[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6795562B2 - 検査装置及び機械学習方法 - Google Patents

検査装置及び機械学習方法 Download PDF

Info

Publication number
JP6795562B2
JP6795562B2 JP2018170913A JP2018170913A JP6795562B2 JP 6795562 B2 JP6795562 B2 JP 6795562B2 JP 2018170913 A JP2018170913 A JP 2018170913A JP 2018170913 A JP2018170913 A JP 2018170913A JP 6795562 B2 JP6795562 B2 JP 6795562B2
Authority
JP
Japan
Prior art keywords
inspection
learning model
learning
index
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018170913A
Other languages
English (en)
Other versions
JP2020042669A (ja
Inventor
桂祐 渡邊
桂祐 渡邊
泰弘 芝▲崎▼
泰弘 芝▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2018170913A priority Critical patent/JP6795562B2/ja
Priority to DE102019123800.5A priority patent/DE102019123800A1/de
Priority to US16/566,881 priority patent/US11521120B2/en
Priority to CN201910863635.7A priority patent/CN110895716B/zh
Publication of JP2020042669A publication Critical patent/JP2020042669A/ja
Application granted granted Critical
Publication of JP6795562B2 publication Critical patent/JP6795562B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Analysis (AREA)
  • Operations Research (AREA)
  • Biophysics (AREA)
  • Marketing (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Optimization (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Quality & Reliability (AREA)

