[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6789573B2 - Peptides with glioma-specific accumulation and their use - Google Patents

Peptides with glioma-specific accumulation and their use Download PDF

Info

Publication number
JP6789573B2
JP6789573B2 JP2017547772A JP2017547772A JP6789573B2 JP 6789573 B2 JP6789573 B2 JP 6789573B2 JP 2017547772 A JP2017547772 A JP 2017547772A JP 2017547772 A JP2017547772 A JP 2017547772A JP 6789573 B2 JP6789573 B2 JP 6789573B2
Authority
JP
Japan
Prior art keywords
peptide
glioma
cells
amino acid
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017547772A
Other languages
Japanese (ja)
Other versions
JPWO2017073485A1 (en
Inventor
英作 近藤
英作 近藤
齋藤 憲
憲 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Publication of JPWO2017073485A1 publication Critical patent/JPWO2017073485A1/en
Application granted granted Critical
Publication of JP6789573B2 publication Critical patent/JP6789573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、グリオーマに特異的な集積性を有するペプチド及びその使用に関する。
本願は、2015年10月28日に、日本に出願された特願2015−211959号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to peptides having glioma-specific accumulation and their use.
The present application claims priority based on Japanese Patent Application No. 2015-21959 filed in Japan on October 28, 2015, the contents of which are incorporated herein by reference.

原発性脳腫瘍の発生頻度は、人口10万人につき1年間に10〜15人と言われており、そのうちの1/4を占めるのが神経膠腫(グリオーマ)と呼ばれる腫瘍群である。グリオーマの中でも高悪性度群として分類される退形成性星状細胞腫(グレード3)の5年生存率は約23%であり、膠芽腫(グリオブラストーマ)(グレード4)は約10%と著しく低い。グリオーマは既存脳組織に染み込むように浸潤していくことが腫瘍病変としての特徴であるため、生検による診断確定や開頭外科手術、放射線療法において可能な限り精密な腫瘍境界を含めた病変部の診断情報が必要となる。現在の中枢神経系疾患(脳内病変)に対する画像情報として最も高い精度を提供可能な検査又は診断法としては、例えば、造影剤を併用した、コンピューター断層撮影法(Computed Tomography:CT)、核磁気共鳴画像法(Magnetic resonance imaging:MRI)、陽電子放射断層撮影(Positron Emission Tomography:PET)法等の検査方法が挙げられる。さらに精密な画像診断情報の取得方法としては、例えばフルオロデオキシグルコース(fluorodeoxy glucose:FDG)−PET法等が挙げられる。 The incidence of primary brain tumors is said to be 10 to 15 per 100,000 population per year, of which 1/4 is a group of tumors called gliomas. The 5-year survival rate of anaplastic astrocytoma (grade 3), which is classified as a high-grade group among gliomas, is about 23%, and that of glioblastoma (glioblastoma) (grade 4) is about 10%. And remarkably low. Since glioma infiltrates existing brain tissue as a characteristic of tumor lesions, the lesion area including the tumor boundary as precise as possible in confirmation of diagnosis by biopsy, craniotomy surgery, and radiation therapy Diagnostic information is needed. Examples of examinations or diagnostic methods that can provide the highest accuracy as image information for current central nervous system diseases (intracerebral lesions) include computed tomography (CT) and magnetic resonance imaging in combination with a contrast medium. Examples thereof include inspection methods such as a resonance imaging (MRI) and a positron emission tomography (PET) method. Examples of a method for obtaining more precise diagnostic imaging information include a fluorodeoxyglucose (FDG) -PET method and the like.

ところで、ペプチドをバイオマテリアルとして活用した医療分野での動向において、Tat、penetratin、polyarginine等の細胞膜透過性(細胞吸収性)ペプチドが着目されている。
しかしながら、これらのペプチドは、正常細胞又は正常組織と腫瘍細胞又は腫瘍組織との区別なく広汎且つ非選択的に吸収されるため、標的選択的な薬剤輸送を要求する悪性腫瘍の治療DDS(Drag Delivery System)ツールに応用することは、重篤な副作用を惹起する点で利用困難である。特に、世界的に実験系で汎用されているTat等の細胞膜透過性(細胞吸収性)ペプチドは、肝臓に集積を引き起こす性質が知られている(例えば、非特許文献1参照)。
これに対して、cyclic RGDは、唯一医薬化されているペプチドである。cyclic RGDは、新生血管又は既存血管中の内皮細胞(及び一部の腫瘍細胞)で高発現することが報告されているαβインテグリンを標的としており、血管透過性亢進にその作用点を持っているため、単独でなく他の医薬との同時併用の形でイメージング剤やDDS剤として応用されている(例えば、特許文献1参照。)。
By the way, in the trend in the medical field using peptides as biomaterials, cell membrane penetrating (cell-absorbing) peptides such as Tat, penetratin, and polyargine have been attracting attention.
However, since these peptides are widely and non-selectively absorbed without distinction between normal cells or normal tissues and tumor cells or tumor tissues, the treatment of malignant tumors requiring targeted drug transport DDS (Drag Delivery). It is difficult to apply it to the System) tool because it causes serious side effects. In particular, cell membrane penetrating (cell-absorbing) peptides such as Tat, which are widely used in experimental systems worldwide, are known to have the property of causing accumulation in the liver (see, for example, Non-Patent Document 1).
In contrast, cyclic RGD is the only peptide that has been medicinalized. Cyclic RGD is the alpha v beta 3 integrin has been reported to be highly expressed in endothelial cells of the neovasculature or in existing vessels (and some tumor cells) has been targeted, the point of action on the vascular hyperpermeability Since it has, it is applied as an imaging agent or a DDS agent not only alone but also in combination with other pharmaceuticals (see, for example, Patent Document 1).

特許第5721140号公報Japanese Patent No. 5721140

Vives E., et al., A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, J. Biol. Chem., 272, 16010-16017, 1997.Vives E., et al., A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, J. Biol. Chem., 272, 16010-16017, 1997.

グリオーマは、現在もなお治療が困難で悪性腫瘍の中でも生存率が低い腫瘍のひとつとして非常に良く認識されており、効果的な治療方法が求められている。
また、上述の中枢神経系疾患(脳内病変)の検査又は診断方法では、患者に対する造影剤投与の身体的負担や合併症の危険性がある。さらに、FDG−PET検査は、FDGが取り込まれた細胞内又は組織内を検出する手法であり、グルコース代謝活性を反映するものであるため、特に糖代謝活性の亢進が恒常的に認められる脳において、脳内病変の描出は困難である。
また、特許文献1に記載のcyclic RGDは、腫瘍細胞及び腫瘍組織そのものを標的とするペプチドではないため、医療技術の面で未だ改良の余地があった。
Glioma is still very well recognized as one of the malignant tumors that is difficult to treat and has a low survival rate, and an effective treatment method is required.
In addition, in the above-mentioned examination or diagnosis method for central nervous system diseases (lesions in the brain), there is a risk of physical burden and complications of administration of a contrast medium to a patient. Furthermore, the FDG-PET examination is a method for detecting the inside of cells or tissues into which FDG has been taken up and reflects glucose metabolism activity, and therefore, particularly in the brain in which an increase in glucose metabolism activity is constantly observed. , Depiction of intracerebral lesions is difficult.
Further, since the cyclolic RGD described in Patent Document 1 is not a peptide that targets tumor cells and tumor tissues themselves, there is still room for improvement in terms of medical technology.

本発明は、上記事情に鑑みてなされたものであって、グリオーマに直接作用し、特異的な集積性を有する新規ペプチドを提供する。 The present invention has been made in view of the above circumstances, and provides a novel peptide that acts directly on a glioma and has specific accumulation.

すなわち、本発明は、以下の態様を含む。
[1]以下の(a)又は(c)ペプチド。
(a)配列番号1、2、3のいずれかで表される配列を含むアミノ酸配列からなるペプチド、
c)配列番号1、2、3のいずれかで表される配列と同一性が90%以上である配列を含むアミノ酸配列からなり、且つ、グリオーマに特異的な集積性を有するペプチド。
[2]L−アミノ酸からなるペプチドである[1]に記載のペプチド。
[3][1]又は[2]に記載のペプチドをコードすることを特徴とする核酸。
[4][3]に記載の核酸を含むことを特徴とするベクター。
[5][1]又は[2]に記載のペプチドを含むことを特徴とするキャリア。
[6]さらに、標識物質又は修飾物質を備える[5]に記載のキャリア。
[7]前記標識物質が、安定同位体、放射性同位体又は蛍光物質である[6]に記載のキャリア。
[8]前記修飾物質が、糖鎖又はポリエチレングリコールである[6]又は[7]に記載のキャリア。
[9][5]〜[8]のいずれか一つに記載のキャリアと生理活性物質とを備えることを特徴とする医薬組成物。
[10]グリオーマに起因する脳脊髄腫瘍治療用又は診断用である[9]に記載の医薬組成物。
That is, the present invention includes the following aspects.
[1] The following peptide (a) or (c).
(A) A peptide consisting of an amino acid sequence containing the sequence represented by any of SEQ ID NOs: 1, 2 and 3.
( C) A peptide consisting of an amino acid sequence containing a sequence having 90 % or more identity with the sequence represented by any of SEQ ID NOs: 1, 2 and 3, and having glioma-specific accumulation.
[2] The peptide according to [1], which is a peptide composed of L-amino acids.
[3] A nucleic acid comprising the peptide according to [1] or [2].
[4] A vector containing the nucleic acid according to [3].
[5] A carrier comprising the peptide according to [1] or [2].
[6] The carrier according to [5], further comprising a labeling substance or a modifying substance.
[7] The carrier according to [6], wherein the labeling substance is a stable isotope, a radioisotope or a fluorescent substance.
[8] The carrier according to [6] or [7], wherein the modifying substance is a sugar chain or polyethylene glycol.
[9] A pharmaceutical composition comprising the carrier according to any one of [5] to [8] and a physiologically active substance.
[10] The pharmaceutical composition according to [9], which is used for treating or diagnosing a cerebrospinal tumor caused by glioma.

本発明によれば、グリオーマに特異的な集積性を有する新規ペプチドを提供することできる。また、グリオーマを簡便、高感度且つ選択的に検出することができる。 According to the present invention, it is possible to provide a novel peptide having glioma-specific accumulation. In addition, glioma can be detected easily, with high sensitivity and selectively.

試験例1における各種ペプチドを添加した各種グリオーマ細胞の蛍光顕微鏡写真である。It is a fluorescence micrograph of various glioma cells to which various peptides were added in Test Example 1. 試験例2における各種ペプチドを添加したprimary astrocytes細胞及びprimary glioblastoma細胞の蛍光顕微鏡写真である。It is a fluorescence micrograph of the primary astrocyte cells and the primary glioblastoma cell to which various peptides were added in Test Example 2. 試験例3における各種ペプチドを添加したprimary neurons細胞及びprimary glioblastoma細胞の蛍光顕微鏡写真である。3 is a fluorescence micrograph of primary neurons and primary glioblastoma cells supplemented with various peptides in Test Example 3. 試験例4におけるヒトグリオーマ細胞を皮下移植し、FITCで標識されたPEP1ΔNSペプチド、Peptide1、又はPeptide2を静脈内注射したマウスの各種組織での蛍光強度を示すグラフである。また、試験例4におけるヒトグリオーマ細胞を皮下移植し、FITCで標識されたPEP1ΔNSペプチド、Peptide1、又はPeptide2を静脈内注射したマウスの各種組織の明視野及び暗視野の蛍光顕微鏡写真である。3 is a graph showing the fluorescence intensity in various tissues of mice in which human glioma cells in Test Example 4 were subcutaneously transplanted and intravenously injected with FITC-labeled PEP1ΔNS peptide, Peptide1 or Peptide2. In addition, it is a fluorescence micrograph of bright field and dark field of various tissues of a mouse in which human glioma cells in Test Example 4 were subcutaneously transplanted and intravenously injected with FITC-labeled PEP1ΔNS peptide, Peptide1 or Peptide2. 試験例5におけるヒトグリオーマ細胞を右大脳半球内に移植し、Peptide2を尾静脈から注射したマウスの右大脳半球の明視野及び暗視野の蛍光顕微鏡写真である。It is a fluorescence micrograph of a light field and a dark field of the right cerebral hemisphere of a mouse in which human glioma cells in Test Example 5 were transplanted into the right cerebral hemisphere and Peptide2 was injected from the tail vein. 試験例5におけるヒトグリオーマ細胞を右大脳半球内に移植し、Peptide2を尾静脈から注射したマウスの右大脳半球のスライスをHE染色した結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph showing the result of HE-staining a slice of the right cerebral hemisphere of a mouse in which human glioma cells in Test Example 5 were transplanted into the right cerebral hemisphere and Peptide2 was injected from the tail vein.

