液晶表示パネルのような表示装置24と、を備えている。
上記記憶装置21には、本実施形態の電力需要予測に必要なデータとして、過去数年間(例えば2年間)の日毎、時間帯毎の実測気温データおよび日毎、時間帯毎の電力負荷データ(電力使用量の実測値)が実績値として格納されるようになっている。
電力需要予測の実行に必要なプログラムおよび基本演算式は電力需要予測実行部10のROM12に記憶されており、マイクロプロセッサ(MPU)11が該プログラムに従って電力需要予測に必要な演算処理を実行する。ここで、演算処理には、基本演算式に基づく予測式の作成および予測値の算出が含まれる。
本発明に係る電力需要予測は、重回帰分析を利用するもので、重回帰式における説明変数として、例えば以下のようなパラメータを選択したことを特徴としており、特に(2)の「気温の2乗」をパラメータとして選択したことおよび後に説明するように複数個(例えば96個)の予測式を作成するようにしたことにも特徴がある。
[説明変数の例]
(1)気温 :X1
(2)気温の2乗 :X2
(3)曜日 :X3
(4)繁忙期 :X4
(5)直近数週間負荷平均値:X5
(6)直近数週間気温平均値:X6
ここで「繁忙期」とはゴールデンウィークのような連休期間や盆、暮れ、正月のように公共交通機関を利用した人の移動が非常に多い期間を指す。
例えば上記6つの説明変数X1〜X6を用いた基本演算式としての重回帰式は、次式
目的変数=a+b*X1+c*X2+d*X3+e*X4+f*X5+g*X6
で示される。上式で「目的変数」は電力負荷(電力消費量)である。本実施形態では、記憶装置21に記憶されている過去2年分の実測値から、重回帰分析によって、上記式における定数aおよび係数b〜gを決定し、例えば96個の予測式を作成する。そして、作成した予測式を用いて、時間帯ごとに電力需要量を予測していく。この予測式は、
予測値E=a+b*X1+c*X2+d*X3+e*X4+f*X5+g*X6
で示される。定数aおよび係数b〜gは上記重回帰分析によって決定されているので、その値を用いることで予測値Eが得られる。
上記定数aおよび係数b〜gを決定する際に、目的変数および説明変数X1〜X6に入れる値は、記憶装置21から読み出された実績値であり、予測式の数に対応した時間単位のデータを用いる。具体的には、予測式の数が図2に示すように96個の場合、1時間単位のデータを用いることとなる。
上記予測式を用いて予測値Eを算出する際に、上記説明変数X1とX2に入れる値は、それぞれ予想する日の予報気温と予報気温の2乗である。また、上記予測式を用いて、繁忙期以外の電力予測値Eを算出する場合には説明変数X4は使用しない。
なお、重回帰分析は、公知の分析用ソフトウェアによって行うことができるので、詳しい説明は省略する。
直近数週間負荷平均値X5と直近数週間気温平均値X6を説明変数として選択したのは、気象現象等に起因して冷夏時や暖冬時のように過去のその時期の平均気温からずれている場合にも、精度の高い予測結果が得られるようにするためである。
一方、上述したように、96個の予測式を作成することとしたのは、鉄道事業に特有の電力需要を考慮した結果であり、以下にその理由を説明する。
本発明者らは、本発明に係る電力需要予測方法を開発するに当たり、過去の実測データの特徴について検討した。まず、鉄道事業における電力需要は、社会一般の電力需要と異なり走行させる列車の本数の影響を受ける。そして、列車本数は、平日と平日以外(土日、正月等)とで大きく異なる。また、列車本数は時間帯によっても異なっている。なお、鉄道事業者の電力供給システムにおける電力負荷には、列車が消費する電力の他、駅舎等で消費する電力も含まれるが、列車が消費する電力の方が全体に占める割合が大きい。
これらのことから、時間帯を24に分けた場合、さらに平日と平日以外を区別すると48パターンに分かれることが分かる。また、過去の実測データを分析したところ、エアコン使用の冷房帯、暖房帯の境界と想定される気温16度近傍を境に、分割して予測することが有効であることが分かった。そこで、気温16度以上と16度未満とで予測式を異ならせることとした。その結果、合計で96個の予測式を使用することが有効であるとの結論に達した。なお、16度については、固定ではなく、環境などに応じて変化する可能性がある。この16度等の温度が、特許請求の範囲における負荷−気温特性の最小点近傍の温度である。