Description

本発明は、検査装置及び機械学習方法に関する。
従来、工場等の製造業の現場において製造された製品の外観を作業者が目視で確認することで、良品と、キズや欠け等がある不良品との分類を行う外観検査が行われてきた。この様な外観検査においては、各作業者の経験の違いに基づく判断基準の違いや、体調変化により集中力を欠いたりする等の理由で、その検査精度にブレが生じ、良品を不良品としてラインから取り除いてしまうことがある。そのため、多くの現場では、不良品と判断されて一旦ラインから取り除かれた製品を、別の検査担当者が再度確認し、その確認の結果で良品と判断された製品はラインに戻すことで歩留まりを上げるという処置を取っている。また、同様の理由で、作業者が良品と判断したワークが実際は不良品であることもあり、その場合、良品に紛れて不良品も出荷されてしまうことになる。そのため、製造業の現場では、出荷される製品に含まれる不良品の率(不良品出荷率)を極力下げるために、様々な対策が取られている。
一般に、製造業の現場における外観検査の自動化を考える場合、2つの指標が重要になる。即ち、上記した「不良品出荷率」と、はじいた不良品の中に良品とすべき製品が紛れていないかを再確認する「再検査率」を低く抑えることである。更に、これらの指標は、製造された検査対象物の総数における不良品の率(「製造不良率」)に依存するため、ある生産ラインの「製造不良率」が既知であれば、限界とする「不良品出荷率」(限界不良品出荷率)と「再検査率」(限界再検査率)を満たす検査が可能な検査装置を構築すれば良いことになる。
一方で、自動化された外観検査における精度を向上させる試みとして、製品の外観を撮像手段で撮像し、撮像した画像に基づいた製品の仕分け作業や、良品と不良品との分類を行なう機械的な外観検査が行われてきた(例えば、特許文献1〜3等)。このような機械的な外観検査では、例えば、予め用意した基準画像から特徴点を抽出しておき、製品を撮像した画像から抽出された特徴点と比較した結果に基づいて製品の仕分けや選別を行なっている。また、このような機械的な外観検査に、機械学習を導入する事例も増加している(例えば、特許文献4等)。
特開2015−021756号公報 特開2005−052926号公報 特開2013−140090号公報 特開2017−049974号公報
通常、機械学習、特に3層以上の層を持つニューラルネットワークを用いた深層学習の手法によりモデルの学習を進める際には、学習のイテレーションまたはエポックと呼ばれる学習サイクルにおいて、ある程度のサイクル数の計算を行う毎に学習モデルを作成する。これは、深層学習の性質上、学習モデルの質が学習するにつれてどこまでも良くなるわけではなく、ある一定のサイクル数以上学習を行った学習モデルは過学習という状態になりやすく、未知のデータに対して正しい結果を出せなくなるためである。即ち、学習の過程でいくつか学習モデルを作成した上でそれぞれの学習モデルについて評価し、その中から適した学習モデルを選択するという方法をとる。学習モデルの評価方法として、学習時のloss(損失:ニューラルネットワークによる出力値と、教師データの与える正解との誤差)やaccuracy(正答率:ニューラルネットワークによる出力値の正答率)といった値を用いたり、検証用データを評価した際のprecision(適合率:正しいと予測したもの内、本当に正しいものの割合)やrecall(再現率:見つけるべきもののうち、正しく見つけることができたものの割合)を用いたりすることがある。
しかしながら、実際の製造業の現場における外観検査に機械学習を用いている場合において、検査に用いる学習モデルは、例えば上記したような不良品出荷率や再検査率等のような現場で用いられる評価基準(ユーザの要求仕様)をそれぞれ満たすものである必要があり、一般的な学習モデルの評価基準で学習結果の良否を判定してもそのままでは現場で要求される評価基準を満足しているかどうかはわからないという問題がある。例えば、学習時の1つの指標であるlossが小さくなったからと言って、期待する不良品出荷率がその学習モデルで達成できるとは限らない。つまり、上記したlossやaccuracyの値がどの様な値であれば「不良品出荷率」や「再検査率」が現場における要件を同時に満足するのかを容易に把握乃至計算する手法が今まで提案されてきていなかった。
そこで本発明の目的は、現場のユーザが要求仕様を満足する学習モデルを選択することを容易にする検査装置及び機械学習方法を提供することである。
本発明では、学習モデルの性能を評価するための指標値と、検査装置に対して現場で要求される指標値との関係に基づいて学習モデルの良否を判断し、その判断結果に基づいて学習モデルを選択する構成を検査装置に対して導入することで、上記課題を解決する。
そして、本発明の一態様は、検査対象の検査を行う検査装置において、検査対象から取得された状態データと、該検査対象に係る検査結果を示すラベルデータとに基づいて機械学習を行うことで学習モデルを生成する機械学習装置と、前記機械学習装置が生成した学習モデルに関する、学習モデルの評価に用いられる評価指標である学習モデル評価指標を算出する学習モデル評価指標算出部と、前記検査において用いられる検査指標を取得する検査指標取得部と、前記機械学習装置が生成した学習モデルについて、前記学習モデル評価指標と、前記検査指標とを比較可能に表示し、作業者による学習モデルの選択を受け付け、該選択の結果を出力する学習モデル選択部と、を備えた検査装置である。
そして、本発明の他の態様は、検査対象から取得された状態データと、該検査対象に係る検査結果を示すラベルデータとに基づいて機械学習を行うことで学習モデルを生成する第1ステップと、前記第1ステップで生成された学習モデルに関する、学習モデルの評価に用いられる評価指標である学習モデル評価指標を算出する第2ステップと、検査において用いられる検査指標を取得する第3ステップと、前記第1ステップで生成された学習モデルについて、前記学習モデル評価指標と、前記検査指標とを比較可能に表示し、作業者による学習モデルの選択を受け付け、該選択の結果を出力する第4ステップと、を備えた機械学習方法である。
