[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6791726B2 - Processing method - Google Patents

Processing method Download PDF

Info

Publication number
JP6791726B2
JP6791726B2 JP2016220006A JP2016220006A JP6791726B2 JP 6791726 B2 JP6791726 B2 JP 6791726B2 JP 2016220006 A JP2016220006 A JP 2016220006A JP 2016220006 A JP2016220006 A JP 2016220006A JP 6791726 B2 JP6791726 B2 JP 6791726B2
Authority
JP
Japan
Prior art keywords
sieve
residue
sorting
axial direction
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220006A
Other languages
Japanese (ja)
Other versions
JP2018075543A (en
Inventor
勝志 青木
勝志 青木
英俊 笹岡
英俊 笹岡
拓也 横田
拓也 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016220006A priority Critical patent/JP6791726B2/en
Publication of JP2018075543A publication Critical patent/JP2018075543A/en
Application granted granted Critical
Publication of JP6791726B2 publication Critical patent/JP6791726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、処理方法に関する。 The present invention relates to a processing method.

近年においては、一般家庭ごみの焼却灰に対して、乾燥、磁力選別、篩分け、粉砕、渦電流選別等の処理を行い、処理後の焼却灰中からセメント原料や鉄成分などを除き、ローラーミルで粉砕、分級して得られた残渣から、銅、亜鉛、金、銀、パラジウム、白金などの有価金属を回収する技術が提案されている(例えば、特許文献1等参照)。 In recent years, incineration ash of general household waste has been subjected to treatments such as drying, magnetic force sorting, sieving, crushing, and eddy current sorting, and the incineration ash after treatment has been removed from the incineration ash to remove cement raw materials and iron components. A technique for recovering valuable metals such as copper, zinc, gold, silver, palladium, and platinum from the residue obtained by pulverizing and classifying with a mill has been proposed (see, for example, Patent Document 1 and the like).

また、特許文献2には、廃リチウムイオン二次電池からの有価物の回収方法として、エアーテーブルを用いた方法が開示されている。リチウムイオン二次電池は、リチウム(Li)、コバルト(Co)、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)など、含有物が同定されているため、比較的容易に有価物の選別を行うことができる。 Further, Patent Document 2 discloses a method using an air table as a method for recovering valuable resources from a waste lithium ion secondary battery. Lithium-ion secondary batteries have identified inclusions such as lithium (Li), cobalt (Co), nickel (Ni), aluminum (Al), and copper (Cu), so valuable resources can be sorted relatively easily. It can be performed.

また、特許文献3には、廃家電製品の破砕物に対して、篩選別し、篩上を磁力選別して、非磁着物を渦電流選別で金属物と非金属物に選別し、該金属物と非金属物をそれぞれ色彩選別して有価金属を含有する実装基板屑を選別し、さらに、該実装基板屑から有価金属を含有する実装部品を部品剥離装置(パーツセパレーター)を用いて分別し、該実装部品を3種類に分級して比重選別し、該実装部品から有価金属を回収する方法が開示されている。この特許文献3では、比重選別機について、乾式比重選別機(エアーテーブル)、ジグ選別機、湿式薄流選別機、遠心分離機が開示されている。また、エアーテーブルについては一方向傾斜の一軸式と呼ばれる比重選別を実施可能なエアーテーブルが開示されている。比重選別では、風力により浮き上がる軽産物は、テーブルの振動が伝わりにくく、傾斜に沿って下方へ移動するが、風力による浮き上がりがない重産物は、振動によって上方へ移動するため、軽産物と重産物を選別することができる。 Further, in Patent Document 3, crushed products of waste home appliances are screened, magnetically sorted on the sieve, and non-magnetic particles are sorted into metal and non-metal by eddy current sorting, and the metal is described. Material and non-metal materials are color-sorted to select mounting board scraps containing valuable metals, and mounting parts containing valuable metals are further separated from the mounting board scraps using a parts peeling device (part separator). Disclosed is a method of classifying the mounted component into three types, sorting by specific gravity, and recovering valuable metal from the mounted component. In Patent Document 3, a dry specific gravity sorter (air table), a jig sorter, a wet thin flow sorter, and a centrifuge are disclosed as specific gravity sorters. Further, as for the air table, an air table capable of performing specific gravity sorting called a uniaxial type with a unidirectional inclination is disclosed. In specific gravity sorting, light products that float due to wind power are difficult to transmit the vibration of the table and move downward along the slope, but heavy products that do not float due to wind power move upward due to vibration, so light products and heavy products Can be sorted.

さらに、特許文献4には、廃家電製品を破砕し、特に、被覆銅線とプラスチックの選別に、二軸式のエアーテーブルを用いた選別処理が開示されており、比重の近い被覆銅線とプラスチックを精度よく選別できることが記載されている。 Further, Patent Document 4 discloses a sorting process using a biaxial air table for crushing waste household appliances and particularly for sorting coated copper wire and plastic, and the coated copper wire having a similar specific gravity. It is stated that plastics can be sorted accurately.

特開2016−89196号公報Japanese Unexamined Patent Publication No. 2016-89196 特開2015−170480号公報JP-A-2015-170480 特開2013−685号公報Japanese Unexamined Patent Publication No. 2013-685 特開2003−320311号公報Japanese Unexamined Patent Publication No. 2003-320311

特許文献2のように、廃リチウムイオン二次電池のような、ある特定の材料から構成された残渣を、エアーテーブルを用いて選別する場合には、選別の対象となる元素が予め判明しており、特に、アルミニウムを溶解して溶融塊の形状とし、銅を銅箔の形状で維持できる処理温度で加熱処理して、アルミニウムを重産物とし、銅箔を軽産物として篩別している。このため、エアー(風力)による形状選別の効果が大きくなり、比重選別の効果が小さくなる傾向がある。 When sorting a residue composed of a specific material such as a waste lithium ion secondary battery as in Patent Document 2 using an air table, the element to be sorted is known in advance. In particular, aluminum is melted to form a molten mass, and copper is heat-treated at a treatment temperature that can maintain the shape of copper foil, and aluminum is used as a heavy product and copper foil is used as a light product. Therefore, the effect of shape selection by air (wind power) tends to be large, and the effect of specific gravity selection tends to be small.

特許文献3の場合には、廃家電製品の破砕物を種々の選別工程を経て、6mm以上の実装部品に分級した破砕物に対して、一軸式のエアーテーブルによる選別を行っており、重産物にはTa,W、Nd、Nb、Bi、Ni、Au、Pd等の重金属、軽産物にはプラスチックが選別されている。このように特許文献3の選別方法は、比重差の大きい場合に有効である。 In the case of Patent Document 3, the crushed material of waste home appliances is sorted into mounting parts of 6 mm or more through various sorting processes, and the crushed material is sorted by a uniaxial air table, which is a heavy product. Heavy metals such as Ta, W, Nd, Nb, Bi, Ni, Au, and Pd are selected for light products, and plastics are selected for light products. As described above, the sorting method of Patent Document 3 is effective when the difference in specific gravity is large.

特許文献4の場合、線状の被覆銅線と平たい形状のプラスチックの選別に対して、二軸式のエアーテーブルが使用されており、振動篩による比重選別性および風力による形状選別性を利用して、被覆銅線とプラスチックを選別できるとされているが、平たい形状を有するプラスチックに限定して選別性が有効であって、細かく破砕された破砕物や、整粒されたものを選別するには適していないことが記載されている。 In the case of Patent Document 4, a biaxial air table is used for sorting a linear coated copper wire and a flat-shaped plastic, and the specific gravity sortability by a vibrating sieve and the shape sortability by a wind force are utilized. It is said that coated copper wire and plastic can be sorted, but the sortability is effective only for plastics with a flat shape, and it is suitable for sorting finely crushed crushed products and sized ones. Is stated to be unsuitable.