図2に、96個の予測式の分け方(パターン分割)のイメージを示す。図2において、例えば式(2)は、「平日」の「2時」台であって予測気温が16度以上の場合に使用する予測式であることを意味する。なお、この「16度」などの気温は本発明者らが想定したエリアでの値であり、予測式の作成および予測値の算出に用いる気温はそのエリア内の適当な地点の値が選択される。
また、説明変数として、気温X1の他に、気温2乗X2を含ませることとしたのは、横軸に気温、縦軸に電力負荷(任意単位(a.u.))をとったグラフに過去2年分の実測値をプロットしたところ、図3に示すような結果が得られたためである。なお、図3は「平日のある時間」に関するものであるが、「休日」に関してもほぼ同様なグラフとなった。図3より、各点は下向きに凸状をなす曲線に集中している。このことから、本実施形態のように、気温2乗を説明変数として用いることが有効であることが分かる。
また、本実施形態においては、記憶装置21内に格納されている過去の実績データ(実測電力負荷)に、輸送障害等が発生した日のデータには異常値であることを示すフラグを時間帯毎に付記して格納しておいて、上記重回帰分析を実行するに際して、スクリーニングを行なって異常フラグが付いているデータを予測のための演算に使用しないようにしている。さらに、大きなイベントが開催された等の理由で一時的に電力消費が増加したと考えられるようなデータがあった場合、そのデータにも異常フラグを付記して、電力需要予測に使用しないようにしても良い。
次に、上記予測式を用いた本実施形態の電力需要予測手法の評価結果について説明する。
本発明者らは、過去2年分の実績データを用いて上記予測式を用いた電力需要予測手法による予測結果について、予測精度の評価指数としての決定係数R2と平均絶対誤差率(MAPE)を用いた評価を行なったので、その評価結果と比較結果について説明する。
図4は、上記電力需要予測手法によって行なった電力需要予測値(任意単位(a.u.))と実際に計測された電力需要実績値(任意単位(a.u.))との関係を示す。図4より、各点はほぼ1本の直線の近傍に集中していることが分かる。また、これらの予測値と実績値とから決定係数R2を求めたところ、R2は0.99以上であった。決定係数は、予測精度を示す評価指標であり、相関係数Rの2乗で表わされる値で、「1」に近いほど精度が高いことを意味している。
また、上記電力需要予測手法によって行なった予測値と実績値とに基づいて求めた絶対誤差率を検証した。平均絶対誤差率(MAPE)は、予測値と実績値の差を実績値で割ったものの平均値であり、値が小さいほど精度が高いことを意味している。本実施形態の予測結果の場合、3%前後であった。
図4から、本実施形態の電力需要予測手法は非常に精度が高いこと分かる。
さらに、予測式における(1)と(2)の説明変数の「気温」と「気温の2乗」として、「当日発表の予報気温」を使用することで、より高い精度で予測が行えることが分かった。
さらに、重回帰分析に使用する説明変数は前述の6種類に限定されるものではなく、「予報気温」として「前日予報気温」と「当日の予報気温」をそれぞれ説明変数として用いたり、「直近数時間の電力負荷実測値」など他の説明変数を加えたりして、7種類、8種類……としても良く、それによって予測の精度をさらに高めることが可能である。
また、前日の予測では、前述の6種類の説明変数を使用し、当日の予測では前述の6種類のうち、気温と気温2乗を当日の予報値とすることで、従来の人手による予測の精度と同等以上の精度が得られることを確認することができている。
以上、本発明の各実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形や変更が可能である。例えば、上記実施形態では96個の予測式を使用するとしたが、例えば30分毎、90分毎あるいは2時間毎に式を切り替えるようにすることで、192個や64個、48個等任意の数の予測式を立てるようにすることができる。1分毎に予測式を切り替えることも可能である。
また、説明変数「直近数週間負荷平均値」と「直近数週間気温平均値」としては、例えば直近1〜3週間あるいは10〜20日間の負荷平均値と気温平均値を用いても良い。要するに、任意の期間を定めその期間の平均値をとるようにすることができる。
10 演算処理装置
11 MPU
12 ROM
13 RAM
21 データ記憶装置
22 ユーザインタフェース
23 入力装置
24 表示装置