本発明により、学習モデルの評価を、検査指標に定められた要求仕様に基づいて判定することができるようになるため、機械学習装置の学習の過程において、機械学習に関する知識を持たない現場の作業者であっても、現在設定されている検査指標に定められた要求仕様を満足するような学習が行われたか否かを容易に判断することができるようになり、適切な学習モデルを容易に選択できるようになる。
一実施形態による検査装置の概略的なハードウェア構成図である。 一実施形態による検査装置の概略的な機能ブロック図である。 ROC曲線の例を示す図である。 ROC曲線と、限界不良品出荷率及び限界再検査率の関係について説明する図である。 学習モデルの選択画面の一例を示す図である。 学習モデルの選択画面の他の例を示す図である。
以下、本発明の実施形態を図面と共に説明する。
図1は本発明の一実施形態による検査装置の要部を示す概略的なハードウェア構成図である。本実施形態の検査装置1は、工場における製品検査の現場に設置されたコンピュータとして実装することができる。また、検査装置1は、工場における製品検査の現場に設置されたコンピュータとネットワークを介して接続されたセルコンピュータ、ホストコンピュータ、エッジコンピュータ、クラウドサーバ等のコンピュータとして実装することが出来る。図1は、工場における製品検査の現場に設置されたコンピュータとして検査装置1を実装した場合の例を示している。
本実施形態による検査装置1が備えるCPU11は、検査装置1を全体的に制御するプロセッサである。CPU11は、バス22を介して接続されているROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って検査装置1全体を制御する。RAM13には一時的な計算データや表示装置70に表示するための表示データ及び入力装置71を介してオペレータが入力した各種データ等が格納される。
不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたSRAMやSSD等で構成され、検査装置1の電源がオフされても記憶状態が保持されるメモリとして構成される。不揮発性メモリ14には、入力装置71を介して入力されたデータやプログラム、インタフェース20を介して撮像センサ3により撮像された検査対象を撮像した画像データ等が記憶される。不揮発性メモリ14に記憶されたデータやプログラム等は、利用時にはRAM13に展開されても良い。また、ROM12には、検査に係る処理を行うためのシステム・プログラムや、その他の必要とされる処理を実行するためのシステム・プログラムがあらかじめ書き込まれている。
撮像センサ3は、例えばCCD等の撮像素子を有する電子カメラであり、撮像により2次元画像や距離画像を撮像面(CCDアレイ面上)で検出する機能を持つ周知の受光デバイスである。撮像センサ3は、例えば図示しないロボットのハンドに取り付けられ、該ロボットにより検査対象を撮像する撮像位置に移動され、該検査対象を撮像して得られた画像データをインタフェース20を介してCPU11に渡す。撮像センサ3は、例えばいずれかの位置に固定的に設置されており、ロボットがハンドで把持した検査対象を撮像センサ3で撮像可能な位置に移動させることで撮像センサ3が検査対象の画像データを撮像できるようにしても良い。撮像センサ3による検査対象の撮像に係る制御は、検査装置1がプログラムを実行することにより行うようにしても良いし、ロボットを制御するロボットコントローラや、他の装置からの制御により行うようにしても良い。
インタフェース17は、検査装置1を有線/無線のネットワーク7と接続するためのインタフェースである。ネットワーク7には、工場内に設置された工作機械に併設されたパソコン、セルコンピュータ、エッジコンピュータ、ホストコンピュータ等のコンピュータ5等が接続され、ネットワーク7を介した情報のやり取りを相互に行っている。
インタフェース23は、検査装置1と機械学習装置300を接続するインタフェースである。機械学習装置300は、機械学習装置300全体を統御するプロセッサ301と、システム・プログラム等を記憶したROM302、機械学習に係る各処理における一時的な記憶を行うためのRAM303、及び学習モデル等の記憶に用いられる不揮発性メモリ304が、バス305を介して接続されて構成される。機械学習装置300は、インタフェース23を介して検査装置1で取得可能な各情報を観測することができる。また、検査装置1は、機械学習装置300から出力される検査対象に関する検査結果の推定に基づいてその後の処理を行う。
図2は、一実施形態による検査装置1と機械学習装置300の概略的な機能ブロック図である。図2に示した各機能ブロックは、図1に示した検査装置1が備えるCPU11、及び機械学習装置300のプロセッサ301が、それぞれのシステム・プログラムを実行し、検査装置1及び機械学習装置300の各部の動作を制御することにより実現される。
本実施形態の検査装置1は、データ取得部100、前処理部110,学習モデル評価指標算出部120、検査指標取得部130、学習モデル選択部140を備え、検査装置1が備える機械学習装置300は、学習部310、推定部320を備えている。また、不揮発性メモリ14上には、機械学習装置300による学習及び推定に用いられるデータを記憶する学習データ記憶部200が設けられており、機械学習装置300の不揮発性メモリ304上には、学習部310による機械学習により構築された学習モデルを記憶する学習モデル記憶部330が設けられている。