[グリオーマに特異的な集積性を有するペプチド]
一実施形態において、本発明は、以下の(a)〜(c)のいずれかのペプチドを提供する。
(a)配列番号1、2、3のいずれかで表される配列を含むアミノ酸配列からなるペプチド、
(b)配列番号1、2、3のいずれかで表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含むアミノ酸配列からなり、且つ、グリオーマに特異的な集積性を有するペプチド、
(c)配列番号1、2、3のいずれかで表される配列と同一性が60%以上である配列を含むアミノ酸配列からなり、且つ、グリオーマに特異的な集積性を有するペプチド。
[Peptide with glioma-specific accumulation]
In one embodiment, the present invention provides any of the following peptides (a) to (c).
(A) A peptide consisting of an amino acid sequence containing the sequence represented by any of SEQ ID NOs: 1, 2 and 3.
(B) In the amino acid sequence represented by any of SEQ ID NOs: 1, 2 and 3, the amino acid sequence comprises a sequence in which one or several amino acids are deleted, substituted or added, and is specific to a glioma. Peptides with a high degree of accumulation,
(C) A peptide consisting of an amino acid sequence containing a sequence having 60% or more identity with the sequence represented by any of SEQ ID NOs: 1, 2 and 3, and having glioma-specific accumulation.

本実施形態のペプチドは、グリオーマに特異的な集積性を有する新規のペプチドである。 The peptide of this embodiment is a novel peptide having glioma-specific accumulation.

本発明者らは、in vitro virus(IVV)法により、グリオーマに特異的な集積性を有する新規ペプチドを見出し、本発明を完成するに至った。
IVV法では、mRNAの3’末端にPEG(ポリエチレングリコール)スペーサーを介して抗生物質の一種のピューロマイシンを結合し、それを鋳型として無細胞翻訳反応を行うことにより、タンパク質とmRNAとがピューロマイシンを介して共有結合した単純なmRNA−タンパク質連結分子IVVが構築される。本発明者らは、IVVを独自に作製することにより、IVVライブラリーを構築した。この構築されたIVVライブラリーの中からベイト(餌)と結合するタンパク質を含むIVVをin vitroで釣り上げた後、そこに連結しているmRNAを逆転写反応し、PCRで増幅し、塩基配列を解読することによって、相互作用するタンパク質群を、ごく微量(質量分析法の千倍以上の感度)で同定できる。
The present inventors have found a novel peptide having glioma-specific accumulation by the in-betro-virus (IVV) method, and have completed the present invention.
In the IVV method, puromycin, which is a kind of antibiotic, is bound to the 3'end of mRNA via a PEG (polyethylene glycol) spacer, and a cell-free translation reaction is performed using it as a template, so that the protein and mRNA become puromycin. A simple mRNA-protein linking molecule, IVV, covalently linked via is constructed. The present inventors constructed an IVV library by independently producing IVV. From this constructed IVV library, IVV containing a protein that binds to bait is caught in vitro, and then the mRNA linked to the IVV is reverse-transcribed, amplified by PCR, and the base sequence is obtained. By decoding, the interacting proteins can be identified in very small amounts (more than 1000 times more sensitive than mass spectrometry).

本実施形態のペプチドは、下記(a)のペプチドを含む。
(a)配列番号1、2、3のいずれかで表される配列を含むアミノ酸配列からなるペプチド。
The peptide of the present embodiment includes the peptide of (a) below.
(A) A peptide consisting of an amino acid sequence containing the sequence represented by any one of SEQ ID NOs: 1, 2 and 3.

上記(a)における配列番号1、2又は3で表されるアミノ酸配列は、下記のアミノ酸配列で表される配列である。
RQAXXRLTV (配列番号1)
RCWYAVLYP (配列番号2)
RRIHXFPLH (配列番号3)
[上記の配列番号1又は配列番号3で表されるアミノ酸配列において、Xは、アスパラギン酸残基(D)又はグルタミン酸残基(E)を表す。]
The amino acid sequence represented by SEQ ID NO: 1, 2 or 3 in (a) above is the sequence represented by the following amino acid sequence.
RQAXXLTV (SEQ ID NO: 1)
RCWYAVLYP (SEQ ID NO: 2)
RRIHXFPLH (SEQ ID NO: 3)
[In the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3 above, X represents an aspartic acid residue (D) or a glutamic acid residue (E). ]

上記(a)のペプチドは、グリオーマに特異的な集積性を有する。また、本実施形態のペプチドは、配列番号1、2又は3で表されるアミノ酸配列のみからなるペプチドであっても、グリオーマに特異的な集積性を有する。 The peptide (a) above has glioma-specific accumulation. Further, the peptide of the present embodiment has glioma-specific accumulation even if it is a peptide consisting only of the amino acid sequence represented by SEQ ID NO: 1, 2 or 3.

本明細書において、「グリオーマ」とは、神経膠腫ともいい、神経膠(グリア)細胞から発生する腫瘍を意味する。また、「神経膠(グリア)細胞」とは、神経系(脳及び脊髄等)を構成する神経細胞ではない細胞の総称であり、神経に栄養を与え、神経の活動を支える役割を果たしている。
グリオーマには、様々な種類及び悪性度があり、例えば、表1に示すように分類できる。
As used herein, the term "glioma" is also referred to as a glioma and means a tumor that develops from a glial cell. In addition, "glial cells" is a general term for cells that are not nerve cells that make up the nervous system (brain, spinal cord, etc.), and plays a role of nourishing nerves and supporting nerve activity.
There are various types and grades of glioma, which can be classified as shown in Table 1, for example.

表1において、「悪性度」とは、グレード(grade)ともいい、細胞の顕微鏡観察所見の異常、又は増殖及び転移速度の予測に基づいて評価されるものである。悪性度は、表2に示すように分類できる(参考文献:中里洋一、脳腫瘍の新WHO分類、脳神経外科 36:473−491,2008)。 In Table 1, "malignancy", also referred to as grade, is evaluated based on abnormal microscopic findings of cells or prediction of proliferation and metastasis rate. The malignancy can be classified as shown in Table 2 (Reference: Yoichi Nakazato, New WHO Classification of Brain Tumors, Neurosurgery 36: 473-491,2008).

表2において、MIB−1とは、抗Ki−67抗体のクローンの1つであって、増殖の程度を表わす細胞増殖マーカーである。また、Ki−67は乳癌、胃癌、大腸癌、子宮癌等多くの腫瘍において、分化度、血管侵襲及びリンパ節転移といった腫瘍の悪性度や予後とよく相関することが知られており、細胞増殖マーカーとして非常に有用である。 In Table 2, MIB-1 is one of the clones of the anti-Ki-67 antibody and is a cell proliferation marker indicating the degree of proliferation. In addition, Ki-67 is known to correlate well with the malignancy and prognosis of tumors such as degree of differentiation, vascular invasion and lymph node metastasis in many tumors such as breast cancer, gastric cancer, colon cancer and uterine cancer, and cell proliferation. Very useful as a marker.

上述したグリオーマは、様々な種類又は悪性度のグリオーマが混ざっていることが多く、同じ病名でも抗がん剤の効果、放射線治療の効果、生命予後等が異なる。また、様々な種類又は悪性度のグリオーマが混ざっていることで、腫瘍の一部分だけの生検では診断が難しいこともある。
上記(a)のペプチドは、上述した全ての種類又は悪性度のグリオーマの中でも、特に高悪性度のグリオーマであるグレード3、4の膠芽腫(グリオブラストーマ)に特異的な集積性を有するため、後述するように上記(a)のペプチドをキャリアとして使用することで、高悪性度のグリオーマ(グリオブラストーマ)を高感度且つ選択的に検出することができる。さらに、高悪性度のグリオーマ(グリオブラストーマ)を治療することができる。
The above-mentioned gliomas are often a mixture of various types or grades of gliomas, and even if they have the same disease name, the effects of anticancer agents, the effects of radiotherapy, the prognosis of life, etc. are different. In addition, a mixture of various types or grades of glioma can make diagnosis difficult by biopsy of only a portion of the tumor.
The peptide (a) has specific accumulation in grade 3 and 4 glioblastomas (gliomas), which are particularly high-grade gliomas, among all the above-mentioned types or grades of glioma. Therefore, by using the above-mentioned peptide (a) as a carrier as described later, high-grade glioblastoma (gliomablastoma) can be detected with high sensitivity and selectively. In addition, high-grade glioblastoma (glioblastoma) can be treated.

本明細書において、「グリオーマに特異的な集積性」とは、生体内正常組織及び他の系統の腫瘍細胞と比較して、グリオーマに高度に吸収され、集積する性質を意味する。 As used herein, "glioma-specific agglomeration" means the property of being highly absorbed and agglomerated by gliomas as compared to normal tissues in vivo and tumor cells of other strains.

配列番号1、2、3のいずれかで表されるアミノ酸配列において、Xは、塩基性を有するアミノ酸残基であることが好ましく、アスパラギン酸残基(D)又はグルタミン酸残基(E)であることがより好ましく、アスパラギン酸残基(D)であることがさらに好ましい。 In the amino acid sequence represented by any of SEQ ID NOs: 1, 2 and 3, X is preferably an amino acid residue having basicity, and is an aspartic acid residue (D) or a glutamic acid residue (E). It is more preferable, and it is further preferable that it is an aspartic acid residue (D).

上記(a)における配列番号1又は配列番号3で表されるアミノ酸配列のうち、より具体的には、下記配列番号4又は5で表されるアミノ酸配列等が挙げられる。
RQADDRLTV (配列番号4)
RRIHDFPLH (配列番号5)
Among the amino acid sequences represented by SEQ ID NO: 1 or SEQ ID NO: 3 in (a) above, more specifically, the amino acid sequence represented by SEQ ID NO: 4 or 5 below can be mentioned.
RQADDRLTV (SEQ ID NO: 4)
RRIHDFPLH (SEQ ID NO: 5)

本実施形態のペプチドは、上記(a)のペプチドと機能的に同等なペプチドとして、下記(b)のペプチドを含む。
(b)配列番号1、2、3のいずれかで表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含むアミノ酸配列からなり、且つ、グリオーマに特異的な集積性を有するペプチド。
The peptide of the present embodiment includes the peptide of the following (b) as a peptide functionally equivalent to the peptide of the above (a).
(B) In the amino acid sequence represented by any of SEQ ID NOs: 1, 2 and 3, the amino acid sequence comprises a sequence in which one or several amino acids are deleted, substituted or added, and is specific to a glioma. Peptide with a high degree of accumulation.

ここで、欠失、置換、若しくは付加されてもよいアミノ酸の数としては、1個以上15個以下が好ましく、1個以上10個以下がより好ましく、1個以上5個以下が特に好ましい。
さらに、前記(b)のペプチドは、グリオーマに特異的な集積性を有する。
Here, the number of amino acids that may be deleted, substituted, or added is preferably 1 or more and 15 or less, more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 5 or less.
Furthermore, the peptide (b) has glioma-specific accumulation.

本実施形態のペプチドは、上記(a)のペプチドと機能的に同等なペプチドとして、下記(c)のペプチドを含む。
(c)配列番号1、2、3のいずれかで表されるアミノ酸配列と同一性が60%以上であるアミノ酸配列からなり、且つ、グリオーマに特異的な集積性を有するペプチド。
The peptide of the present embodiment contains the peptide of the following (c) as a peptide functionally equivalent to the peptide of the above (a).
(C) A peptide consisting of an amino acid sequence having 60% or more identity with the amino acid sequence represented by any one of SEQ ID NOs: 1, 2 and 3, and having glioma-specific accumulation.

上記(a)のペプチドと機能的に同等であるためには60%以上の同一性を有する。係る同一性としては、70%以上が好ましく、80%以上がより好ましく、85%以上が更に好ましく、90%以上が特に好ましく、95%以上が最も好ましい。
さらに、前記(c)のペプチドは、グリオーマに特異的な集積性を有する。
In order to be functionally equivalent to the peptide of (a) above, it has 60% or more identity. As such identity, 70% or more is preferable, 80% or more is more preferable, 85% or more is further preferable, 90% or more is particularly preferable, and 95% or more is most preferable.
Furthermore, the peptide (c) has a glioma-specific accumulation.