一方、本発明のように、一般家庭ごみの焼却灰を選別処理する場合、焼却灰の形状そのものが多種多様であり、また、焼却灰残渣の含有成分も予め同定されていない。このため、残渣をエアーテーブルにそのまま投入するだけでは、様々な元素、粒径、形状を有する破砕物を選別することは難しく、さらには、複数の元素からなる破砕物同士が絡み合いやすいことからも、特定の金属を効率的に選別することは難しい。 On the other hand, when the incineration ash of general household waste is sorted and processed as in the present invention, the shape of the incineration ash itself is diverse, and the components contained in the incineration ash residue have not been identified in advance. For this reason, it is difficult to select crushed products having various elements, particle sizes, and shapes simply by putting the residue on the air table as it is, and further, crushed products composed of a plurality of elements are easily entangled with each other. , It is difficult to efficiently select a specific metal.

本発明は、上記の課題に鑑みてなされたものであり、一般家庭ごみの焼却灰からセメント原料を除いた残渣からアルミニウムを効率的に取り除くことが可能な処理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a treatment method capable of efficiently removing aluminum from a residue obtained by removing a cement raw material from incineration ash of general household waste. ..

本発明の処理方法は、一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目が8〜12mmの篩で篩分ける篩分け工程と、前記篩目が8〜12mmの篩の篩下の残渣を篩目が3〜5mmの篩で更に篩分け、前記篩目が3〜5mmの篩の篩上の残渣と篩下の残渣のそれぞれを、表面からエアーを発生し往復振動するエアーテーブルを用いて比重選別と形状選別を行うことで、アルミニウムとその他に分離する分離工程と、を含み、前記篩目が3〜5mmの篩の篩上の残渣に対する比重選別と形状選別は、前記篩下の残渣に対する比重選別と形状選別よりもエアーの風速が大きい条件で実行される、処理方法である。 The treatment method of the present invention includes a sieving step of sieving the residue obtained by removing the cement raw material from the incineration ash of general household waste with a sieve having a sieve mesh of 8 to 12 mm, and sieving under a sieve having a sieve mesh of 8 to 12 mm. The residue is further sieved with a sieve having a sieve size of 3 to 5 mm, and each of the residue on the sieve and the residue under the sieve having a sieve mesh of 3 to 5 mm is generated from the surface to generate air and vibrate reciprocally. by performing the gravity separation and shape selected using, seen including a separation step of separating the aluminum and other, a gravity separation and shape sorting the sieve mesh is for residue on a sieve of sieve 3~5mm, the This is a treatment method that is carried out under conditions where the air velocity is higher than that of specific gravity sorting and shape sorting for the residue under the sieve.

本発明の処理方法は、一般家庭ごみの焼却灰からセメント原料を除いた残渣からアルミニウムを効率的に取り除くことができるという効果を奏する。 The treatment method of the present invention has an effect that aluminum can be efficiently removed from the residue obtained by removing the cement raw material from the incineration ash of general household waste.

一実施形態に係る処理方法を示す工程図であるIt is a process drawing which shows the processing method which concerns on one Embodiment. エアーテーブルを示す斜視図である。It is a perspective view which shows the air table. 図3(a)は、エアーテーブル処理前後の組成(篩目10mmで篩別した篩下を篩目3mmで篩別した篩上;粒径3〜10mm程度)を示す表であり、図3(b)は、エアーテーブル処理前後の組成(篩目3mmで篩別した篩下;粒径0〜3mm程度)を示す表である。FIG. 3A is a table showing the composition before and after the air table treatment (under the sieve sieved with a sieve mesh of 10 mm and above the sieve sieved with a sieve mesh of 3 mm; particle size of about 3 to 10 mm). b) is a table showing the composition before and after the air table treatment (under a sieve separated by a sieve mesh of 3 mm; particle size of about 0 to 3 mm). エアーテーブルによる軽比物のアルミニウムと重比物である有価金属類を篩別するにあたり、粒径3〜10mm程度の残渣の処理条件を、粒径0〜3mm程度の残渣の処理条件と比較した場合の、好適な「エアー風速」「振動数」「傾斜角度」の条件の相関を示す表である。In sieving the light weight aluminum and the heavy weight metal using an air table, the treatment conditions for the residue having a particle size of about 3 to 10 mm were compared with the treatment conditions for the residue having a particle size of about 0 to 3 mm. It is a table which shows the correlation of the conditions of suitable "air wind speed" "frequency" "tilt angle" in the case.

以下、一実施形態について、図1〜図4に基づいて、詳細に説明する。図1は、一実施形態に係る処理方法を示す工程図である。 Hereinafter, one embodiment will be described in detail with reference to FIGS. 1 to 4. FIG. 1 is a process diagram showing a processing method according to an embodiment.

本実施形態では、一般家庭ごみの焼却灰に対して、乾燥、磁力選別、篩分け、粉砕、渦電流選別等の処理を行い、焼却灰中の鉄成分やアルミニウム成分、セメント原料となる成分の大部分を除き、ローラーミルで粉砕、分級して得られた残渣を処理する。この処理により、残渣に含まれる、銅、金、銀、パラジウム、白金などの有価金属を回収する。 In the present embodiment, the incinerated ash of general household waste is subjected to processing such as drying, magnetic force sorting, sieving, crushing, and eddy current sorting, and the iron component, aluminum component, and cement raw material component in the incinerated ash are added. Except for most, the residue obtained by grinding and classifying with a roller mill is treated. By this treatment, valuable metals such as copper, gold, silver, palladium, and platinum contained in the residue are recovered.

残渣は、図1に示すように、まず、3種類の篩を用いて篩別する。ここで、3種類の篩には、篩目の直径が14〜18mm(本実施形態では16mm)の篩と、篩目の直径が8〜12mm(本実施形態では10mm)の篩と、篩目の直径が3〜5mm(本実施形態では3mm)の篩と、が含まれる。これら3種類の篩を用いて残渣を篩別することで、図1に示すように、篩目16mmで篩別した篩上;粒径16mm以上、篩目16mmで篩別した篩下を篩目10mmで篩別した篩上;粒径10〜16mm程度、篩目10mmで篩別した篩下を篩目3mmで篩別した篩上;粒径3〜10mm程度、篩目3mmで篩別した篩下;粒径0〜3mm程度の4種類に分けることができる。なお、本発明において、粒径の記載に「程度」という表記を付しているのは、それぞれの篩目サイズで篩別した場合の篩上、篩下に存在する残渣の粒径サイズを意味する。さらに、「粒径0〜3mm程度」との表記に関して、実際には、0mmサイズの残渣は存在することはないが、0mmより大きく3mm程度までのサイズの篩下の残渣の粒径の範囲を、記載の便宜上、「粒径0〜3mm程度」と表記するものとする。 As shown in FIG. 1, the residue is first sieved using three types of sieves. Here, the three types of sieves include a sieve having a sieve mesh diameter of 14 to 18 mm (16 mm in the present embodiment), a sieve having a sieve mesh diameter of 8 to 12 mm (10 mm in the present embodiment), and a sieve mesh. Includes a sieve having a diameter of 3-5 mm (3 mm in this embodiment). By sieving the residue using these three types of sieves, as shown in FIG. 1, on the sieve sieved with a sieve mesh of 16 mm; sieve under the sieve sieved with a sieve size of 16 mm or more and a sieve mesh of 16 mm. On a sieve separated by 10 mm; on a sieve sieved by a sieve mesh of about 10 to 16 mm and a sieve mesh of 10 mm; on a sieve sieved by a sieve mesh of 3 mm; a sieve sieved by a sieve particle of about 3 to 10 mm and a sieve mesh of 3 mm. Bottom: It can be divided into four types with a particle size of about 0 to 3 mm. In the present invention, the notation "degree" in the description of the particle size means the particle size of the residue existing on and under the sieve when sieved according to each mesh size. To do. Further, regarding the notation of "particle size of about 0 to 3 mm", in reality, there is no residue of 0 mm size, but the range of the particle size of the residue under the sieve having a size larger than 0 mm and up to about 3 mm is defined. , For convenience of description, it shall be expressed as "particle size 0 to 3 mm".