データ取得部100は、撮像センサ3、入力装置71、及び他のコンピュータ5等から入力された各種データを取得する機能手段である。データ取得部100は、例えば、検査対象を撮像センサ3で撮像して得られた画像データ、該検査対象について作業者が目視で検査した結果を示すラベルデータ、他のコンピュータ5から取得した学習データ(検査対象の画像データと、該検査対象の検査結果のラベル)等の各種データを取得し、学習データ記憶部200に記憶する。データ取得部100は、図示しない外部記憶装置からデータを取得するようにしても良い。
前処理部110は、学習データ記憶部200に記憶された学習データに基づいて、機械学習装置300による学習に用いられる状態データSとラベルデータLの組である教師データTを作成する。前処理部110は、取得したデータを機械学習装置300において扱われる統一的な形式へと変換(数値化、正規化、サンプリング等)することにより状態データS及びラベルデータLを作成する。
前処理部110が作成する状態データSは、少なくとも検査対象を撮像して得られた検査対象画像データS1を含む。検査対象画像データS1は、例えば検査結果を撮像して得られた画像を構成する画素値の配列データを用いて良い。
また、前処理部110が作成するラベルデータLは、少なくとも検査対象の検査結果のラベルを含む検査結果データL1を含む。検査結果データL1は、例えば作業者が検査対象を目視で検査した結果を示すラベルであって良い。
学習部310は、前処理部110が作成した状態データS及び判定データLを用いた教師あり学習を行い、検査対象を撮像して得られた画像データに対する該検査対象の検査結果を学習した学習モデルを生成する(学習する)機能手段である。本実施形態の学習部310は、例えばニューラルネットワークを学習モデルとして用いた教師あり学習を行うように構成しても良い。この様に構成する場合、学習モデルとしては入力層、中間層、出力層の三層を備えたニューラルネットワークを用いても良いが、三層以上の層を為すニューラルネットワークを用いた、いわゆるディープラーニングの手法を用いることで、より効果的な学習及び推論を行うように構成することも可能である。学習部310が生成した学習モデルは、不揮発性メモリ304上に設けられた学習モデル記憶部330に記憶され、推定部320による検査対象の画像データに基づく検査結果の推定処理に用いられる。
推定部320は、前処理部110から入力された状態データSに基づいて、学習モデル記憶部330に記憶された学習モデルを用いた検査対象の画像データに基づく検査結果の推定を行う。推定部320では、学習部310による教師あり学習により生成された(パラメータが決定された)学習モデルに対して、前処理部110から入力された状態データS(検査対象画像データS1)を入力データとして入力することで検査対象の検査結果を推定(算出)する。推定部320が推定した検査対象の検査結果は、例えば表示装置70に表示出力したり、ネットワーク7を介してホストコンピュータやクラウドコンピュータ等に他のコンピュータ5へと送信出力したりして利用するようにしても良い。
学習モデル評価指標算出部120は、学習モデル記憶部330に記憶された学習モデルについて、学習モデルを評価するための学習モデル評価指標を算出する機能手段である。学習モデル評価指標算出部120は、例えば学習モデル記憶部330に記憶された学習モデルに対してROC(受信者動作特性:Receiver Operating Characteristic)解析を行い、学習モデル評価指標としてROC曲線を作成する。ROC曲線は、例えば図3に例示されるように、ある学習モデルで検査を行った際に、縦軸に真陽性率(陽性を正しく予測する確率)、横軸に偽陽性率(陰性を誤って陽性と予測する確率)を表し、検査対象を陽性と推定する学習モデルの出力値の閾値を変化させた際に描かれる曲線(図3の太実線)である。学習モデル評価指標算出部120は、学習データ記憶部200に記憶されている学習データの内で、学習モデルの学習に用いられていない学習データ(状態データS及び判定データL)を用いて、学習モデルの評価を行うようにしても良い。なお、本実施形態ではROC曲線を用いた例を示すが、本発明の検査装置1では、ROC曲線以外の学習モデル評価の指標を用いるようにしても良い。
学習モデル評価指標算出部120は、学習部310による学習が予め定めた所定回数毎に、学習モデルの評価を行うようにしても良く、また、評価を行った学習モデルについて、その評価結果と共に学習モデル記憶部330内でバックアップするようにしても良い。例えば、予め1000回の学習サイクル毎に学習モデルの評価を行うように設定している場合、学習モデル評価指標算出部120は、学習部310による学習が1000回行われた時の学習モデル、学習が2000回行われた時の学習モデル、3000回行われた時の学習モデル、…、について学習モデル評価指標の算出を行い、それぞれの時点での学習モデルと関連付けて、(継続して学習を行う学習モデルとは別に)学習モデル記憶部330に記憶する。
検査指標取得部130は、検査装置1による検査の現場において用いられる検査指標を取得する機能手段である。検査指標取得部130は、例えば入力装置71を介して作業者が入力した検査指標の値を取得するようにしても良いし、例えばネットワーク7を介して工場における生産計画に係る情報等が管理されているホストコンピュータ等のコンピュータ5から検査指標を取得するようにしても良い。検査指標取得部が取得する検査指標の例としては、例えば限界不良品出荷率や、限界再検査率等が挙げられる。