Claims (5)

  1. 重回帰分析によって所定時間単位で電力の需要を予測する電力需要予測方法であって、
    目的変数を電力負荷とするとともに、説明変数として、少なくとも、気温、気温の2乗、曜日、繁忙期、直近数週間負荷平均値、直近数週間気温平均値を使用し、基本演算式として、次の回帰式
    目的変数=a+b*X1+c*X2+d*X3+e*X4+f*X5+g*X6
    を、平日と平日以外の条件と、温度境界条件と、時間帯条件とに応じて分割して複数の予測式を作成し、該複数の予測式の前記目的変数と前記説明変数X1,X2,X3,X4,X5,X6に、過去数年分の実績値を入れて、各予測式に対応した定数aおよび係数b,c,d,e,f,gの値を得た後、
    予測対象の説明変数X1,X2,X3,X4,X5,X6を対応する予測式に代入して、電力需要の予測値を算出することを特徴とする電力需要予測方法。
  2. 鉄道事業者の電力供給システムにおける電力の需要を予測する場合において、前記温度境界条件を負荷−気温特性の最小点近傍の温度とすることを特徴とする請求項1記載の電力需要予測方法。
  3. 前記説明変数のうち気温および気温の2乗について、前日の予報気温もしくは当日の予報気温、または前日の予報気温および当日の予報気温、を説明変数として予測式を作成し、作成した前記予測式を用いて電力需要を予測することを特徴とする請求項1または2に記載の電力需要予測方法。
  4. 前記電力負荷の実績値を記憶する記憶装置には、異常値であることを示すフラグを付記した実績データを格納しておいて、前記基本演算式を用いて定数aおよび係数b,c,d,e,f,gの値を得る際に、前記フラグが付いている実績データを除いたデータを用いることを特徴とする請求項1〜3のいずれか1項に記載の電力需要予測方法。
  5. コンピュータに、
    目的変数を電力負荷とするとともに、説明変数として、少なくとも、気温、気温の2乗、曜日、繁忙期、直近数週間負荷平均値、直近数週間気温平均値を使用し、基本演算式として、次の回帰式
    目的変数=a+b*X1+c*X2+d*X3+e*X4+f*X5+g*X6
    を、平日と平日以外の条件と、温度境界条件と、時間帯条件とに応じて分割して複数の予測式を作成する処理と、
    前記複数の予測式の前記目的変数と前記説明変数X1,X2,X3,X4,X5,X6に、過去数年分の実績値を入れて、各予測式に対応した定数aおよび係数b,c,d,e,f,gの値を求める処理と、
    予測対象の説明変数X1,X2,X3,X4,X5,X6を対応する予測式に代入して、電力需要の予測値を算出する処理と、
    を実行させるための電力需要予測プログラム。
JP2016153449A 2016-08-04 2016-08-04 電力需要予測方法および電力需要予測プログラム Active JP6705716B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153449A JP6705716B2 (ja) 2016-08-04 2016-08-04 電力需要予測方法および電力需要予測プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153449A JP6705716B2 (ja) 2016-08-04 2016-08-04 電力需要予測方法および電力需要予測プログラム

Publications (2)

Publication Number Publication Date
JP2018023227A JP2018023227A (ja) 2018-02-08
JP6705716B2 true JP6705716B2 (ja) 2020-06-03

Family

ID=61164678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153449A Active JP6705716B2 (ja) 2016-08-04 2016-08-04 電力需要予測方法および電力需要予測プログラム

Country Status (1)