なお、篩目の直径が16mmの篩を用いるのは、粒径が16mm以上の残渣であれば、ステンレス鋼(例えば、線屑、スプーン等)等の分離性を向上できるためである。また、篩目の直径が10mmの篩を用いるのは、後述する比重選別と形状選別機能を有するエアーテーブルにおける処理可能粒径の上限が10mm程度だからである。さらに、篩目の直径が3mmの篩を用いるのは、比重選別と形状選別(エアーテーブル)の処理条件として、3〜10mmと0〜3mmに分けて、異なる処理条件で処理することが好ましいためであり、残渣中において有価金属が粒径0〜3mm程度に濃縮していること等の理由からである。 The reason why a sieve having a mesh diameter of 16 mm is used is that if the residue has a particle size of 16 mm or more, the separability of stainless steel (for example, wire scraps, spoons, etc.) can be improved. Further, the reason why a sieve having a mesh diameter of 10 mm is used is that the upper limit of the processable particle size in an air table having a specific gravity sorting and shape sorting functions described later is about 10 mm. Further, the reason why a sieve having a mesh diameter of 3 mm is used is that it is preferable to divide the sieve into 3 to 10 mm and 0 to 3 mm and treat them under different treatment conditions as the treatment conditions for specific gravity sorting and shape sorting (air table). This is because the valuable metal is concentrated in the residue to a particle size of about 0 to 3 mm.

次に、粒径ごとの残渣の処理方法について図1に基づいて説明する。 Next, a method for treating the residue for each particle size will be described with reference to FIG.

(粒径が16mm以上の残渣の処理について)
粒径が16mm以上の残渣(篩目の直径が16mmの篩を用いた篩分けにおいて得られた篩上)については、図1に示すように、ピッキング処理を実行する。この場合、例えば、手選別により、外観形状が特定形状の物体、例えば線屑やスプーンなどのステンレス鋼や塊状の焼却灰を選別し、除外する。なお、手選別に限らず、色彩選別を行うこととしてもよい。色彩選別は、残渣をカメラで撮影し、色や形状などを基準にピッキング対象物を自動的に特定し、特定したピッキング対象物をヘラや空気圧を高めた圧力波等により選別する方法である。なお、残渣から選別されたステンレス鋼や塊状の焼却灰は、鉄屑として外販される。一方、ステンレス鋼や塊状の焼却灰が選別除去された残渣(アルミニウムやその他の金属を含む)に対しては、粒径が10〜16mm程度の残渣と同様の処理が実行される。
(Regarding the treatment of residues with a particle size of 16 mm or more)
For the residue having a particle size of 16 mm or more (on the sieve obtained by sieving using a sieve having a mesh diameter of 16 mm), a picking process is performed as shown in FIG. In this case, for example, by hand sorting, objects having a specific external shape, such as stainless steel such as wire chips and spoons, and incinerated ash in the form of lumps are sorted and excluded. In addition, not only manual selection but also color selection may be performed. The color selection is a method in which the residue is photographed with a camera, the picking object is automatically identified based on the color and shape, and the identified picking object is selected by a spatula, a pressure wave with increased air pressure, or the like. Stainless steel and incinerated ash sorted from the residue are sold outside as iron scrap. On the other hand, the residue (including aluminum and other metals) from which stainless steel and ingot incineration ash have been sorted and removed is subjected to the same treatment as the residue having a particle size of about 10 to 16 mm.

(粒径が10〜16mm程度の残渣の処理について)
粒径が10〜16mm程度の残渣(篩目の直径が10mmの篩を用いた篩分けにおいて得られた篩上)については、直接、溶融炉に投入する。この場合、アルミニウムを溶融処理して、スラグ化処理して系外に除去することができる。溶融に用いる炉は、特定しないが、残渣を溶融して、メタルとスラグを形成させ、分離処理できる溶融炉が望ましい。具体的には、直接、粗銅(ブラックカッパー等)を製錬する炉、例えば、傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉等の溶融炉があげられる。
(Regarding the treatment of residues with a particle size of about 10 to 16 mm)
Residues having a particle size of about 10 to 16 mm (on the sieve obtained by sieving using a sieve having a mesh diameter of 10 mm) are directly put into a melting furnace. In this case, the aluminum can be melted and slagged to be removed from the system. The furnace used for melting is not specified, but a melting furnace capable of melting the residue to form metal and slag and separating them is desirable. Specifically, a furnace that directly smelts blister copper (black copper, etc.), for example, a melting furnace such as a tilting reflection furnace, a shaft furnace with a hearth, an oval furnace, a drum furnace, and an upper blowing type converter. can give.

なお、アルミニウムの含有量(処理量)が多い場合には、アルミニウム含有スラグの処理量が多くなり、溶融炉の操業の負荷が大きくなる。この場合、粒径が10〜16mm程度の残渣の前処理として、アルミニウムとその他の粉砕物とを選別できる公知の処理を行うことができる。例えば、前処理としては、比重選別、形状選別、渦電流選別、ソーター選別(光学、電磁誘導、透過X線、蛍光X線等)、乾式溶解、湿式溶解、外観による手選別などの公知の処理を採用することができる。 When the aluminum content (processing amount) is large, the processing amount of the aluminum-containing slag is large, and the operation load of the melting furnace becomes large. In this case, as a pretreatment for the residue having a particle size of about 10 to 16 mm, a known treatment capable of selecting aluminum and other pulverized products can be performed. For example, as pretreatment, known treatments such as specific gravity sorting, shape sorting, eddy current sorting, sorter sorting (optical, electromagnetic induction, transmitted X-ray, fluorescent X-ray, etc.), dry melting, wet melting, and manual sorting by appearance are performed. Can be adopted.

(粒径が3〜10mm程度の残渣の処理について)
粒径が3〜10mm程度の残渣(篩目の直径が3mmの篩を用いた篩分けにおいて得られた篩上)については、エアーテーブルを用いて比重選別と形状選別とを組み合わせて行い、好ましくは、同時に行うものである。なお、本実施形態において、エアーテーブルとは、乾式比重選別機の一種であり、振動とエアーによる浮力とテーブルの傾斜によって、比重選別と形状選別の機能を用いて、比重の小さい軽産物と比重の大きい重産物を選別する装置をいう。
(Regarding the treatment of residues with a particle size of about 3 to 10 mm)
For the residue having a particle size of about 3 to 10 mm (on the sieve obtained by sieving using a sieve having a mesh diameter of 3 mm), a combination of specific gravity sorting and shape sorting is preferably performed using an air table. Are to be done at the same time. In the present embodiment, the air table is a kind of dry specific gravity sorter, and by using the functions of specific gravity sorting and shape sorting by the buoyancy due to vibration and air and the inclination of the table, a light product having a small specific gravity and a specific gravity are used. A device that sorts large heavy products.

図2には、本実施形態で用いるエアーテーブル10が斜視図にて示されている。 FIG. 2 shows a perspective view of the air table 10 used in the present embodiment.

エアーテーブル10は、テーブル12を有し、テーブル12の上面には矢印Cで示すように残渣が投入される。テーブル12は、表面内の第1軸方向(図2のY軸方向)と、表面内で第1軸方向(Y軸方向)に直交する第2軸方向(X軸方向)とが、水平面に対して傾斜するように配置されている。なお、X軸方向と水平面との間の角度はθであり、Y軸方向と水平面との間の角度はψであるものとする。 The air table 10 has a table 12, and a residue is charged onto the upper surface of the table 12 as shown by an arrow C. In the table 12, the first axial direction in the surface (Y-axis direction in FIG. 2) and the second axial direction (X-axis direction) orthogonal to the first axial direction (Y-axis direction) in the surface are horizontal planes. It is arranged so as to incline with respect to it. It is assumed that the angle between the X-axis direction and the horizontal plane is θ, and the angle between the Y-axis direction and the horizontal plane is ψ.

また、テーブル12の表面には吹き出し孔が所定間隔で複数形成されており、吹き出し孔からは、鉛直方向上側に向けてエアーが吹き出され、空気流が形成されている。更に、テーブル12は、不図示の駆動装置により、両矢印方向(X軸方向)に往復振動されるようになっている。 Further, a plurality of blowout holes are formed on the surface of the table 12 at predetermined intervals, and air is blown out from the blowout holes toward the upper side in the vertical direction to form an air flow. Further, the table 12 is reciprocally vibrated in the direction of the double-headed arrow (X-axis direction) by a driving device (not shown).

エアーテーブル10では、矢印Cで示すように、Y軸方向の一端部(高さが高い側の端部)から残渣が投入されることで、空気流と往復振動により、比重選別と形状選別が実行される。すなわち、一般的には、重量物は、空気流の影響を受けにくく、振動運動により運搬されるため、図2の矢印Aで示す位置に落下する。これに対し、軽量物は、空気流の影響を受けて浮遊するため、テーブル12の表面の摩擦が少なくなり、テーブル12の傾斜に沿って移動しながら、振動運動により運搬されるため、図2の矢印Bで示す位置に落下する。また、テーブル12上に厚さがあるものや球状のものなど、空気流の影響を受けにくいものが投入された場合、比重が小さくても重量物と同様の挙動を示す。したがって、エアーテーブル10を用いることで、軽量物であり、比較的空気流の影響を受けやすい形状を有するアルミニウム(以下、軽比物と呼ぶ)を矢印Bで示す位置に落下させることができる。一方、その他の残渣(以下、重比物と呼ぶ)は、重量物または比較的空気流の影響を受けにくい形状を有しているため、矢印Aで示す位置に落下させることができる。したがって、本実施形態のように形状選別と比重選別を併用することで、アルミニウムと、その他の残渣とを選別することができるようになっている。 In the air table 10, as shown by an arrow C, the residue is charged from one end in the Y-axis direction (the end on the higher side), so that specific gravity sorting and shape sorting can be performed by air flow and reciprocating vibration. Will be executed. That is, in general, a heavy object is not easily affected by the air flow and is carried by the vibration motion, so that the heavy object falls to the position indicated by the arrow A in FIG. On the other hand, since the lightweight object floats under the influence of the air flow, the friction on the surface of the table 12 is reduced, and the lightweight object is transported by the vibration motion while moving along the inclination of the table 12, and therefore, FIG. It falls to the position indicated by the arrow B of. Further, when an object that is not easily affected by the air flow, such as a thick object or a spherical object, is put on the table 12, the behavior is similar to that of a heavy object even if the specific gravity is small. Therefore, by using the air table 10, it is possible to drop aluminum (hereinafter referred to as a light ratio) which is lightweight and has a shape relatively easily affected by an air flow to the position indicated by the arrow B. On the other hand, the other residue (hereinafter referred to as a heavy specific substance) has a shape that is relatively insensitive to a heavy object or an air flow, and therefore can be dropped to the position indicated by the arrow A. Therefore, by using the shape sorting and the specific gravity sorting together as in the present embodiment, it is possible to sort aluminum and other residues.

なお、本実施形態においては、粒径が3〜10mm程度の残渣に対する比重選別と形状選別の際に、エアーの風速を2.7〜2.9m/s、振動数を500〜540rpm、X軸方向の水平面に対する傾斜角θを9〜11°、Y軸方向の水平面に対する傾斜角ψを8〜10°、より好ましくは8.5〜9.5°に設定する。 In this embodiment, the air velocity is 2.7 to 2.9 m / s, the frequency is 500 to 540 rpm, and the X-axis is used for specific gravity sorting and shape sorting for a residue having a particle size of about 3 to 10 mm. The inclination angle θ with respect to the horizontal plane in the direction is set to 9 to 11 °, and the inclination angle ψ with respect to the horizontal plane in the Y-axis direction is set to 8 to 10 °, more preferably 8.5 to 9.5 °.

図3(a)には、粒径3〜10mm程度の残渣をエアーテーブル10に投入したときの、処理前後の残渣の組成の一例が示されている。図3(a)においては、粒径3〜10mm程度の残渣をエアーテーブル10に投入し、比重選別と形状選別とを同時に行うことで、アルミニウム(Al)の含有率を25%から2%にできたことが分かる。 FIG. 3A shows an example of the composition of the residue before and after the treatment when the residue having a particle size of about 3 to 10 mm is charged into the air table 10. In FIG. 3A, a residue having a particle size of about 3 to 10 mm is charged into the air table 10 and the specific gravity sorting and the shape sorting are performed at the same time to increase the aluminum (Al) content from 25% to 2%. You can see that it was done.

なお、実際には、エアーテーブル10の残渣は、軽比物(アルミニウム)と、重比物(有価金属)と、いずれにも選別されない残渣(エアーテーブル10の中央付近から落下する残渣;未選別物)と、に分けられる(図1参照)。尚、本発明において、有価金属とは、銅(Cu)、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)を意味するが、図3(a)及び図3(b)の表中では、銅は他の有価金属とは分けて表記している。 Actually, the residue of the air table 10 is a light ratio (aluminum), a heavy ratio (valuable metal), and a residue that is not sorted (residue falling from the vicinity of the center of the air table 10; unsorted). (Things) and (see Fig. 1). In the present invention, the valuable metal means copper (Cu), gold (Au), silver (Ag), platinum (Pt), and palladium (Pd), which are shown in FIGS. 3 (a) and 3 (b). ) In the table, copper is shown separately from other valuable metals.

この場合、軽比物(アルミニウム)に対しては、図1に示すように、粒径が10〜16mm程度の残渣と同様の処理を実行する。また、いずれにも選別されない残渣(未選別物)に対しては、比重選別と形状選別を繰り返し実行する。重比物(有価金属)に対しては、有価金属を回収できる工程へ移行される。有価金属を回収できる工程として、溶融炉を用いる乾式処理を含む処理工程により有価金属を回収してもよいし、酸性溶液あるいはアルカリ溶液で重比物を直接溶解し、中和沈殿処理や吸着剤処理等による湿式処理により有価金属を回収してもよい。 In this case, as shown in FIG. 1, the light ratio (aluminum) is subjected to the same treatment as the residue having a particle size of about 10 to 16 mm. Further, for the residue (unsorted product) that is not sorted by any of them, the specific gravity sorting and the shape sorting are repeatedly executed. For heavy weight products (valuable metals), the process shifts to a process in which valuable metals can be recovered. As a step in which the valuable metal can be recovered, the valuable metal may be recovered by a treatment step including a dry treatment using a melting furnace, or a heavy specific substance may be directly dissolved in an acidic solution or an alkaline solution to neutralize and precipitate, or an adsorbent. Valuable metals may be recovered by wet treatment such as treatment.

なお、乾式処理において用いる溶融炉の種類は問わないが、溶融したメタル分を鋳造できればよい。たとえば、銅製錬工程に用いられる自溶炉、転炉や、電気炉、その他、上述した前記粒径10〜16mm程度の残渣の処理に用いることができる炉(傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉等)を別途用いて、粒径0〜10mm程度の残渣を溶融し、鋳造してもよい。鋳造されたインゴットは、公知の方法、たとえば電解精製や電解採取、電解澱物の湿式処理等の方法を経て有価金属を回収することができる。 The type of melting furnace used in the dry treatment is not limited, but it is sufficient that the molten metal can be cast. For example, a self-melting furnace, a converter used in a copper smelting process, an electric furnace, and other furnaces that can be used for treating the above-mentioned residue having a particle size of about 10 to 16 mm (tilt type reflection furnace, with a hearth). A shaft furnace, an oval furnace, a drum furnace, an upper blowing type converter, etc.) may be used separately to melt and cast a residue having a particle size of about 0 to 10 mm. The cast ingot can recover valuable metals through known methods such as electrolytic refining, electrowinning, and wet treatment of electrolytic starch.

有価金属を回収する乾式処理の典型的な例は、銅製錬である。銅製錬は、銅鉱石(銅精鉱)から製錬して銅を得ると、同時に鉱石に含まれる他の有価金属は銅電解精製で発生する電解殿物とし、それぞれの有価金属の回収工程を経て回収される。 A typical example of a dry process for recovering valuable metals is copper smelting. In copper smelting, copper is obtained by smelting from copper ore (copper concentrate), and at the same time, other valuable metals contained in the ore are used as electrolytic deposits generated by copper electrolytic refining, and the recovery process of each valuable metal is performed. It is collected afterwards.

したがって、銅製錬に用いられる自溶炉、転炉に粒径が0〜10mm程度の残渣を投入すれば、残渣中の有価金属は鉱石中の有価金属と一緒に回収される。 Therefore, if a residue having a particle size of about 0 to 10 mm is put into a flash smelting furnace or converter used for copper smelting, the valuable metal in the residue is recovered together with the valuable metal in the ore.

また、粒径が0〜10mm程度の残渣を篩目の直径が3mmの篩を用いて篩別すことも有効である。篩別する理由は、比重選別と形状選別(エアーテーブル)の処理条件として、3〜10mmと0〜3mmに分けて、異なる処理条件で処理することが好ましいためであることがあげられる。 It is also effective to sift the residue having a particle size of about 0 to 10 mm using a sieve having a mesh diameter of 3 mm. The reason for sieving is that the treatment conditions for specific gravity sorting and shape sorting (air table) are preferably divided into 3 to 10 mm and 0 to 3 mm and treated under different treatment conditions.

なお、重比物(有価金属)は、粒径が10〜16mm程度の残渣を処理する際に用いる炉と同様の溶融炉に、別途、投入することとしてもよい。ここで、溶融炉とは、例えば、傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉等をいう。 The heavy ratio material (valuable metal) may be separately charged into a melting furnace similar to the one used when treating a residue having a particle size of about 10 to 16 mm. Here, the melting furnace means, for example, a tilting reverberatory furnace, a shaft furnace with a hearth, an oval furnace, a drum furnace, an upper blowing type converter, and the like.

以上により、重比物から有価金属を回収することができる。 As described above, the valuable metal can be recovered from the heavy weight material.

(粒径が0〜3mm程度の残渣の処理について)
粒径が0〜3mm程度の残渣(篩目の直径が3mmの篩を用いた篩分けにおいて得られた篩下)については、上述した粒径が3〜10mm程度の残渣と同様の処理が実行される。
(Regarding the treatment of residues with a particle size of about 0 to 3 mm)
For the residue having a particle size of about 0 to 3 mm (under the sieve obtained by sieving using a sieve having a mesh diameter of 3 mm), the same treatment as the above-mentioned residue having a particle size of about 3 to 10 mm is executed. Will be done.

なお、粒径が0〜3mm程度の残渣の比重選別と形状選別においては、粒径が3〜10mm程度の残渣の比重選別と形状選別の場合よりも、エアーテーブルからのエアーの風速を小さくし、振動数を大きくし、傾斜角を小さくする。例えば、粒径が0〜3mm程度の残渣に対する比重選別と形状選別の際には、エアーの風速を2.2〜2.4m/s、振動数を554〜586rpm、X軸方向の水平面に対する傾斜角θを9〜11°、Y軸方向の水平面に対する傾斜角ψを6.5〜8.5°、より好ましくは7.0〜8.0°に設定する(図4の実施例7を参照)。 In the specific gravity sorting and shape sorting of the residue having a particle size of about 0 to 3 mm, the wind speed of the air from the air table is made smaller than in the case of the specific gravity sorting and shape sorting of the residue having a particle size of about 3 to 10 mm. , Increase the frequency and decrease the tilt angle. For example, when sorting the specific gravity and shape of a residue having a particle size of about 0 to 3 mm, the wind speed of air is 2.2 to 2.4 m / s, the frequency is 554 to 586 rpm, and the inclination with respect to the horizontal plane in the X-axis direction. The angle θ is set to 9 to 11 °, and the inclination angle ψ with respect to the horizontal plane in the Y-axis direction is set to 6.5 to 8.5 °, more preferably 7.0 to 8.0 ° (see Example 7 in FIG. 4). ).

図3(b)には、粒径0〜3mm程度の残渣をエアーテーブル10に投入したときの、処理前後の残渣の組成の一例が示されている。図3(b)においては、粒径0〜3mm程度の残渣をエアーテーブル10に投入し、比重選別と形状選別とを同時に行うことで、アルミニウム(Al)の含有率を18%から3%にできたことが分かる。 FIG. 3B shows an example of the composition of the residue before and after the treatment when the residue having a particle size of about 0 to 3 mm is charged into the air table 10. In FIG. 3B, a residue having a particle size of about 0 to 3 mm is charged into the air table 10 and the specific gravity sorting and the shape sorting are performed at the same time to increase the aluminum (Al) content from 18% to 3%. You can see that it was done.

なお、粒径が0〜3mm程度の残渣は、上述したエアーテーブル10を用いた処理により、軽比物(アルミニウム)と、重比物(有価金属)と、いずれにも選別されない残渣と、に分けられる。軽比物(アルミニウム)に対しては、粒径が10〜16mm程度の残渣と同様の処理を実行する。また、いずれにも選別されない残渣(未選別物)に対しては、比重選別と形状選別を繰り返し実行する。また、重比物(有価金属)は、粒径が3〜10mm程度の残渣を処理して得られた重比物(有価金属)と同様、有価金属を回収できる工程へ移行される。有価金属を回収できる工程として、溶融炉を用いる乾式処理を含む処理工程により有価金属を回収してもよいし、酸性溶液あるいはアルカリ溶液で重比物を直接溶解し、中和沈殿処理や吸着剤処理等による湿式処理により有価金属を回収してもよい。 The residue having a particle size of about 0 to 3 mm can be divided into a light ratio (aluminum), a heavy ratio (valuable metal), and a residue that is not sorted by the treatment using the air table 10 described above. Divided. For the light ratio (aluminum), the same treatment as for the residue having a particle size of about 10 to 16 mm is carried out. Further, for the residue (unsorted product) that is not sorted by any of them, the specific gravity sorting and the shape sorting are repeatedly executed. Further, the heavy weight material (valuable metal) is shifted to a step in which the valuable metal can be recovered in the same manner as the heavy weight material (valuable metal) obtained by treating the residue having a particle size of about 3 to 10 mm. As a step in which the valuable metal can be recovered, the valuable metal may be recovered by a treatment step including a dry treatment using a melting furnace, or a heavy specific substance may be directly dissolved in an acidic solution or an alkaline solution to perform a neutralization precipitation treatment or an adsorbent. Valuable metals may be recovered by wet treatment such as treatment.

なお、本実施形態では、粒径が3〜10mm程度の残渣、及び0〜3mm程度の残渣からアルミニウムを除外して、アルミニウムが除外された後の残渣を溶融炉(銅製錬の自溶炉や転炉や、電気炉、傾転式反射炉等)に投入するので、溶融炉内で発生するアルミニウム含有スラグの処理量の増大を抑制でき、溶融炉の操業負荷の増大を防止できる。また、残渣中のアルミニウム含有量(処理量)が多いと、アルミニウムがスラグの粘度を高め、スラグの流動性悪化に繋がり、溶融炉におけるスラグの連続的なタップが困難になることから、好ましくないので、残渣中のアルミニウム選別除去が重要である。 In the present embodiment, aluminum is excluded from the residue having a particle size of about 3 to 10 mm and the residue having a particle size of about 0 to 3 mm, and the residue after the aluminum is removed is used as a melting furnace (a self-melting furnace for copper smelting). Since it is put into a converter, an electric furnace, a tilting reverberatory furnace, etc.), it is possible to suppress an increase in the amount of aluminum-containing slag generated in the melting furnace and prevent an increase in the operating load of the melting furnace. Further, if the aluminum content (treatment amount) in the residue is large, the aluminum increases the viscosity of the slag, which leads to deterioration of the fluidity of the slag, and it becomes difficult to continuously tap the slag in the melting furnace, which is not preferable. Therefore, selective removal of aluminum in the residue is important.

以上、詳細に説明したように、本実施形態によると、一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目が10mmの篩で篩分け、気流と振動を用いて、篩の篩下の残渣に対して比重選別と形状選別を組み合わせて(同時に)行うことで、アルミニウムとその他に分離する。このように、粒径が10mm程度以下の残渣に対して比重選別と形状選別とを組み合わせて(同時に)行うことで、残渣から軽比物であるアルミニウムを効果的に選別することができる。例えば、本実施形態の条件で選別を行った結果、アルミニウムの分配率は85〜93%となった。なお、本実施形態において、分配率とは、軽比物側に含まれる各元素毎の重量の選別前の原料に含まれる各元素の重量に対する比率をいう。 As described in detail above, according to the present embodiment, the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved with a sieve having a mesh size of 10 mm, and the sieve is sieved using air flow and vibration. By combining (simultaneously) specific gravity sorting and shape sorting on the residue below, aluminum and others are separated. As described above, by performing (simultaneously) the specific gravity sorting and the shape sorting on the residue having a particle size of about 10 mm or less, aluminum, which is a light ratio, can be effectively sorted from the residue. For example, as a result of sorting under the conditions of the present embodiment, the distribution ratio of aluminum was 85 to 93%. In the present embodiment, the distribution ratio means the ratio of the weight of each element contained in the light ratio to the weight of each element contained in the raw material before selection.

また、本実施形態では、比重選別と形状選別にエアーテーブル10を用い、テーブル12は、表面内の第1軸方向(Y軸方向)とY軸方向に直交する表面内の第2軸方向(X軸方向)とが、水平面に対して傾斜するように配置されている。そして、テーブル12のY軸方向の高さが高い側の端部近傍に残渣を供給し、テーブル12をX軸方向に往復振動し、表面から鉛直方向上側に向けて気流を発生させる。これにより、テーブル12のY軸方向の高さが低い側の端部近傍において、残渣がX軸方向の高い側と低い側とに分離される。このように、テーブル12の表面の2軸方向を水平面に対して傾斜させ、振動と気流とを用いて、アルミニウムとその他の残渣を分離することで、簡易かつ効率的にアルミニウムの選別を行うことができる。 Further, in the present embodiment, the air table 10 is used for specific gravity sorting and shape sorting, and the table 12 has a first axial direction (Y-axis direction) in the surface and a second axial direction (Y-axis direction) in the surface orthogonal to the Y-axis direction. The X-axis direction) is arranged so as to be inclined with respect to the horizontal plane. Then, the residue is supplied to the vicinity of the end portion of the table 12 on the side where the height in the Y-axis direction is high, the table 12 is reciprocated in the X-axis direction, and an air flow is generated from the surface toward the upper side in the vertical direction. As a result, the residue is separated into a high side and a low side in the X-axis direction in the vicinity of the end portion of the table 12 on the low side in the Y-axis direction. In this way, the biaxial direction of the surface of the table 12 is tilted with respect to the horizontal plane, and aluminum and other residues are separated by using vibration and air flow to easily and efficiently sort aluminum. Can be done.

また、本実施形態では、粒径が10mm程度以下の残渣をさらに篩目が3mmの篩を用いて篩別し、篩別後の篩上と篩下に対して、異なる条件下で比重選別と形状選別とを組み合わせて、好ましくは、同時に行うこととしている。これにより、粒径に応じたエアーテーブルの条件を設定することで、より効率的に選別を行うことができる。ここで、「比重選別と形状選別とを組み合わせて」処理する工程においては、必ずしも比重選別と形状選別とが同時に行われなくてもよい。たとえば、図2におけるテーブル12の上方部付近ではエアーの風速をゼロとして振動と傾斜のみで選別し、テーブル12の中段より下側では振動と傾斜に加えて、エアーを噴出して選別するようにしてもよい。このように、テーブル上方では比重選別のみを行い、テーブル下方では比重選別と形状選別を同時に行うような場合も、「比重選別と形状選別とを組み合わせて」処理する工程に含まれるものとする。 Further, in the present embodiment, the residue having a particle size of about 10 mm or less is further sieved using a sieve having a mesh size of 3 mm, and the specific gravity is sorted on and under the sieve after sieving under different conditions. It is preferably performed at the same time in combination with shape selection. As a result, sorting can be performed more efficiently by setting the air table conditions according to the particle size. Here, in the step of processing "combining the specific gravity selection and the shape selection", the specific gravity selection and the shape selection do not necessarily have to be performed at the same time. For example, in the vicinity of the upper part of the table 12 in FIG. 2, the wind speed of air is set to zero and sorting is performed only by vibration and inclination, and below the middle stage of the table 12, in addition to vibration and inclination, air is ejected and sorted. You may. As described above, the case where only the specific gravity sorting is performed above the table and the specific gravity sorting and the shape sorting are performed at the same time below the table is also included in the process of "combining the specific gravity sorting and the shape sorting".

なお、上記実施形態では、粒径が3〜10mm程度の残渣と、粒径が0〜3mm程度の残渣とを異なる条件の下、エアーテーブルを用いて処理を行うこととしたが、これに限られるものではない。例えば、粒径が10mm程度以下の残渣を1つのエアーテーブルを用いて処理することとしてもよい。 In the above embodiment, the residue having a particle size of about 3 to 10 mm and the residue having a particle size of about 0 to 3 mm are treated using an air table under different conditions, but the present invention is limited to this. It is not something that can be done. For example, a residue having a particle size of about 10 mm or less may be treated using one air table.

また、上記実施形態では、篩目の直径が16mmの篩を用いて篩別した後の残渣を、篩目の直径が10mm、3mmの篩を用いて篩別する場合について説明したが、これに限られるものではない。例えば、残渣を篩目の直径が10mm、3mmの篩のみを用いて篩別して、篩別された各残渣に対して異なる処理を行うこととしてもよい。 Further, in the above embodiment, the case where the residue after sieving using a sieve having a mesh diameter of 16 mm is sieved using a sieve having a mesh diameter of 10 mm and 3 mm has been described. It is not limited. For example, the residue may be sieved using only a sieve having a mesh diameter of 10 mm and 3 mm, and each sieved residue may be treated differently.