学習モデル選択部140は、複数の学習モデルについて、学習モデル評価指標算出部120が算出した学習モデル評価指標と、検査指標取得部130が取得した検査指標とに基づいて、それぞれの学習モデルの学習モデル評価指標と検査指標を比較可能に表示装置70に表示し、検査に用いる学習モデルを作業者に選択させる機能手段である。学習モデル選択部140は、予め設定されている指標値比較表示形式に基づいて、それぞれの学習モデルに関する学習モデル評価指標と検査指標とを比較可能に表示装置70に表示する。そして、学習モデル選択部140は、表示装置70に表示した学習モデルに関する学習モデル評価指標と検査指標を参考にして、作業者が入力装置71を介して選択した学習モデルを、検査に用いる学習モデルとして選択し、選択した学習モデルを学習モデル記憶部330に記憶すると共に、その選択結果を表示装置70に表示出力するようにしたり、ネットワーク7を介してホストコンピュータやクラウドコンピュータ等に他のコンピュータ5へと送信出力する。
学習モデル選択部140による表示処理について、学習モデル評価指標としてROC曲線を、検査指標として限界不良出荷率及び限界再検査率を用いる場合で説明する。ROC曲線に対して、限界不良品出荷率及び限界再検査率を満たす限界線をプロットしたものを図4に示す。図4において、太一点鎖線は限界不良品出荷率に基づいて以下に示す数1式で算出される値をグラフ上にプロットしたものであり、該太一点鎖線より上にある領域は、限界不良品出荷率が満足される領域を示している。なお、製造不良率については、予め過去の統計等に基づいて分かっているものとする。
Figure 0006795562
一方で、図4において、太破線は限界再検査率に基づいて以下に示す数2式で算出される値をグラフ上にプロットしたものであり、該太破線より左にある領域は、限界再検査率が満足される領域を示している。なお、製造不良率については、予め過去の統計に基づいて分かっているものとする。
Figure 0006795562
即ち、図中の網掛け領域にROC曲線が入る学習モデルであれば、その領域に入った部分に対応する閾値(検査対象を陽性、即ち不良品と推定する学習モデルの出力値の閾値)を設定して用いることで、検査指標に定められた要求仕様を満足する学習モデルとして利用することができる。
学習モデル選択部140は、予めROC曲線、限界不良出荷率、限界再検査率の各指標値を表示するグラフ形式のフォーマットが指標値比較表示形式が設定されている場合、それぞれの学習モデルについて、学習モデル評価指標としてのROC曲線と、検査指標としての限界不良出荷率、限界再検査率に基づいて数1式、数2式から算出される直線をグラフ形式に描画して表示装置70に表示する。この時、学習モデル選択部140は、複数の学習モデルに関するグラフを図5に例示されるように並べて表示するようにしても良い。
学習モデル選択部140は、更に、検査指標に定められた要求仕様を満足する状態で学習モデルを利用する条件を、学習モデル評価指標と検査指標との比較表示に併せて表示するようにしても良い。例えば、上記した例では、検査指標に定められた要求仕様を満足すると判定された学習モデルを利用する際には、ROC曲線が図5の網掛け領域に入る部分に対応する閾値(検査対象を陽性、即ち不良品と推定する学習モデルの出力値の閾値)を設定して利用する必要がある。学習モデル選択部140は、図6に例示されるように、この閾値の範囲を学習モデル評価指標と検査指標との比較表示に併せて表示する表示装置70へと表示出力するようにしても良い。この閾値の範囲は、ROC曲線が太一点鎖線と交差する点に対応する閾値が上限値となり、ROC曲線が太破線と交差する点に対応する閾値が下限値となる。通常、ROC曲線は右上がりの線となるので、上限値に近いほど再検査率が低く、下限値に近いほど不良品出荷率が低くなるので、その旨も合わせて出力するようにしても良い。
上記構成を備えた検査装置1では、学習モデルの評価を、検査指標に定められた要求仕様に基づいて判定することができるようになるため、機械学習装置300の学習の過程において、機械学習に関する知識を持たない現場の作業者であっても、現在設定されている検査指標に定められた要求仕様を満足するような学習が行われたか否かを容易に判断することができるようになり、適切な学習モデルを容易に選択できるようになる。
以上、本発明の実施の形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
例えば、上記した実施形態では、外観検査による出荷可否判断の例を用いて検査装置1の説明をしているが、検査装置1は他の検査に対しても適宜適用することができ、例えば、工作機械での加工可能性を判断するための検査等にも適用することができる。この様な場合、検査装置は、対象とする機械の工作時における温度や振動、音等に基づいて工作機械の故障の度合いを示すスコア(スコアが低ければ工作機械の動作が良好、スコアが高ければ故障乃至故障に近い状態)を出力するものとして構成できる。この時、検査装置1が作成するROC曲線図の縦軸として不良機械正解率、横軸として良好可動機械不正解率を設定し、また、検査装置1が扱う検査指標としては、例えば異常なしと判断され加工に使用される工作機械群に含まれることが実用上許容され得る不良機械の率を表す限界不良加工率と、異常ありと判断されメンテナンスに回される工作機械の率を表す限界メンテナンス率を用いるようにすれば良い。このように各パラメータを設定することで、上記した実施形態で示したのと同様に、工作機械が故障しているかを診断する場面において用いる適切な学習モデルを容易に選択できるようになる。
1 検査装置
3 撮像センサ
5 コンピュータ
7 ネットワーク
11 CPU
12 ROM
13 RAM
14 不揮発性メモリ
17,18,19,20 インタフェース
22 バス
23 インタフェース
70 表示装置
71 入力装置
100 データ取得部
110 前処理部
120 学習モデル評価指標算出部
130 検査指標取得部
140 学習モデル選択部
200 学習データ記憶部
300 機械学習装置
301 プロセッサ
302 ROM
303 RAM
304 不揮発性メモリ
305 バス
310 学習部
320 推定部
330 学習モデル記憶部