ここで、基準アミノ酸配列に対する、対象アミノ酸配列の配列同一性は、例えば次のようにして求めることができる。まず、基準アミノ酸配列及び対象アミノ酸配列をアラインメントする。ここで、各アミノ酸配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準アミノ酸配列及び対象アミノ酸配列において、一致したアミノ酸の数を算出し、下記式(1)にしたがって、配列同一性を求めることができる。
「配列同一性(%)」 = [一致したアミノ酸の数]/[対象アミノ酸配列のアミノ酸の総数]×100 (1)
Here, the sequence identity of the target amino acid sequence with respect to the reference amino acid sequence can be obtained, for example, as follows. First, the reference amino acid sequence and the target amino acid sequence are aligned. Here, each amino acid sequence may include a gap so as to maximize the sequence identity. Subsequently, the number of matching amino acids in the reference amino acid sequence and the target amino acid sequence can be calculated, and the sequence identity can be determined according to the following formula (1).
"Sequence identity (%)" = [Number of matched amino acids] / [Total number of amino acids in the target amino acid sequence] x 100 (1)

上記(a)〜(c)のペプチドは、環状構造であってもよい。環状構造であることにより、グリオーマのみに吸収されやすくなる。また、上記(a)〜(c)のペプチドは、L−アミノ酸、D−アミノ酸、又はこれらの組み合わせからなるものであってもよく、L−アミノ酸からなるペプチドであることが好ましい。
L−アミノ酸は、天然に存在するアミノ酸であり、D−アミノ酸は、L−アミノ酸残基のキラリティーが反転しているものである。また、グリオーマに特異的な集積性を高めるために、又は他の物性を最適化するために化学的修飾を受けていてもよい。
The peptides (a) to (c) may have a cyclic structure. Due to the cyclic structure, it is easily absorbed only by the glioma. Further, the peptides (a) to (c) may be composed of L-amino acid, D-amino acid, or a combination thereof, and are preferably peptides composed of L-amino acid.
The L-amino acid is a naturally occurring amino acid, and the D-amino acid is the one in which the chirality of the L-amino acid residue is inverted. It may also be chemically modified to increase glioma-specific integration or to optimize other physical properties.

上記(a)〜(c)のペプチドは、さらに、N末端及びC末端にシステイン残基を備えていてもよい。具体的には、下記配列番号6、7又は8で表されるアミノ酸配列等が挙げられる。
CRQADDRLTVC (配列番号6)
CRCWYAVLYPC (配列番号7)
CRRIHDFPLHC (配列番号8)
本実施形態のペプチドは、N末端及びC末端にシステイン残基を備えることで、システイン残基が有するチオール基同士のジスルフィド結合を利用して環状化形態をとることができる。
The peptides (a) to (c) may further have cysteine residues at the N-terminal and C-terminal. Specifically, the amino acid sequence represented by the following SEQ ID NO: 6, 7 or 8 can be mentioned.
CRQADDRLTVC (SEQ ID NO: 6)
CRCWYAVLYPC (SEQ ID NO: 7)
CRRIHDFPLHC (SEQ ID NO: 8)
By providing cysteine residues at the N-terminal and C-terminal, the peptide of the present embodiment can take a cyclic form by utilizing the disulfide bond between thiol groups contained in the cysteine residue.

[ペプチドをコードする核酸]
一実施形態において、本発明は、上述したペプチドをコードする核酸を提供する。
[Nucleic acid encoding peptide]
In one embodiment, the invention provides nucleic acids encoding the peptides described above.

本実施形態の核酸によれば、グリオーマに特異的な集積性を有するペプチドを得ることができる。 According to the nucleic acid of the present embodiment, a peptide having glioma-specific accumulation can be obtained.

上記のペプチドをコードする核酸としては、例えば、配列番号9、10、11のいずれかで表される塩基配列からなる核酸、又は、配列番号9、10、11のいずれかで表される塩基配列と80%以上、例えば85%以上、例えば90%以上、例えば95%以上の同一性を有し、グリオーマに特異的な集積性を有するペプチドの構成成分となる各アミノ酸をコードする組み合わせの塩基配列のいかなるものも含めた核酸等が挙げられる。なお、配列番号9で表される塩基配列は、上記の配列番号4で表されるアミノ酸配列からなるペプチドをコードする核酸の塩基配列であり、配列番号10で表される塩基配列は、上記の配列番号2で表されるアミノ酸配列からなるペプチドをコードする核酸の塩基配列であり、配列番号11で表される塩基配列は、上記の配列番号5で表されるアミノ酸配列からなるペプチドをコードする核酸の塩基配列である。 Examples of the nucleic acid encoding the above peptide include a nucleic acid consisting of the base sequence represented by any of SEQ ID NOs: 9, 10 and 11, or a base sequence represented by any of SEQ ID NOs: 9, 10 and 11. Nucleotide sequence of a combination encoding each amino acid that is a constituent of a peptide having 80% or more, for example 85% or more, for example 90% or more, for example 95% or more identity, and having a glioma-specific accumulation. Nucleic acids and the like including any of the above can be mentioned. The base sequence represented by SEQ ID NO: 9 is the base sequence of the nucleic acid encoding the peptide consisting of the amino acid sequence represented by the above SEQ ID NO: 4, and the base sequence represented by SEQ ID NO: 10 is the above. It is a base sequence of a nucleic acid encoding a peptide consisting of the amino acid sequence represented by SEQ ID NO: 2, and the base sequence represented by SEQ ID NO: 11 encodes a peptide consisting of the amino acid sequence represented by SEQ ID NO: 5 above. It is a base sequence of a nucleic acid.

ここで、基準塩基配列に対する、対照塩基配列の配列同一性は、例えば次のようにして求めることができる。まず、基準塩基配列及び対象塩基配列をアラインメントする。ここで、各塩基配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準塩基配列及び対象塩基配列において、一致した塩基の塩基数を算出し、下記式(2)にしたがって、配列同一性を求めることができる。
「配列同一性(%)」 = [一致した塩基数]/[対象塩基配列の総塩基数]×100 (2)
Here, the sequence identity of the control base sequence with respect to the reference base sequence can be determined, for example, as follows. First, the reference base sequence and the target base sequence are aligned. Here, each base sequence may include a gap so as to maximize the sequence identity. Subsequently, the number of matching bases in the reference base sequence and the target base sequence can be calculated, and the sequence identity can be determined according to the following formula (2).
"Sequence identity (%)" = [number of matched bases] / [total number of bases in the target base sequence] x 100 (2)

[ペプチドをコードする核酸を含むベクター]
一実施形態において、本発明は、上述した核酸を含むベクターを提供する。
[Vector containing nucleic acid encoding peptide]
In one embodiment, the invention provides a vector containing the nucleic acids described above.

本実施形態のベクターによれば、グリオーマに特異的な集積性を有するペプチドを得ることができる。 According to the vector of this embodiment, a peptide having glioma-specific accumulation can be obtained.

本実施形態のベクターは、発現ベクターであることが好ましい。発現ベクターとしては特に限定されず、例えば、pBR322、pBR325、pUC12、pUC13等の大腸菌由来のプラスミド;pUB110、pTP5、pC194等の枯草菌由来のプラスミド;pSH19、pSH15等の酵母由来プラスミド;λファージ等のバクテリオファージ;アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス、レトロウイルス、肝炎ウイルス等のウイルス;及びこれらを改変したベクター等を用いることができる。 The vector of this embodiment is preferably an expression vector. The expression vector is not particularly limited, and for example, a plasmid derived from Escherichia coli such as pBR322, pBR325, pUC12 and pUC13; a plasmid derived from bacillus such as pUB110, pTP5 and pC194; a plasmid derived from yeast such as pSH19 and pSH15; Bacteriophages; viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, retrovirus, hepatitis virus; and vectors modified thereto can be used.

上述の発現ベクターにおいて、上述のペプチド発現用プロモーターとしては特に限定されず、例えば、EF1αプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、HSV−tkプロモーター等の動物細胞を宿主とした発現用のプロモーター、カリフラワーモザイクウイルス(CaMV)の35Sプロモーター、REF(rubber elongation factor)プロモーター等の植物細胞を宿主とした発現用のプロモーター、ポリヘドリンプロモーター、p10プロモーター等の昆虫細胞を宿主とした発現用のプロモーター等を使用することができる。これらプロモーターは、上述のペプチドを発現する宿主に応じて、適宜選択することができる。 In the above-mentioned expression vector, the promoter for expressing the above-mentioned peptide is not particularly limited, and for example, animal cells such as EF1α promoter, SRα promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, HSV-tk promoter and the like are used. A promoter for expression as a host, a promoter for expression using a plant cell as a host such as a 35S promoter of Califlower Mosaic Virus (CaMV), a REF (rubber election promoter) promoter, a polyhedrin promoter, an insect cell such as a p10 promoter, etc. A promoter for expression as a host can be used. These promoters can be appropriately selected depending on the host expressing the above-mentioned peptides.

上述の発現ベクターは、さらに、マルチクローニングサイト、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、複製起点等を有していてもよい。 The expression vector described above may further have a multicloning site, enhancer, splicing signal, polyA addition signal, selectable marker, origin of replication and the like.

[キャリア]
一実施形態において、本発明は、上述したペプチドを含むキャリアを提供する。
[Career]
In one embodiment, the invention provides a carrier comprising the peptides described above.

本実施形態のキャリアによれば、目的物質をグリオーマまで簡便且つ効率よく運搬することができる。 According to the carrier of the present embodiment, the target substance can be easily and efficiently transported to the glioma.

脳は2つの関門系、血液脳関門(Brain Blood Barrier:BBB)及び血液脳脊髄液関門(Blood−cerebrospinal fluid barrier:BCSFB)の存在によって、毒性である物質に対して保護されている。BBBの表面積は、BCSFBの表面積より約5000倍大きく、血清リガンドの取り込みに関する主な経路であると考えられている。また、BBBを構成する脳内皮は、中枢神経系の多くの疾患に有効であると考えられている薬剤の使用に関して、大きな障害となっている。また、原則として、約500ダルトンより小さい親油性分子のみがBBBを、すなわち血液から脳へ通過することができると考えられている。しかしながら、本実施形態のキャリアは、静脈注射で被検動物(ヒト又は非ヒト動物を含む各種哺乳動物、好ましくはヒト)に投与した場合において、BBBを通過することができ、脳内のグリオーマに到達し、選択的に吸収される。 The brain is protected against toxic substances by the presence of two barrier systems, the Blood-Cerebrospinal Fluid Barrier (BBB) and the Blood-Cerebrospinal Fluid Barrier (BCSFB). The surface area of BBB is about 5000 times larger than the surface area of BCSFB and is considered to be the main pathway for serum ligand uptake. In addition, the brain endothelium that constitutes the BBB poses a major obstacle to the use of drugs that are considered to be effective in many diseases of the central nervous system. Also, in principle, it is believed that only lipophilic molecules smaller than about 500 daltons can pass through the BBB, i.e. from blood to the brain. However, the carrier of the present embodiment can pass through the BBB when administered intravenously to a test animal (various mammals including humans or non-human animals, preferably humans), resulting in glioma in the brain. Reach and selectively absorbed.

本実施形態のキャリアは、さらに、標識物質又は修飾物質を備えることが好ましい。また、本実施形態のキャリアは、標識物質及び修飾物質両方を備えていてもよい。標識物質又は修飾物質は、上述のペプチドと、直接又はリンカーを介すことで、物理的又は化学的に結合されていてよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。また、結合位置は、上述のペプチドのN末端又はC末端いずれでもよい。 The carrier of the present embodiment preferably further comprises a labeling substance or a modifying substance. In addition, the carrier of the present embodiment may include both a labeling substance and a modifying substance. The labeling substance or modifying substance may be physically or chemically bound to the above-mentioned peptide, either directly or via a linker. Specifically, it may be a coordination bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any known bond, linker, and bond method can be adopted. Further, the binding position may be either the N-terminal or the C-terminal of the above-mentioned peptide.