Country Link
JP (1) JP6705716B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141478A (ja) * 2019-02-28 2020-09-03 東京電力ホールディングス株式会社 情報処理装置、情報処理方法およびプログラム
JP7335087B2 (ja) * 2019-03-29 2023-08-29 三機工業株式会社 空調負荷の予測方法およびシステム、並びに空調システムのエネルギー管理方法およびシステム
US10862302B1 (en) 2019-07-01 2020-12-08 Oracle International Corporation Intelligent data preprocessing technique to facilitate loadshape forecasting for a utility system
WO2021156912A1 (ja) * 2020-02-03 2021-08-12 三菱電機株式会社 シミュレーション装置、シミュレーション方法及びシミュレーションプログラム
CN114664389B (zh) * 2022-03-24 2023-09-22 南方电网电力科技股份有限公司 一种尿素水解制氨反应条件的预测方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707589B2 (ja) * 1998-04-16 2005-10-19 富士電機システムズ株式会社 電力需要量予測方法
JP2005229758A (ja) * 2004-02-13 2005-08-25 Tyrell Express Kk エネルギー消費管理システム
JP4154373B2 (ja) * 2004-08-06 2008-09-24 株式会社日立製作所 電力供給事業リスク管理支援システム
JP2009225613A (ja) * 2008-03-18 2009-10-01 Tokyo Electric Power Co Inc:The 電力需要予測装置及び電力需要予測方法
JP5119022B2 (ja) * 2008-03-26 2013-01-16 東京瓦斯株式会社 可変的予測モデル構築方法、及び、可変的予測モデル構築システム
US8065098B2 (en) * 2008-12-12 2011-11-22 Schneider Electric USA, Inc. Progressive humidity filter for load data forecasting
JP2015134523A (ja) * 2014-01-16 2015-07-27 株式会社日立製作所 電気鉄道用電力制御システム及び電気鉄道用電力制御方法

Also Published As

Publication number Publication date
JP2018023227A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6705716B2 (ja) 電力需要予測方法および電力需要予測プログラム
Lee et al. A hybrid dynamic and fuzzy time series model for mid-term power load forecasting
US20170211830A1 (en) Air-conditioning control system, air-conditioning planning device, and planning method
TWI592811B (zh) 需求預測裝置、程式以及記錄媒體
US10223167B2 (en) Discrete resource management
JP5789421B2 (ja) 負荷量予測装置、負荷量予測方法および負荷量予測プログラム
Behl et al. Data-driven modeling, control and tools for cyber-physical energy systems
US10846715B2 (en) Energy operation apparatus, method, and system
CN105091076B (zh) 节能效果计算方法以及装置
CN103513632A (zh) 能源管理系统
JP2008109813A (ja) デマンド制御装置および電力消費システム
Khamma et al. Generalized additive models: An efficient method for short-term energy prediction in office buildings
JP7099805B2 (ja) 予測装置、予測システム、予測方法及びプログラム
WO2015075978A1 (en) Power suppression optimization system and power suppression optimization method
JP2009225613A (ja) 電力需要予測装置及び電力需要予測方法
JP2014220971A (ja) 電力需要予測装置、電力需要予測方法および電力需要予測プログラム
JP2016110255A (ja) 需給調整装置
JP2018147234A (ja) 保守計画作成装置および方法
Biemann et al. Data Center HVAC Control Harnessing Flexibility Potential via Real-Time Pricing Cost Optimization Using Reinforcement Learning
Shiel et al. Effects of building energy optimisation on the predictive accuracy of external temperature in forecasting models
JP6519215B2 (ja) 電力取引支援システム、電力取引支援方法及びプログラム
Kang et al. Forecasting Airport Building Electricity Demand on the Basis of Flight Schedule Information for Demand Response Applications
JP6194246B2 (ja) 冷凍機性能評価装置および方法
JP2021131627A (ja) Dr発動予測システム
Márquez et al. Modelling on-line reliability and risk to schedule the preventive maintenance of repairable assets in network utilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200514

R150 Certificate of patent or registration of utility model

Ref document number: 6705716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250