Claims (5)

  1. 検査対象の検査を行う検査装置において、
    検査対象から取得された状態データと、該検査対象に係る検査結果を示すラベルデータとに基づいて機械学習を行うことで学習モデルを生成する機械学習装置と、
    前記機械学習装置が生成した学習モデルに関する、学習モデルの評価に用いられる評価指標である学習モデル評価指標を算出する学習モデル評価指標算出部と、
    前記検査において用いられる検査指標を取得する検査指標取得部と、
    前記機械学習装置が生成した学習モデルについて、前記学習モデル評価指標と、前記検査指標とを比較可能に表示し、作業者による学習モデルの選択を受け付け、該選択の結果を出力する学習モデル選択部と、
    を備えた検査装置。
  2. 前記学習モデル評価指標は、前記機械学習装置が生成した学習モデルのROC曲線であり、前記検査指標は、出荷される検査対象に含まれることが許容される不良品の率を表す限界不良品出荷率、検査対象の総数における検査ではじいた検査対象の率を表す限界再検査率である、
    請求項1に記載の検査装置。
  3. 前記学習モデル評価指標は、前記機械学習装置が生成した学習モデルのROC曲線であり、前記検査指標は、異常なしと判断され加工に使用される工作機械群に含まれることが許容されうる不良機械の率を表す限界不良加工率、異常ありと判断されメンテナンスに回される工作機械の率を表す限界メンテナンス率である、
    請求項1に記載の検査装置。
  4. 前記学習モデル選択部は、前記学習モデルが前記検査指標を満足する条件を算出し、算出した前記学習モデルが前記検査指標を満足する条件を出力する、
    請求項1〜3のいずれか1つに記載の検査装置。
  5. 検査対象から取得された状態データと、該検査対象に係る検査結果を示すラベルデータとに基づいて機械学習を行うことで学習モデルを生成する第1ステップと、
    前記第1ステップで生成された学習モデルに関する、学習モデルの評価に用いられる評価指標である学習モデル評価指標を算出する第2ステップと、
    検査において用いられる検査指標を取得する第3ステップと、
    前記第1ステップで生成された学習モデルについて、前記学習モデル評価指標と、前記検査指標とを比較可能に表示し、作業者による学習モデルの選択を受け付け、該選択の結果を出力する第4ステップと、
    を備えた機械学習方法。
JP2018170913A 2018-09-12 2018-09-12 検査装置及び機械学習方法 Active JP6795562B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018170913A JP6795562B2 (ja) 2018-09-12 2018-09-12 検査装置及び機械学習方法
DE102019123800.5A DE102019123800A1 (de) 2018-09-12 2019-09-05 Prüfgerät und Maschinenlernverfahren
US16/566,881 US11521120B2 (en) 2018-09-12 2019-09-11 Inspection apparatus and machine learning method
CN201910863635.7A CN110895716B (zh) 2018-09-12 2019-09-12 检查装置以及机器学习方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018170913A JP6795562B2 (ja) 2018-09-12 2018-09-12 検査装置及び機械学習方法