標識物質としては、例えば安定同位体、放射性同位体、蛍光物質、陽電子放射断層撮影(Positron Emission Tomography:PET)用核種、単一光子放射断層撮影(Single photon emission computed tomography:SPECT)用核種、核磁気共鳴画像法(Magnetic resonance imaging:MRI)造影剤、コンピューター断層撮影法(Computed Tomography:CT)造影剤、磁性体等が挙げられる。中でも、安定同位体、放射性同位体又は蛍光物質が好ましい。上記標識物質を備えることで、目的物質がグリオーマに運搬されたか否かを簡便且つ高感度に確かめることができる。 Examples of the labeling substance include stable isotopes, radioactive isotopes, fluorescent substances, positron emission tomography (PET) nuclei, single photon emission computed tomography (SPECT) nuclei, and SPECT nuclei. Examples thereof include magnetic resonance imaging (MRI) contrasting agents, computed tomography (CT) contrasting agents, and magnetic materials. Of these, stable isotopes, radioactive isotopes or fluorescent substances are preferable. By providing the above-mentioned labeling substance, it is possible to easily and highly sensitively confirm whether or not the target substance has been transported to the glioma.

安定同位体としては、例えば13C、15N、H、17O、18Oが挙げられる。放射性同位体としては、例えばH、14C、13N、32P、33P、35S、125I、111In、64Cu、18Fが挙げられる。標識物質が安定同位体又は放射性同位体である場合、安定同位体標識アミノ酸又は放射性同位体標識アミノ酸を用いて、上述のペプチドを作製してもよい。安定同位体又は放射性同位体で標識されるアミノ酸としては、20種類のアミノ酸(アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、スレオニン、チロシン、バリン、トリプトファン、システイン、アスパラギン、グルタミン)であって、上述のペプチドに含まれるアミノ酸であれば特に限定されない。また、アミノ酸はL体であってもD体であってもよく、必要に応じて適宜選択することができる。Examples of stable isotopes include 13 C, 15 N, 2 H, 17 O, and 18 O. Examples of the radioactive isotope include 3 H, 14 C, 13 N, 32 P, 33 P, 35 S, 125 I, 111 In, 64 Cu, and 18 F. When the labeling substance is a stable isotope or a radioisotope, the above-mentioned peptide may be prepared by using a stable isotope-labeled amino acid or a radioisotope-labeled amino acid. Amino acids labeled with stable isotopes or radioactive isotopes include 20 types of amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine). , Valine, tryptophan, cysteine, asparagine, glutamic acid), and is not particularly limited as long as it is an amino acid contained in the above-mentioned peptide. Further, the amino acid may be L-form or D-form, and can be appropriately selected as needed.

安定同位体標識又は放射性同位体標識された上述のペプチドは、上述のペプチドをコードする核酸を含む上述のベクターを安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の存在する系で発現させることにより調製することができる。安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の存在する系としては、例えば安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の存在する無細胞ペプチド合成系や生細胞ペプチド合成系等を挙げることができる。すなわち、無細胞ペプチド合成系において安定同位体標識アミノ酸又は放射性同位体標識アミノ酸に加えて安定同位体非標識アミノ酸又は放射性同位体非標識アミノ酸を材料としてペプチドを合成させることや、生細胞ペプチド合成系において、上述のペプチドをコードする核酸を含む上述のベクターで形質転換した細胞を安定同位体標識アミノ酸又は放射性同位体標識アミノ酸存在下で培養することにより、上述のペプチドをコードする核酸を含む上述のベクターから安定同位体標識又は放射性同位体標識された上述のペプチドを調製することができる。 The stable isotope-labeled or radioisotope-labeled above-mentioned peptide is prepared by expressing the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide in a system in which a stable isotope-labeled amino acid or a radioisotope-labeled amino acid is present. can do. Examples of the system in which the stable isotope-labeled amino acid or the radioactive isotope-labeled amino acid is present include a cell-free peptide synthesis system and a live cell peptide synthesis system in which the stable isotope-labeled amino acid or the radioactive isotope-labeled amino acid is present. .. That is, in a cell-free peptide synthesis system, a peptide may be synthesized using a stable isotope-unlabeled amino acid or a radioisotope-unlabeled amino acid in addition to a stable isotope-labeled amino acid or a radioactive isotope-labeled amino acid, or a live cell peptide synthesis system. In, by culturing cells transformed with the above vector containing the above-mentioned peptide-encoding nucleic acid in the presence of a stable isotope-labeled amino acid or a radioisotope-labeled amino acid, the above-mentioned above-mentioned peptide-encoding nucleic acid is contained. The above-mentioned peptides labeled with stable isotopes or radioactive isotopes can be prepared from the vector.

無細胞ペプチド合成系を用いた安定同位体標識又は放射性同位体標識された上述のペプチドの発現は、上述のペプチドをコードする核酸を含む上述のベクターや上記の安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の他に、安定同位体標識又は放射性同位体標識された上述のペプチドの合成のために必要な安定同位体非標識アミノ酸又は放射性同位体非標識アミノ酸、無細胞ペプチド合成用細胞抽出液、エネルギー源(ATP、GTP、クレアチンホスフェート等の高エネルギーリン酸結合含有物)等を用いて行うことができる。温度、時間等の反応条件は、適宜最適な条件を選択して行うことができ、例えば温度は20〜40℃、好ましくは23〜37℃であり、また反応時間は1〜24時間、好ましくは10〜20時間である。 Expression of the above stable isotope-labeled or radioisotope-labeled peptide using a cell-free peptide synthesis system is the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide or the above-mentioned stable isotope-labeled amino acid or radioisotope. In addition to labeled amino acids, stable isotope-unlabeled amino acids or radioactive isotope-unlabeled amino acids required for the synthesis of the above-mentioned peptides labeled with stable isotopes or radioactive isotopes, cell extracts for cell-free peptide synthesis, It can be carried out using an energy source (a high-energy phosphate bond-containing substance such as ATP, GTP, creatine phosphate, etc.) or the like. The reaction conditions such as temperature and time can be appropriately selected and carried out. For example, the temperature is 20 to 40 ° C., preferably 23 to 37 ° C., and the reaction time is 1 to 24 hours, preferably 1 to 24 hours. 10 to 20 hours.

本明細書において、「無細胞ペプチド合成用細胞抽出液」とは、リボソーム、tRNA等のタンパク質合成に関与する翻訳系、又は、転写系及び翻訳系に必要な成分を含む植物細胞、動物細胞、真菌細胞、細菌細胞からの抽出液を意味する。具体的には、大腸菌、小麦胚芽、ウサギ網赤血球、マウスL−細胞、エールリッヒ腹水癌細胞、HeLa細胞、CHO細胞、出芽酵母等の細胞抽出液を挙げることができる。かかる細胞抽出液の調製は、例えばPratt,J.M.ら、Transcription and trasnlation−a practical approach(1984)、pp.179−209に記載の方法に従い、上記の細胞をフレンチプレス、グラスビーズ、超音波破砕装置等を用いて破砕処理し、タンパク質成分やリボソームを可溶化するための数種類の塩を含有する緩衝液を加えてホモジナイズし、遠心分離にて不溶成分を沈殿させることによって行うことができる。 As used herein, the term "cell extract for cell-free peptide synthesis" refers to a translation system involved in the synthesis of proteins such as ribosomes and tRNA, or plant cells and animal cells containing components necessary for the transcription system and translation system. It means fungal cells and extracts from bacterial cells. Specific examples thereof include cell extracts of Escherichia coli, wheat germ, rabbit reticulocyte, mouse L-cell, Ehrlich ascites cancer cell, HeLa cell, CHO cell, budding yeast and the like. The preparation of such cell extracts can be described, for example, in Pratt, J. et al. M. Et al., Translation and translation-a practical approach (1984), pp. According to the method described in 179-209, the above cells are disrupted using a French press, glass beads, an ultrasonic disruptor or the like, and a buffer solution containing several kinds of salts for solubilizing protein components and ribosomes is prepared. In addition, it can be homogenized and centrifuged to precipitate insoluble components.

また、無細胞ペプチド合成系を用いた安定同位体標識又は放射性同位体標識された上述のペプチドの発現は、例えば、小麦胚芽抽出液を備えたPremium Expression Kit(セルフリーサイエンス社製)、大腸菌抽出液を備えたRTS 100,E.coli HY Kit(Roche Applied Science社製)、無細胞くんQuick(大陽日酸社製)等市販のキットを適宜使用して行ってもよい。発現させた安定同位体標識又は放射性同位体標識された上述のペプチドが不溶性の場合、グアニジン塩酸塩、尿素等のタンパク質変性剤を用いて適宜可溶化させてもよい。安定同位体標識又は放射性同位体標識された上述のペプチドは、さらに分画遠心法、ショ糖密度勾配遠心法等による分画処理や、アフィニティーカラム、イオン交換クロマトグラフィー等を用いた精製処理により調製することもできる。 In addition, the expression of the above-mentioned peptides labeled with stable isotopes or radioisotopes using a cell-free peptide synthesis system is described, for example, in Premium Expression Kit (manufactured by Cellfree Science) equipped with a wheat germ extract, Escherichia coli extraction. RTS 100 with liquid, E.I. Commercially available kits such as Escherichia coli HY Kit (manufactured by Roche Applied Science) and Cell-free-kun Quick (manufactured by Taiyo Nippon Sanso) may be used as appropriate. When the expressed stable isotope-labeled or radioisotope-labeled above-mentioned peptide is insoluble, it may be appropriately solubilized with a protein denaturing agent such as guanidine hydrochloride or urea. The above-mentioned peptides labeled with stable isotopes or radioisotopes are further prepared by fractionation treatment by fractionation centrifugation, sucrose density gradient centrifugation, etc., or purification treatment using affinity column, ion exchange chromatography, etc. You can also do it.

生細胞ペプチド合成系を用いた安定同位体標識又は放射性同位体標識された上述のペプチドの発現は、生細胞に上述のペプチドをコードする核酸を含む上述のベクターを導入し、かかる生細胞を栄養分や抗生物質等の他、上記の安定同位体標識アミノ酸又は放射性同位体標識アミノ酸、安定同位体標識ペプチド又は放射性同位体標識ペプチドの合成のために必要な安定同位体非標識アミノ酸又は放射性同位体非標識アミノ酸等を含む培養液中で培養することにより行うことができる。ここで生細胞としては、上述のペプチドをコードする核酸を含む上述のベクターを発現させることができる生細胞であれば特に限定されず、例えばチャイニーズハムスター卵巣(CHO)細胞等の哺乳類細胞株や、大腸菌、酵母細胞、昆虫細胞、植物細胞等の生細胞を挙げることができ、簡便性や費用対効果の面から考慮すると、大腸菌が好ましい。上述のペプチドをコードする核酸を含む上述のベクターの発現は、遺伝子組換え技術により、それぞれの生細胞で発現できるように設計された発現ベクターへ組み込み、かかる発現ベクターを生細胞へ導入することにより行うことができる。また上述のペプチドをコードする核酸を含む上述のベクターの生細胞への導入は、使用する生細胞に適した方法で行うことができ、例えば、エレクトロポレーション法、ヒートショック法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、マイクロインジェクション法、パーティクル・ガン法、ウイルスを用いた方法や、FuGENE(登録商標) 6 Transfection Reagent(ロシュ社製)、Lipofectamine 2000 Reagent(インビトロジェン社製)、Lipofectamine LTX Reagent(インビトロジェン社製)、Lipofectamine 3000 Reagent(インビトロジェン社製)等の市販のトランスフェクション試薬を用いた方法等を挙げることができる。 Expression of the above-mentioned stable isotope-labeled or radioisotope-labeled peptide using a live cell peptide synthesis system introduces the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide into a living cell and nourishes the living cell. And antibiotics, as well as stable isotope-labeled amino acids or radioactive isotope-labeled amino acids, stable isotope-labeled peptides or radioactive isotope-labeled peptides necessary for the synthesis of the above stable isotope-labeled amino acids or radioactive isotope-labeled peptides. This can be done by culturing in a culture solution containing a labeled amino acid or the like. Here, the living cell is not particularly limited as long as it is a living cell capable of expressing the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide, for example, a mammalian cell line such as a Chinese hamster ovary (CHO) cell, or a mammalian cell line. Living cells such as Escherichia coli, yeast cells, insect cells, and plant cells can be mentioned, and Escherichia coli is preferable from the viewpoint of convenience and cost effectiveness. The expression of the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide is incorporated into an expression vector designed to be expressed in each living cell by gene recombination technology, and the expression vector is introduced into the living cell. It can be carried out. In addition, the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide can be introduced into living cells by a method suitable for the living cells to be used, for example, electroporation method, heat shock method, calcium phosphate method, lipofection. Method, DEAE dextran method, microinjection method, particle gun method, method using virus, FuGENE (registered trademark) 6 Transfection Reagent (manufactured by Roche), Lipofectamine 2000 Reagent (manufactured by Invitrogen), Lipofectamine LTX Reagent A method using a commercially available transfection reagent such as Lipofectionamine 3000 Reagent (manufactured by Invitrogen) can be mentioned.