なお、上記実施形態では、粒径が3〜10mm程度の残渣の比重選別と形状選別を、粒径が0〜3mm程度の残渣の比重選別と形状選別の場合よりも、エアーの風速を大きくし、振動数を小さくし、傾斜角を大きくした条件で実施する場合(図4の実施例7参照)について説明したが、これに限られるものではない。例えば、粒径が3〜10mm程度の残渣の比重選別と形状選別の条件は、エアーの風速を粒径0〜3mm程度の場合よりも大きくすれば、振動数及び傾斜角の大小関係は任意であってよい(図4の実施例1〜9参照)。また、粒径が3〜10mm程度の残渣の比重選別と形状選別の条件は、エアーの風速を粒径0〜3mm程度の場合と同一とし、振動数を粒径0〜3mm程度の場合よりも小さくすれば、傾斜角の大小関係は任意であってよい(図4の実施例12〜14参照)。また、粒径が3〜10mm程度の残渣の比重選別と形状選別の条件は、エアーの風速及び振動数を粒径0〜3mm程度の場合と同一にする場合には、傾斜角を粒径0〜3mm程度の場合よりも大きくすればよい(図4の実施例11参照)。さらには、粒径が3〜10mm程度の残渣の比重選別と形状選別の条件は、エアーの風速を粒径0〜3mm程度の場合と同一にする場合には、振動数及び傾斜角を粒径0〜3mm程度の場合よりも大きくすればよい(図4の実施例10参照)。図4は、本発明によって得られた、エアーテーブルによる軽比物のアルミニウムと重比物である有価金属類を選別するための、粒径3〜10mm程度の残渣の処理条件を、粒径0〜3mm程度の残渣の処理条件と比較した場合の、好適な「エアー風速」「振動数」「傾斜角度」の条件の相関を示すものである。図4では、アルミニウムの分配率が、80%以上を◎とし、50%以上80%未満を○として、30%以上50%未満を△とし、30%未満を×として示している。 In the above embodiment, the air velocity is increased in the specific gravity sorting and shape sorting of the residue having a particle size of about 3 to 10 mm as compared with the specific gravity sorting and shape sorting of the residue having a particle size of about 0 to 3 mm. The case where the implementation is performed under the condition that the frequency is reduced and the inclination angle is increased (see Example 7 in FIG. 4) has been described, but the present invention is not limited to this. For example, the conditions for specific gravity sorting and shape sorting of a residue having a particle size of about 3 to 10 mm are such that the magnitude relationship between the frequency and the inclination angle is arbitrary as long as the air velocity is made larger than that in the case of a particle size of about 0 to 3 mm. It may be present (see Examples 1 to 9 in FIG. 4). Further, the conditions for specific gravity sorting and shape sorting of the residue having a particle size of about 3 to 10 mm are the same as when the air velocity is about 0 to 3 mm, and the frequency is higher than when the particle size is about 0 to 3 mm. If it is made smaller, the magnitude relation of the inclination angle may be arbitrary (see Examples 12 to 14 in FIG. 4). Further, the conditions for specific gravity sorting and shape sorting of the residue having a particle size of about 3 to 10 mm are such that when the wind speed and frequency of the air are the same as those of the case where the particle size is about 0 to 3 mm, the inclination angle is set to 0. It may be larger than the case of about 3 mm (see Example 11 in FIG. 4). Furthermore, the conditions for specific gravity sorting and shape sorting of residues having a particle size of about 3 to 10 mm are such that when the air velocity is the same as when the particle size is about 0 to 3 mm, the frequency and inclination angle are set to the particle size. It may be larger than the case of about 0 to 3 mm (see Example 10 in FIG. 4). FIG. 4 shows the treatment conditions for the residue having a particle size of about 3 to 10 mm for selecting aluminum as a light weight and valuable metals as a heavy weight by an air table obtained by the present invention. It shows the correlation of suitable "air wind speed", "frequency", and "tilt angle" conditions when compared with the treatment conditions for a residue of about 3 mm. In FIG. 4, the distribution ratio of aluminum is indicated by ⊚ for 80% or more, ◯ for 50% or more and less than 80%, Δ for 30% or more and less than 50%, and × for less than 30%.

上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The embodiments described above are examples of preferred embodiments of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

10 エアーテーブル
10 air table

Claims (9)