Publications (2)

Publication Number Publication Date
JP2020042669A JP2020042669A (ja) 2020-03-19
JP6795562B2 true JP6795562B2 (ja) 2020-12-02

Family

ID=69621658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018170913A Active JP6795562B2 (ja) 2018-09-12 2018-09-12 検査装置及び機械学習方法

Country Status (4)

Country Link
US (1) US11521120B2 (ja)
JP (1) JP6795562B2 (ja)
CN (1) CN110895716B (ja)
DE (1) DE102019123800A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748344B (zh) * 2020-02-14 2021-12-01 聚積科技股份有限公司 發光二極體調屏標準判定模型建立方法
US11604456B2 (en) * 2020-03-11 2023-03-14 Ford Global Technologies, Llc System for monitoring machining processes of a computer numerical control machine
CN111929311B (zh) * 2020-10-15 2021-01-05 北京中鼎高科自动化技术有限公司 一种一站式智能缺陷检测系统
WO2023074184A1 (ja) 2021-10-28 2023-05-04 パナソニックIpマネジメント株式会社 アノテーション支援システム及びそれを利用した外観検査用モデルの学習支援システム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580226A (en) * 1984-04-06 1986-04-01 Sanford H. Robbins Random sampling system
JP3334807B2 (ja) * 1991-07-25 2002-10-15 株式会社日立製作所 ニュ−ラルネットを利用したパタ−ン分類方法および装置
JP3478370B2 (ja) * 1997-06-17 2003-12-15 株式会社東京精密 自動定寸装置
US6539106B1 (en) * 1999-01-08 2003-03-25 Applied Materials, Inc. Feature-based defect detection
JP3759881B2 (ja) * 2001-03-08 2006-03-29 株式会社山武 加工診断監視システム
JP4227863B2 (ja) 2003-08-04 2009-02-18 株式会社デンソー 視覚検査装置の教示装置及び教示方法
TWI239470B (en) * 2004-07-12 2005-09-11 Quanta Comp Inc Production information managing system and method
JP2006293820A (ja) * 2005-04-13 2006-10-26 Sharp Corp 外観検査装置、外観検査方法およびコンピュータを外観検査装置として機能させるためのプログラム
JP5050607B2 (ja) 2006-05-09 2012-10-17 オムロン株式会社 検査装置、検査方法、検査プログラムおよびそれを記録したコンピュータ読み取り可能な記録媒体
JP5063632B2 (ja) * 2009-03-10 2012-10-31 株式会社豊田中央研究所 学習モデル生成装置、対象物検出システム、及びプログラム
JP5168215B2 (ja) * 2009-04-10 2013-03-21 株式会社デンソー 外観検査装置
US20110182495A1 (en) * 2010-01-26 2011-07-28 General Electric Company System and method for automatic defect recognition of an inspection image
JP2013015964A (ja) * 2011-07-01 2013-01-24 Ricoh Co Ltd 合格率推定装置、合格率推定方法、プログラム
JP5874398B2 (ja) 2012-01-05 2016-03-02 オムロン株式会社 画像検査装置の検査領域設定方法
US9053390B2 (en) * 2012-08-14 2015-06-09 Kla-Tencor Corporation Automated inspection scenario generation
JP6003783B2 (ja) * 2013-04-11 2016-10-05 トヨタ自動車株式会社 製品の品質検査方法
JP6246513B2 (ja) 2013-07-16 2017-12-13 株式会社キーエンス 三次元画像処理装置、三次元画像処理方法及び三次元画像処理プログラム並びにコンピュータで読み取り可能な記録媒体及び記録した機器
JP6169655B2 (ja) * 2015-07-30 2017-07-26 ファナック株式会社 工作機械、シミュレーション装置、及び機械学習器
JP2017049974A (ja) 2015-09-04 2017-03-09 キヤノン株式会社 識別器生成装置、良否判定方法、およびプログラム
JP6219897B2 (ja) * 2015-09-28 2017-10-25 ファナック株式会社 最適な加減速を生成する工作機械
US10452949B2 (en) * 2015-11-12 2019-10-22 Cognex Corporation System and method for scoring clutter for use in 3D point cloud matching in a vision system
JP6684777B2 (ja) * 2017-12-20 2020-04-22 株式会社日立製作所 製造物良・不良判定システムおよび製造物良・不良判定方法
KR102512173B1 (ko) * 2018-01-03 2023-03-21 주식회사 디엔솔루션즈 공작기계의 공구이상 검출장치 및 검출방법
CN112262017B (zh) * 2018-06-15 2022-12-13 三菱电机株式会社 工作机械的加工尺寸预测装置、系统及方法、工作机械的设备异常判定装置及记录介质
JP6680430B1 (ja) * 2018-10-04 2020-04-15 山本 隆義 生産ラインにおける品質と設備の統合的監視方法