生細胞ペプチド合成系により発現させた安定同位体標識又は放射性同位体標識された上述のペプチドは、安定同位体標識又は放射性同位体標識された上述のペプチドを含む生細胞を破砕処理や抽出処理することにより調製することができる。破砕処理としては、例えば凍結融解法、フレンチプレス、グラスビーズ、ホモジナイザー、超音波破砕装置等を用いた物理的破砕処理等を挙げることができる。また抽出処理としては、例えばグアニジン塩酸塩、尿素等のタンパク質変性剤を用いた抽出処理等を挙げることができる。安定同位体標識又は放射性同位体標識された上述のペプチドは、さらに分画遠心法、ショ糖密度勾配遠心法等による分画処理や、アフィニティーカラム、イオン交換クロマトグラフィー等を用いた精製処理等により調製することもできる。 The above-mentioned stable isotope-labeled or radioisotope-labeled peptide expressed by the live cell peptide synthesis system disrupts or extracts live cells containing the above-mentioned stable isotope-labeled or radioisotope-labeled peptide. Can be prepared by. Examples of the crushing treatment include a freeze-thaw method, a French press, glass beads, a homogenizer, a physical crushing treatment using an ultrasonic crushing device, and the like. Further, as the extraction treatment, for example, an extraction treatment using a protein denaturing agent such as guanidine hydrochloride or urea can be mentioned. The above-mentioned peptides labeled with stable isotopes or radioisotopes are further subjected to fractionation treatment by fractionation centrifugation, sucrose density gradient centrifugation, etc., purification treatment using affinity column, ion exchange chromatography, etc. It can also be prepared.

蛍光物質としては、例えば公知の量子ドット、インドシアニングリーン、5−アミノレブリン酸(5−ALA;代謝産物プロトポルフィリンIX(PP IX)、近赤外蛍光色素(例えば、Cy5.5、Cy7、AlexaFluoro等)、その他公知の蛍光色素(例えば、GFP、FITC(Fluorescein)、TAMRA等)等が挙げられる。蛍光物質標識された上述のペプチドは、蛍光物質及び上述のペプチドをコードする核酸を含む上述のベクターを、安定同位体標識アミノ酸又は放射性同位体標識アミノ酸を使用せずに、上述の無細胞ペプチド合成系又は生細胞ペプチド合成系により調製すればよい。 Examples of the fluorescent substance include known quantum dots, indocyanine green, 5-aminolevulinic acid (5-ALA; metabolite protoporphyrin IX (PP IX)), near-infrared fluorescent dye (for example, Cy5.5, Cy7, AlexaFluoro, etc.). ), Other known fluorescent dyes (for example, GFP, FITC (Fluorescein), TAMRA, etc.). The above-mentioned fluorescent substance-labeled peptide contains the above-mentioned vector containing a fluorescent substance and a nucleic acid encoding the above-mentioned peptide. May be prepared by the above-mentioned cell-free peptide synthesis system or live cell peptide synthesis system without using stable isotope-labeled amino acids or radioisotope-labeled amino acids.

PET用核種、SPECT用核種として好ましくは、例えば11C、13N、15O、18F、66Ga、67Ga、68Ga、60Cu、61Cu、62Cu、67Cu、64Cu、48V、Tc−99m、241Am、55Co、57Co、153Gd、111In、133Ba、82Rb、139Ce、Te−123m、137Cs、86Y、90Y、185/187Re、186/188Re、125I、又はそれらの錯体、或いはそれらの組み合わせ等が挙げられる。PET用核種又はSPECT用核種で標識された上述のペプチドは、上述のペプチドをコードする核酸を含む上述のベクターを、上述の無細胞ペプチド合成系又は生細胞ペプチド合成系により調製すればよい。
MRI造影剤、CT造影剤及び磁性体としては、例えばガドリニウム、Gd−DTPA、Gd−DTPA−BMA、Gd−HP−DO3A、ヨード、鉄、酸化鉄、クロム、マンガン、又はその錯体、若しくはそのキレート錯体等が挙げられる。MRI造影剤、CT造影剤又は磁性体で標識された上述のペプチドは、MRI造影剤、CT造影剤又は磁性体と上述のペプチドとを直接又はリンカーを介すことで、物理的又は化学的に結合させて調製すればよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。
The nuclides for PET and SPECT are preferably, for example, 11 C, 13 N, 15 O, 18 F, 66 Ga, 67 Ga, 68 Ga, 60 Cu, 61 Cu, 62 Cu, 67 Cu, 64 Cu, 48 V. , Tc-99m, 241 Am, 55 Co, 57 Co, 153 Gd, 111 In, 133 Ba, 82 Rb, 139 Ce, Te-123m, 137 Cs, 86 Y, 90 Y, 185/187 Re, 186/188 Examples thereof include Re, 125 I, or a complex thereof, or a combination thereof. The above-mentioned peptide labeled with a PET nuclide or a SPECT nuclide may be prepared by preparing the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide by the above-mentioned cell-free peptide synthesis system or live cell peptide synthesis system.
Examples of the MRI contrast agent, CT contrast agent and magnetic material include gadolinium, Gd-DTPA, Gd-DTPA-BMA, Gd-HP-DO3A, iodine, iron, iron oxide, chromium, manganese, or a complex thereof, or a chelate thereof. Examples include a complex. The above-mentioned peptide labeled with an MRI contrast agent, CT contrast agent or magnetic material can be physically or chemically obtained by directly or via a linker between the MRI contrast agent, CT contrast agent or magnetic material and the above-mentioned peptide. It may be prepared by combining them. Specifically, it may be a coordination bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any known bond, linker, and bond method can be adopted.

修飾物質としては、例えば糖鎖、ポリエチレングリコール(PEG)等を挙げることができる。上記の修飾物質を備えることで、目的物質がグリオーマ細胞内に簡便且つ効率よく吸収されやすくなる。修飾物質で修飾された上述のペプチドは、修飾物質と上述のペプチドとを直接又はリンカーを介すことで、物理的又は化学的に結合させて調製すればよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。 Examples of the modifying substance include sugar chains and polyethylene glycol (PEG). By providing the above-mentioned modifying substance, the target substance can be easily and efficiently absorbed into glioma cells. The above-mentioned peptide modified with the modifying substance may be prepared by physically or chemically binding the modifying substance and the above-mentioned peptide directly or via a linker. Specifically, it may be a coordination bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any known bond, linker, and bond method can be adopted.

本実施形態のキャリアにおいて、目的物質としては、用途に応じて適宜選択することができ、例えばグリオーマのイメージングのために使用する場合においては、後述するとおり、上述の標識物質を目的物質として備えることができ、また、グリオーマの治療又は診断用途で使用する場合においては、後述するとおり、生理活性物質を目的物質として備えることができる。目的物質は、上述のペプチドと、直接又はリンカーを介すことで、物理的又は化学的に結合されていてよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。また、結合位置は、上述のペプチドのN末端又はC末端いずれでもよい。 In the carrier of the present embodiment, the target substance can be appropriately selected depending on the intended use. For example, when used for imaging of glioma, the above-mentioned labeling substance is provided as the target substance as described later. In addition, when used for the treatment or diagnostic use of glioma, a physiologically active substance can be provided as a target substance as described later. The target substance may be physically or chemically bound to the above-mentioned peptide, either directly or via a linker. Specifically, it may be a coordination bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any known bond, linker, and bond method can be adopted. Further, the binding position may be either the N-terminal or the C-terminal of the above-mentioned peptide.

また、本実施形態のキャリアにおいて、目的物質がタンパク質である場合、目的物質と上述のペプチドとを含む融合タンパク質は、例えば次のような方法により作製することができる。まず、融合タンパク質をコードする核酸を含む発現ベクターを用いて、宿主を形質転換する。続いて、当該宿主を培養して融合タンパク質を発現させる。培地の組成、培養の温度、時間、誘導物質の添加等の条件は、形質転換体が生育し、融合タンパク質が効率よく産生されるよう、公知の方法に従って当業者が決定できる。また、例えば、選択マーカーとして抗生物質抵抗性遺伝子を発現ベクターに組み込んだ場合、培地に抗生物質を加えることにより、形質転換体を選択することができる。続いて、宿主が発現した融合タンパク質を適宜の方法により精製することにより、融合タンパク質が得られる。 Further, in the carrier of the present embodiment, when the target substance is a protein, a fusion protein containing the target substance and the above-mentioned peptide can be produced, for example, by the following method. First, a host is transformed with an expression vector containing a nucleic acid encoding a fusion protein. Subsequently, the host is cultured to express the fusion protein. Conditions such as the composition of the medium, the temperature and time of culturing, and the addition of the inducer can be determined by those skilled in the art according to known methods so that the transformant grows and the fusion protein is efficiently produced. Further, for example, when an antibiotic resistance gene is incorporated into an expression vector as a selection marker, a transformant can be selected by adding an antibiotic to the medium. Subsequently, the fusion protein expressed by the host is purified by an appropriate method to obtain the fusion protein.

宿主としては、融合タンパク質をコードする核酸を含む発現ベクターを発現させることができる生細胞であれば特に限定されず、例えばチャイニーズハムスター卵巣(CHO)細胞等の哺乳類細胞株や、ウイルス(例えば、アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス、レトロウイルス、肝炎ウイルス等のウイルス等)、細菌(例えば、大腸菌等)等の微生物、酵母細胞、昆虫細胞、植物細胞などの生細胞が挙げられる。
さらに、本実施形態のキャリアにおいて、上述の融合タンパク質をコードする核酸を含む発現ベクターをグリオーマに直接導入し、発現させてもよい。
The host is not particularly limited as long as it is a living cell capable of expressing an expression vector containing a nucleic acid encoding a fusion protein, and a mammalian cell line such as a Chinese hamster ovary (CHO) cell or a virus (for example, adenovirus) is used. Viral cells such as viruses, adenovirus, lentivirus, vaccinia virus, baculovirus, retrovirus, hepatitis virus and other viruses), bacteria (for example, Escherichia coli) and other microorganisms, yeast cells, insect cells and plant cells Can be mentioned.
Furthermore, in the carrier of the present embodiment, an expression vector containing the nucleic acid encoding the above-mentioned fusion protein may be directly introduced into the glioma and expressed.

[医薬組成物]
一実施形態において、本発明は、上述のキャリアと生理活性物質とを備える医薬組成物を提供する。
[Pharmaceutical composition]
In one embodiment, the present invention provides a pharmaceutical composition comprising the carriers described above and a bioactive substance.

本実施形態の医薬組成物によれば、グリオーマに起因する脳脊髄腫瘍を選択的に治療することができる。 According to the pharmaceutical composition of the present embodiment, glioma-induced cerebrospinal tumors can be selectively treated.

本明細書において、「生理活性物質」としては、グリオーマに起因する脳脊髄腫瘍の治療に有効なものであれば、特別な限定はなく、例えば抗癌剤等の薬剤、核酸、グリオーマに特異的に結合する抗体、抗体断片、アプタマー等が挙げられる。
「生理活性物質」としては、グリオーマ選択的な細胞障害活性を有する分子標的薬が好ましいが、上述のキャリアにより、グリオーマ選択的に蓄積されるため、従来の抗癌剤として用いられているサイトトキシック薬でもよい。
また、生理活性物質は、上述のキャリアと、直接又はリンカーを介すことで、物理的又は化学的に結合されていてよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。また、生理活性物質と上述のキャリアとの結合位置は、必要に応じて適宜選択できる。また、本実施形態の医薬組成物において、上述のキャリアは上述の標識物質又は修飾物質を含んでいてもよい。
In the present specification, the "physiologically active substance" is not particularly limited as long as it is effective for the treatment of cerebral spinal cord tumors caused by glioma, and specifically binds to, for example, a drug such as an anticancer agent, nucleic acid, or glioma. Examples thereof include antibodies, antibody fragments, aptamers and the like.
As the "physiologically active substance", a molecular-targeted drug having glioma-selective cytotoxic activity is preferable, but since glioma-selective accumulation is performed by the above-mentioned carrier, even cytotoxic drugs used as conventional anticancer agents can be used. Good.
In addition, the physiologically active substance may be physically or chemically bonded to the above-mentioned carriers directly or via a linker. Specifically, it may be a coordination bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any known bond, linker, and bond method can be adopted. In addition, the binding position between the physiologically active substance and the above-mentioned carrier can be appropriately selected as needed. Further, in the pharmaceutical composition of the present embodiment, the above-mentioned carrier may contain the above-mentioned labeling substance or modifying substance.