一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目が8〜12mmの篩で篩分ける篩分け工程と、
前記篩目が8〜12mmの篩の篩下の残渣を篩目が3〜5mmの篩で更に篩分け、前記篩目が3〜5mmの篩の篩上の残渣と篩下の残渣のそれぞれを、表面からエアーを発生し往復振動するエアーテーブルを用いて比重選別と形状選別を行うことで、アルミニウムとその他に分離する分離工程と、を含み、
前記篩目が3〜5mmの篩の篩上の残渣に対する比重選別と形状選別は、前記篩下の残渣に対する比重選別と形状選別よりもエアーの風速が大きい条件で実行される、ことを特徴とする処理方法。
A sieving process in which the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved with a sieve having a mesh size of 8 to 12 mm.
The residue under the sieve of the sieve having a sieve of 8 to 12 mm is further sieved with a sieve having a sieve of 3 to 5 mm, and the residue on the sieve of the sieve having a sieve of 3 to 5 mm and the residue under the sieve are respectively separated. , by performing the gravity separation and shape selection using an air table for reciprocal vibration generates air from the surface, seen including a separation step of separating the aluminum and other, and
The specific gravity sorting and shape sorting of the residue on the sieve of the sieve having a mesh size of 3 to 5 mm are performed under a condition where the air velocity is higher than that of the specific gravity sorting and shape sorting of the residue under the sieve. processing method.
一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目が8〜12mmの篩で篩分ける篩分け工程と、 A sieving process in which the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved with a sieve having a mesh size of 8 to 12 mm.
前記篩目が8〜12mmの篩の篩下の残渣を篩目が3〜5mmの篩で更に篩分け、前記篩目が3〜5mmの篩の篩上の残渣と篩下の残渣のそれぞれを、表面からエアーを発生し往復振動するエアーテーブルを用いて比重選別と形状選別を行うことで、アルミニウムとその他に分離する分離工程と、を含み、 The residue under the sieve of the sieve having a sieve of 8 to 12 mm is further sieved with a sieve having a sieve of 3 to 5 mm, and the residue on the sieve of the sieve having a sieve of 3 to 5 mm and the residue under the sieve are respectively separated. Includes a separation step that separates aluminum and others by performing specific gravity sorting and shape sorting using an air table that generates air from the surface and vibrates reciprocatingly.
前記篩目が3〜5mmの篩による篩上の残渣に対する比重選別と形状選別は、前記篩下の残渣に対する比重選別と形状選別とエアーの風速が同一であり、前記篩下の残渣に対する比重選別と形状選別よりも往復振動の振動数が小さい条件で実行される、ことを特徴とする処理方法。 The specific gravity sorting and shape sorting for the residue on the sieve by the sieve having a mesh size of 3 to 5 mm have the same specific gravity sorting and shape sorting for the residue under the sieve and the air velocity of air, and the specific gravity sorting for the residue under the sieve. A processing method characterized in that it is executed under conditions where the frequency of reciprocating vibration is smaller than that of shape selection.
一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目が8〜12mmの篩で篩分ける篩分け工程と、 A sieving process in which the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved with a sieve having a mesh size of 8 to 12 mm.
前記篩目が8〜12mmの篩の篩下の残渣を篩目が3〜5mmの篩で更に篩分け、前記篩目が3〜5mmの篩の篩上の残渣と篩下の残渣のそれぞれを、表面からエアーを発生し往復振動するエアーテーブルを用いて比重選別と形状選別を行うことで、アルミニウムとその他に分離する分離工程と、を含み、 The residue under the sieve of the sieve having a sieve of 8 to 12 mm is further sieved with a sieve having a sieve of 3 to 5 mm, and the residue on the sieve of the sieve having a sieve of 3 to 5 mm and the residue under the sieve are respectively separated. Includes a separation step that separates aluminum and others by performing specific gravity sorting and shape sorting using an air table that generates air from the surface and vibrates reciprocatingly.
前記エアーテーブルの表面内の第1軸方向と該第1軸方向に直交する前記表面内の第2軸方向とが、水平面に対して傾斜するように配置され、 The first axial direction in the surface of the air table and the second axial direction in the surface orthogonal to the first axial direction are arranged so as to be inclined with respect to the horizontal plane.
前記篩目が3〜5mmの篩による篩上の残渣に対する比重選別と形状選別は、前記篩下の残渣に対する比重選別と形状選別とエアーの風速及び往復振動の振動数が同一であり、前記篩下の残渣に対する比重選別と形状選別よりも前記第1軸方向及び前記第2軸方向の少なくとも一方の水平面に対する傾斜角が大きい条件で実行される、ことを特徴とする処理方法。 The specific gravity sorting and shape sorting for the residue on the sieve with the sieve having a mesh size of 3 to 5 mm have the same specific gravity sorting and shape sorting for the residue under the sieve, the air velocity and the frequency of the reciprocating vibration, and the sieve. A treatment method characterized in that it is carried out under a condition that the inclination angle with respect to at least one horizontal plane in the first axial direction and the second axial direction is larger than that of specific gravity sorting and shape sorting for the residue below.
一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目が8〜12mmの篩で篩分ける篩分け工程と、 A sieving process in which the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved with a sieve having a mesh size of 8 to 12 mm.
前記篩目が8〜12mmの篩の篩下の残渣を篩目が3〜5mmの篩で更に篩分け、前記篩目が3〜5mmの篩の篩上の残渣と篩下の残渣のそれぞれを、表面からエアーを発生し往復振動するエアーテーブルを用いて比重選別と形状選別を行うことで、アルミニウムとその他に分離する分離工程と、を含み、 The residue under the sieve of the sieve having a sieve of 8 to 12 mm is further sieved with a sieve having a sieve of 3 to 5 mm, and the residue on the sieve of the sieve having a sieve of 3 to 5 mm and the residue under the sieve are respectively separated. Includes a separation step that separates aluminum and others by performing specific gravity sorting and shape sorting using an air table that generates air from the surface and vibrates reciprocatingly.
前記エアーテーブルの表面内の第1軸方向と該第1軸方向に直交する前記表面内の第2軸方向とが、水平面に対して傾斜するように配置され、 The first axial direction in the surface of the air table and the second axial direction in the surface orthogonal to the first axial direction are arranged so as to be inclined with respect to the horizontal plane.
前記篩目が3〜5mmの篩による篩上の残渣に対する比重選別と形状選別は、前記篩下の残渣に対する比重選別と形状選別とエアーの風速が同一であり、前記篩下の残渣に対する比重選別と形状選別よりも往復振動の振動数が大きく、前記篩下の残渣に対する比重選別と形状選別よりも前記第1軸方向及び前記第2軸方向の少なくとも一方の水平面に対する傾斜角が大きい条件で実行される、ことを特徴とする処理方法。 The specific gravity sorting and shape sorting for the residue on the sieve by the sieve having a mesh size of 3 to 5 mm have the same specific gravity sorting and shape sorting for the residue under the sieve and the air velocity of air, and the specific gravity sorting for the residue under the sieve. The frequency of reciprocating vibration is higher than that of shape sorting, and the angle of inclination with respect to at least one horizontal plane in the first axial direction and the second axial direction is larger than that of specific gravity sorting and shape sorting for the residue under the sieve. A processing method characterized by being done.
前記エアーテーブルは、該エアーテーブルの表面内の第1軸方向と該第1軸方向に直交する前記表面内の第2軸方向とが、水平面に対して傾斜するように配置されている、ことを特徴とする請求項1又は2に記載の処理方法。 The air table, and a second axial direction of the inner surface that is orthogonal to the first axis direction and the first axial direction within the surface of the air table is arranged so as to be inclined with respect to the horizontal plane, it The processing method according to claim 1 or 2. 前記エアーテーブルの前記第1軸方向の高さが高い側の端部近傍に前記残渣が供給され、前記エアーテーブルが前記第2軸方向に往復振動されるとともに、前記表面から鉛直方向上側に向けて気流が発生され、 The residue is supplied to the vicinity of the end of the air table on the side where the height in the first axial direction is high, the air table is reciprocally vibrated in the second axial direction, and the air table is directed upward in the vertical direction from the surface. Airflow is generated
前記エアーテーブルの前記第1軸方向の高さが低い側の端部近傍において、前記残渣が前記第2軸方向の高い側と低い側とに分離される、ことを特徴とする請求項3〜5のいずれか一項に記載の処理方法。 A third aspect of the present invention, wherein the residue is separated into a high side and a low side in the second axial direction in the vicinity of the end portion of the air table on the low side in the first axial direction. The processing method according to any one of 5.
前記アルミニウムが、前記第2軸方向の低い側に分離されることを特徴とする請求項に記載の処理方法。 The processing method according to claim 6 , wherein the aluminum is separated on the lower side in the second axial direction. 前記エアーテーブルは、該エアーテーブルの表面内の第1軸方向と該第1軸方向に直交する前記表面内の第2軸方向とが、水平面に対して傾斜するように配置され、
前記篩上の残渣に対する比重選別と形状選別は、前記エアーの風速が2.7〜2.9m/s、前記往復振動の振動数が500〜540rpm、前記第1軸方向の傾斜角が9〜11°、前記第2軸方向の傾斜角が8〜10°であり、
前記篩下の残渣に対する比重選別と形状選別は、前記エアーの風速が2.2〜2.4m/s、前記振動数が554〜586rpm、前記第1軸方向の傾斜角が9〜11°、前記第2軸方向の傾斜角が6.5〜8.5°である、ことを特徴とする請求項1に記載の処理方法。
The air table is arranged so that the first axial direction in the surface of the air table and the second axial direction in the surface orthogonal to the first axial direction are inclined with respect to the horizontal plane.
In the specific gravity sorting and shape sorting for the residue on the sieve, the wind speed of the air is 2.7 to 2.9 m / s, the frequency of the reciprocating vibration is 500 to 540 rpm, and the inclination angle in the first axial direction is 9 to. 11 °, the inclination angle in the second axial direction is 8 to 10 °,
In the specific gravity sorting and shape sorting for the residue under the sieve, the wind speed of the air is 2.2 to 2.4 m / s, the frequency is 554 to 586 rpm, and the inclination angle in the first axial direction is 9 to 11 °. The processing method according to claim 1, wherein the inclination angle in the second axial direction is 6.5 to 8.5 °.
前記エアーテーブルを用いた前記比重選別と前記形状選別行っても、アルミニウムとその他に分離できなかった残渣に対して、前記比重選別と前記形状選別を繰り返し行うことを特徴とする請求項1〜8のいずれか一項に記載の処理方法。
Even if the shape selection and the gravity separation using the air table, the aluminum and the residue which could not be separated into other, claim 1, characterized in that repeated the shape selection and the gravity separation The processing method according to any one of 8 .
JP2016220006A 2016-11-10 2016-11-10 Processing method Active JP6791726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220006A JP6791726B2 (en) 2016-11-10 2016-11-10 Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220006A JP6791726B2 (en) 2016-11-10 2016-11-10 Processing method

Publications (2)

Publication Number Publication Date
JP2018075543A JP2018075543A (en) 2018-05-17
JP6791726B2 true JP6791726B2 (en) 2020-11-25

Family

ID=62150025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220006A Active JP6791726B2 (en) 2016-11-10 2016-11-10 Processing method

Country Status (1)

Country Link
JP (1) JP6791726B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478115B2 (en) * 1998-03-09 2003-12-15 Jfeエンジニアリング株式会社 Dry specific gravity shape separation method
JP5709166B2 (en) * 2011-03-29 2015-04-30 独立行政法人産業技術総合研究所 Small air table
JP6378502B2 (en) * 2014-03-07 2018-08-22 太平洋セメント株式会社 Method for recovering valuable materials from lithium ion secondary batteries
JP6375205B2 (en) * 2014-10-30 2018-08-15 太平洋セメント株式会社 Valuable metal recovery method and valuable metal recovery system

Also Published As

Publication number Publication date
JP2018075543A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP5775752B2 (en) Method for recovering valuable metals from home appliances
US6199779B1 (en) Method to recover metal from a metal-containing dross material
JP7282582B2 (en) Processing method and processing equipment for electronic and electrical equipment parts waste
JP7076338B2 (en) Method for removing linear objects, method for removing linear objects, and method for disposing of scraps of electronic and electrical equipment parts
JP6936344B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP6885709B2 (en) Processing method
CA3135345C (en) Method for processing electronic and electric device component scraps
JP6791726B2 (en) Processing method
JP7076397B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP6859151B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP2018164882A (en) Valuable metal recovery method
JP6772036B2 (en) Processing method
US11819885B2 (en) Method for processing electronic/electrical device component scraps
JP6914220B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP2019025395A (en) Valuable metal recovery method and recovery system
JP7123600B2 (en) Processing method of electronic and electrical equipment parts waste
JP6885904B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP2021000586A (en) Metal-containing waste processing device and processing method
JP7461167B2 (en) Bottom ash treatment equipment
JP2020143350A (en) Waste electronic substrate processing method and processing apparatus
JP2021023862A (en) Noble metal recovery method from incineration ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R151 Written notification of patent or utility model registration

Ref document number: 6791726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250