Also Published As

Publication number Publication date
US20200082297A1 (en) 2020-03-12
CN110895716B (zh) 2024-10-29
CN110895716A (zh) 2020-03-20
JP2020042669A (ja) 2020-03-19
US11521120B2 (en) 2022-12-06
DE102019123800A1 (de) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6795562B2 (ja) 検査装置及び機械学習方法
JP6823025B2 (ja) 検査装置及び機械学習方法
JP6530779B2 (ja) 加工不良要因推定装置
JP6560707B2 (ja) 加工面品位評価装置
JP6453805B2 (ja) 製品の異常に関連する変数の判定値を設定する生産システム
JP7455765B2 (ja) 産業プロセスの品質監視
KR20190075707A (ko) 딥러닝을 이용한 양품 선별 방법
US20210394247A1 (en) Method and system for forming a stamped component using a stamping simulation model
CN117309065B (zh) 一种基于无人机的换流站远程监控方法及系统
CN111831703A (zh) 显示方法、用户接口部、显示装置以及检查装置
US11676055B2 (en) System for detecting data drift in machine-learning process monitoring
JP2020052596A (ja) 品質予測装置、品質予測方法、及び品質予測プログラム
US20200082281A1 (en) Verification device
CN113554645A (zh) 基于wgan的工业异常检测方法和装置
JP7181257B2 (ja) 原因分析システムおよび方法
KR20150116087A (ko) 진동 회피 가능한 비전 검사 시스템
JP7229338B2 (ja) 検査装置及び検査方法
CN113222449A (zh) 标准化作业有效执行度评估方法及装置
US20220074874A1 (en) Computer-implemented method for analysing measurement data from a measurement of an object
JP2021086219A (ja) 協調作業システム、解析収集装置および解析プログラム
WO2023139750A1 (ja) データセット作成装置及びコンピュータ読み取り可能な記録媒体
WO2024070189A1 (ja) 要因分析装置及び要因分析方法
CN118154539A (zh) 一种孔探缺陷检测方法、设备及存储介质
EP4361743A1 (en) Computer implemented method of operating a tooling machine and tooling machine
JP2023084761A (ja) 分析システム、分析方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200521

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6795562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150