核酸は、例えば、siRNA、miRNA、antisense、又はそれらの機能を代償する人工核酸(例えば、BNA(Bridged Nucleic Acid)等)等が挙げられる。 Examples of the nucleic acid include siRNA, miRNA, antisense, and artificial nucleic acids that compensate for their functions (for example, BNA (Bridged Nucleic Acid) and the like).

抗体は、例えば、マウス等のげっ歯類の動物にグリオーマ由来のペプチド等を抗原として免疫することによって作製することができる。また、例えば、ファージライブラリーのスクリーニングにより作製することができる。抗体断片としては、Fv、Fab、scFv等が挙げられる。 The antibody can be produced, for example, by immunizing a rodent animal such as a mouse with a peptide derived from glioma as an antigen. It can also be prepared, for example, by screening a phage library. Examples of the antibody fragment include Fv, Fab, scFv and the like.

アプタマーとは、グリオーマに対する特異的結合能を有する物質である。アプタマーとしては、核酸アプタマー、ペプチドアプタマー等が挙げられる。グリオーマに特異的結合能を有する核酸アプタマーは、例えば、systematic evolution of ligand by exponential enrichment(SELEX)法等により選別することができる。また、グリオーマに特異的結合能を有するペプチドアプタマーは、例えば酵母を用いたTwo−hybrid法等により選別することができる。 Aptamers are substances that have a specific binding ability to glioma. Examples of the aptamer include nucleic acid aptamers and peptide aptamers. Nucleic acid aptamers having a specific binding ability to glioma can be selected by, for example, the systematic evolution of ligand by exponential evolution (SELEX) method or the like. In addition, peptide aptamers having a specific binding ability to glioma can be selected by, for example, the Two-hybrid method using yeast.

本明細書において、「グリオーマに起因する脳脊髄腫瘍」とは、グリオーマが原因となり発生した脳腫瘍及び脊髄腫瘍を意味し、その種類及び悪性度は上述したとおりである。 In the present specification, "cerebral spinal cord tumor caused by glioma" means a brain tumor and spinal cord tumor caused by glioma, and the type and malignancy thereof are as described above.

本実施形態の医薬組成物は、グリオーマに起因する脳脊髄腫瘍診断、グリオーマに起因する脳脊髄腫瘍治療効果診断、病態解析、グリオーマに起因する脳脊髄腫瘍治療、又はグリオーマに起因する脳脊髄腫瘍を伴う疾患の診断、病態解析、治療、治療効果診断のために用いることができる。本実施形態の医薬組成物を用いた診断方法としては、例えばPET、SPECT、CT、MRI、内視鏡による診断、蛍光検出器による診断等が挙げられる。 The pharmaceutical composition of the present embodiment comprises glioma-induced cerebrospinal tumor diagnosis, glioma-induced cerebrospinal tumor therapeutic effect diagnosis, pathological analysis, glioma-induced cerebrospinal tumor treatment, or glioma-induced cerebrospinal tumor. It can be used for diagnosis of associated diseases, pathological analysis, treatment, and diagnosis of therapeutic effect. Examples of the diagnostic method using the pharmaceutical composition of the present embodiment include PET, SPECT, CT, MRI, endoscopic diagnosis, fluorescence detector diagnosis, and the like.

<投与量>
本実施形態の医薬組成物は、被検動物(ヒト又は非ヒト動物を含む各種哺乳動物、好ましくはヒト)の年齢、性別、体重、症状、治療方法、投与方法、処理時間等を勘案して適宜調節される。
例えば、本実施形態の医薬組成物を注射剤により静脈内(Intravenous:i.v.)注射する場合、被検動物(好ましくはヒト)に対し、1回の投与において1kg体重当たり、5mg以上のペプチドの量を投与することが好ましく、5mg以上20mg以下のペプチドの量を投与することがより好ましく、5mg以上15mg以下のペプチドの量を投与することが特に好ましい。
<Dose>
The pharmaceutical composition of the present embodiment takes into consideration the age, sex, body weight, symptoms, treatment method, administration method, treatment time, etc. of the test animal (various mammals including human or non-human animals, preferably human). Adjusted as appropriate.
For example, when the pharmaceutical composition of the present embodiment is intravenously injected (Intravenous: iv) by an injection, 5 mg or more per 1 kg of body weight per 1 kg of a test animal (preferably human) is administered. It is preferable to administer the amount of peptide, more preferably the amount of peptide of 5 mg or more and 20 mg or less, and particularly preferably the amount of peptide of 5 mg or more and 15 mg or less.

投与回数としては、1週間平均当たり、1回〜数回投与することが好ましい。
投与形態としては、例えば、動脈内注射、静脈内注射、皮下注射、鼻腔内的、経気管支的、筋内的、経皮的、又は経口的に当業者に公知の方法が挙げられ、静脈内注射が好ましい。本実施形態の医薬組成物は、上述の通り、静脈内注射により被験動物(ヒト又は非ヒト動物を含む各種哺乳動物、好ましくはヒト)に投与した場合において、BBBを通過することができ、脳内のグリオーマに到達し、グリオーマに起因する脳脊髄腫瘍を選択的に治療することができる。
As for the number of administrations, it is preferable to administer once to several times per week on average.
Examples of the administration form include intra-arterial injection, intravenous injection, subcutaneous injection, intranasal injection, transbronchial, intramuscular, percutaneous, or oral methods known to those skilled in the art, and intravenously. Injection is preferred. As described above, the pharmaceutical composition of the present embodiment can pass through the BBB and can pass through the brain when administered to a test animal (various mammals including humans or non-human animals, preferably humans) by intravenous injection. It can reach the glioma within and selectively treat glioma-induced cerebrospinal tumors.

<組成成分>
本実施形態の医薬組成物は、治療的に有効量の上述のキャリア及び生理活性物質、並びに薬学的に許容されうる担体又は希釈剤を含む。薬学的に許容されうる担体又は希釈剤は、賦形剤、稀釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味料、粘稠剤、矯味剤、溶解補助剤、添加剤等が挙げられる。これら担体の1種以上を用いることにより、注射剤、液剤、カプセル剤、懸濁剤、乳剤、又はシロップ剤等の形態の医薬組成物を調製することができる。
また、担体としてコロイド分散系を用いることもできる。コロイド分散系は、ペプチドの生体内安定性を高める効果や、特定の臓器、組織、又は細胞へ、ペプチドの移行性を高める効果が期待される。コロイド分散系としては、ポリエチレングリコール、高分子複合体、高分子凝集体、ナノカプセル、ミクロスフェア、ビーズ、水中油系の乳化剤、ミセル、混合ミセル、リポソームを包含する脂質を挙げることができ、特定の臓器、組織、又は細胞へ、ペプチドを効率的に輸送する効果のある、リポソームや人工膜の小胞が好ましい。
<Composition component>
The pharmaceutical composition of this embodiment comprises a therapeutically effective amount of the carrier and bioactive agent described above, as well as a pharmaceutically acceptable carrier or diluent. Pharmaceutically acceptable carriers or diluents are excipients, diluters, bulking agents, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, colorants, sweeteners, thickeners, flavors. Examples include agents, solubilizers, additives and the like. By using one or more of these carriers, pharmaceutical compositions in the form of injections, liquids, capsules, suspensions, emulsions, syrups and the like can be prepared.
A colloidal dispersion system can also be used as the carrier. The colloidal dispersion system is expected to have an effect of enhancing the in vivo stability of the peptide and an effect of enhancing the transferability of the peptide to a specific organ, tissue or cell. Examples of the colloidal dispersion system include polyethylene glycol, polymer composites, polymer aggregates, nanocapsules, microspheres, beads, oil-in-water emulsifiers, micelles, mixed micelles, and lipids including liposomes. Liposomal or artificial membrane vesicles, which have the effect of efficiently transporting peptides to the organs, tissues, or cells of the body, are preferred.

本実施形態の医薬組成物における製剤化の例としては、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤として経口的に使用されるものが挙げられる。
又は、水若しくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用されるものが挙げられる。さらには、薬理学上許容される担体又は希釈剤、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化されたものが挙げられる。
Examples of formulation in the pharmaceutical composition of the present embodiment include those used orally as sugar-coated tablets, capsules, elixirs, and microcapsules as needed.
Alternatively, aseptic solutions with water or other pharmaceutically acceptable liquids, or those used parenterally in the form of injections of suspensions can be mentioned. Furthermore, pharmacologically acceptable carriers or diluents, specifically sterile water or saline, vegetable oils, emulsifiers, suspensions, surfactants, stabilizers, flavoring agents, excipients, vehicles, etc. Examples thereof include those formulated by appropriately combining with an antiseptic, a binder and the like and mixing in a unit dose form required for generally accepted pharmaceutical practice.

錠剤、カプセル剤に混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸のような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖又はサッカリンのような甘味剤、ペパーミント、アカモノ油又はチェリーのような香味剤が用いられる。調剤単位形態がカプセルである場合には、上記の材料にさらに油脂のような液状担体を含有することができる。 Additives that can be mixed with tablets and capsules include, for example, binders such as gelatin, corn starch, traganth gum, gum arabic, excipients such as crystalline cellulose, swelling such as corn starch, gelatin and alginic acid. Agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavors such as peppermint, reddish oil or cherry are used. When the dispensing unit form is a capsule, the above-mentioned material can further contain a liquid carrier such as fat or oil.

注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD−ソルビトール、D−マンノース、D−マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO−50と併用してもよい。
Aseptic compositions for injection can be formulated according to routine formulation practices using vehicles such as distilled water for injection.
Aqueous solutions for injection include, for example, saline, isotonic solutions containing glucose and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and suitable solubilizers such as. Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol and nonionic surfactants such as Polysorbate 80 (TM), HCO-50 may be used in combination.

油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液等)、無痛化剤(例えば、塩酸プロカイン等)、安定剤(例えば、ベンジルアルコール、フェノール等)、酸化防止剤等を配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。 Examples of the oily liquid include sesame oil and soybean oil, and benzyl benzoate and benzyl alcohol may be used in combination as solubilizing agents. In addition, a buffer (for example, phosphate buffer, sodium acetate buffer, etc.), a soothing agent (for example, procaine hydrochloride, etc.), a stabilizer (for example, benzyl alcohol, phenol, etc.), an antioxidant, etc. are blended. You may. The prepared injection solution is usually filled in a suitable ampoule.

注射剤である場合、上記のような水性又は非水性の希釈剤、懸濁剤、又は乳濁剤として調製することもできる。このような注射剤の無菌化は、フィルターによる濾過滅菌、殺菌剤等の配合により行うことができる。注射剤は、用事調製の形態として製造することができる。即ち、凍結乾燥法などによって、無菌の固体組成物とし、使用前に注射用蒸留水又は他の溶媒に溶解して使用することができる。 When it is an injection, it can also be prepared as an aqueous or non-aqueous diluent, suspension, or emulsion as described above. Such sterilization of the injection can be performed by filtration sterilization with a filter, blending of a bactericidal agent or the like. Injectables can be produced in the form of errand preparation. That is, a sterile solid composition can be prepared by a freeze-drying method or the like, and the composition can be dissolved in distilled water for injection or another solvent before use.

<治療方法>
本発明の一側面は、グリオーマに起因する脳脊髄腫瘍の治療のための上述のキャリアと生理活性物質とを備える医薬組成物を提供する。
また、本発明の一側面は、治療的に有効量の上述のキャリア及び生理活性物質、並びに薬学的に許容されうる担体又は希釈剤を含む医薬組成物を提供する。
また、本発明の一側面は、前記医薬組成物を含む、グリオーマに起因する脳脊髄腫瘍の治療剤を提供する。
また、本発明の一側面は、グリオーマに起因する脳脊髄腫瘍の治療剤を製造するための上述のキャリア及び生理活性物質の使用を提供する。
また、本発明の一側面は、上述のキャリア及び生理活性物質の有効量を、治療を必要とする患者に投与することを含む、グリオーマに起因する脳脊髄腫瘍の治療方法を提供する。
<Treatment method>
One aspect of the present invention provides a pharmaceutical composition comprising the above-mentioned carriers and bioactive substances for the treatment of cerebrospinal tumors caused by glioma.
Also, one aspect of the invention provides a pharmaceutical composition comprising a therapeutically effective amount of the aforementioned carrier and bioactive agent, as well as a pharmaceutically acceptable carrier or diluent.
In addition, one aspect of the present invention provides a therapeutic agent for glioma-induced cerebrospinal tumors, which comprises the pharmaceutical composition.
Also, one aspect of the invention provides the use of the carriers and bioactive substances described above for the manufacture of therapeutic agents for glioma-induced cerebrospinal tumors.
In addition, one aspect of the present invention provides a method for treating a glioma-induced cerebrospinal tumor, which comprises administering an effective amount of the above-mentioned carrier and bioactive substance to a patient in need of treatment.

[グリオーマをイメージングするための方法]
一実施形態において、本発明は、グリオーマをイメージングするための方法であって、上述のキャリアを用いる方法を提供する。
[Methods for imaging glioma]
In one embodiment, the present invention provides a method for imaging a glioma, using the carriers described above.

本実施形態の方法によれば、グリオーマを簡便、高感度且つ選択的に検出することができる。 According to the method of the present embodiment, glioma can be detected easily, with high sensitivity and selectively.

本実施形態の方法において、上述のキャリアは標識物質を備えることが好ましい。さらに、修飾物質を備えていてもよい。標識物質及び修飾物質としては、上述したものと同様のものが挙げられる。 In the method of this embodiment, the carrier described above preferably comprises a labeling substance. Further, it may be provided with a modifying substance. Examples of the labeling substance and the modifying substance include the same substances as those described above.

例えば、標識物質を備える上述のキャリアをグリオーマに添加する場合において、標識物質を備える上述のキャリアの添加量は培養液中1μM以上4μM以下が好ましい。また、添加後、30分以上3時間以下後にはグリオーマに集積されているか否かについて評価することができる。
また、例えば、標識物質として蛍光物質を備える上述のキャリアを注射剤により静脈内(Intravenous:i.v.)注射する場合、被検動物(好ましくはヒト)に対し、1回の投与において1kg体重当たり、5mg以上のペプチドの量を投与することが好ましく、5mg以上20mg以下のペプチドの量を投与することがより好ましく、5mg以上15mg以下のペプチドの量を投与することが特に好ましい。
また、例えば、標識物質として安定同位体、PET用核種又はSPECT用核種を備える上述のキャリアを注射剤により静脈内(Intravenous:i.v.)注射する場合、使用する安定同位体、PET用核種又はSPECT用核種の種類に応じた放射線量から投与量を決定すればよい。
For example, when the above-mentioned carrier containing the labeling substance is added to the glioma, the amount of the above-mentioned carrier containing the labeling substance added is preferably 1 μM or more and 4 μM or less in the culture solution. In addition, it is possible to evaluate whether or not it is accumulated in the glioma 30 minutes or more and 3 hours or less after the addition.
Further, for example, when the above-mentioned carrier having a fluorescent substance as a labeling substance is injected intravenously (Intravenous: iv) by an injection, the weight of 1 kg per administration is given to the test animal (preferably human). It is preferable to administer an amount of 5 mg or more of the peptide, more preferably an amount of 5 mg or more and 20 mg or less of the peptide, and particularly preferably an amount of 5 mg or more and 15 mg or less of the peptide.
Further, for example, when the above-mentioned carrier having a stable isotope, a nuclide for PET or a nuclide for SPECT as a labeling substance is injected intravenously (Intravenous: iv) by an injection, the stable isotope to be used and the nuclide for PET are used. Alternatively, the dose may be determined from the radiation dose according to the type of SPECT nuclide.

本実施形態の方法において、標識物質を備える上述のキャリアの検出方法としては、例えばPET、SPECT、CT、MRI、内視鏡による検出、蛍光検出器による検出等が挙げられる。 In the method of the present embodiment, examples of the above-mentioned carrier detection method including a labeling substance include PET, SPECT, CT, MRI, detection by an endoscope, detection by a fluorescence detector, and the like.

以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.

[実施例1]ペプチドの合成
独自に作製した、ピューロマイシン(puromycin)を介在して表現型としての9アミノ酸残基ペプチドとそれに対応する遺伝子型としてのmRNAコード配列を有するprotein−RNAキメラ型ランダムペプチドライブラリー(in vitro virus library; IVVL)を用いて、公知のIVV(in vitro virus)法に準じて、下記表3に示す各ペプチド(Peptide1〜3)を分離及び同定した。また、IVVL由来の同定された各ペプチドは、FITC(Fluoresceinisothiocyanate)ラベルで合成し、塩酸塩処理を施したものである。また、r9(9残基連続D−アルギニン)は、現在汎用されている非選択的膜透過性ペプチドである。
これらは、いずれもシグマアルドリッチジャパン(ジェノシス事業部)への委託合成により入手した。
[Example 1] Peptide synthesis A protein-RNA chimeric random type having a uniquely prepared 9-amino acid residue peptide as a phenotype and an mRNA coding sequence as a corresponding genotype via puromycin. Using a peptide library (in-peptide library; IVVL), each peptide (Peptide 1-3) shown in Table 3 below was separated and identified according to a known IVV (mRNA) method. In addition, each of the identified peptides derived from IVVL was synthesized under the FITC (Fluorescein isothiocyanate) label and subjected to hydrochloride treatment. In addition, r9 (9-residue continuous D-arginine) is a non-selective membrane-permeable peptide currently widely used.
All of these were obtained through consignment synthesis to Sigma-Aldrich Japan (Genosis Division).

また、以下の試験例1〜5に使用した各種細胞の細胞株と由来は下記表4示したとおりである。これらは、発明者が研究室において、継代培養して維持しているものである。 The cell lines and origins of the various cells used in Test Examples 1 to 5 below are as shown in Table 4 below. These are those that the inventor has subcultured and maintained in the laboratory.

上記表4に示した各種細胞は、10%FBS含有RPMI1640培地(RPMI1640 medium)を用いて培養した。 The various cells shown in Table 4 above were cultured in RPMI 1640 medium containing 10% FBS (RPMI 1640 medium).

[試験例1]ペプチドのグリオーマ細胞での集積性の確認試験
primary glioblastoma細胞、U87MG細胞、Gli36細胞、SF767細胞、T98細胞、SK−AO2細胞、SK−MG−1細胞、U251細胞及びA172細胞に、実施例1において作製したPeptide1、2及び3をそれぞれ、培地中に4μMとなるように添加した。それらの細胞を37℃で60分間培養した。続いて、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。検鏡の前にペプチドを添加した培養上清を除去し1×PBS(−)で3回洗浄後、トリプシン処理し接着細胞を剥離してただちに新しい96穴プレートに移入して新しい培養液に再懸濁後、検鏡を行った。結果を図1に示す。
[Test Example 1] Confirmation test of accumulation of peptide in glioma cells In primary glioblastoma cells, U87MG cells, Gli36 cells, SF767 cells, T98 cells, SK-AO2 cells, SK-MG-1 cells, U251 cells and A172 cells. , Peptide 1, 2 and 3 prepared in Example 1 were added to the medium so as to be 4 μM, respectively. The cells were cultured at 37 ° C. for 60 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope. Before microscopic examination, the culture supernatant to which the peptide was added is removed, washed 3 times with 1 × PBS (-), then trypsin-treated to remove adherent cells, and immediately transferred to a new 96-well plate and reconstituted in a new culture medium. After suspension, microscopic examination was performed. The results are shown in FIG.

図1から、Peptide1、2及び3について、全ての細胞で蛍光が検出された。特にPeptide2を添加した細胞は、蛍光が強く検出された。以上のことから、Peptide2は、グリオーマ細胞内への高透過性を有することが明らかとなった。 From FIG. 1, fluorescence was detected in all cells of Peptide 1, 2 and 3. In particular, fluorescence was strongly detected in cells to which Peptide2 was added. From the above, it was clarified that Peptide2 has high permeability into glioma cells.

[試験例2] ペプチドの正常アストロサイト細胞での集積性の確認試験
primary astrocytes細胞及びprimary glioblastoma細胞に、実施例1において作製したPeptide1、2及び3、r9(4μM)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図2に示す。図2において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において488nm波長緑色蛍光励起条件下で撮影した画像である。
[Test Example 2] Confirmation test of peptide accumulation in normal astrocyte cells Peptides 1, 2, 3, and r9 (4 μM) prepared in Example 1 were added to primary astrocyte cells and glioblastoma cells at 37 ° C. The cells were cultured for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG. In FIG. 2, "Bright Field" is an image taken in a bright field, and "FITC" is an image taken in a dark field under 488 nm wavelength green fluorescence excitation conditions.

図2から、r9は、primary astrocytes細胞及びprimary glioblastoma細胞のいずれにおいても、蛍光が検出された。一方、Peptide1、2及び3は、primary glioblastoma細胞においてのみ、蛍光が検出された。 From FIG. 2, fluorescence of r9 was detected in both the primary astrocytes cells and the primary glioblastoma cells. On the other hand, in the primary 1, 2 and 3, fluorescence was detected only in the primary glioblastoma cells.

[試験例3] ペプチドの正常神経細胞での集積性の確認試験
primary neurons細胞及びprimary glioblastoma細胞に、実施例1において作製したPeptide1、2及び3、r9(4μM)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図3に示す。図3において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において488nm波長緑色蛍光励起条件下で撮影した画像である。
[Test Example 3] Confirmation test of accumulation of peptide in normal nerve cells Peptide 1, 2, 3, and r9 (4 μM) prepared in Example 1 were added to primary glioblastoma cells and primary glioblastoma cells, and 120 at 37 ° C. Incubated for minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG. In FIG. 3, "Bright Field" is an image taken in a bright field, and "FITC" is an image taken in a dark field under 488 nm wavelength green fluorescence excitation conditions.

図3から、r9は、primary neurons細胞及びprimary glioblastoma細胞のいずれにおいても、蛍光が検出された。一方、Peptide1、2及び3は、primary glioblastoma細胞においてのみ、蛍光が検出された。
試験例1〜3から、Peptide1、2及び3は、グリオーマ細胞に特異的な集積性を有することが明らかとなった。
From FIG. 3, fluorescence of r9 was detected in both the primary neurons and the primary glioblastoma cells. On the other hand, in the primary 1, 2 and 3, fluorescence was detected only in the primary glioblastoma cells.
From Test Examples 1 to 3, it was clarified that Peptides 1, 2 and 3 have glioma cell-specific accumulation.

[試験例4]ヒトグリオーマ細胞移植マウスでの各種組織におけるペプチドの集積性の評価試験
ヒトグリオーマ細胞(primary glioblastoma細胞、白人女性由来)1×10個を皮下に移植したNOD−SCIDマウス(日本チャールズリバー社より購入した6週齢雌マウス)をヒトグリオーマ細胞移植モデルとして作製した。ヒトグリオーマ細胞の移植後30日目に、マウス体重20gに対して300μgの実施例1で作製したPeptide1、Peptide2又はコントロールとして、FITC標識されたPEP1ΔNSペプチドを静脈内(i.v.)注射した。PEP1ペプチドとは、本発明者らと琉球大学の比嘉氏、松下氏により発見されたヒトglioblastoma細胞に集積性を有するペプチドであり、PEP1ΔNSペプチドとは、このPEP1ペプチドからN末端のアスパラギン酸及びC末端のセリンを削った8アミノ酸残基からなるペプチドである(参考文献:Moritoshi H., et al., Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter, Biochem. Biophys. Res. Commun., 457, 206-212, 2015.)。PEP1ΔNSペプチドのアミノ酸配列を、配列番号13に示す。投与後30分で皮下腫瘍切除および開腹して新鮮摘出状態で腫瘍病変と正常臓器群におけるペプチドの分布及び蛍光強度を蛍光実体顕微鏡下で観察した。結果を図4に示す。図4において、brainは脳、heartは心臓、kidneyは腎臓、liverは肝臓、lungは肺、s.muscleは骨格筋、spleenは脾臓、tumorは悪性腫瘍を意味する。また、図4において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において488nm波長緑色蛍光励起条件下で撮影した画像である。
[Test Example 4] Evaluation test of peptide accumulation in various tissues in human glioma cell transplanted mice NOD-SCID mice in which 1 × 10 6 human glioma cells (primary glioma cells, derived from white women) were subcutaneously transplanted (Japan) A 6-week-old female mouse purchased from Charles River Co., Ltd.) was prepared as a human glioblastoma cell transplantation model. Thirty days after transplantation of human glioma cells, FITC-labeled PEP1ΔNS peptide was intravenously (iv) injected as a Peptide1, Peptide2 or control prepared in Example 1 at 300 μg per 20 g of mouse body weight. The PEP1 peptide is a peptide having accumulation in human glioblastoma cells discovered by the present inventors and Mr. Higa and Mr. Matsushita of Ryukyu University, and the PEP1ΔNS peptide is an N-terminal aspartic acid and C from this PEP1 peptide. It is a peptide consisting of 8 amino acid residues with the terminal serine removed (Reference: Moritoshi H., et al., Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter, Biochem. Biophys . Res. Commun., 457, 206-212, 2015.). The amino acid sequence of the PEP1ΔNS peptide is shown in SEQ ID NO: 13. 30 minutes after the administration, the subcutaneous tumor was resected and the abdomen was opened, and the distribution and fluorescence intensity of the peptide in the tumor lesion and the normal organ group were observed under a fluorescent stereomicroscope in a freshly resected state. The results are shown in FIG. In FIG. 4, brain is the brain, heart is the heart, kidney is the kidney, liver is the liver, lung is the lung, and s. muscle means skeletal muscle, splen means spleen, and tumor means malignant tumor. Further, in FIG. 4, "Bright Field" is an image taken in a bright field, and "FITC" is an image taken in a dark field under 488 nm wavelength green fluorescence excitation conditions.

図4のグラフは、試験例4において、各組織で検出された蛍光を定量化し、正常脳で検出された蛍光を1.0としたときの各種組織で検出された蛍光強度の割合を示すグラフである。
図4から、PEP1ΔNSペプチドは、正常脳への吸収を1.0とした時に標的であるグリオブラストーマへの吸収比はS/N比(Signal/noiseratio)にして約18倍であった。一方、正常の肝臓、腎臓、骨格筋組織にて一定強度の蛍光が検出された。これに対して、Peptide1はS/N比が8倍であったが、腎臓、骨格筋組織をはじめとする正常臓器系への吸収が、PEP1ΔNSと比較して1/2以下に抑えられていた。さらに、Peptide2は標的とする悪性腫瘍(グリオブラストーマ)においてS/N比が70倍以上と突出した強い蛍光シグナルが検出され、卓越した標的腫瘍集積性が確認された。
The graph of FIG. 4 is a graph showing the ratio of the fluorescence intensity detected in various tissues when the fluorescence detected in each tissue is quantified in Test Example 4 and the fluorescence detected in the normal brain is 1.0. Is.
From FIG. 4, the absorption ratio of the PEP1ΔNS peptide to the target glioblastoma was about 18 times the S / N ratio (Signal / noiseratio) when the absorption into the normal brain was 1.0. On the other hand, constant intensity fluorescence was detected in normal liver, kidney, and skeletal muscle tissue. On the other hand, Peptide1 had an S / N ratio of 8 times, but its absorption into normal organ systems such as kidney and skeletal muscle tissue was suppressed to 1/2 or less as compared with PEP1ΔNS. .. Furthermore, in Peptide2, a strong fluorescent signal with an S / N ratio of 70 times or more was detected in the target malignant tumor (glioblastoma), confirming excellent target tumor accumulation.

以上のことから、Peptide2は、正常組織系への吸収性がよく抑制され、かつグリオーマ細胞への集積性がより高いことが確かめられた。 From the above, it was confirmed that Peptide2 has well-suppressed absorption into normal tissue systems and higher accumulation in glioma cells.

[試験例5]ヒトグリオーマ細胞移植マウスでの脳におけるペプチドの集積性の評価試験
ヒトグリオーマ細胞(primary glioblastoma細胞、白人女性由来)5×10個を右大脳半球内移植したNOD−SCIDマウス(日本チャールズリバー社より購入した6週齢雌マウス)をヒトグリオーマ細胞移植モデルとして作製した。ヒトグリオーマ細胞の移植後3週間後に、マウス体重20gに対して200μgの実施例1で作製したPeptide2を尾静脈から投与した。投与後30分で直ちに外科的に開頭してマウス脳を取り出し、脳内におけるグリオーマ細胞の浸潤部を含む組織切片を作製して蛍光実体顕微鏡下で観察した。蛍光観察後、脳の組織切片の病理組織標本を作製して、ヘマトキシリン・エオジン(Hematoxylin−Eosin:HE)染色した。HE染色後の脳の組織切片について、光学顕微鏡下で確認することにより、新鮮摘出脳内で緑色蛍光シグナルを発した部分がグリオブラストーマ細胞浸潤部に相当していることを検証した。結果を図5A及び図5Bに示す。図5Aにおいて、lt.lobeは左大脳半球、rt.lobeは右大脳半球を意味する。また、図5Aにおいて、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において488nm波長緑色蛍光励起条件下で撮影した画像である。
[Test Example 5] Evaluation test of peptide accumulation in the brain in human glioma cell transplanted mice NOD-SCID mice in which 5 × 10 5 human glioma cells (primary glioma cells, derived from white women) were transplanted into the right cerebral hemisphere ( A 6-week-old female mouse purchased from Charles River Japan Co., Ltd.) was prepared as a human glioblastoma cell transplantation model. Three weeks after transplantation of human glioma cells, 200 μg of Peptide 2 prepared in Example 1 was administered from the tail vein to 20 g of mouse body weight. Immediately 30 minutes after administration, the mouse brain was surgically opened and a mouse brain was taken out, and a tissue section containing an infiltrated part of glioma cells in the brain was prepared and observed under a fluorescent stereomicroscope. After fluorescence observation, a histopathological specimen of a tissue section of the brain was prepared and stained with hematoxylin-Eosin (HE). By confirming the tissue section of the brain after HE staining under an optical microscope, it was verified that the portion emitting the green fluorescent signal in the freshly excised brain corresponds to the glioblastoma cell infiltrated portion. The results are shown in FIGS. 5A and 5B. In FIG. 5A, lt. The lobe is the left cerebral hemisphere, rt. robe means the right cerebral hemisphere. Further, in FIG. 5A, "Bright Field" is an image taken in a bright field, and "FITC" is an image taken in a dark field under 488 nm wavelength green fluorescence excitation conditions.

図5Bから、右大脳半球内にグリオーマ細胞が浸潤していることが確かめられた。
また、図5Aから、同浸潤部において蛍光シグナルが良好に検出され、グリオブラストーマ細胞浸潤部と蛍光検出部が一致していることが確かめられた。
このことから、尾静脈から投与されたPeptide2は、血液脳関門(Brain Blood Barrier:BBB)を通過し、右大脳半球内のグリオーマ細胞に集積することができることが明らかになった。
From FIG. 5B, it was confirmed that glioma cells infiltrated into the right cerebral hemisphere.
Further, from FIG. 5A, it was confirmed that the fluorescence signal was well detected in the infiltrated part, and that the glioblastoma cell infiltrated part and the fluorescence detection part were in agreement.
From this, it was clarified that Peptide2 administered from the tail vein can cross the blood-brain barrier (BBB) and accumulate in glioma cells in the right cerebral hemisphere.

本発明によれば、グリオーマに特異的な集積性を有する新規ペプチドを提供することできる。また、グリオーマを簡便、高感度且つ選択的に検出することができる。 According to the present invention, it is possible to provide a novel peptide having glioma-specific accumulation. In addition, glioma can be detected easily, with high sensitivity and selectively.

Claims (10)

以下の(a)又は(c)ペプチド。
(a)配列番号1、2、3のいずれかで表される配列を含むアミノ酸配列からなるペプチド、
c)配列番号1、2、3のいずれかで表される配列と同一性が90%以上である配列を含むアミノ酸配列からなり、且つ、グリオーマに特異的な集積性を有するペプチド
The peptide of (a) or (c) below.
(A) A peptide consisting of an amino acid sequence containing the sequence represented by any of SEQ ID NOs: 1, 2 and 3.
( C) A peptide consisting of an amino acid sequence containing a sequence having 90 % or more identity with the sequence represented by any of SEQ ID NOs: 1, 2 and 3 and having glioma-specific accumulation.
L−アミノ酸からなるペプチドである請求項1に記載のペプチド。 The peptide according to claim 1, which is a peptide composed of L-amino acids. 請求項1又は2に記載のペプチドをコードすることを特徴とする核酸。 A nucleic acid comprising encoding the peptide according to claim 1 or 2. 請求項3に記載の核酸を含むことを特徴とするベクター。 A vector comprising the nucleic acid according to claim 3. 請求項1又は2に記載のペプチドを含むことを特徴とするキャリア。 A carrier comprising the peptide according to claim 1 or 2. さらに、標識物質又は修飾物質を備える請求項5に記載のキャリア。 The carrier according to claim 5, further comprising a labeling substance or a modifying substance. 前記標識物質が、安定同位体、放射性同位体又は蛍光物質である請求項6に記載のキャリア。 The carrier according to claim 6, wherein the labeling substance is a stable isotope, a radioactive isotope, or a fluorescent substance. 前記修飾物質が、糖鎖又はポリエチレングリコールである、請求項6又は7に記載のキャリア。 The carrier according to claim 6 or 7, wherein the modifying substance is a sugar chain or polyethylene glycol. 請求項5〜8のいずれか一項に記載のキャリアと生理活性物質とを備えることを特徴とする医薬組成物。 A pharmaceutical composition comprising the carrier according to any one of claims 5 to 8 and a physiologically active substance. グリオーマに起因する脳脊髄腫瘍治療用又は診断用である、請求項9に記載の医薬組成物。 The pharmaceutical composition according to claim 9, which is used for treating or diagnosing a cerebrospinal tumor caused by glioma.
JP2017547772A 2015-10-28 2016-10-21 Peptides with glioma-specific accumulation and their use Expired - Fee Related JP6789573B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015211959 2015-10-28
JP2015211959 2015-10-28
PCT/JP2016/081279 WO2017073485A1 (en) 2015-10-28 2016-10-21 Peptide having property of specifically accumulating in glioma, and use thereof

Publications (2)

Publication Number Publication Date
JPWO2017073485A1 JPWO2017073485A1 (en) 2018-08-16
JP6789573B2 true JP6789573B2 (en) 2020-11-25

Family

ID=58631688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547772A Expired - Fee Related JP6789573B2 (en) 2015-10-28 2016-10-21 Peptides with glioma-specific accumulation and their use

Country Status (2)

Country Link
JP (1) JP6789573B2 (en)
WO (1) WO2017073485A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003207835A1 (en) * 2002-02-04 2003-09-02 Auburn University Peptides for recognition and targeting of glial cell tumors
GB0405482D0 (en) * 2004-03-11 2004-04-21 Biotech Res Ventures Pte Ltd Materials and methods relating to the treatment of glioblastomas
US7642063B2 (en) * 2004-05-19 2010-01-05 Auburn University Methods for targeting and killing glioma cells
US9095541B2 (en) * 2009-11-24 2015-08-04 Arch Cancer Therapeutics, Inc. Brain tumor targeting peptides and methods

Also Published As

Publication number Publication date
JPWO2017073485A1 (en) 2018-08-16
WO2017073485A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
Gomari et al. Targeted delivery of doxorubicin to HER2 positive tumor models
US20130330274A1 (en) Compositions and methods for detecting and treating cancer
US20180200385A1 (en) Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents
US8236572B2 (en) Chemical exchange saturation transfer based MRI using reporter genes and MRI methods related thereto
von Spreckelsen et al. Targeting glioblastoma using a novel peptide specific to a deglycosylated isoform of brevican
WO2019028469A1 (en) Polymer-functionalized mitochondrial compositions and methods of use in cellular transplantation and for altering metabolic phenotype
JP6812004B2 (en) Peptides with pancreatic cancer-specific accumulation and their use
JP6612063B2 (en) Malignant glioma molecule targeting peptide
US10202432B2 (en) Dual targeting drug carrier and application thereof
JP6789573B2 (en) Peptides with glioma-specific accumulation and their use
CN108697693B (en) Peptide conjugated nanoparticles for targeting, imaging and treating prostate cancer
JP6839447B2 (en) Peptides with accumulation specific to biliary tract cancer and their use
JP7429454B2 (en) Peptides and their uses
JP7370598B2 (en) Peptides and their uses
US20210353784A1 (en) Detecting and treating cancers using cell penetrant mtp53-oligomerization-domain peptide
US20230365636A1 (en) Bioorthogonal reporter gene system
JP7568708B2 (en) How Lung Cancer is Diagnosed
KR20200135224A (en) Nanocarrier with micelle structure and uses thereof
WO2023049762A1 (en) Compositions and methods to modulate transfer across the blood-brain barrier
CN116490215A (en) Targeted mediated endocytic drug delivery
Legenzov Targeted Delivery of Nitroxide Spin Probes, Using Immunoliposomes, for Electron Paramagnetic Resonance Imaging of Tumors In Vivo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6789573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees