[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6787249B2 - Composition for laser marking and its use - Google Patents

Composition for laser marking and its use Download PDF

Info

Publication number
JP6787249B2
JP6787249B2 JP2017095669A JP2017095669A JP6787249B2 JP 6787249 B2 JP6787249 B2 JP 6787249B2 JP 2017095669 A JP2017095669 A JP 2017095669A JP 2017095669 A JP2017095669 A JP 2017095669A JP 6787249 B2 JP6787249 B2 JP 6787249B2
Authority
JP
Japan
Prior art keywords
group
parts
squarylium
resin
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017095669A
Other languages
Japanese (ja)
Other versions
JP2018192636A (en
Inventor
清水 宏明
宏明 清水
昌平 坂本
昌平 坂本
澄洋 相京
澄洋 相京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyocolor Co Ltd
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017095669A priority Critical patent/JP6787249B2/en
Publication of JP2018192636A publication Critical patent/JP2018192636A/en
Application granted granted Critical
Publication of JP6787249B2 publication Critical patent/JP6787249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、特定の造塩化合物が含まれることを特徴とするレーザーマーキング用組成物、及びその利用に関するものである。 The present invention relates to a composition for laser marking, which comprises a specific salt-forming compound, and its use.

近年、シート、包装シート、卵パック、カード、食品、化粧品、トイレタリー用品、医薬品等の各種容器、容器類のキャップ等の表面に対する印刷・印字はインクジェット方式が主流であるが、インキのニジミ、文字の欠け、あるいは装置のメンテナンス面において、多くの問題点を抱えている。その一方、マーキング工程の自動化、無人化を進める動きの中で、非接触で且つマーキング速度の早い、レーザー光によるマーキング方法が普及しつつある。 In recent years, the inkjet method has been the mainstream for printing and printing on the surfaces of various containers such as sheets, packaging sheets, egg packs, cards, foods, cosmetics, toiletries, pharmaceuticals, and caps of containers, but ink stains and characters There are many problems in terms of lack of ink or maintenance of equipment. On the other hand, in the movement to automate and unmanned the marking process, a non-contact marking method using laser light, which has a high marking speed, is becoming widespread.

特許文献1及び特許文献2において、近赤外領域の波長のレーザー光による無接触の記録方式が提案されている。一般に、レーザーマーキング用インキは、発色剤、顕色剤及び近赤外線吸収色素によりインキを構成されている。このインキの塗工物に対して、レーザー光を照射すると、近赤外線吸収色素がレーザー光を吸収し、発熱することで、照射部分の発色剤と顕色剤が反応して発色する。 Patent Document 1 and Patent Document 2 propose a non-contact recording method using laser light having a wavelength in the near infrared region. In general, a laser marking ink is composed of a color former, a color developer, and a near-infrared absorbing dye. When a laser beam is applied to the coated object of this ink, the near-infrared absorbing dye absorbs the laser beam and generates heat, so that the coloring agent and the developing agent in the irradiated portion react to develop a color.

良好な発色能を得るためには、レーザー照射前は無色であり、且つレーザー照射時は近赤外領域の光を強く吸収し、効率的に熱変換する近赤外線吸収色素の選択が重要であり、フタロシアニン(特許文献3)、シアニン(特許文献4)、スクアリリウム(特許文献5)を使用することが提案されている。しかしながら、フタロシアニン系の材料は、可視光領域に構造由来の吸収帯があり、それ自体が着色しているため、不可視性に課題がある。また、シアニン系やスクアリリウム系の材料は、不可視性は良好ではあるが、一般的に凝集性が強い構造が多く、分散・溶解させにくいため、組成物としての粘度・保存安定性に課題がある。 In order to obtain good color development ability, it is important to select a near-infrared absorbing dye that is colorless before laser irradiation, strongly absorbs light in the near-infrared region during laser irradiation, and efficiently converts heat. , Phthalocyanine (Patent Document 3), Cyanin (Patent Document 4), and Squalylium (Patent Document 5) have been proposed. However, the phthalocyanine-based material has a structure-derived absorption band in the visible light region and is colored by itself, so that there is a problem in invisibility. In addition, although cyanine-based and squarylium-based materials have good invisibility, they generally have many structures with strong cohesiveness and are difficult to disperse and dissolve, so that there is a problem in viscosity and storage stability as a composition. ..

特開昭58−209594公報JP-A-58-209594 特開昭58−094494公報JP-A-58-094494 特開2005−119262公報JP-A-2005-119262 特開平11−254830公報JP-A-11-254830 特開平7−25153号公報Japanese Unexamined Patent Publication No. 7-25153

本発明が解決しようとする課題は、不可視性・近赤外線吸収能が極めて高く、粘度・保存安定性に優れ、且つレーザー照射した際の発色性に優れるレーザーマーキング用組成物、及びその記録方法を提供することである。 The problem to be solved by the present invention is a composition for laser marking, which has extremely high invisibility and near-infrared absorbing ability, excellent viscosity and storage stability, and excellent color development when irradiated with a laser, and a recording method thereof. Is to provide.

すなわち本発明は、下記一般式(1)で表されるスクアリリウム[A]と側鎖にカチオン性基を有する樹脂[B]との造塩化合物、発色剤[C]、顕色剤[D]及び樹脂[E]を含有するレーザーマーキング用組成物に関する。
一般式(1)

[一般式(1)中、X〜X10は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、−SONR、−COOR、−CONR、ニトロ基、シアノ基又はハロゲン原子を表し、隣接した基同士が環を形成しても良い。R〜Rは、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。nは、1〜4の整数を表す。Zは、水素イオン又は無機若しくは有機のカチオンを表す。]
That is, the present invention is a salt-forming compound of a squarylium [A] represented by the following general formula (1) and a resin [B] having a cationic group in the side chain, a color former [C], and a color developer [D]. And a composition for laser marking containing the resin [E].
General formula (1)

[In the general formula (1), X 1 to X 10 each independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, and a substituent. Aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an amino group, a substituted amino group, and -SO 2 NR. 1 R 2 , -COOR 3 , -CONR 4 R 5 , represents a nitro group, a cyano group or a halogen atom, and adjacent groups may form a ring. R 1 to R 5 each independently represent an alkyl group which may have a hydrogen atom or a substituent. n represents an integer of 1 to 4. Z + represents a hydrogen ion or an inorganic or organic cation. ]

また本発明は、側鎖にカチオン性基を有する樹脂[B]が、下記一般式(2)で表される構造単位を含むビニル系樹脂である請求項1に記載のレーザーマーキング用組成物に関する。
一般式(2)

[一般式(2)中、Rは、水素原子又は置換基を有してもよいアルキル基を表す。R〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基又は置換基を有してもよいアリール基を表し、R〜Rのうち2つが互いに結合して環を形成しても良い。Qは、アルキレン基、アリーレン基、−CONH−R10−又は−COO−R11−を表し、R10及びR11は、アルキレン基を表す。Yは、無機又は有機のアニオンを表す。]
The present invention also relates to the composition for laser marking according to claim 1, wherein the resin [B] having a cationic group in the side chain is a vinyl resin containing a structural unit represented by the following general formula (2). ..
General formula (2)

[In the general formula (2), R 6 represents an alkyl group which may have a hydrogen atom or a substituent. R 7 to R 9 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or an aryl group which may have a substituent, and R Two of 7 to R 9 may be bonded to each other to form a ring. Q is an alkylene group, an arylene group, -CONH-R 10 - or -COO-R 11 - represents, R 10 and R 11 represents an alkylene group. Y represents an inorganic or organic anion. ]

また本発明は、一般式(1)におけるnが1又は2である上記記載のレーザーマーキング用組成物に関する。 The present invention also relates to the above-described laser marking composition in which n in the general formula (1) is 1 or 2.

また本発明は、側鎖にカチオン性基を有する樹脂[B]の固形分の4級アンモニウム塩価が、20〜130mgKOH/gである上記レーザーマーキング用組成物に関する。 The present invention also relates to the above-mentioned laser marking composition in which the quaternary ammonium salt value of the solid content of the resin [B] having a cationic group in the side chain is 20 to 130 mgKOH / g.

また本発明は、レーザーマーキング用組成物の全固形分中、スクアリリウム[A]と側鎖にカチオン性基を有する樹脂[B]との造塩化合物の含有率が、0.05〜5質量%である上記記載のレーザーマーキング用組成物に関する。 Further, in the present invention, the content of the salt-forming compound of the squarylium [A] and the resin [B] having a cationic group in the side chain is 0.05 to 5% by mass in the total solid content of the composition for laser marking. The present invention relates to the above-mentioned composition for laser marking.

また本発明は、上記レーザーマーキング用組成物を塗工してなる塗工物に関する。 The present invention also relates to a coated product obtained by coating the above-mentioned laser marking composition.

また本発明は、上記塗工物に、レーザー光を照射して記録してなる記録材に関する。 The present invention also relates to a recording material obtained by irradiating the coated object with a laser beam for recording.

さらに本発明は、上記塗工物に、レーザー光を照射して記録する記録方法に関する。 Further, the present invention relates to a recording method in which the coated object is irradiated with a laser beam and recorded.

本発明のレーザーマーキング用組成物は、光学特性が良好であり、かつ凝集・析出しにくい特定の造塩化合物を使用することで、不可視性・近赤外線吸収能が極めて高く、粘度・保存安定性に優れ、且つレーザー照射した際の発色性に非常に優れる。 The composition for laser marking of the present invention has excellent invisibility and near-infrared absorption ability, and has viscosity and storage stability by using a specific salt-forming compound having good optical properties and which is hard to aggregate and precipitate. It is excellent in color development when irradiated with a laser.

<レーザーマーキング用組成物>
本発明のレーザーマーキング用組成物について詳しく説明する。本発明のレーザーマーキング用組成物は、スクアリリウム[A]と側鎖にカチオン性基を有する樹脂[B]との特定の造塩化合物に加えて、発色剤[C]、顕色剤[D]、樹脂[E]を必須成分として、その他公知の添加剤等から構成される。尚、造塩化合物は、分散状態と溶解状態のどちらの状態でも使用可能である。
<Laser marking composition>
The composition for laser marking of the present invention will be described in detail. In the composition for laser marking of the present invention, in addition to a specific salt-forming compound of squarylium [A] and a resin [B] having a cationic group in the side chain, a color former [C] and a color developer [D] , Resin [E] as an essential component, and is composed of other known additives and the like. The salt-forming compound can be used in either the dispersed state or the dissolved state.

<スクアリリウム[A]>
本発明の一般式(1)で示されるスクアリリウム[A]について詳しく説明する。
<Squaririum [A]>
The squarylium [A] represented by the general formula (1) of the present invention will be described in detail.

一般式(1)
General formula (1)

[一般式(1)中、X〜X10は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、−SONR、−COOR、−CONR、ニトロ基、シアノ基又はハロゲン原子を表し、隣接した基同士が環を形成しても良い。R〜Rは、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。nは、1〜4の整数を表す。Zは、水素イオン又は無機若しくは有機のカチオンを表す。] [In the general formula (1), X 1 to X 10 each independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, and a substituent. Aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an amino group, a substituted amino group, and -SO 2 NR. 1 R 2 , -COOR 3 , -CONR 4 R 5 , represents a nitro group, a cyano group or a halogen atom, and adjacent groups may form a ring. R 1 to R 5 each independently represent an alkyl group which may have a hydrogen atom or a substituent. n represents an integer of 1 to 4. Z + represents a hydrogen ion or an inorganic or organic cation. ]

〜X10において「置換基を有してもよいアルキル基」としては、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、tert−アミル基、2−エチルヘキシル基、ステアリル基、クロロメチル基、トリクロロメチル基、トリフルオロメチル基、2−メトキシエチル基、2−クロロエチル基、2−ニトロエチル基、シクロペンチル基、シクロヘキシル基、ジメチルシクロヘキシル基等を挙げることができ、これらの中でもメチル基、エチル基、n−プロピル基が、合成難易度及び不可視性の観点で好ましく、特にメチル基が好ましい。 In X 1 to X 10 , the "alkyl group which may have a substituent" includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a tert-butyl group, a tert-amyl group and a 2-ethylhexyl group. Examples thereof include stearyl group, chloromethyl group, trichloromethyl group, trifluoromethyl group, 2-methoxyethyl group, 2-chloroethyl group, 2-nitroethyl group, cyclopentyl group, cyclohexyl group, dimethylcyclohexyl group and the like. Of these, a methyl group, an ethyl group and an n-propyl group are preferable from the viewpoint of synthesis difficulty and invisibility, and a methyl group is particularly preferable.

〜X10において「置換基を有してもよいアルケニル基」としては、ビニル基、1−プロペニル基、アリル基、2−ブテニル基、3−ブテニル基、イソプロペニル基、イソブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基等を挙げることができ、これらの中でもビニル基、アリル基が、合成難易度及び不可視性の観点で好ましい。 In X 1 to X 10 , the "alkenyl group which may have a substituent" includes a vinyl group, a 1-propenyl group, an allyl group, a 2-butenyl group, a 3-butenyl group, an isopropenyl group, an isobutenyl group and 1 -Pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group and the like can be mentioned. Of these, a vinyl group and an allyl group are preferable from the viewpoint of synthesis difficulty and invisibility.

〜X10において「置換基を有してもよいアリール基」としては、フェニル基、ナフチル基、4−メチルフェニル基、3,5−ジメチルフェニル基、ペンタフルオロフェニル基、4−ブロモフェニル基、2−メトキシフェニル基、4−ジエチルアミノフェニル基、3−ニトロフェニル基、4−シアノフェニル基等を挙げることができ、これらの中でもフェニル基、4−メチルフェニル基が、合成難易度及び不可視性の観点で好ましい。 In X 1 to X 10 , the "aryl group which may have a substituent" includes a phenyl group, a naphthyl group, a 4-methylphenyl group, a 3,5-dimethylphenyl group, a pentafluorophenyl group, and a 4-bromophenyl group. Groups, 2-methoxyphenyl group, 4-diethylaminophenyl group, 3-nitrophenyl group, 4-cyanophenyl group and the like can be mentioned, and among these, the phenyl group and 4-methylphenyl group are difficult to synthesize and invisible. It is preferable from the viewpoint of sex.

〜X10において「置換基を有してもよいアラルキル基」としては、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等を挙げることができ、これらの中でもベンジル基が、合成難易度及び不可視性の観点で好ましい。 Examples of the "aralkyl group which may have a substituent" in X 1 to X 10 include a benzyl group, a phenethyl group, a phenylpropyl group, a naphthylmethyl group and the like, and among these, the benzyl group is difficult to synthesize. Preferred from the viewpoint of degree and invisibility.

〜X10において「置換基を有してもアルコキシ基」としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、トリフルオロメトキシ基、シクロヘキシルオキシ基、ステアリルオキシ基等を挙げることができ、これらの中でもメトキシ基、エトキシ基、トリフルオロメトキシ基が、合成難易度及び不可視性の観点で好ましい。 In X 1 to X 10 , "alkoxy groups having substituents" include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-octyloxy group and 2-ethylhexyloxy. Examples thereof include a group, a trifluoromethoxy group, a cyclohexyloxy group, a stearyloxy group and the like, and among these, a methoxy group, an ethoxy group and a trifluoromethoxy group are preferable from the viewpoint of synthesis difficulty and invisibility.

〜X10において「置換基を有してもよいアリールオキシ基」としては、フェノキシ基、ナフチルオキシ基、4−メチルフェニルオキシ基、3,5−クロロフェニルオキシ基、4−クロロ−2−メチルフェニルオキシ基、4−tert− ブチルフェニルオキシ基、4−メトキシフェニルオキシ基、4−ジエチルアミノフェニルオキシ基、4−ニトロフェニルオキシ基等を挙げることができ、これらの中でもフェノキシ基、ナフチルオキシ基が、合成難易度及び不可視性の観点で好ましい。 In X 1 to X 10 , the "aryloxy group which may have a substituent" includes a phenoxy group, a naphthyloxy group, a 4-methylphenyloxy group, a 3,5-chlorophenyloxy group and a 4-chloro-2-. Examples thereof include a methylphenyloxy group, a 4-tert-butylphenyloxy group, a 4-methoxyphenyloxy group, a 4-diethylaminophenyloxy group, a 4-nitrophenyloxy group, and among these, a phenoxy group and a naphthyloxy group. However, it is preferable from the viewpoint of synthesis difficulty and invisibility.

〜X10において「置換アミノ基」としては、メチルアミノ基、エチルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、シクロヘキシルアミノ基、ステアリルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、N,N−ジ(2−ヒドロキシエチル)アミノ基、フェニルアミノ基、ナフチルアミノ基、4−tert−ブチルフェニルアミノ基、ジフェニルアミノ基、N−フェニル−N−エチルアミノ基等を挙げることができ、これらの中でもジメチルアミノ基、ジエチルアミノ基が、合成難易度及び不可視性の観点で好ましい。 In X 1 to X 10 , the "substituted amino group" includes a methyl amino group, an ethyl amino group, an isopropyl amino group, an n-butyl amino group, a cyclohexyl amino group, a stearyl amino group, a dimethyl amino group, a diethyl amino group and a dibutyl amino group. , N, N-di (2-hydroxyethyl) amino group, phenylamino group, naphthylamino group, 4-tert-butylphenylamino group, diphenylamino group, N-phenyl-N-ethylamino group and the like. Of these, a dimethylamino group and a diethylamino group are preferable from the viewpoint of synthetic difficulty and invisibility.

〜X10において「ハロゲン原子」としては、フッ素、臭素、塩素、ヨウ素が挙げられる。 Examples of the "halogen atom" in X 1 to X 10 include fluorine, bromine, chlorine and iodine.

〜X10は、隣接した基同士が環を形成してもよく、例として以下の構造が挙げられるが、これらに限定されるものではない。 In X 1 to X 10 , adjacent groups may form a ring, and examples thereof include, but are not limited to, the following structures.

〜Rにおいて「置換基を有してもよいアルキル基」としては、X〜X10と同様の意義である。 In R 1 to R 5 , the "alkyl group which may have a substituent" has the same meaning as X 1 to X 10 .

〜X10は、合成難易度、粘度、保存安定性、不可視性、及び近赤外線吸収能の観点から、無置換のアルキル基を含むことが好ましく、X、X、X及びXの少なくとも一つが無置換のアルキル基であることがより好ましく、X及びXが無置換のアルキル基であることが特に好ましい。無置換のアルキル基としてはメチル基であることが好ましい。 X 1 to X 10 preferably contain an unsubstituted alkyl group from the viewpoint of synthesis difficulty, viscosity, storage stability, invisibility, and near-infrared absorbing ability, and X 3 , X 4 , X 7, and X. It is more preferable that at least one of 8 is an unsubstituted alkyl group, and it is particularly preferable that X 3 and X 7 are unsubstituted alkyl groups. The unsubstituted alkyl group is preferably a methyl group.

の「無機若しくは有機のカチオン」としては、公知のものが制限なく採用でき、具体的には、金属原子、アンモニウム化合物、ピリジニウム化合物、イミダゾリウム化合物、ホスホニウム化合物、スルホニウム化合物等を挙げることができる。Zとしては、水素原子、金属原子、アンモニウム化合物が、合成難易度の観点で好ましい。 As the "inorganic or organic cation" of Z + , known ones can be adopted without limitation, and specific examples thereof include metal atoms, ammonium compounds, pyridinium compounds, imidazolium compounds, phosphonium compounds, and sulfonium compounds. it can. As Z + , a hydrogen atom, a metal atom, and an ammonium compound are preferable from the viewpoint of synthesis difficulty.

一般式(1)におけるnは、合成難易度、粘度、不可視性及び近赤外線吸収能の観点から1又は2であることが好ましく、中でもn=2であることが、合成難易度の観点から特に好ましい。 N in the general formula (1) is preferably 1 or 2 from the viewpoint of synthesis difficulty, viscosity, invisibility and near-infrared absorption ability, and among them, n = 2 is particularly from the viewpoint of synthesis difficulty. preferable.

(スクアリリウム[A]の製造方法)
スクアリリウム[A]の製造方法としては、下記の方法が考えられるが、本発明に使用されるスクアリリウム[A]はこの下記製造方法によって限定されるものではない。下記式(3)に示した1,8−ジアミノナフタレンと、下記一般式(4)に示したシクロヘキサノン類とを、触媒とともに溶媒中で加熱還流して縮合させた後、下記式(5)に示した3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオンを加えてさらに加熱還流させて縮合し、一般式(6)で示されるスクアリリウム[A]前駆体を得ることができる。更に、このスクアリリウム[A]前駆体を適切な濃度の硫酸中でスルホン化することで、一般式(7)で示されるスクアリリウム[A](Z=水素イオン)を得ることができる。この一般式(7)で示されるスクアリリウム[A](Z=水素イオン)を任意のイオン性化合物と塩交換反応させることで、Zを任意の無機若しくは有機のカチオンへと変換することができる。
(Manufacturing method of squarylium [A])
The following method can be considered as a method for producing the squalylium [A], but the squalylium [A] used in the present invention is not limited to the following production method. The 1,8-diaminonaphthalene represented by the following formula (3) and the cyclohexanones represented by the following general formula (4) are heated under reflux in a solvent together with a catalyst to be condensed, and then the following formula (5) is obtained. The above 3,4-dihydroxy-3-cyclobutene-1,2-dione is added, and the mixture is further heated under reflux and condensed to obtain a squarylium [A] precursor represented by the general formula (6). Further, by sulfonation of this squalylium [A] precursor in sulfuric acid having an appropriate concentration, squalylium [A] (Z + = hydrogen ion) represented by the general formula (7) can be obtained. By salt-exchange-reacting the squarylium [A] (Z + = hydrogen ion) represented by the general formula (7) with an arbitrary ionic compound, Z + can be converted into an arbitrary inorganic or organic cation. it can.

<側鎖にカチオン性基を有する樹脂[B]>
本発明の側鎖にカチオン性基を有する樹脂[B]について説明する。側鎖にカチオン性基を有する樹脂[B]としては、側鎖に少なくとも1つのオニウム塩基を有するものであれば、特に制限はないが、好適なオニウム塩構造としては、入手性等の観点からは、アンモニウム塩、ヨードニウム塩、スルホニウム塩、ジアゾニウム塩、及びホスホニウム塩であることが好ましく、保存安定性(熱安定性)を考慮すると、アンモニウム塩、ヨードニウム塩、及びスルホニウム塩であることがより好ましい。さらに好ましくはアンモニウム塩である。側鎖にカチオン性基を有する樹脂としてはアクリル系樹脂であることが好ましく、中でも下記一般式(2)で表される構造単位を含むビニル系樹脂が好適に用いられる。
<Resin [B] having a cationic group in the side chain>
The resin [B] having a cationic group in the side chain of the present invention will be described. The resin [B] having a cationic group in the side chain is not particularly limited as long as it has at least one onium base in the side chain, but a suitable onium salt structure is available from the viewpoint of availability and the like. Is preferably an ammonium salt, an iodonium salt, a sulfonium salt, a diazonium salt, and a phosphonium salt, and more preferably an ammonium salt, an iodonium salt, and a sulfonium salt in consideration of storage stability (thermal stability). .. More preferably, it is an ammonium salt. The resin having a cationic group in the side chain is preferably an acrylic resin, and among them, a vinyl resin containing a structural unit represented by the following general formula (2) is preferably used.

一般式(2)
General formula (2)

[一般式(2)中、Rは、水素原子又は置換基を有してもよいアルキル基を表す。R〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基又は置換基を有してもよいアリール基を表し、R〜Rのうち2つが互いに結合して環を形成しても良い。Qは、アルキレン基、アリーレン基、−CONH−R10−又は−COO−R11−を表し、R10及びR11は、アルキレン基を表す。Yは、無機又は有機のアニオンを表す。] [In the general formula (2), R 6 represents an alkyl group which may have a hydrogen atom or a substituent. R 7 to R 9 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or an aryl group which may have a substituent, and R Two of 7 to R 9 may be bonded to each other to form a ring. Q is an alkylene group, an arylene group, -CONH-R 10 - or -COO-R 11 - represents, R 10 and R 11 represents an alkylene group. Y represents an inorganic or organic anion. ]

において「置換基を有してもよいアルキル基」としては、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基が挙げられる。該アルキル基としては、炭素数1〜12のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましく、炭素数1〜4のアルキル基が特に好ましい。 As the "optionally substituted alkyl group" in R 6, a methyl group, an ethyl group, a propyl group, n- butyl group, i- butyl, t- butyl group, n- hexyl group, a cyclohexyl group Can be mentioned. As the alkyl group, an alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.

で表されるアルキル基が置換基を有する場合、該置換基としては、例えば、水酸基、アルコキシル基等が挙げられる。上記の中でも、Rとしては、水素原子又はメチル基が最も好ましい。 When the alkyl group represented by R 6 has a substituent, examples of the substituent include a hydroxyl group and an alkoxyl group. Among them, the R 6, a hydrogen atom or a methyl group is most preferable.

〜Rにおいて「置換基を有してもよいアルキル基」としては、直鎖アルキル基(メチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−オクチル、n−デシル、n−ドデシル、n−テトラデシル、n−ヘキサデシル及びn−オクタデシル等)、分岐アルキル基(イソプロピル、イソブチル、sec−ブチル、tert−ブチル、イソペンチル、ネオペンチル、tert−ペンチル、イソヘキシル、2−エチルヘキシル及び1,1,3,3−テトラメチルブチル等)、シクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)及び架橋環式アルキル基(ノルボルニル、アダマンチル及びピナニル等)が挙げられる。該アルキル基としては、炭素数1〜18のアルキル基が好ましく、さらに好ましくは炭素数1〜8のアルキル基である。 In R 7 to R 9 , "alkyl groups that may have substituents" include linear alkyl groups (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, etc. n-dodecyl, n-tetradecyl, n-hexadecyl and n-octadecyl, etc.), branched alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-ethylhexyl and 1, 1,3,3-Tetramethylbutyl, etc.), cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.) and crosslinked cyclic alkyl groups (norbornyl, adamantyl, pinanyl, etc.). As the alkyl group, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.

〜Rにおいて「置換基を有してもよいアルケニル基」としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1−プロペニル、2−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−メチル−1−プロペニル、1−メチル−2−プロペニル、2−メチル−1−プロペニル及び2−メチル−2−プロぺニル等)、シクロアルケニル基(2−シクロヘキセニル及び3−シクロヘキセニル等)が挙げられる。該アルケニル基としては、炭素数2〜18のアルケニル基が好ましく、さらに好ましくは炭素数2〜8のアルケニル基である。 In R 7 to R 9 , "alkenyl groups that may have a substituent" include linear or branched alkenyl groups (vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3 -Butenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl, etc.), cycloalkenyl groups (2-cyclohexenyl and 3- Cyclohexenyl, etc.). As the alkenyl group, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 8 carbon atoms is more preferable.

〜Rにおいて「置換基を有してもよいアリール基」としては、単環式アリール基(フェニル等)、縮合多環式アリール基(ナフチル、アントラセニル、フェナンスレニル、アントラキノリル、フルオレニル及びナフトキノリル等)及び芳香族複素環炭化水素基(チエニル(チオフェンから誘導される基)、フリル(フランから誘導される基)、ピラニル(ピランから誘導される基)、ピリジル(ピリジンから誘導される基)、9−オキソキサンテニル(キサントンから誘導される基)及び9−オキソチオキサンテニル(チオキサントンから誘導される基)等)が挙げられる。 In R 7 to R 9 , the "aryl group which may have a substituent" includes a monocyclic aryl group (phenyl etc.), a condensed polycyclic aryl group (naphthyl, anthracenyl, phenanthrenyl, anthraquinolyl, fluorenyl, naphthoquinolyl and the like). ) And aromatic heterocyclic hydrocarbon groups (thienyl (group derived from thiophene), frill (group derived from furan), pyranyl (group derived from pyran), pyridyl (group derived from pyridine), Examples thereof include 9-oxoxanthenyl (group derived from xanthone) and 9-oxothioxanthenyl (group derived from thioxanthone).

〜Rで表されるアルキル基、アルケニル基及びアリール基が置換基を有する場合、該置換基としては、例えば、ハロゲン原子、水酸基、アルコキシル基、アリールオキシ基、アルケニル基、アシル基、アルコキシカルボニル基、カルボキシル基、及びフェニル基等から選択される置換基が挙げられる。該置換基としては、中でも、ハロゲン原子、水酸基、アルコキシル基、フェニル基が特に好ましい。 When the alkyl group, alkenyl group and aryl group represented by R 7 to R 9 have a substituent, the substituent includes, for example, a halogen atom, a hydroxyl group, an alkoxyl group, an aryloxy group, an alkenyl group or an acyl group. Examples thereof include a substituent selected from an alkoxycarbonyl group, a carboxyl group, a phenyl group and the like. As the substituent, a halogen atom, a hydroxyl group, an alkoxyl group, and a phenyl group are particularly preferable.

〜Rとしては、置換基を有してもよいアルキル基が好ましく、無置換のアルキル基が更に好ましい。また、R〜Rのうち2つが互いに結合して環を形成しても良い。 As R 7 to R 9 , an alkyl group which may have a substituent is preferable, and an unsubstituted alkyl group is more preferable. Further, two of R 7 to R 9 may be bonded to each other to form a ring.

一般式(2)中、アクリル部位とアンモニウム塩基を連結するQの成分はアルキレン基、アリーレン基、−CONH−R10−、−COO−R11−を表し、R10及びR11はアルキレン基を表すが、中でも、重合性、入手性の理由から、−CONH−R10−、−COO−R11−であることが好ましい。また、R10及びR11おいて「アルキレン基」としては、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げることができ、これらの中でもエチレン基であることが特に好ましい。 In the general formula (2), components of the Q connecting the acrylic sites and ammonium base is an alkylene group, an arylene group, -CONH-R 10 -, - COO-R 11 - represents, R 10 and R 11 represents an alkylene group represents. Among these, the polymerizable, for reasons of availability, -CONH-R 10 -, - COO-R 11 - is preferably. Further, examples of the "alkylene group" in R 10 and R 11 include a methylene group, an ethylene group, a propylene group and a butylene group, and among these, an ethylene group is particularly preferable.

当該樹脂[B]の対アニオンを構成する一般式(2)中におけるY-の成分は、無機又は有機のアニオンであればよい。対アニオンとしては、公知のものが制限なく採用でき、具体的には、水酸化物イオン;塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲンイオン;ギ酸イオン、酢酸イオン等のカルボン酸イオン;炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、亜硫酸イオン、クロム酸イオン、ニクロム酸イオン、リン酸イオン、シアン化物イオン、過マンガン酸イオン、さらには、ヘキサシアノ鉄(III)酸イオンのような錯体イオン等が挙げられる。合成適性や安定性の点からは、ハロゲンイオン及びカルボン酸イオンが好ましく、ハロゲンイオンが最も好ましい。対アニオンがカルボン酸イオン等の有機酸イオンである場合は、樹脂中に有機酸イオンが共有結合し、分子内塩を形成していてもよい。 The component of Y in the general formula (2) constituting the counter anion of the resin [B] may be an inorganic or organic anion. As the counter anion, known ones can be adopted without limitation, and specifically, hydroxide ion; halogen ion such as chloride ion, bromide ion and iodide ion; and carboxylate ion such as formate ion and acetate ion; Like carbonate ion, bicarbonate ion, nitrate ion, sulfate ion, sulfite ion, chromate ion, dichromate ion, phosphate ion, cyanide ion, permanganate ion, and even hexacyanoferrate (III) acid ion. Examples include complex ions. From the viewpoint of synthetic suitability and stability, halogen ions and carboxylic acid ions are preferable, and halogen ions are most preferable. When the counter anion is an organic acid ion such as a carboxylic acid ion, the organic acid ion may be covalently bonded to the resin to form an intramolecular salt.

本発明の好ましい様態である一般式(2)で表される構造単位を含むビニル系樹脂を得るには、アンモニウム塩基を有するエチレン性不飽和単量体を単量体成分として共重合する方法だけでなく、アミノ基を有するエチレン性不飽和単量体を単量体成分として共重合したアミノ基を有するビニル系樹脂を得た後、オニウム塩化剤を反応させ、アンモニウム塩化する方法により得ても良い。 In order to obtain a vinyl-based resin containing a structural unit represented by the general formula (2), which is a preferable mode of the present invention, only a method of copolymerizing an ethylenically unsaturated monomer having an ammonium base as a monomer component is available. Instead, a vinyl-based resin having an amino group copolymerized with an ethylenically unsaturated monomer having an amino group as a monomer component is obtained, and then an onium chloride agent is reacted to obtain ammonium chloride. good.

以下に、本発明の好ましい様態である一般式(2)で表される構造単位を含むビニル系樹脂を得るために使用可能なエチレン性不飽和単量体の具体例を示す。なお、本明細書において「アクリル、メタクリル」、のいずれか或いは双方を示す場合「(メタ)アクリル」、と記載することがある。同様に、「アクリロイル、メタクリロイル」のいずれか或いは双方を示す場合、「(メタ)アクリロイル」と記載することがある。 Hereinafter, specific examples of ethylenically unsaturated monomers that can be used to obtain a vinyl-based resin containing a structural unit represented by the general formula (2), which is a preferable mode of the present invention, will be shown. In the present specification, when either or both of "acrylic, methacrylic" is indicated, it may be described as "(meth) acrylic". Similarly, when either or both of "acryloyl and methacryloyl" are indicated, it may be described as "(meth) acryloyl".

4級アンモニウム塩基を有するエチレン性不飽和単量体としては、例えば(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルトリエチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシエチルメチルモルホリノアンモニウムクロライド等のアルキル(メタ)アクリレート系第4級アンモニウム塩、(メタ)アクリロイルアミノプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルアミノエチルトリエチルアンモニウムクロライド、(メタ)アクリロイルアミノエチルジメチルベンジルアンモニウムクロライド等のアルキル(メタ)アクリロイルアミド系第4級アンモニウム塩、ジメチルジアリルアンモニウムメチルサルフェート、トリメチルビニルフェニルアンモニウムクロライド等が挙げられる。中でもアルキル(メタ)アクリレート系第4級アンモニウム塩が好ましい。 Examples of the ethylenically unsaturated monomer having a quaternary ammonium base include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyltriethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, and (meth). ) Alkyl (meth) acrylate-based quaternary ammonium salts such as acryloyloxyethyl methylmorpholinoammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloylaminoethyltriethylammonium chloride, (meth) acryloylaminoethyldimethylbenzyl Examples thereof include alkyl (meth) acryloylamide-based quaternary ammonium salts such as ammonium chloride, dimethyldiallylammonium methylsulfate, and trimethylvinylphenylammonium chloride. Of these, alkyl (meth) acrylate-based quaternary ammonium salts are preferable.

アミノ基を有するエチレン性不飽和単量体としては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジイソプロピルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジイソブチルアミノエチル(メタ)アクリレート、ジt−ブチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、ジプロピルアミノプロピル(メタ)アクリルアミド、ジイソプロピルアミノプロピル(メタ)アクリルアミド、ジブチルアミノプロピル(メタ)アクリルアミド、ジイソブチルアミノプロピル(メタ)アクリルアミド、ジt−ブチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノ基を有する(メタ)アクリル酸エステル又は(メタ)アクリルアミドが挙げられ、ジメチルアミノスチレン、ジメチルアミノメチルスチレン等のジアルキルアミノ基を有するスチレン類、ジアリルメチルアミン、ジアリルアミン等のジアリルアミン化合物、N−ビニルピロリジン、N−ビニルピロリドン、N−ビニルカルバゾール等のアミノ基含有芳香族ビニル系単量体が挙げられる。 Examples of the ethylenically unsaturated monomer having an amino group include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, diisopropylaminoethyl (meth) acrylate, and dibutylamino. Ethyl (meth) acrylate, diisobutylaminoethyl (meth) acrylate, dit-butylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, dipropylaminopropyl (meth) acrylamide, diisopropyl (Meta) acrylic acid ester having a dialkylamino group such as aminopropyl (meth) acrylamide, dibutylaminopropyl (meth) acrylamide, diisobutylaminopropyl (meth) acrylamide, dit-butylaminopropyl (meth) acrylamide, or (meth) Examples thereof include styrenes having a dialkylamino group such as dimethylaminostyrene and dimethylaminomethylstyrene, diallylamine compounds such as diallylmethylamine and diallylamine, and amino such as N-vinylpyrrolidin, N-vinylpyrrolidone and N-vinylcarbazole. Group-containing aromatic vinyl-based monomers can be mentioned.

オニウム塩化剤としては、例えば、ジメチル硫酸、ジエチル硫酸、又はジプロピル硫酸等のアルキル硫酸、p−トルエンスルホン酸メチル、又はベンゼンスルホン酸メチル等のスルホン酸エステル、メチルクロライド、エチルクロライド、プロピルクロライド、又はオクチルクロライド等のアルキルクロライド、メチルブロマイド、エチルブロマイド、プロピルブロマイド、又はオクチルクロブロマイド等のアルキルブロマイド、あるいは、ベンジルクロライド、又はベンジルブロマイド等が挙げられる。 Examples of the onium chloride agent include alkyl sulfuric acid such as dimethyl sulfuric acid, diethyl sulfuric acid, or dipropyl sulfuric acid, sulfonic acid ester such as methyl p-toluenesulfonate, or methyl benzenesulfonate, methyl chloride, ethyl chloride, propyl chloride, or Examples thereof include alkyl chlorides such as octyl chloride, methyl bromide, ethyl bromide, propyl bromide, alkyl bromides such as octyl chloride, benzyl chloride, benzyl bromide and the like.

アミノ基を有するエチレン性不飽和単量体とオニウム塩化剤との反応は、通常はアミノ基に対して等モル以下のオニウム塩化剤を、アミノ基を有するエチレン性不飽和単量体溶液に滴下することによって行うことができる。アンモニウム塩化反応時の温度は90℃程度以下であり、特にビニルモノマーをアンモニウム塩化する場合には30℃程度以下が好ましく、反応時間は1〜4時間程度である。 In the reaction between an ethylenically unsaturated monomer having an amino group and an onium chloride agent, an onium chloride agent having an equimolar amount or less with respect to the amino group is usually added dropwise to an ethylenically unsaturated monomer solution having an amino group. It can be done by doing. The temperature during the ammonium chloride reaction is about 90 ° C. or lower, particularly preferably about 30 ° C. or lower when the vinyl monomer is ammonium chloride, and the reaction time is about 1 to 4 hours.

別に、オニウム塩化剤として、アルコキシカルボニルアルキルハライドを使用することもできる。アルコキシカルボニルアルキルハライドは下記一般式(8)で表される。
D−R12−COOR13 一般式(8)
(一般式(8)中、Dは、塩素又は臭素等のハロゲン、好ましくは臭素であり、R12は、炭素数1〜6、好ましくは1〜5、より好ましくは1〜3のアルキレン基であり、R13は、炭素数1〜6、好ましくは1〜3の低級アルキル基である。)
Alternatively, an alkoxycarbonylalkyl halide can be used as the onium chloride agent. The alkoxycarbonylalkyl halide is represented by the following general formula (8).
DR 12- COOR 13 General formula (8)
(In the general formula (8), D is a halogen such as chlorine or bromine, preferably bromine, and R 12 is an alkylene group having 1 to 6, preferably 1 to 5, and more preferably 1 to 3 carbon atoms. Yes, R 13 is a lower alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms.)

アミノ基を有するエチレン性不飽和単量体とアルコキシカルボニルアルキルハライドとの反応は、アミノ基に対して等モル以下のアルコキシカルボニルアルキルハライドを上記オニウム塩化剤同様に反応させた後、−COOR13を加水分解してカルボキシレートイオン(−COO-)に変換することにより得られる。これにより、一般式(8)式で示すカルボキシベタイン構造を有しアンモニウム塩基を有するエチレン性不飽和単量体を得ることができる。 In the reaction of the ethylenically unsaturated monomer having an amino group with the alkoxycarbonylalkyl halide, an equimolar or less alkoxycarbonylalkyl halide is reacted with the amino group in the same manner as the above onium chloride agent, and then -COOR 13 is added. It is obtained by hydrolyzing and converting to a carboxylate ion (-COO-). As a result, an ethylenically unsaturated monomer having a carboxybetaine structure represented by the general formula (8) and having an ammonium base can be obtained.

その他、一般式(2)で表される構造単位以外で用いることができるエチレン性不飽和単量体としては、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリルなどが好ましい。 Other ethylenically unsaturated monomers that can be used other than the structural unit represented by the general formula (2) include, for example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid. Diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, vinyl ethers, vinyl alcohol esters, styrenes, (meth) acrylonitrile and the like are preferred.

このようなビニルモノマーの具体例としては、例えば以下のような化合物が挙げられる。
(メタ)アクリル酸エステル類の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸t−ブチルシクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸t−オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸アセトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−エトキシエチル、(メタ)アクリル酸2−(2−メトキシエトキシ)エチル、(メタ)アクリル酸3−フェノキシ−2−ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β−フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パーフロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチルなどが挙げられる。
Specific examples of such a vinyl monomer include the following compounds.
Examples of (meth) acrylic acid esters include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid. , (Meta) acrylate isobutyl, (meth) acrylate t-butyl, (meth) acrylate n-hexyl, (meth) acrylate cyclohexyl, (meth) acrylate t-butylcyclohexyl, (meth) acrylate 2- Ethylhexyl, t-octyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, ( Benzyl (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, (meth) ) Polyethylene glycol monomethyl ether acrylate, (meth) Polyethylene glycol monoethyl ether acrylate, β-phenoxyethoxyethyl (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, dicyclopentenyl (meth) acrylate, ( Dicyclopentenyloxyethyl acrylate, (meth) trifluoroethyl acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (meth) ) Tribromophenyl acrylate, tribromophenyloxyethyl (meth) acrylate and the like.

クロトン酸エステル類の例としては、クロトン酸ブチル、及びクロトン酸ヘキシル等が挙げられる。 Examples of crotonic acid esters include butyl crotonic acid, hexyl crotonic acid and the like.

ビニルエステル類の例としては、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、及び安息香酸ビニルなどが挙げられる。マレイン酸ジエステル類の例としては、マレイン酸ジメチル、マレイン酸ジエチル、及びマレイン酸ジブチルなどが挙げられる。 Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate and the like. Examples of maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.

フマル酸ジエステル類の例としては、フマル酸ジメチル、フマル酸ジエチル、及びフマル酸ジブチルなどが挙げられる。 Examples of fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate and the like.

イタコン酸ジエステル類の例としては、イタコン酸ジメチル、イタコン酸ジエチル、及びイタコン酸ジブチルなどが挙げられる。 Examples of itaconic acid diesters include dimethyl itaconic acid, diethyl itaconic acid, dibutyl itaconic acid and the like.

(メタ)アクリルアミド類の例としては、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。 Examples of (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and Nn. -Butylacryl (meth) amide, N-t-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N , N-diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholin, diacetone acrylamide and the like.

ビニルエーテル類の例としては、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、及びメトキシエチルビニルエーテルなどが挙げられる。スチレン類の例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えばt−Bocなど)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、及びα−メチルスチレンなどが挙げられる。 Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether and the like. Examples of styrenes include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, hydroxystyrene, methoxystyrene, butoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, chloromethyl. Examples thereof include styrene, hydroxystyrene protected by a group that can be deprotected by an acidic substance (for example, t-Boc), methyl vinylbenzoate, and α-methylstyrene.

その他、一般式(2)で表される構造単位以外で用いることができるエチレン性不飽和単量体は、更に、酸基を有する単量体に由来する共重合単位を含んでもよい。 In addition, the ethylenically unsaturated monomer that can be used in a structural unit other than the structural unit represented by the general formula (2) may further contain a copolymerization unit derived from a monomer having an acid group.

酸基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸、α−クロルアクリル酸、けい皮酸等の不飽和モノカルボン酸類;マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸等の不飽和ジカルボン酸又はその無水物類;3価以上の不飽和多価カルボン酸又はその無水物類;こはく酸モノ(2−アクリロイロキシエチル)、こはく酸モノ(2−メタクリロイロキシエチル)、フタル酸モノ(2−アクリロイロキシエチル)、フタル酸モノ(2−メタクリロイロキシエチル)等の2価以上の多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステル類;ω−カルボキシ−ポリカプロラクトンモノアクリレート、ω−カルボキシ−ポリカプロラクトンモノメタクリレート等の両末端カルボキシポリマーのモノ(メタ)アクリレート類等を挙げられる。 Examples of the monomer having an acid group include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, α-chloroacrylic acid and citraconic acid; maleic acid, maleic anhydride, fumaric acid, itaconic acid and anhydrous. Unsaturated dicarboxylic acids such as itaconic acid, citraconic acid, citraconic anhydride, and mesaconic acid or their anhydrides; trivalent or higher unsaturated polycarboxylic acids or their anhydrides; mono (2-acryloyloxyethyl) oxalate ), Mono oxalic acid (2-methacryloyloxyethyl), mono phthalate (2-acryloyloxyethyl), mono (2-methacryloyloxyethyl) and other monovalent or higher polyvalent carboxylic acids [ (Meta) acryloyloxyalkyl] esters; mono (meth) acrylates of both terminal carboxypolymers such as ω-carboxy-polycaprolactone monoacrylate and ω-carboxy-polycaprolactone monomethacrylate can be mentioned.

本発明に好適な一般式(2)で表される構造単位を含むビニル系樹脂を得る方法としては、アニオン重合、リビングアニオン重合、カチオン重合、リビングカチオン重合、フリーラジカル重合、及びリビングラジカル重合等、公知の方法が使用できる。このうち、フリーラジカル重合又はリビングラジカル重合が好ましい。 Examples of a method for obtaining a vinyl-based resin containing a structural unit represented by the general formula (2) suitable for the present invention include anionic polymerization, living anionic polymerization, cationic polymerization, living cationic polymerization, free radical polymerization, and living radical polymerization. , Known methods can be used. Of these, free radical polymerization or living radical polymerization is preferable.

フリーラジカル重合法の場合は、重合開始剤を使用するのが好ましい。重合開始剤としては例えば、アゾ系化合物及び有機過酸化物を用いることができる。アゾ系化合物の例としては、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(2−メチルブチロニトリル)、1,1'−アゾビス(シクロヘキサン1−カルボニトリル)、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)、4,4'−アゾビス(4−シアノバレリック酸)、2,2'−アゾビス(2−ヒドロキシメチルプロピオニトリル)、又は2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等が挙げられる。有機過酸化物の例としては、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシビバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、又はジアセチルパーオキシド等が挙げられる。これらの重合開始剤は、単独で、若しくは2種類以上組み合わせて用いることができる。反応温度は好ましくは40〜150℃、より好ましくは50〜110℃、反応時間は好ましくは3〜30時間、より好ましくは5〜20時間である。 In the case of the free radical polymerization method, it is preferable to use a polymerization initiator. As the polymerization initiator, for example, an azo compound and an organic peroxide can be used. Examples of azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane1-carbonitrile), and 2 , 2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate) , 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2-hydroxymethylpropionitrile), or 2,2'-azobis [2- (2-imidazolin-2-yl) ) Propane] and the like. Examples of organic peroxides are benzoyl peroxide, t-butylperbenzoate, cumenehydroperoxide, diisopropylperoxydicarbonate, di-n-propylperoxydicarbonate, di (2-ethoxyethyl) peroxy. Examples thereof include dicarbonate, t-butylperoxyneodecanoate, t-butylperoxyvivarate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide and the like. These polymerization initiators can be used alone or in combination of two or more. The reaction temperature is preferably 40 to 150 ° C., more preferably 50 to 110 ° C., and the reaction time is preferably 3 to 30 hours, more preferably 5 to 20 hours.

リビングラジカル重合法は一般的なラジカル重合に起こる副反応が抑制され、更には、重合の成長が均一に起こる為、容易にブロックポリマーや分子量の揃った樹脂を合成できる。 In the living radical polymerization method, side reactions that occur in general radical polymerization are suppressed, and further, the growth of polymerization occurs uniformly, so that a block polymer or a resin having a uniform molecular weight can be easily synthesized.

中でも、有機ハロゲン化物、又はハロゲン化スルホニル化合物を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合法は、広範囲の単量体に適応できる点、既存の設備に適応可能な重合温度を採用できる点で好ましい。原子移動ラジカル重合法は、下記の参考文献5〜12等に記載された方法で行うことができる。
(参考文献5)Fukudaら、Prog.Polym.Sci.2004,29,329
(参考文献6)Matyjaszewskiら、Chem.Rev.2001,101,2921
(参考文献7)Matyjaszewskiら、J.Am.Chem.Soc.1995,117,5614
(参考文献8) Macromolecules 1995,28,7901,Science,1996,272,866
(参考文献9)国際公開第96/030421号
(参考文献10)国際公開第97/018247号
(参考文献11)特開平9−208616号公報
(参考文献12)特開平8−41117号公報
Among them, the atom transfer radical polymerization method using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst can be applied to a wide range of monomers and has a polymerization temperature applicable to existing equipment. It is preferable in that it can be adopted. The atom transfer radical polymerization method can be carried out by the method described in References 5 to 12 below.
(Reference 5) Fukuda et al., Prog. Polym. Sci. 2004, 29, 329
(Reference 6) Mattyjaszewski et al., Chem. Rev. 2001,101,2921
(Reference 7) Mattyjaszewski et al., J. Mol. Am. Chem. Soc. 1995, 117, 5614
(Reference 8) Macromolecules 1995, 28, 7901, Science, 1996, 272,866
(Reference 9) International Publication No. 96/030421 (Reference 10) International Publication No. 97/018247 (Reference 11) Japanese Patent Application Laid-Open No. 9-208616 (Reference 12) Japanese Patent Application Laid-Open No. 8-4-1117

上記重合には有機溶剤を用いることが好ましい。有機溶剤としては、特に限定されるものではないが、例えば、酢酸エチル、酢酸n−ブチル、酢酸イソブチル、トルエン、キシレン、アセトン、ヘキサン、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、又はジエチレングリコールモノブチルエーテルアセテート等が用いられる。これらの重合溶媒は、2種類以上混合して用いてもよい。 It is preferable to use an organic solvent for the above polymerization. The organic solvent is not particularly limited, but for example, ethyl acetate, n-butyl acetate, isobutyl acetate, toluene, xylene, acetone, hexane, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether. Acetic acid, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate and the like are used. Two or more kinds of these polymerization solvents may be mixed and used.

本発明に好適な一般式(2)で表される構造単位を含むビニル系樹脂中に存在するアンモニウム塩基の量は、特に限定されるものではないが、保存安定性の観点から、樹脂のアンモニウム塩価が10〜200mgKOH/gであることが好ましく、20〜130mgKOH/gであることがより好ましく、20〜80mgKOH/gであることがさらに好ましい。 The amount of ammonium base present in the vinyl-based resin containing the structural unit represented by the general formula (2) suitable for the present invention is not particularly limited, but from the viewpoint of storage stability, ammonium in the resin The salt value is preferably 10 to 200 mgKOH / g, more preferably 20 to 130 mgKOH / g, and even more preferably 20 to 80 mgKOH / g.

樹脂のアンモニウム塩価が、上記範囲を満たすためには、4級アンモニウム塩基を有する構造単位の好ましい含有量は、樹脂を構成する構造単位の合計100質量%中、4〜74質量%であり、より好ましい範囲は8〜48質量%である。 In order for the ammonium salt value of the resin to satisfy the above range, the preferable content of the structural unit having a quaternary ammonium base is 4 to 74% by mass in a total of 100% by mass of the structural units constituting the resin. A more preferable range is 8 to 48% by mass.

本発明に使用される一般式(2)で表される構造単位を含むビニル系樹脂の分子量は、特に限定されるものではないが、ゲルパーミエーションクロマトグラフィー(GPC)で測定した換算重量平均分子量が1,000〜500,000であることが好ましく、3,000〜15,000であることがより好ましい。 The molecular weight of the vinyl-based resin containing the structural unit represented by the general formula (2) used in the present invention is not particularly limited, but the converted weight average molecular weight measured by gel permeation chromatography (GPC). Is preferably 1,000 to 500,000, more preferably 3,000 to 15,000.

側鎖にカチオン性基を有する樹脂[B]において、上記一般式(2)で表される構造単位の総含有量は、特に制限はないが、側鎖にカチオン性基を有する樹脂[B]に含有される全構造単位を100質量%とした場合に、造塩化合物の溶剤溶解性と着色力の点から、上記一般式(2)で表される構造単位の総含有量は、5質量%以上であることが好ましく、10〜50質量%であることがより好ましい。 In the resin [B] having a cationic group in the side chain, the total content of the structural units represented by the above general formula (2) is not particularly limited, but the resin [B] having a cationic group in the side chain. When the total structural units contained in the above are 100% by mass, the total content of the structural units represented by the above general formula (2) is 5% by mass from the viewpoint of the solvent solubility and coloring power of the salt-forming compound. % Or more, more preferably 10 to 50% by mass.

<造塩化合物>
本発明の造塩化合物は、スクアリリウム[A]と側鎖にカチオン性基を有する樹脂[B]とを溶解させた水溶液を攪拌又は振動させるか、あるいはスクアリリウム[A]の水溶液と側鎖にカチオン性基を有する樹脂[B]の水溶液とを攪拌又は振動下で混合させることにより、容易に得ることができる。水溶液中で、スクアリリウム[A]のアニオン性基と樹脂[B]のカチオン性基がイオン化され、これらがイオン結合し、該イオン結合部分が水不溶性となり析出する。逆に、スクアリリウム[A]の対カチオンと樹脂[B]の対アニオンからなる塩は水溶性のため、水洗等により除去が可能となる。使用するスクアリリウム[A]、及び側鎖にカチオン性基を有する樹脂[B]は、各々単一種類のみを使用しても、構造の異なる複数種類を使用してもよい。
<Salt-forming compound>
The salt-forming compound of the present invention stirs or vibrates an aqueous solution in which a squarylium [A] and a resin [B] having a cationic group in the side chain are dissolved, or an aqueous solution of squarylium [A] and a cation in the side chain. It can be easily obtained by mixing an aqueous solution of the resin [B] having a sex group with stirring or vibration. In the aqueous solution, the anionic group of squarylium [A] and the cationic group of resin [B] are ionized, and these are ionically bonded, and the ion-bonded portion becomes water-insoluble and precipitates. On the contrary, since the salt composed of the counter cation of squarylium [A] and the counter anion of the resin [B] is water-soluble, it can be removed by washing with water or the like. As the squarylium [A] to be used and the resin [B] having a cationic group in the side chain, only one type may be used, or a plurality of types having different structures may be used.

塩形成時に使用する水溶液として、スクアリリウム[A]、及び側鎖にカチオン性基を有する樹脂[B]を溶解させるため、水と水溶性有機溶剤との混合溶液を使用してもよい。水溶性有機溶剤としては、メタノール、エタノール、n−プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、n−ブタノール、イソブタノール、2−(メトキシメトキシ)エタノール、2−ブトキシエタノール、2−(イソペンチルオキシ)エタノール、2−(ヘキシルオキシ)エタノール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコール、プロピレンゴリコールモノメチルエーテルアセテート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、ポリエチレングリコール、グリセリン、テトラエチレングリコール、ジプロピレングリコール、アセトン、ジアセトンアルコール、アニリン、ピリジン、酢酸エチル、酢酸イソプロピル、メチルエチルケトン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン(THF)、ジオキサン、2−ピロリドン、2−メチルピロリドン、N−メチル−2−ピロリドン、1,2−ヘキサンジオール、2,4,6−ヘキサントリオール、テトラフルフリルアルコール、4−メトキシ−4メチルペンタノン等が挙げられる。これらの水溶性有機溶剤は、水溶液の全重量を基準(100質量%)として、5〜50質量%用いることが好ましく、5〜20質量%用いることが最も好ましい。 As the aqueous solution used at the time of salt formation, a mixed solution of water and a water-soluble organic solvent may be used in order to dissolve the squarylium [A] and the resin [B] having a cationic group in the side chain. Examples of the water-soluble organic solvent include methanol, ethanol, n-propanol, isopropanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, n-butanol, isobutanol, 2- (methoxymethoxy) ethanol, 2-. Butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene Glycol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol, triethylene glycol monomethyl ether, polyethylene glycol, glycerin, tetraethylene glycol, dipropylene glycol, acetone , Diacetone alcohol, aniline, pyridine, ethyl acetate, isopropyl acetate, methyl ethyl ketone, N, N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran (THF), dioxane, 2-pyrrolidone, 2-methylpyrrolidone, N-methyl-2-pyrrolidone , 1,2-hexanediol, 2,4,6-hexanetriol, tetraflufuryl alcohol, 4-methoxy-4 methylpentanone and the like. These water-soluble organic solvents are preferably used in an amount of 5 to 50% by mass, most preferably 5 to 20% by mass, based on the total weight of the aqueous solution (100% by mass).

スクアリリウム[A]と、側鎖にカチオン性基を有する樹脂[B]との比率は、樹脂[B]の全カチオンユニットとスクアリリウム[A]の全アニオン性基とのモル比が10/1〜1/10の範囲であれば本発明の造塩化合物を好適に調整でき、4/1〜1/4の範囲であれば好ましく、2/1〜1/2の範囲であれば特に好ましい。 The ratio of the squarylium [A] to the resin [B] having a cationic group in the side chain is such that the molar ratio of the total cationic unit of the resin [B] to the total anionic group of the squarylium [A] is 10/1 to 1 to 1. The salt-forming compound of the present invention can be suitably adjusted in the range of 1/10, preferably in the range of 4/1 to 1/4, and particularly preferably in the range of 2/1 to 1/2.

一般式(1)で表されるスクアリリウム[A]におけるnが2以上の場合、全てのスルホ基が樹脂[B]と塩形成しても良いし、1個以上のスルホ基が樹脂[B]と塩形成し、残りのスルホ基のカウンターカチオンはZの状態で残っていても良い。前記の製造する際のモル比を変更することで、樹脂[B]とZの比率を制御することができる。 When n in the squarylium [A] represented by the general formula (1) is 2 or more, all the sulfo groups may be salt-formed with the resin [B], or one or more sulfo groups may be the resin [B]. The counter cation of the remaining sulfo group may remain in the Z + state. The ratio of the resin [B] to Z + can be controlled by changing the molar ratio at the time of production.

<発色剤[C]>
発色剤[C]としては、電子供与性のロイコ染料が挙げられ、各種公知の化合物が使用できる。これらは、単独又は2種以上を混合して使用することもでき、用途や要求される品質特性によって適宜選択される。具体例を示すと次のような化合物が挙げられるが、これらに限定されるものではない。
<Color former [C]>
Examples of the color former [C] include electron-donating leuco dyes, and various known compounds can be used. These can be used alone or in combination of two or more, and are appropriately selected depending on the application and required quality characteristics. Specific examples include, but are not limited to, the following compounds.

(1)トリアリールメタン化合物
3,3’−ビス(4−ジメチルアミノフェニル)−6−ジメチルアミノフタリド<商品名:クリスタルバイオレットラクトン、CVL>、3−(4−ジメチルアミノ−2−メチルフェニル)−3−(4−ジメチルアミノフェニル)フタリド、3,3’−ビス(2−(4−ジメチルアミノフェニル)−2−(4−メトキシフェニル)エテニル)−4,5,6,7−テトラクロロフタリド<NIR−Black>、3,3’−ビス(4−ジメチルアミノフェニル)フタリド<MGL>、3−(4−ジメチルアミノフェニル)−3−(1,2−ジメチルインドール−3−イル)フタリド、3−(4−ジメチルアミノフェニル)−3−(2−フェニルインドール−3−イル)フタリド、3,3’−ビス(4−エチルカルバゾール−3−イル)−3−ジメチルアミノフタリド、3,3’−ビス(1−エチル−−メチルインドール−3−イル)フタリド<インドリルレッド>、3,3’−ビス(2−フェニルインドール−3−イル)−5−ジメチルアミノフタリド、トリス(4−ジメチルアミノフェニル)メタン<LCV>等。
(1) Triarylmethane compound 3,3'-bis (4-dimethylaminophenyl) -6-dimethylaminophthalide <trade name: crystal violet lactone, CVL>, 3- (4-dimethylamino-2-methylphenyl) ) -3- (4-Dimethylaminophenyl) phthalide, 3,3'-bis (2- (4-dimethylaminophenyl) -2- (4-methoxyphenyl) ethenyl) -4,5,6,7-tetra Chlorophthalide <NIR-Black>, 3,3'-bis (4-dimethylaminophenyl) phthalide <MGL>, 3- (4-dimethylaminophenyl) -3- (1,2-dimethylindole-3-yl) ) Phenylide, 3- (4-dimethylaminophenyl) -3- (2-phenylindole-3-yl) phthalide, 3,3'-bis (4-ethylcarbazole-3-yl) -3-dimethylaminophthalide , 3,3'-bis (1-ethyl-methylindol-3-yl) phthalide <Indrill Red>, 3,3'-bis (2-phenylindole-3-yl) -5-dimethylaminophthalide , Tris (4-dimethylaminophenyl) methane <LCV>, etc.

(2)ジフェニルメタン系化合物
4,4−ビス(ジメチルアミノ)ベンズヒドリンベンジルエーテル、N−ハロフェニル−ロイコオーラミン、N−2,4,5−トリクロロフェニルロイコオーラミン等。
(2) Diphenylmethane compound 4,4-bis (dimethylamino) benzhydrinbenzyl ether, N-halophenyl-leucooramine, N-2,4,5-trichlorophenylleucooramine and the like.

(3)キサンテン系化合物
ローダミンB−アニリノラクタム、3−ジエチルアミノ−7−ジベンジルアミノフルオラン、3−ジエチルアミノ−7−ブチルアミノフルオラン、3−ジエチルアミノ−7−アニリノフルオラン<Green−2>、3−ジエチルアミノ−7−(2−クロロアニリノ)フルオラン、3−ジブチルアミノ−7−(2−クロロアニリノ)フルオラン<TH−107>、3−ジエチルアミノ−7−(3−トリフルオロメチルアニリノ)フルオラン<Black−100>、3−ジエチルアミノ−6−メチル−7−アニリノフルオラン<ODB>、3−ジブチルアミノ−6−メチル−7−アニリノフルオラン<ODB−2>、3−ピペリジノ−6−メチル−7−アニリノフルオラン、3−(N−イソアミル−N−エチルアミノ)−6−メチル−7−アニリノフルオラン<S−205>、3−(N−エチル−N−トリルアミノ)−6−メチル−7−アニリノフルオラン、3−(N−シクロヘキシル−N−メチルアミノ)−6−メチル−7−アニリノフルオラン<PSD−150>、3−ジエチルアミノ−6−クロロ−7−(β−エトキシエチルアミノ)フルオラン、3−ジエチルアミノ−6−クロロ−7−(γ−クロロプロピルアミノ)フルオラン、3−シクロヘキシルアミノ−6−クロロフルオラン<OR−55>、3−ジエチルアミノ−6−クロロ−7−アニリノフルオラン、3−(N−シクロヘキシル−N−メチルアミノ)−6−メチル−7−アニリノフルオラン、3−ジエチルアミノ−7−フェニルフルオラン等。
(3) Xanthene compounds Rhodamine B-anilinolactam, 3-diethylamino-7-dibenzylaminofluorane, 3-diethylamino-7-butylaminofluorane, 3-diethylamino-7-anilinofluorane <Green-2 >, 3-Diethylamino-7- (2-chloroanilino) fluorane, 3-dibutylamino-7- (2-chloroanilino) fluorane <TH-107>, 3-diethylamino-7- (3-trifluoromethylanilino) fluorane <Black-100>, 3-diethylamino-6-methyl-7-anilinofluorane <ODB>, 3-dibutylamino-6-methyl-7-anilinofluorane <ODB-2>, 3-piperidino-6 -Methyl-7-anilinofluorane, 3- (N-isoamyl-N-ethylamino) -6-methyl-7-anilinofluorane <S-205>, 3- (N-ethyl-N-tolylamino) -6-Methyl-7-anilinofluorane, 3- (N-cyclohexyl-N-methylamino) -6-methyl-7-anilinofluorane <PSD-150>, 3-diethylamino-6-chloro-7 -(Β-ethoxyethylamino) fluorane, 3-diethylamino-6-chloro-7- (γ-chloropropylamino) fluorane, 3-cyclohexylamino-6-chlorofluorane <OR-55>, 3-diethylamino-6 -Chloro-7-anilinofluorane, 3- (N-cyclohexyl-N-methylamino) -6-methyl-7-anilinofluorane, 3-diethylamino-7-phenylfluorane, etc.

(4)チアジン系化合物
ベンゾイルロイコメチレンブルー、p−ニトロベンゾイルロイコメチレンブルー等。
(4) Thiazine compounds Benzoyl leucomethylene blue, p-nitrobenzoyl leucomethylene blue and the like.

(5)スピロ系化合物
3−メチルスピロジナフトピラン、3−エチルスピロジナフトピラン、3−ベンジルスピロジナフトピラン、3−メチルナフト−(6’−メトキシベンゾ)スピロピラン等が挙げられる。
(5) Spiro-based compounds Examples thereof include 3-methylspirodinaphthopyran, 3-ethylspirodinaphthopyran, 3-benzylspirodinaphthopyran, 3-methylnaphtho- (6'-methoxybenzo) spiropyran and the like.

(6)ペンタジエン化合物
1,1,5,5−テトラキス(4−ジメチルアミノフェニル)−3−メトキシ−1,4−ペンタジエン、1,1,5,5−テトラキス(4−ジメチルアミノフェニル)−1,4−ペンタジエン等。
(6) Pentadiene compound 1,1,5,5-tetrakis (4-dimethylaminophenyl) -3-methoxy-1,4-pentadiene, 1,1,5,5-tetrakis (4-dimethylaminophenyl) -1 , 4-Pentadiene, etc.

<顕色剤[D]>
顕色剤[D]としては、電子受容性の化合物が挙げられ、各種公知の化合物が使用できる。これらは、単独又は2種以上を混合して使用することができ、用途や要求品質に応じて、適宜選択される。具体例を示すと次のような化合物が挙げられるが、これらに限定されるものではない。
<Color developer [D]>
Examples of the color developer [D] include electron-accepting compounds, and various known compounds can be used. These can be used alone or in combination of two or more, and are appropriately selected according to the intended use and required quality. Specific examples include, but are not limited to, the following compounds.

活性白土、アタパルジャイト、コロイダルシリカ、珪酸アルミニウム等の無機酸性物質、4−ヒドロキシ安息香酸ベンジル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸ノルマルプロピル、4−ヒドロキシ安息香酸イソプロピル、4−ヒドロキシ安息香酸ブチルなどの4−ヒドロキシ安息香酸エステル類、4−ヒドロキシフタル酸ジメチル、4−ヒドロキシフタル酸ジイソプロピル、4−ヒドロキシフタル酸ジベンジル、4−ヒドロキシフタル酸ジヘキシルなどの4−ヒドロキシフタル酸ジエステル類、フタル酸モノベンジルエステル、フタル酸モノシクロヘキシルエステル、フタル酸モノフェニルエステル、フタル酸モノメチルフェニルエステルなどのフタル酸モノエステル類、ビス(4−ヒドロキシ−3−tert−ブチル−6−メチルフェニル)スルフィド、ビス(4−ヒドロキシ−2,5−ジメチルフェニル)スルフィド、ビス(4−ヒドロキシ−5−エチル−2−メチルフェニル)スルフィドなどのビスヒドロキシフェニルスルフィド類、3,4−ビスフェノールA、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン<ビスフェノールA>、ビス(4−ヒドロキシフェニル)メタン<ビスフェノールF>、2,2−ビス(4−ヒドロキシフェニル)ヘキサン、テトラメチルビスフェノールA、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,4−ビス(2−(4−ヒドロキシフェニル)プロピル)ベンゼン。 Inorganic acidic substances such as active white clay, atapargite, colloidal silica, aluminum silicate, benzyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, normal propyl 4-hydroxybenzoate, isopropyl 4-hydroxybenzoate, 4-hydroxybenzoic acid 4-Hydroxybenzoic acid esters such as butyl, 4-hydroxyphthalic acid diesters such as dimethyl 4-hydroxyphthalate, diisopropyl 4-hydroxyphthalate, dibenzyl 4-hydroxyphthalate, dihexyl 4-hydroxyphthalate, and phthalic acid Phydroxy monoesters such as monobenzyl ester, phthalic acid monocyclohexyl ester, phthalic acid monophenyl ester, phthalic acid monomethylphenyl ester, bis (4-hydroxy-3-tert-butyl-6-methylphenyl) sulfide, bis ( Bishydroxyphenyl sulfides such as 4-hydroxy-2,5-dimethylphenyl) sulfide, bis (4-hydroxy-5-ethyl-2-methylphenyl) sulfide, 3,4-bisphenol A, 1,1-bis ( 4-Hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane <bisphenol A>, bis (4-hydroxyphenyl) methane <bisphenol F>, 2,2-bis (4-hydroxyphenyl) hexane, Tetramethylbisphenol A, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,4-bis (2- (4-hydroxyphenyl) propyl) benzene.

1,3−ビス(2−(4−ヒドロキシフェニル)プロピル)ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2’−ビス−(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、1,4−ビス(1−(4−(2−(4−ヒドロキシフェニル)−2−プロピル)フェニル)エチル)ベンゼンなどのビスフェノール類、4−ヒドロキシ−4’−イソプロポキシジフェニルスルホン<D−8>、4−ヒドロキシ−4’−メトキシジフェニルスルホン、4−ヒドロキシ−4’−ノルマルプロポキシジフェニルスルホンなどの4−ヒドロキシフェニルアリールスルホン類、ビス(4−ヒドロキシフェニル)スルホン<ビスフェノールS>、テトラメチルビスフェノールS、ビス(3−エチル−4−ヒドロキシフェニル)スルホン、ビス(3−プロピル−4−ヒドロキシフェニル)スルホン、ビス(3−イソプロピル−4−ヒドロキシフェニル)スルホン、ビス(3−tert−ブチル−4−ヒドロキシ−6−メチルフェニル)スルホン、ビス(3−クロロ−4−ヒドロキシフェニル)スルホン、ビス(3−ブロモ−4−ヒドロキシフェニル)スルホン、2−ヒドロキシフェニル−4’−ヒドロキシフェニルスルホンなどのビスヒドロキシフェニルスルホン類、4−ヒドロキシベンゼンスルホナート、4−ヒドロキシフェニル−p−トリルスルホナート、4−ヒドロキシフェニル−p−クロロベンゼンスルホナートなどの4−ヒドロキシフェニルアリールスルホナート類、4−ヒドロキシベンゾイルオキシ安息香酸ベンジル、4−ヒドロキシベンゾイルオキシ安息香酸エチル、4−ヒドロキシベンゾイルオキシ安息香酸ノルマルプロピル、4−ヒドロキシベンゾイルオキシ安息香酸イソプロピル、4−ヒドロキシベンゾイルオキシ安息香酸ブチルなどの4−ヒドロキシベンゾイルオキシ安息香酸エステル類、2,4−ジヒドロキシベンゾフェノン、α,α’−ビス−(3−メチル−4−ヒドロキシフェニル)−m−ジイソプロピルベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノンなどのベンゾフェノン類、N−ステアリル−p−アミノフェノール、4−ヒドロキシサリチルアニリド、4,4’−ジヒドロキシジフェニルエーテル、n−ブチルビス(ヒドロキシフェニル)アセテート、α,α’,α”−トリス(4−ヒドロキシフェニル)−1,3,5−トリイソプロピルベンゼン、没食子酸ステアリル。 1,3-bis (2- (4-hydroxyphenyl) propyl) benzene, 1,4-bis (4-hydroxyphenyl) cyclohexane, 2,2'-bis- (4-hydroxy-3-isopropylphenyl) propane, Bisphenols such as 1,4-bis (1- (4- (2- (4-hydroxyphenyl) -2-propyl) phenyl) ethyl) benzene, 4-hydroxy-4'-isopropoxydiphenyl sulfone <D-8 >, 4-Hydroxyphenylaryl sulfones such as 4-hydroxy-4'-methoxydiphenyl sulfone, 4-hydroxy-4'-normal propoxydiphenyl sulfone, bis (4-hydroxyphenyl) sulfone <bisphenol S>, tetramethylbisphenol S, bis (3-ethyl-4-hydroxyphenyl) sulfone, bis (3-propyl-4-hydroxyphenyl) sulfone, bis (3-isopropyl-4-hydroxyphenyl) sulfone, bis (3-tert-butyl-4) Bis such as −hydroxy-6-methylphenyl) sulfone, bis (3-chloro-4-hydroxyphenyl) sulfone, bis (3-bromo-4-hydroxyphenyl) sulfone, 2-hydroxyphenyl-4'-hydroxyphenyl sulfone 4-Hydroxyphenylaryl sulfonates such as hydroxyphenyl sulfone, 4-hydroxybenzene sulfonate, 4-hydroxyphenyl-p-tolyl sulfonate, 4-hydroxyphenyl-p-chlorobenzene sulfonate, 4-hydroxybenzoyloxy benzoate 4-Hydroxybenzoyloxy benzoic acid esters such as benzyl acid, ethyl 4-hydroxybenzoyloxy benzoate, normal propyl 4-hydroxybenzoyloxy benzoate, isopropyl 4-hydroxybenzoyloxy benzoate, butyl 4-hydroxybenzoyloxy benzoate , 2,4-Dihydroxybenzophenone, α, α'-bis- (3-methyl-4-hydroxyphenyl) -m-diisopropylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone and other benzophenones, N- Stearyl-p-aminophenol, 4-hydroxysalitylanilide, 4,4'-dihydroxydiphenyl ether, n-butylbis (hydroxyphenyl) acetate, α, α', α "-tris (4-hydroxyphenyl) -1,3 5-Triisopropylbenzene, died Stearyl gallate.

4,4’−チオビス(6−t−ブチル−m−クレゾール)、2,2−ビス(3−アリル−4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)サルファイド、ビス(4−ヒドロキシ−3−メチルフェニル)サルファイド、p−tert−ブチルフェノール、p−フェニルフェノール、p−ベンジルフェノール、1−ナフトール、2−ナフトール等のフェノール性化合物、N,N’−ジ−m−クロロフェニルチオウレア等のチオ尿素化合物、安息香酸、p−tert−ブチル安息香酸、トリクロロ安息香酸、3−sec−ブチル−4−ヒドロキシ安息香酸、3−シクロヘキシル−4−ヒドロキシ安息香酸、3,5−ジメチル−4−ヒドロキシ安息香酸、テレフタル酸、サリチル酸、3−イソプロピルサリチル酸、3−tert−ブチルサリチル酸、4−(2−(p−メトキシフェノキシ)エチルオキシ)サリチル酸、4−(3−(p−トリルスルホニル)プロピルオキシ)サリチル酸、5−(p−(2−(p−メトキシフェノキシ)エトキシ)クミル)サリチル酸等の芳香族カルボン酸、及びこれら芳香族カルボン酸の亜鉛、マグネシウム、アルミニウム、カルシウム、チタン、マンガン、スズ、ニッケル等の多価金属との塩、さらにはチオシアン酸亜鉛のアンチピリン錯体、テレフタルアルデヒド酸と他の芳香族カルボン酸との複合亜鉛塩等の有機酸性物質等。 4,4'-thiobis (6-t-butyl-m-cresol), 2,2-bis (3-allyl-4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxy- 3-Methylphenyl) Sulfide, p-tert-butylphenol, p-phenylphenol, p-benzylphenol, 1-naphthol, 2-naphthol and other phenolic compounds, N, N'-di-m-chlorophenylthiourea and the like Urea compounds, benzoic acid, p-tert-butyl benzoic acid, trichloro benzoic acid, 3-sec-butyl-4-hydroxy benzoic acid, 3-cyclohexyl-4-hydroxy benzoic acid, 3,5-dimethyl-4-hydroxy benzoic acid Acids, terephthalic acid, salicylic acid, 3-isopropylsalicylic acid, 3-tert-butylsalicylic acid, 4- (2- (p-methoxyphenoxy) ethyloxy) salicylic acid, 4- (3- (p-tolylsulfonyl) propyloxy) salicylic acid, Aromatic carboxylic acids such as 5- (p- (2- (p-methoxyphenoxy) ethoxy) cumyl) salicylic acid, and zinc, magnesium, aluminum, calcium, titanium, manganese, tin, nickel and the like of these aromatic carboxylic acids. Salts with polyvalent metals, as well as organic acidic substances such as antipyrine complexes of zinc thiocyanate and complex zinc salts of terephthalaldehyde acid and other aromatic carboxylic acids.

<樹脂[E]>
樹脂[E]としては、水溶性樹脂として、セルロース、メチルセルロース、メトキシセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、カゼイン、ゼラチン、スチレン/無水マレイン酸共重合体塩、イソブチレン/無水マレイン酸共重合体塩、ポリアクリル酸エステル、ポリウレタン樹脂、アクリル/スチレン樹脂等が挙げられる。また、溶剤型樹脂としては、スチレン/マレイン酸、アクリル/スチレン樹脂、ポリスチレン、ポリエステル、ポリカーボネイト、エポキシ樹脂、ポリウレタン樹脂、ポリブチラール樹脂、ポリアクリル酸エステル、スチレン/ブタジエン共重合体、スチレン/ブタジエン/アクリル酸共重合体、ポリ酢酸ビニル、フッ素樹脂、フェノール樹脂、アクリルシリコン・変性シリコン樹脂、アミノアルキド樹脂、フタル酸樹脂等が挙げられ、水溶性樹脂が好ましい。尚、組成物として使用する際に、表面保護層の膜強度、耐熱性、耐水性、耐溶剤性等の向上を目的に硬化剤を併用することができる。
<Resin [E]>
As the resin [E], as a water-soluble resin, cellulose, methyl cellulose, methoxy cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyacrylamide, polyacrylic acid, casein, gelatin, styrene / maleic anhydride copolymer salt, isobutylene. / Maleic anhydride copolymer salt, polyacrylic acid ester, polyurethane resin, acrylic / styrene resin and the like. As the solvent type resin, styrene / maleic acid, acrylic / styrene resin, polystyrene, polyester, polycarbonate, epoxy resin, polyurethane resin, polybutyral resin, polyacrylic acid ester, styrene / butadiene copolymer, styrene / butadiene / Examples thereof include acrylic acid copolymer, polyvinyl acetate, fluororesin, phenol resin, acrylic silicon / modified silicon resin, aminoalkyd resin, phthalic acid resin, and water-soluble resin is preferable. When used as a composition, a curing agent can be used in combination for the purpose of improving the film strength, heat resistance, water resistance, solvent resistance, etc. of the surface protective layer.

樹脂[E]の含有量は、レーザーマーキング用組成物全固形分に対して5〜50質量%が好ましく、更に好ましくは5〜30質量%である。樹脂[E]としては、中でも、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリアクリル酸エステル、ポリウレタン樹脂及びアクリル/スチレン樹脂からなる群から選ばれる少なくとも一種がより好ましい。 The content of the resin [E] is preferably 5 to 50% by mass, more preferably 5 to 30% by mass, based on the total solid content of the laser marking composition. As the resin [E], at least one selected from the group consisting of polyvinyl alcohol, polyacrylamide, polyacrylic acid, polyacrylic acid ester, polyurethane resin and acrylic / styrene resin is more preferable.

<その他公知の添加剤>
その他公知の添加剤として、増感剤、保存安定剤、填料、分散剤、界面活性剤、消泡剤、蛍光増白剤、耐水化剤、滑剤、紫外線吸収剤、酸化防止剤などが、用途や要求品質に応じて使用できる。
<Other known additives>
Other known additives include sensitizers, storage stabilizers, fillers, dispersants, surfactants, defoamers, optical brighteners, water resistant agents, lubricants, UV absorbers, antioxidants, etc. And can be used according to the required quality.

<レーザーマーキング用組成物の製造方法>
本発明のレーザーマーキング用組成物は従来公知の方法によって製造することができる。レーザーマーキング用組成物の各種塗液の調製方法については特に限定するものではなく、一般に水を分散媒体とし、本発明の造塩化合物、発色剤[C]、顕色剤[D]、樹脂[E]や必要に応じてその他公知の添加剤を混合撹拌して調製することができる。本発明の造塩化合物、発色剤[C]及び顕色剤[D]、それぞれ別々に水系でサンドグラインダー、アトライター、ボールミルなどで粉砕、分散した後、混合することによって水系の塗液を得る方法や、本発明の造塩化合物、発色剤[C]及び顕色剤[D]のいずれかをマイクロカプセル化した後に水系の塗液を得る方法などが知られている。
<Manufacturing method of laser marking composition>
The composition for laser marking of the present invention can be produced by a conventionally known method. The method for preparing various coating liquids for the laser marking composition is not particularly limited, and generally, water is used as a dispersion medium, and the salt-forming compound, the color former [C], the color developer [D], and the resin [ E] and, if necessary, other known additives can be mixed and stirred. The salt-forming compound, the color former [C] and the color developer [D] of the present invention are separately pulverized and dispersed in an aqueous system using a sand grinder, an attritor, a ball mill or the like, and then mixed to obtain an aqueous coating solution. A method and a method of obtaining an aqueous coating liquid after microencapsulating any one of the salt-forming compound, the color former [C] and the color developer [D] of the present invention are known.

発色剤[C]及び顕色剤[D]の使用比率は、用いる発色剤[C]や顕色剤[D]の種類に応じて適宜選択され特に限定するものではないが、発色剤[C]1質量部に対して、0.1〜50質量部、好ましくは0.1〜10質量部程度の顕色剤[D]が使用される。 The ratio of the color-developing agent [C] and the color-developing agent [D] to be used is appropriately selected according to the type of the color-developing agent [C] and the color-developing agent [D] to be used, and is not particularly limited. ] A color developer [D] of about 0.1 to 50 parts by mass, preferably about 0.1 to 10 parts by mass is used with respect to 1 part by mass.

本発明の造塩化合物は、発色剤[C]1質量部に対して0.1質量部以下、好ましくは0.001〜0.08質量部の範囲で使用される。レーザーマーキング用組成物全固形分に対しては、好ましくは0.05〜5質量%、より好ましくは、0.05〜3質量%の範囲で使用される。 The salt-forming compound of the present invention is used in the range of 0.1 parts by mass or less, preferably 0.001 to 0.08 parts by mass, with respect to 1 part by mass of the color former [C]. The composition for laser marking is preferably used in the range of 0.05 to 5% by mass, more preferably 0.05 to 3% by mass, based on the total solid content.

本発明の造塩化合物、発色剤[C]、顕色剤[D]は平均粒径3μmを越えないように微粒化するのがより好ましい。本発明の造塩化合物に関しては、前述のとおり、溶解状態でも使用することができるため、その際は、本発明の造塩化合物の平均粒径を留意しなくてもよい。微粒化の理由としては、材料を微粒化すればするだけ、発色した印字部のドット径が光源であるレーザー光のスポット径とほとんど同じで、かつ均一なドット径となり、高画質で鮮明な印字や線描が得られると考えられるからである。 It is more preferable that the salt-forming compound, the color former [C], and the color developer [D] of the present invention are atomized so as not to exceed the average particle size of 3 μm. As described above, the salt-forming compound of the present invention can be used even in a dissolved state, so that it is not necessary to pay attention to the average particle size of the salt-forming compound of the present invention. The reason for the atomization is that the more the material is atomized, the more the dot diameter of the colored printing part is almost the same as the spot diameter of the laser beam that is the light source, and the uniform dot diameter is obtained, resulting in high-quality and clear printing. This is because it is thought that a line drawing can be obtained.

<塗工物>
本発明のレーザーマーキング用組成物は、公知の基材に塗工して塗工物とすることができる。公知の基材は、プラスチックフィルム、紙、金属箔、ガラス、セラミック、木材等からなるものであって良く、基材の形状及び大きさは、任意であってよい。プラスチックフィルムを構成する合成樹脂の種類は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂もしくは、UV/EB硬化系の樹脂でもよい。熱可塑性樹脂の例としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン、ポリアクリルメタクリレート、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリスルホン、ポリイミド、ポリアミド、及びこれらの混合物及びこれらをベースとした共重合体等が挙げられる。熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド及びこれらの混合物等が挙げられる。
<Coated material>
The composition for laser marking of the present invention can be coated on a known base material to obtain a coated product. The known base material may be made of a plastic film, paper, metal foil, glass, ceramic, wood, or the like, and the shape and size of the base material may be arbitrary. The type of synthetic resin constituting the plastic film is not particularly limited, and may be a thermoplastic resin, a thermosetting resin, or a UV / EB curable resin. Examples of thermoplastic resins include polyolefin, polyvinylidene chloride, polyvinylidene chloride, polystyrene, polyvinylacetate, polytetrafluoroethylene, acrylonitrile butadiene styrene, polyacrylic methacrylate, polyamide, nylon, polyacetal, polycarbonate, polybutylene terephthalate, and polyethylene. Examples thereof include terephthalate, polyvinylidene chloride, polysulfone, polyimide, polyamide, mixtures thereof, and copolymers based on these. Examples of thermosetting resins include phenolic resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and mixtures thereof.

(塗工方法)
塗工方法としては、スプレーコートやスピンコート、スリットコート、ロールコート、インクジェット、スクリーン、グラビア、オフセット、フレキソなどの印刷方式などが挙げられるが、これらに限定されることはない。
(Coating method)
Examples of the coating method include, but are not limited to, spray coating, spin coating, slit coating, roll coating, inkjet, screen, gravure, offset, flexo and other printing methods.

<記録材、レーザー>
前記塗工物は、レーザー光を照射することで記録材とすることができる。レーザーマーキングに用いられるレーザー光としては、近赤外レーザー光であれば特に制限はなく、半導体レーザー、色素(パルス)レーザー、アレキサンドライトレーザー等のレーザー光を挙げることができる。本発明の造塩化合物は750〜950nmの領域に吸収帯が存在するため、使用するレーザーの波長は750〜950nmの範囲内が好ましい。レーザー照射条件は、塗工方法、塗工条件、基材の種類等により適宜選択される。
<Recording material, laser>
The coated material can be used as a recording material by irradiating it with a laser beam. The laser beam used for laser marking is not particularly limited as long as it is a near-infrared laser beam, and examples thereof include laser beams such as semiconductor lasers, dye (pulse) lasers, and Alexandrite lasers. Since the salt-forming compound of the present invention has an absorption band in the region of 750 to 950 nm, the wavelength of the laser used is preferably in the range of 750 to 950 nm. The laser irradiation conditions are appropriately selected depending on the coating method, coating conditions, type of base material, and the like.

以下に、実施例により本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例中、「部」及び「%」とは「質量部」及び「質量%」をそれぞれ意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. In the examples and comparative examples, "parts" and "%" mean "parts by mass" and "% by mass", respectively.

(スクアリリウム[A]の同定方法)
本発明に用いたスクアリリウム[A]の同定には、元素分析及びMALDITOF−MSスペクトルを用いた。元素分析は、パーキン・エルマー社製2400CHNElemantAnalyzerを用いた。MALDITOF−MSスペクトルは、ブルカー・ダルトニクス社製MALDI質量分析装置autoflexIIIを用い、得られたマススペクトラムの分子イオンピークと、計算によって得られる質量数との一致をもって、得られた化合物の同定を行った。
(Method for identifying squarylium [A])
Elemental analysis and MALDITF-MS spectra were used to identify the squarylium [A] used in the present invention. For elemental analysis, a 2400 CHNElemant Analyzer manufactured by PerkinElmer Co., Ltd. was used. For the MALDIOF-MS spectrum, the obtained compound was identified by matching the molecular ion peak of the obtained mass spectrum with the mass number obtained by calculation using the MALDI mass spectrometer autoflex III manufactured by Bruker Daltonics. ..

(側鎖にカチオン性基を有する樹脂[B]の重量平均分子量(Mw))
本発明に用いた側鎖にカチオン性基を有する樹脂[B]の重量平均分子量(Mw)は、TSKgelカラム(東ソー社製)を用い、RI検出器を装備したGPC(東ソー社製、HLC−8120GPC)で、展開溶媒にTHFを用いて測定したポリスチレン換算の重量平均分子量(Mw)である。
(Weight average molecular weight (Mw) of resin [B] having a cationic group in the side chain)
The weight average molecular weight (Mw) of the resin [B] having a cationic group in the side chain used in the present invention is a GPC (manufactured by Tosoh Corporation, HLC-) equipped with an RI detector using a TSKgel column (manufactured by Tosoh Corporation). 8120 GPC), polystyrene-equivalent weight average molecular weight (Mw) measured using THF as the developing solvent.

(側鎖にカチオン性基を有する樹脂[B]の4級アンモニウム塩価)
本発明に用いた側鎖にカチオン性基を有する樹脂[B]の4級アンモニウム塩価は、5%クロム酸カリウム水溶液を指示薬として、0.1Nの硝酸銀水溶液で滴定して求めた後、水酸化カリウムの当量に換算した。下記樹脂[B]の4級アンモニウム塩価は、固形分の4級アンモニウム塩価を示す。
(Quaternary ammonium salt value of resin [B] having a cationic group in the side chain)
The quaternary ammonium salt value of the resin [B] having a cationic group in the side chain used in the present invention was determined by titrating with a 0.1 N silver nitrate aqueous solution using a 5% potassium chromate aqueous solution as an indicator, and then water. It was converted to the equivalent of potassium oxide. The quaternary ammonium salt value of the resin [B] below indicates the quaternary ammonium salt value of the solid content.

<スクアリリウム[A]の製造方法>
(スクアリリウム[A−1]の製造)
トルエン400部に、1,8−ジアミノナフタレン40.0部、シクロヘキサノン25.1部、p−トルエンスルホン酸一水和物0.087部を混合し、窒素ガスの雰囲気中で加熱攪拌し、3時間還流させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、トルエンを蒸留して得られた暗茶色固体をアセトンで抽出し、アセトンとエタノールの混合溶媒から再結晶することにより精製した。得られた茶色固体を、トルエン240部とn−ブタノール160部の混合溶媒に溶解させ、3,4−ジヒドロキシ−3−シクロブテン−1,2−ジオン13.8部を加えて、窒素ガスの雰囲気中で加熱撹拌し、8時間還流反応させた。反応中に生成した水は共沸蒸留により系中から除去した。反応終了後、溶媒を蒸留し、得られた反応混合物を攪拌しながら、ヘキサン200部を加えた。得られた黒茶色沈殿物を濾別した後、順次ヘキサン、エタノール及びアセトンで洗浄を行い、減圧下で乾燥させた。得られた黒茶色固体を、90%硫酸1000部に溶解させ、30度で5時間撹拌した。反応終了後、水10000部を撹拌しているところに反応液を滴下し、20度で1時間撹拌した。得られた沈殿物を濾別し、0.5%塩酸で洗浄を行い、減圧下で乾燥させ、スクアリリウム[A−1]70.9部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−1]であることを同定した。
<Manufacturing method of squarylium [A]>
(Manufacturing of squarylium [A-1])
To 400 parts of toluene, 40.0 parts of 1,8-diaminonaphthalene, 25.1 parts of cyclohexanone, and 0.087 parts of p-toluenesulfonic acid monohydrate are mixed, heated and stirred in an atmosphere of nitrogen gas, and 3 It was refluxed for hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the dark brown solid obtained by distilling toluene was extracted with acetone and purified by recrystallization from a mixed solvent of acetone and ethanol. The obtained brown solid was dissolved in a mixed solvent of 240 parts of toluene and 160 parts of n-butanol, and 13.8 parts of 3,4-dihydroxy-3-cyclobutene-1,2-dione was added to create an atmosphere of nitrogen gas. The mixture was heated and stirred inside, and the mixture was refluxed for 8 hours. The water produced during the reaction was removed from the system by azeotropic distillation. After completion of the reaction, the solvent was distilled and 200 parts of hexane was added while stirring the obtained reaction mixture. The obtained black-brown precipitate was filtered off, washed successively with hexane, ethanol and acetone, and dried under reduced pressure. The obtained black-brown solid was dissolved in 1000 parts of 90% sulfuric acid and stirred at 30 ° C. for 5 hours. After completion of the reaction, the reaction solution was added dropwise to the place where 10000 parts of water was being stirred, and the mixture was stirred at 20 ° C. for 1 hour. The obtained precipitate was separated by filtration, washed with 0.5% hydrochloric acid, and dried under reduced pressure to obtain 70.9 parts (yield: 92%) of squarylium [A-1]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-1].

スクアリリウム[A−1]
Squalilium [A-1]

(スクアリリウム[A−2]の製造)
スクアリリウム[A−1]の製造で使用した90%硫酸1000部の代わりに、98%硫酸1000部を使用した以外は、スクアリリウム[A−1]の製造と同様の操作を行い、スクアリリウム[A−2]79.8部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−2]であることを同定した。
(Manufacturing of squarylium [A-2])
The same operation as in the production of squalylium [A-1] was performed except that 1000 parts of 98% sulfuric acid was used instead of 1000 parts of 90% sulfuric acid used in the production of squalylium [A-1]. 2] 79.8 parts (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-2].

スクアリリウム[A−2]
Squalilium [A-2]

(スクアリリウム[A−3]の製造)
スクアリリウム[A−1]の製造で使用した90%硫酸1000部の代わりに、101%硫酸1000部を使用した以外は、スクアリリウム[A−1]の製造と同様の操作を行い、スクアリリウム[A−3]87.8部(収率:91%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−3]であることを同定した。
(Manufacturing of squarylium [A-3])
The same operation as in the production of squarylium [A-1] was performed except that 1000 parts of 101% sulfuric acid was used instead of 1000 parts of 90% sulfuric acid used in the production of squarylium [A-1]. 3] 87.8 parts (yield: 91%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-3].

スクアリリウム[A−3]
Squalilium [A-3]

(スクアリリウム[A−4]の製造)
スクアリリウム[A−1]の製造で使用した90%硫酸1000部の代わりに、104.5%硫酸1000部を使用した以外は、スクアリリウム[A−1]の製造と同様の操作を行い、スクアリリウム[A−4]95.6部(収率:90%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−4]であることを同定した。
(Manufacturing of squarylium [A-4])
The same operation as in the production of squalylium [A-1] was performed except that 1000 parts of 104.5% sulfuric acid was used instead of 1000 parts of 90% sulfuric acid used in the production of squalylium [A-1]. A-4] 95.6 parts (yield: 90%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-4].

スクアリリウム[A−4]
Squalilium [A-4]

(スクアリリウム[A−5]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2,6−ジメチルシクロヘキサノン32.2部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−5]89.8部(収率:96%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−5]であることを同定した。
(Manufacturing of squarylium [A-5])
The same operation as in the production of squarylium [A-2] was performed except that 32.2 parts of 2,6-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. , Squalylium [A-5] 89.8 parts (yield: 96%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-5].

スクアリリウム[A−5]
Squalilium [A-5]

(スクアリリウム[A−6]の製造)
スクアリリウム[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、スクアリリウム[A−1]の製造と同様の操作を行い、スクアリリウム[A−6]82.2部(収率:98%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−6]であることを同定した。
(Manufacturing of squarylium [A-6])
The same operation as in the production of squarylium [A-1] was performed except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-1]. , 82.2 parts of squarylium [A-6] (yield: 98%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-6].

スクアリリウム[A−6]
Squalilium [A-6]

(スクアリリウム[A−7]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−7]90.8部(収率:97%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−7]であることを同定した。
(Manufacturing of squarylium [A-7])
The same operation as in the production of squalylium [A-2] was performed except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. , 90.8 parts of squarylium [A-7] (yield: 97%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-7].

スクアリリウム[A−7]
Squalilium [A-7]

(スクアリリウム[A−8]の製造)
スクアリリウム[A−3]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、スクアリリウム[A−3]の製造と同様の操作を行い、スクアリリウム[A−8]98.1部(収率:95%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−8]であることを同定した。
(Manufacturing of squarylium [A-8])
The same operation as in the production of squalylium [A-3] was performed except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-3]. , 98.1 parts of squarylium [A-8] (yield: 95%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-8].

スクアリリウム[A−8]
Squalilium [A-8]

(スクアリリウム[A−9]の製造)
スクアリリウム[A−4]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジメチルシクロヘキサノン32.2部を使用した以外は、スクアリリウム[A−4]の製造と同様の操作を行い、スクアリリウム[A−9]106.2部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−9]であることを同定した。
(Manufacturing of squarylium [A-9])
The same operation as in the production of squarylium [A-4] was performed except that 32.2 parts of 3,5-dimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-4]. , 106.2 parts of squarylium [A-9] (yield: 94%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-9].

スクアリリウム[A−9]
Squalilium [A-9]

(スクアリリウム[A−10]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−メチルシクロヘキサノン28.6部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−10]85.6部(収率:95%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−10]であることを同定した。
(Manufacturing of squarylium [A-10])
The same operation as in the production of squalylium [A-2] was performed except that 28.6 parts of 4-methylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. [A-10] 85.6 parts (yield: 95%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-10].

スクアリリウム[A−10]
Squalilium [A-10]

(スクアリリウム[A−11]の製造)
スクアリリウム[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3,5−トリメチルシクロヘキサノン35.8部を使用した以外は、スクアリリウム[A−1]の製造と同様の操作を行い、スクアリリウム[A−11]81.1部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−11]であることを同定した。
(Manufacturing of squarylium [A-11])
The same operation as in the production of squarylium [A-1], except that 35.8 parts of 3,3,5-trimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-1]. 81.1 parts (yield: 93%) of squarylium [A-11] was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-11].

スクアリリウム[A−11]
Squalilium [A-11]

(スクアリリウム[A−12]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3,5−トリメチルシクロヘキサノン35.8部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−12]90.2部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−12]であることを同定した。
(Manufacturing of squarylium [A-12])
The same operation as in the production of squarylium [A-2], except that 35.8 parts of 3,3,5-trimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. To obtain 90.2 parts of squarylium [A-12] (yield: 93%). As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-12].

スクアリリウム[A−12]
Squalilium [A-12]

(スクアリリウム[A−13]の製造)
スクアリリウム[A−3]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3,5−トリメチルシクロヘキサノン35.8部を使用した以外は、スクアリリウム[A−3]の製造と同様の操作を行い、スクアリリウム[A−13]98.1部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−13]であることを同定した。
(Manufacturing of squarylium [A-13])
The same operation as in the production of squarylium [A-3], except that 35.8 parts of 3,3,5-trimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-3]. To obtain 98.1 parts (yield: 92%) of squarylium [A-13]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-13].

スクアリリウム[A−13]
Squalilium [A-13]

(スクアリリウム[A−14]の製造)
スクアリリウム[A−4]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3,5−トリメチルシクロヘキサノン35.8部を使用した以外は、スクアリリウム[A−4]の製造と同様の操作を行い、スクアリリウム[A−14]104.8部(収率:90%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−14]であることを同定した。
(Manufacturing of squarylium [A-14])
The same operation as in the production of squarylium [A-4], except that 35.8 parts of 3,3,5-trimethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-4]. Was carried out to obtain 104.8 parts (yield: 90%) of squarylium [A-14]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-14].

スクアリリウム[A−14]
Squalilium [A-14]

(スクアリリウム[A−15]の製造)
スクアリリウム[A−1]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、スクアリリウム[A−1]の製造と同様の操作を行い、スクアリリウム[A−15]86.1部(収率:95%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−15]であることを同定した。
(Manufacturing of squarylium [A-15])
The same operation as in the production of squarylium [A-1] was performed except that 39.4 parts of 3,5-diethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-1]. , Squalylium [A-15] 86.1 parts (yield: 95%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-15].

スクアリリウム[A−15]
Squalilium [A-15]

(スクアリリウム[A−16]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−16]94.3部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−16]であることを同定した。
(Manufacturing of squarylium [A-16])
The same operation as in the production of squalylium [A-2] was performed except that 39.4 parts of 3,5-diethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. , 94.3 parts of squarylium [A-16] (yield: 94%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-16].

スクアリリウム[A−16]
Squalilium [A-16]

(スクアリリウム[A−17]の製造)
スクアリリウム[A−3]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、スクアリリウム[A−3]の製造と同様の操作を行い、スクアリリウム[A−17]103.5部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−17]であることを同定した。
(Manufacturing of squarylium [A-17])
The same operation as in the production of squalylium [A-3] was performed except that 39.4 parts of 3,5-diethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-3]. , 103.5 parts of squarylium [A-17] (yield: 94%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-17].

スクアリリウム[A−17]
Squalilium [A-17]

(スクアリリウム[A−18]の製造)
スクアリリウム[A−4]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジエチルシクロヘキサノン39.4部を使用した以外は、スクアリリウム[A−4]の製造と同様の操作を行い、スクアリリウム[A−18]110.2部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−18]であることを同定した。
(Manufacturing of squarylium [A-18])
The same operation as in the production of squalylium [A-4] was carried out except that 39.4 parts of 3,5-diethylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-4]. , 110.2 parts of squarylium [A-18] (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-18].

スクアリリウム[A−18]
Squalilium [A-18]

(スクアリリウム[A−19]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、5−イソプロピル−2−メチルシクロヘキサノン39.4部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−19]93.3部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−19]であることを同定した。
(Manufacturing of squarylium [A-19])
The same operation as in the production of squalylium [A-2], except that 39.4 parts of 5-isopropyl-2-methylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. To obtain 93.3 parts (yield: 93%) of squarylium [A-19]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-19].

スクアリリウム[A−19]
Squalilium [A-19]

(スクアリリウム[A−20]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2−シクロヘキシルシクロヘキサノン46.0部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−20]97.1部(収率:91%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−20]であることを同定した。
(Manufacturing of squarylium [A-20])
The same operation as in the production of squalylium [A-2] was performed except that 46.0 parts of 2-cyclohexylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. [A-20] 97.1 parts (yield: 91%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-20].

スクアリリウム[A−20]
Squalilium [A-20]

(スクアリリウム[A−21]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2−ノルボルナノン28.1部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−21]82.5部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−21]であることを同定した。
(Manufacturing of squarylium [A-21])
The same operation as in the production of squalylium [A-2] was performed except that 28.1 parts of 2-norbornanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. A-21] 82.5 parts (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-21].

スクアリリウム[A−21]
Squalilium [A-21]

(スクアリリウム[A−22]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、スピロ[5.5]ウンデカン−1−オン42.5部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−22]97.1部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−22]であることを同定した。
(Manufacturing of squarylium [A-22])
With the production of squalylium [A-2], except that 42.5 parts of spiro [5.5] undecane-1-one was used in place of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. The same operation was carried out to obtain 97.1 parts (yield: 94%) of squarylium [A-22]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-22].

スクアリリウム[A−22]
Squalilium [A-22]

(スクアリリウム[A−23]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3−メチル−3,4,4a,5,8,8a−ヘキサヒドロナフタレン−1(2H)−オン41.9部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−23]93.5部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−23]であることを同定した。
(Manufacturing of squarylium [A-23])
Instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2], 3-methyl-3,4,4a, 5,8,8a-hexahydronaphthalene-1 (2H) -one 41.9 parts The same operation as in the production of squarylium [A-2] was carried out except that 93.5 parts (yield: 94%) of squarylium [A-23] was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-23].

スクアリリウム[A−23]
Squalilium [A-23]

(スクアリリウム[A−24]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3−(2−クロロエチル)シクロヘキサノン41.0部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−24]95.8部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−24]であることを同定した。
(Manufacturing of squarylium [A-24])
The same operation as in the production of squarylium [A-2], except that 41.0 parts of 3- (2-chloroethyl) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. To obtain 95.8 parts (yield: 94%) of squarylium [A-24]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-24].

スクアリリウム[A−24]
Squalilium [A-24]

(スクアリリウム[A−25]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジ(トリフルオロメチル)シクロヘキサノン59.8部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−25]111.4部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−25]であることを同定した。
(Manufacturing of squarylium [A-25])
With the production of squalylium [A-2], except that 59.8 parts of 3,5-di (trifluoromethyl) cyclohexanone was used in place of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. The same operation was carried out to obtain 111.4 parts (yield: 93%) of squarylium [A-25]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-25].

スクアリリウム[A−25]
Squalilium [A-25]

(スクアリリウム[A−26]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2−フェニルシクロヘキサノン44.5部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−26]96.8部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−26]であることを同定した。
(Manufacturing of squarylium [A-26])
The same operation as in the production of squarylium [A-2] was performed except that 44.5 parts of 2-phenylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. [A-26] 96.8 parts (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-26].

スクアリリウム[A−26]
Squalilium [A-26]

(スクアリリウム[A−27]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−p−トリルシクロヘキサノン48.1部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−27]102.1部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−27]であることを同定した。
(Manufacturing of squarylium [A-27])
The same operation as in the production of squalylium [A-2] was performed except that 48.1 parts of 4-p-tolylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. , 102.1 parts (yield: 94%) of squarylium [A-27] was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-27].

スクアリリウム[A−27]
Squalilium [A-27]

(スクアリリウム[A−28]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−ベンジルシクロヘキサノン48.1部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−28]103.2部(収率:95%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−28]であることを同定した。
(Manufacturing of squarylium [A-28])
The same operation as in the production of squalylium [A-2] was carried out except that 48.1 parts of 4-benzylcyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. [A-28] 103.2 parts (yield: 95%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-28].

スクアリリウム[A−28]
Squalilium [A-28]

(スクアリリウム[A−29]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−エトキシシクロヘキサノン36.3部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−29]88.7部(収率:91%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−29]であることを同定した。
(Manufacturing of squarylium [A-29])
The same operation as in the production of squarylium [A-2] was performed except that 36.3 parts of 4-ethoxycyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. [A-29] 88.7 parts (yield: 91%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-29].

スクアリリウム[A−29]
Squalilium [A-29]

(スクアリリウム[A−30]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2,6−ジ(トリフルオロメトキシ)シクロヘキサノン68.0部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−30]118.6部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−30]であることを同定した。
(Manufacturing of squarylium [A-30])
With the production of squarylium [A-2], except that 68.0 parts of 2,6-di (trifluoromethoxy) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. The same operation was carried out to obtain 118.6 parts (yield: 93%) of squarylium [A-30]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-30].

スクアリリウム[A−30]
Squalilium [A-30]

(スクアリリウム[A−31]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−フェノキシシクロヘキサノン48.6部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−31]100.4部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−31]であることを同定した。
(Manufacturing of squarylium [A-31])
The same operation as in the production of squalylium [A-2] was performed except that 48.6 parts of 4-phenoxycyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. [A-31] 100.4 parts (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-31].

スクアリリウム[A−31]
Squalilium [A-31]

(スクアリリウム[A−32]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、N−エチル−3−オキソシクロヘキサン−1−スルホアミド52.4部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−32]106.0部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−32]であることを同定した。
(Manufacturing of squarylium [A-32])
Production of squalylium [A-2], except that 52.4 parts of N-ethyl-3-oxocyclohexane-1-sulfoamide was used in place of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. The same operation as in the above was carried out to obtain 106.0 parts (yield: 94%) of squarylium [A-32]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-32].

スクアリリウム[A−32]
Squalilium [A-32]

(スクアリリウム[A−33]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−オキソシクロヘキサンカルボン酸36.3部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−33]87.7部(収率:90%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−33]であることを同定した。
(Manufacturing of squarylium [A-33])
The same operation as in the production of squarylium [A-2] was performed except that 36.3 parts of 4-oxocyclohexanecarboxylic acid was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. , 87.7 parts of squarylium [A-33] (yield: 90%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-33].

スクアリリウム[A−33]
Squalilium [A-33]

(スクアリリウム[A−34]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2−オキソシクロヘキサンカルボン酸エチル43.5部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−34]96.9部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−34]であることを同定した。
(Manufacturing of squarylium [A-34])
The same operation as in the production of squalylium [A-2] was performed except that 43.5 parts of ethyl 2-oxocyclohexanecarboxylic acid was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. This was carried out to obtain 96.9 parts of squarylium [A-34] (yield: 93%). As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-34].

スクアリリウム[A−34]
Squalilium [A-34]

(スクアリリウム[A−35]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−オキソ−N−プロピルシクロヘキサンカルボキシアミド46.8部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−35]102.0(収率:95%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−35]であることを同定した。
(Manufacturing of squarylium [A-35])
Similar to the production of squalylium [A-2], except that 46.8 parts of 4-oxo-N-propylcyclohexanecarboxyamide was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. Squarylium [A-35] 102.0 (yield: 95%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-35].

スクアリリウム[A−35]
Squalilium [A-35]

(スクアリリウム[A−36]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−アミノシクロヘキサノン28.9部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−36]85.0部(収率:94%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−36]であることを同定した。
(Manufacturing of squarylium [A-36])
The same operation as in the production of squalylium [A-2] was performed except that 28.9 parts of 4-aminocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. [A-36] 85.0 parts (yield: 94%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-36].

スクアリリウム[A−36]
Squalilium [A-36]

(スクアリリウム[A−37]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−(ジメチルアミノ)シクロヘキサノン36.1部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−37]92.3部(収率:95%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−37]であることを同定した。
(Manufacturing of squarylium [A-37])
The same operation as in the production of squalylium [A-2] was performed except that 36.1 parts of 4- (dimethylamino) cyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. This was carried out to obtain 92.3 parts (yield: 95%) of squarylium [A-37]. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-37].

スクアリリウム[A−37]
Squalilium [A-37]

(スクアリリウム[A−38]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−オキソシクロヘキサンカルボニトリル31.4部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−38]85.4部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−38]であることを同定した。
(Manufacturing of squarylium [A-38])
The same operation as in the production of squarylium [A-2] was performed except that 31.4 parts of 4-oxocyclohexanecarbonitrile was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. , 85.4 parts of squarylium [A-38] (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-38].

スクアリリウム[A−38]
Squalilium [A-38]

(スクアリリウム[A−39]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、4−ニトロシクロヘキサノン36.6部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−39]89.9部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−39]であることを同定した。
(Manufacturing of squarylium [A-39])
The same operation as in the production of squalylium [A-2] was performed except that 36.6 parts of 4-nitrocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. [A-39] 89.9 parts (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-39].

スクアリリウム[A−39]
Squalilium [A-39]

(スクアリリウム[A−40]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3,5−ジフルオロシクロヘキサノン34.3部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−40]88.8部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−40]であることを同定した。
(Manufacturing of squarylium [A-40])
The same operation as in the production of squarylium [A-2] was performed except that 34.3 parts of 3,5-difluorocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. , 88.8 parts of squarylium [A-40] (yield: 93%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-40].

スクアリリウム[A−40]
Squalilium [A-40]

(スクアリリウム[A−41]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、2−クロロシクロヘキサノン33.9部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−41]87.5部(収率:92%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−41]であることを同定した。
(Manufacturing of squarylium [A-41])
The same operation as in the production of squarylium [A-2] was performed except that 33.9 parts of 2-chlorocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squarylium [A-2]. [A-41] 87.5 parts (yield: 92%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-41].

スクアリリウム[A−41]
Squalilium [A-41]

(スクアリリウム[A−42]の製造)
スクアリリウム[A−2]の製造で使用したシクロヘキサノン25.1部の代わりに、3,3−ジブロモシクロヘキサノン65.4部を使用した以外は、スクアリリウム[A−2]の製造と同様の操作を行い、スクアリリウム[A−42]116.3部(収率:93%)を得た。TOF−MSによる質量分析及び元素分析の結果、スクアリリウム[A−42]であることを同定した。
(Manufacturing of squarylium [A-42])
The same operation as in the production of squalylium [A-2] was performed except that 65.4 parts of 3,3-dibromocyclohexanone was used instead of 25.1 parts of cyclohexanone used in the production of squalylium [A-2]. , Squalylium [A-42] 116.3 parts (yield: 93%) was obtained. As a result of mass spectrometry and elemental analysis by TOF-MS, it was identified as squarylium [A-42].

スクアリリウム[A−42]
Squalilium [A-42]

以上、製造例で合成したスクアリリウム[A−1]〜[A−42]において、質量分析及び元素分析を行った結果を表1及び表2に示す。 Tables 1 and 2 show the results of mass spectrometry and elemental analysis of the squaryliums [A-1] to [A-42] synthesized in the production examples.

<側鎖にカチオン性基を有する樹脂[B]の調製方法>
(側鎖にカチオン性基を有する樹脂[B−1]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、メチルエチルケトン67.3部を仕込み窒素気流下で75℃に昇温した。別途、メチルメタクリレート33.2部、n−ブチルメタクリレート27.3部、2−エチルヘキシルメタクリレート27.3部、メタクリル酸ジメチルアミノエチルメチルクロライド塩12.2部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6.5部、及びメチルエチルケトン25.1部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7500である事を確認し、50℃へ冷却した。その後、イソプロピルアルコールを72部加え、樹脂成分が40質量%の側鎖にカチオン性基を有する樹脂[B−1]を得た。得られた樹脂のアンモニウム塩価は33mgKOH/gであった。
<Method for preparing resin [B] having a cationic group in the side chain>
(Preparation of resin [B-1] having a cationic group in the side chain)
67.3 parts of methyl ethyl ketone was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 33.2 parts of methyl methacrylate, 27.3 parts of n-butyl methacrylate, 27.3 parts of 2-ethylhexyl methacrylate, 12.2 parts of dimethylaminoethylmethyl chloride salt methacrylate, 2,2'-azobis (2,4). -Dimethylvaleronitrile) was made uniform in 6.5 parts and 25.1 parts of methyl ethyl ketone, charged in a dropping funnel, attached to a four-neck separable flask, and added dropwise over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7500, and the mixture was cooled to 50 ° C. Then, 72 parts of isopropyl alcohol was added to obtain a resin [B-1] having a cationic group in the side chain having a resin component of 40% by mass. The ammonium salt value of the obtained resin was 33 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−2]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、メチルエチルケトン67.3部を仕込み窒素気流下で75℃に昇温した。別途、メチルメタクリレート22.4部、n−ブチルメタクリレート16.7部、2−エチルヘキシルメタクリレート27.3部、ヒドロキエチルメタクリレート15.0部、メタクリル酸2.5部、t−ブチルメタクリレート1.3部、イソブチルメタクリレート1.3部、シクロヘキシルメタクリレート1.3部、メタクリル酸ジメチルアミノエチルメチルクロライド塩12.2部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6.5部、及びメチルエチルケトン25.1部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7950である事を確認し、50℃へ冷却した。その後、イソプロピルアルコールを72部加え、樹脂成分が40質量%の側鎖にカチオン性基を有する樹脂[B−2]を得た。得られた樹脂のアンモニウム塩価は33mgKOH/gであった。
(Preparation of resin [B-2] having a cationic group in the side chain)
67.3 parts of methyl ethyl ketone was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 22.4 parts of methyl methacrylate, 16.7 parts of n-butyl methacrylate, 27.3 parts of 2-ethylhexyl methacrylate, 15.0 parts of hydrochiethyl methacrylate, 2.5 parts of methacrylic acid, 1.3 parts of t-butyl methacrylate. , 1.3 parts of isobutyl methacrylate, 1.3 parts of cyclohexyl methacrylate, 12.2 parts of dimethylaminoethylmethyl chloride salt methacrylate, 6.5 parts of 2,2'-azobis (2,4-dimethylvaleronitrile), and After making 25.1 parts of methyl ethyl ketone uniform, the mixture was charged into a dropping funnel, attached to a 4-port separable flask, and dropped over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7950, and the mixture was cooled to 50 ° C. Then, 72 parts of isopropyl alcohol was added to obtain a resin [B-2] having a cationic group in the side chain having a resin component of 40% by mass. The ammonium salt value of the obtained resin was 33 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−3]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、メチルエチルケトン67.3部を仕込み窒素気流下で75℃に昇温した。別途、メチルメタクリレート21.0部、n−ブチルメタクリレート27.3部、2−エチルヘキシルメタクリレート27.3部、メタクリル酸ジメチルアミノエチルメチルクロライド塩22.4部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6.5部、及びメチルエチルケトン25.1部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7640である事を確認し、50℃へ冷却した。その後、イソプロピルアルコールを72部加え、樹脂成分が40質量%の側鎖にカチオン性基を有する樹脂[B−3]を得た。得られた樹脂のアンモニウム塩価は66mgKOH/gであった。
(Preparation of resin [B-3] having a cationic group in the side chain)
67.3 parts of methyl ethyl ketone was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 21.0 parts of methyl methacrylate, 27.3 parts of n-butyl methacrylate, 27.3 parts of 2-ethylhexyl methacrylate, 22.4 parts of dimethylaminoethylmethyl chloride salt methacrylate, 2,2'-azobis (2,4). -Dimethylvaleronitrile) was made uniform in 6.5 parts and 25.1 parts of methyl ethyl ketone, charged in a dropping funnel, attached to a four-neck separable flask, and added dropwise over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7640, and the mixture was cooled to 50 ° C. Then, 72 parts of isopropyl alcohol was added to obtain a resin [B-3] having a cationic group in the side chain having a resin component of 40% by mass. The ammonium salt value of the obtained resin was 66 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−4]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、イソプロピルアルコール62.4部を仕込み、窒素気流下で75℃に昇温した。別途、メチルメタクリレート16.0部、ブチルメタクリレート17.0部、スチレン16.0部、メタクリル酸ジメチルアミノエチルメチルクロライド塩51.0部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6部、及びメチルエチルケトン25.0部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7050である事を確認し、50℃へ冷却した。その後、イソプロピルアルコールを65部加え、樹脂成分が40質量%の側鎖にカチオン性基を有する樹脂[B−4]を得た。得られた樹脂のアンモニウム塩価は138mgKOH/gであった。
(Preparation of resin [B-4] having a cationic group in the side chain)
62.4 parts of isopropyl alcohol was placed in a 4-port separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 16.0 parts of methyl methacrylate, 17.0 parts of butyl methacrylate, 16.0 parts of styrene, 51.0 parts of dimethylaminoethylmethyl chloride salt methacrylate, 2,2'-azobis (2,4-dimethylvaleronitrile) After homogenizing 6 parts and 25.0 parts of methyl ethyl ketone, the mixture was charged in a dropping funnel, attached to a 4-neck separable flask, and dropped over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7050, and the mixture was cooled to 50 ° C. Then, 65 parts of isopropyl alcohol was added to obtain a resin [B-4] having a cationic group in the side chain having a resin component of 40% by mass. The ammonium salt value of the obtained resin was 138 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−5]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、イソプロピルアルコール62.4部を仕込み、窒素気流下で75℃に昇温した。別途、メチルメタクリレート35.5部、ブチルメタクリレート30.0部、2−エチルヘキシルアクリレート16.8部、メタクリル酸ジメチルアミノプロピルメチルクロライド塩17.7部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を5.7部、及びメチルエチルケトン15.6部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7420である事を確認し、50℃へ冷却した。その後、イソプロピルアルコールを72部加え、樹脂成分が40質量%の側鎖にカチオン性基を有する樹脂[B−5]を得た。得られた樹脂のアンモニウム塩価は45mgKOH/gであった。
(Preparation of resin [B-5] having a cationic group in the side chain)
62.4 parts of isopropyl alcohol was placed in a 4-port separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 35.5 parts of methyl methacrylate, 30.0 parts of butyl methacrylate, 16.8 parts of 2-ethylhexyl acrylate, 17.7 parts of dimethylaminopropylmethyl chloride salt methacrylate, 2,2'-azobis (2,4-dimethyl). After homogenizing 5.7 parts of valeronitrile and 15.6 parts of methyl ethyl ketone, the mixture was charged in a dropping funnel, attached to a four-neck separable flask, and dropped over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7420, and the mixture was cooled to 50 ° C. Then, 72 parts of isopropyl alcohol was added to obtain a resin [B-5] having a cationic group in the side chain having a resin component of 40% by mass. The ammonium salt value of the obtained resin was 45 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−6]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、メチルエチルケトン67.3部を仕込み窒素気流下で75℃に昇温した。別途、イソボルニルメタクリレート34.7部、n−ブチルメタクリレート1.7部、ヒドロキエチルメタクリレート30.0部、メタクリル酸2.5部、t−ブチルメタクリレート16.3部、イソブチルメタクリレート2.5部、シクロヘキシルメタクリレート2.3部、ジメチルアミノエチルメタクリレート10.0部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6.5部、及びメチルエチルケトン25.1部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、6830である事を確認し、50℃へ冷却した。ここへ、塩化メチル3.2部、エタノール22.0部を追加し、50℃で2時間反応させた後、1時間かけて80℃まで加温し、更に、2時間反応させた。このようにして樹脂成分が47質量%の側鎖にカチオン性基を有する樹脂[B−6]を得た。得られた樹脂のアンモニウム塩価は34mgKOH/gであった。
(Preparation of resin [B-6] having a cationic group in the side chain)
67.3 parts of methyl ethyl ketone was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 34.7 parts of isobornyl methacrylate, 1.7 parts of n-butyl methacrylate, 30.0 parts of hydrochiethyl methacrylate, 2.5 parts of methacrylic acid, 16.3 parts of t-butyl methacrylate, 2.5 parts of isobutyl methacrylate. After homogenizing 2.3 parts of cyclohexyl methacrylate, 10.0 parts of dimethylaminoethyl methacrylate, 6.5 parts of 2,2'-azobis (2,4-dimethylvaleronitrile), and 25.1 parts of methyl ethyl ketone. It was charged into a dropping funnel, attached to a 4-port separable flask, and dropped over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 6830, and the mixture was cooled to 50 ° C. To this, 3.2 parts of methyl chloride and 22.0 parts of ethanol were added and reacted at 50 ° C. for 2 hours, then heated to 80 ° C. over 1 hour, and further reacted for 2 hours. In this way, a resin [B-6] having a cationic group in the side chain having a resin component of 47% by mass was obtained. The ammonium salt value of the obtained resin was 34 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−7]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、メチルエチルケトン67.3部を仕込み窒素気流下で75℃に昇温した。別途、メチルメタクリレート60.0部、n−ブチルメタクリレート10.0部、2−イソシアナトエチルメタクリレート10.0部、N,N−ジメチルアミノメチルスチレン20.0部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を6.7部、及びメチルエチルケトン25.1部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、6770である事を確認し、50℃へ冷却した。ここへ、塩化ベンジル15.7部、エタノール22.0部を追加し、50℃で2時間反応させた後、1時間かけて80℃まで加温し、更に、2時間反応させた。このようにして樹脂成分が50質量%の側鎖にカチオン性基を有する樹脂[B−7]を得た。得られた樹脂のアンモニウム塩価は60mgKOH/gであった。
(Preparation of resin [B-7] having a cationic group in the side chain)
67.3 parts of methyl ethyl ketone was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 60.0 parts of methyl methacrylate, 10.0 parts of n-butyl methacrylate, 10.0 parts of 2-isocyanatoethyl methacrylate, 20.0 parts of N, N-dimethylaminomethylstyrene, 2,2'-azobis (2). , 4-Dimethylvaleronitrile) was made uniform in 6.7 parts and 25.1 parts of methyl ethyl ketone, charged in a dropping funnel, attached to a 4-port separable flask, and added dropwise over 2 hours. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 6770, and the mixture was cooled to 50 ° C. To this, 15.7 parts of benzyl chloride and 22.0 parts of ethanol were added and reacted at 50 ° C. for 2 hours, then heated to 80 ° C. over 1 hour, and further reacted for 2 hours. In this way, a resin [B-7] having a cationic group in the side chain having a resin component of 50% by mass was obtained. The ammonium salt value of the obtained resin was 60 mgKOH / g.

(側鎖にカチオン性基を有する樹脂[B−8]の調製)
温度計、攪拌機、蒸留管、冷却器を具備した4つ口セパラブルフラスコに、イソプロピルアルコール62.4部を仕込み窒素気流下で75℃に昇温した。別途、メチルメタクリレート30.0部、ブチルメタクリレート20.0部、ヒドロキエチルメタクリレート15.0部、メタクリル酸5.0部、スチレン10.0部、Nービニルピロリドン20.0部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)を4.7部、及びイソプロピルアルコール15.6部を均一にした後、滴下ロートに仕込み、4つ口セパラブルフラスコに取り付け、2時間かけて滴下した。滴下終了2時間後、固形分から重合収率が98%以上であり、重量平均分子量(Mw)が、7550である事を確認し、50℃へ冷却した。ここへ、塩化メチル9.0部、イソプロピルアルコール22.0部を追加し、50℃で2時間反応させた後、1時間かけて80℃まで加温し、更に、2時間反応させた。その後、イソプロピルアルコールを50部加え、樹脂成分が44質量%の側鎖にカチオン性基を有する樹脂[B−8]を得た。得られた樹脂のアンモニウム塩価は92mgKOH/gであった。
(Preparation of resin [B-8] having a cationic group in the side chain)
62.4 parts of isopropyl alcohol was placed in a 4-port separable flask equipped with a thermometer, a stirrer, a distillation tube, and a cooler, and the temperature was raised to 75 ° C. under a nitrogen stream. Separately, 30.0 parts of methyl methacrylate, 20.0 parts of butyl methacrylate, 15.0 parts of hydroxyethyl methacrylate, 5.0 parts of methacrylic acid, 10.0 parts of styrene, 20.0 parts of N-vinylpyrrolidone, 2,2'. -After homogenizing 4.7 parts of azobis (2,4-dimethylvaleronitrile) and 15.6 parts of isopropyl alcohol, it was charged into a dropping funnel, attached to a four-neck separable flask, and dropped over 2 hours. .. Two hours after the completion of the dropping, it was confirmed from the solid content that the polymerization yield was 98% or more and the weight average molecular weight (Mw) was 7550, and the mixture was cooled to 50 ° C. To this, 9.0 parts of methyl chloride and 22.0 parts of isopropyl alcohol were added, reacted at 50 ° C. for 2 hours, heated to 80 ° C. over 1 hour, and further reacted for 2 hours. Then, 50 parts of isopropyl alcohol was added to obtain a resin [B-8] having a cationic group in the side chain having a resin component of 44% by mass. The ammonium salt value of the obtained resin was 92 mgKOH / g.

以上、製造例で合成した樹脂[B−1]〜[B−8]の組成、アンモニウム塩価、重量平均分子量について、表3に示す。 Table 3 shows the compositions, ammonium salt values, and weight average molecular weights of the resins [B-1] to [B-8] synthesized in the production examples.

表3中の略称を以下に示す。
MMA:メチルメタクリレート
n−BMA:n−ブチルメタクリレート
2−EHMA:2−エチルヘキシルメタクリレート
2−EHA:2−エチルヘキシルアクリレート
HEMA:ヒドロキシエチルメタクリレート
MAA:メタクリル酸
tBMA:t−ブチルメタクリレート
IBMA:イソブチルメタクリレート
CHMA:シクロヘキシルメタクリレート
IBX:イソボルニルメタクリレート
St:スチレン
MOI:2−イソシアナトエチルメタクリレート
The abbreviations in Table 3 are shown below.
MMA: Methyl methacrylate n-BMA: n-Butyl methacrylate 2-EHMA: 2-Ethylhexyl methacrylate 2-EHA: 2-Ethylhexyl acrylate HEMA: Hydroxyethyl methacrylate MAA: TBMA methacrylate: t-Butyl methacrylate IBMA: Isobutyl methacrylate CHMA: Cyclohexyl Methacrylate IBX: Isobornyl Methacrylate St: Styrene MOI: 2-Isocyanatoethyl Methylhexyl

<造塩化合物の製造方法>
[製造例43]
(造塩化合物1の製造)
下記の手順でスクアリリウム[A−1]とカチオン性基を有する樹脂[B−2]とからなる造塩化合物1を製造した。水2000部に51部の側鎖にカチオン性基を有する樹脂[B−2]を添加し、十分に攪拌混合を行った後、60℃に加熱する。一方、90部の水に6.03部のスクアリリウム[A−1]、0.85部の水酸化ナトリウムを溶解させた水溶液を調製し、先ほどの樹脂溶液に少しずつ滴下していく。滴下後、60℃で120分攪拌し、十分に反応を行う。反応の終点確認としては濾紙に反応液を滴下して、にじみがなくなったところを終点として、造塩化合物が得られたものと判断した。攪拌しながら室温まで放冷した後、吸引濾過を行い、水洗後、濾紙上に残った造塩化合物を乾燥機にて水分を除去して乾燥し、21部のスクアリリウム[A−1]とカチオン性基を有する樹脂[B−2]とからなる造塩化合物1を得た。
<Manufacturing method of salt-forming compounds>
[Manufacturing Example 43]
(Production of salt-forming compound 1)
A salt-forming compound 1 composed of squarylium [A-1] and a resin [B-2] having a cationic group was produced by the following procedure. A resin [B-2] having a cationic group in the side chain of 51 parts is added to 2000 parts of water, and the mixture is sufficiently stirred and mixed, and then heated to 60 ° C. On the other hand, an aqueous solution prepared by dissolving 6.03 parts of squarylium [A-1] and 0.85 parts of sodium hydroxide in 90 parts of water is prepared and gradually added dropwise to the resin solution. After the dropping, the mixture is stirred at 60 ° C. for 120 minutes to sufficiently react. To confirm the end point of the reaction, it was judged that the salt-forming compound was obtained by dropping the reaction solution onto the filter paper and using the point where the bleeding disappeared as the end point. After allowing to cool to room temperature with stirring, suction filtration is performed, and after washing with water, the salt-forming compound remaining on the filter paper is dried by removing water with a dryer, and 21 parts of squarylium [A-1] and cations are obtained. A salt-forming compound 1 composed of a resin [B-2] having a sex group was obtained.

[製造例44〜84]
(造塩化合物2〜42の製造)
以下、造塩化合物1の製造で使用したスクアリリウム[A]及び樹脂[B]を、表4に示す化合物、量を変更した以外は、造塩化合物1と同様にして、造塩化合物2〜42を得た。
[Manufacturing Examples 44 to 84]
(Production of salt-forming compounds 2-42)
Hereinafter, the squarylium [A] and the resin [B] used in the production of the salt-forming compound 1 are the same as those of the salt-forming compound 1 except that the compounds and amounts shown in Table 4 are changed. Got

[製造例85]
(近赤外線吸収色素[F−1]の製造)
特開2005−119262号公報に基づき下記の近赤外線吸収色素[F−1]を合成した。
[Manufacturing Example 85]
(Manufacturing of near-infrared absorbing dye [F-1])
The following near-infrared absorbing dye [F-1] was synthesized based on JP-A-2005-119262.

近赤外線吸収色素[F−1]
Near infrared absorbing dye [F-1]

[製造例86]
(近赤外線吸収色素[F−2]の製造)
特開平11−254830公報に基づき下記の近赤外線吸収色素[F−2]を合成した。
[Manufacturing Example 86]
(Manufacturing of near-infrared absorbing dye [F-2])
The following near-infrared absorbing dye [F-2] was synthesized based on JP-A-11-254830.

近赤外線吸収色素[F−2]
Near infrared absorbing dye [F-2]

[製造例87]
(近赤外線吸収色素[F−3]の製造)
特開平7−25153号公報に基づき下記のスクアリリウム[F−3]を合成した。
[Manufacturing Example 87]
(Manufacture of near-infrared absorbing dye [F-3])
The following squarylium [F-3] was synthesized based on JP-A-7-25153.

近赤外線吸収色素[F−3]
Near infrared absorbing dye [F-3]

<レーザーマーキング用組成物の製造>
[実施例1](レーザーマーキング用組成物LM−1)
(10%ポリビニルアルコール水溶液の調製)
1Lビーカー中に、和光純薬工業(株)製のポリビニルアルコール 50部と水 450部を添加し、50℃で30分間加熱攪拌することで、樹脂(E)である10%ポリビニルアルコール水溶液を調製した。
<Manufacturing of composition for laser marking>
[Example 1] (Laser marking composition LM-1)
(Preparation of 10% polyvinyl alcohol aqueous solution)
A 10% polyvinyl alcohol aqueous solution, which is a resin (E), is prepared by adding 50 parts of polyvinyl alcohol and 450 parts of water manufactured by Wako Pure Chemical Industries, Ltd. to a 1 L beaker and heating and stirring at 50 ° C. for 30 minutes. did.

(造塩化合物分散体の調整)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、造塩化合物分散体を作製した。
造塩化合物1 4部
(E)10%ポリビニルアルコール溶液 122部
水 74部
(Preparation of salt-forming compound dispersion)
The mixture having the following composition was uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a salt-forming compound dispersion.
Salt-forming compound 14 parts (E) 10% polyvinyl alcohol solution 122 parts Water 74 parts

(発色剤[C] 分散体の調整)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、発色剤[C]分散体を作製した。
(C)3,3’−ビス(4−ジメチルアミノフェニル)−6−ジメチルアミノフタリド
60部
(E)10%ポリビニルアルコール溶液 100部
水 40部
(Adjustment of color former [C] dispersion)
The mixture having the following composition is uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to prepare a color former [C] dispersion. did.
(C) 3,3'-Bis (4-dimethylaminophenyl) -6-dimethylaminophthalide
60 parts (E) 10% polyvinyl alcohol solution 100 parts Water 40 parts

(顕色剤[D] 分散体の調整)
下記の組成の混合物を均一に撹拌混合した後、直径0.5mmのジルコニアビーズを用いて、アイガーミルで3時間分散した後、0.5μmのフィルタで濾過し、顕色剤[D]分散体を作製した。
(D)4−ヒドロキシ−4’−イソプロポキシジフェニルスルホン
40部
(E)10%ポリビニルアルコール溶液(E) 100部
水 60部
(Adjustment of color developer [D] dispersion)
The mixture having the following composition is uniformly stirred and mixed, dispersed with an Eiger mill for 3 hours using zirconia beads having a diameter of 0.5 mm, and then filtered through a filter of 0.5 μm to obtain a color developer [D] dispersion. Made.
(D) 4-Hydroxy-4'-isopropoxydiphenyl sulfone
40 parts (E) 10% polyvinyl alcohol solution (E) 100 parts Water 60 parts

(レーザーマーキング用組成物LM−1の調整)
上記方法で製造した分散体を下記の比率で混合し、レーザーマーキング用組成物(LM−1)とした。
造塩化合物分散体 5部
発色剤[C]分散体 40部
顕色剤[D]分散体 10部
(Adjustment of composition LM-1 for laser marking)
The dispersion produced by the above method was mixed at the following ratio to obtain a laser marking composition (LM-1).
Salt-forming compound dispersion 5 parts Color-developing agent [C] dispersion 40 parts Color-developing agent [D] dispersion 10 parts

[実施例2〜56、比較例1〜3](レーザーマーキング用組成物 LM−2〜59)
造塩化合物1、発色剤[C]、及び顕色剤[D]の種類と配合量を表5に示す化合物、質量部に変更した以外は、LM−1と同様にして、レーザーマーキング用組成物 LM−2〜59を得た。
[Examples 2-56, Comparative Examples 1-3] (Laser marking compositions LM-2 to 59)
The composition for laser marking is the same as that of LM-1, except that the types and amounts of the salt-forming compound 1, the color former [C], and the color developer [D] are changed to the compounds and parts by mass shown in Table 5. The products LM-2 to 59 were obtained.

<レーザーマーキング用組成物の評価>
得られたレーザーマーキング用組成物LM−1〜59について、以下の評価を実施した。結果を表6に示す。
<Evaluation of composition for laser marking>
The following evaluations were carried out on the obtained laser marking compositions LM-1 to 59. The results are shown in Table 6.

(粘度評価)
得られたレーザーマーキング用組成物について、E型粘度計(東機産業社製「ELD型粘度計」)を用いて、25℃における粘度を測定した。以下の基準で評価した。
◎:5mPa・s未満
○:5mPa・s以上、10mPa・s未満
△:10mPa・s以上、30mPa・s未満
×:30mPa・s以上
(Viscosity evaluation)
The obtained composition for laser marking was measured for viscosity at 25 ° C. using an E-type viscometer (“ELD-type viscometer” manufactured by Toki Sangyo Co., Ltd.). Evaluation was made based on the following criteria.
⊚: Less than 5 mPa · s ○: 5 mPa · s or more and less than 10 mPa · s Δ: 10 mPa · s or more, less than 30 mPa · s ×: 30 mPa · s or more

(保存安定性)
得られたレーザーマーキング用組成物を60℃の恒温機に1週間保存、経時促進させた後、経時前後でのインキの粘度変化について測定した。インキの粘度はE型粘度計(東機産業社製「ELD型粘度計」)を用いて、25℃において回転数50rpmという条件で測定した。以下の基準で評価した。
◎:変化率が±3%未満
○:変化率が±3%以上、±5%未満
△:変化率が±5%以上、±15%未満
×:変化率が±15%以上
(Storage stability)
The obtained laser marking composition was stored in a thermostat at 60 ° C. for 1 week, accelerated over time, and then the change in ink viscosity before and after the time was measured. The viscosity of the ink was measured using an E-type viscometer (“ELD-type viscometer” manufactured by Toki Sangyo Co., Ltd.) under the condition of a rotation speed of 50 rpm at 25 ° C. Evaluation was made based on the following criteria.
⊚: Change rate is less than ± 3% ○: Change rate is ± 3% or more and less than ± 5% △: Change rate is ± 5% or more and less than ± 15% ×: Change rate is ± 15% or more

(近赤外線吸収能)
得られたレーザーマーキング用組成物を、水で1000倍希釈した後、分光光度計(U−4100 日立ハイテクノロジーズ社製)を用いて300〜1000nmの波長範囲の吸収スペクトルを測定した。その際、UVセルとして、10mm角の石英セルを使用した。本発明の造塩化合物の極大吸収は、750〜950nmの領域にあり、極大吸収波長における、吸光度により、近赤外線吸収能を下記基準で評価した。同濃度において、極大吸収波長における吸光度が高ければ高いほど、近赤外線吸収能に優れると言える。近赤外線吸収能が高ければ高いほど、効率的にレーザー光を熱へと変換することができるため、レーザーマーキングにおける発色性が向上する。つまりは、近赤外線吸収色素の添加量の削減にも繋がる。
◎:極大吸収波長における吸光度が1.0以上
○:極大吸収波長における吸光度が0.6以上1.0未満
△:極大吸収波長における吸光度が0.3以上0.6未満
×:極大吸収波長における吸光度が0.3未満
(Near infrared absorption capacity)
The obtained composition for laser marking was diluted 1000 times with water, and then the absorption spectrum in the wavelength range of 300 to 1000 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation). At that time, a 10 mm square quartz cell was used as the UV cell. The maximum absorption of the salt-forming compound of the present invention is in the region of 750 to 950 nm, and the near-infrared absorbing ability was evaluated based on the absorbance at the maximum absorption wavelength according to the following criteria. At the same concentration, the higher the absorbance at the maximum absorption wavelength, the better the near-infrared absorption capacity. The higher the near-infrared absorbing capacity, the more efficiently the laser light can be converted into heat, so that the color development property in laser marking is improved. In other words, it also leads to a reduction in the amount of the near-infrared absorbing dye added.
⊚: Absorbance at the maximum absorption wavelength is 1.0 or more ○: Absorbance at the maximum absorption wavelength is 0.6 or more and less than 1.0 Δ: Absorbance at the maximum absorption wavelength is 0.3 or more and less than 0.6 ×: At the maximum absorption wavelength Absorbance is less than 0.3

(不可視性)
前記方法にて得られた300〜1000nmの波長範囲の吸収スペクトルを使用して、極大吸収波長の吸光度を1に規格化した際の、「400〜700nmの平均吸光度」により、不可視性を下記基準で評価した。
◎ :0.05以下
○ :0.05以上、0.075未満
△ :0.075以上、0.1未満
× :0.1以上
(Invisibility)
Using the absorption spectrum in the wavelength range of 300 to 1000 nm obtained by the above method, the invisibility is determined by the following criteria based on the "average absorbance at 400 to 700 nm" when the absorbance at the maximum absorption wavelength is standardized to 1. Evaluated in.
⊚: 0.05 or less ○: 0.05 or more and less than 0.075 Δ: 0.075 or more and less than 0.1 ×: 0.1 or more

本発明の造塩化合物を含むレーザーマーキング用組成物は、非常に優れた粘度、保存安定性、近赤外線吸収能、及び不可視性を示した。特に、スクアリリウム[A]のシクロ環のX、X、X及びXがメチル基で置換された造塩化合物 6〜9、11〜14、43、44を含むレーザーマーキング用組成物が極めて良好な結果であった。その中でも、スルホ基の置換数 n=1又は2である造塩化合物6、7、11、12、43、44を有するレーザーマーキング用組成物が、粘度、保存安定性、近赤外線吸収能、及び不可視性に関して、特に良好な結果であった。また、アンモニウム塩価が20以上130以下mgKOH/gである樹脂[B−1〜3、5〜8]を使用した造塩化合物は、分散性に優れ、特に保存安定性が良好であった。 The composition for laser marking containing the salt-forming compound of the present invention exhibited excellent viscosity, storage stability, near-infrared absorption ability, and invisibility. In particular, a composition for laser marking containing salt-forming compounds 6 to 9, 11 to 14, 43, 44 in which X 3 , X 4 , X 7 and X 8 of the cyclo ring of squarylium [A] are substituted with methyl groups The result was extremely good. Among them, the composition for laser marking having the salt-forming compounds 6, 7, 11, 12, 43, 44 having the substitution number n = 1 or 2 of the sulfo group has viscosity, storage stability, near-infrared absorption ability, and The results were particularly good with respect to invisibility. Further, the salt-forming compound using the resin [B-1 to 3, 5 to 8] having an ammonium salt value of 20 or more and 130 or less mgKOH / g was excellent in dispersibility, and particularly good in storage stability.

本発明のレーザーマーキング用組成物は、粘度・保存安定性が非常に良好であり、これは本発明の造塩化合物が、易分散・易溶解であることに由来している。そのため、本発明の造塩化合物を使用したレーザーマーキング用組成物は、組成・プロセスに依存せず、インキとしての安定性に優れており、中でも保存安定性が著しく良好であるため、インキの長期保管が可能になる。更には、近赤外線吸収能が高いため、効率的な熱変換が可能となり、つまりは近赤外線吸収色素の添加量削減が可能となる。また、不可視性が高いため、塗工箇所を目視で確認しにくく、レーザー照射前後の色差が大きくなる。つまりは、発色性が向上する。加えて、不可視性が高いため、セキュリティ用途での使用も可能となる。 The composition for laser marking of the present invention has very good viscosity and storage stability, which is derived from the fact that the salt-forming compound of the present invention is easily dispersed and easily dissolved. Therefore, the composition for laser marking using the salt-forming compound of the present invention is excellent in stability as an ink without depending on the composition and process, and in particular, the storage stability is remarkably good, so that the ink is long-term. Can be stored. Furthermore, since the near-infrared absorbing ability is high, efficient heat conversion becomes possible, that is, the amount of the near-infrared absorbing dye added can be reduced. In addition, since the invisibility is high, it is difficult to visually confirm the coated portion, and the color difference before and after laser irradiation becomes large. That is, the color development property is improved. In addition, its high invisibility makes it possible to use it for security purposes.

<レーザーマーキング塗工物の製造>
[実施例57〜112、比較例4〜6]
(レーザーマーキング塗工物P−1〜59の製造)
得られたレーザーマーキング用組成物LM−1〜59を、普通紙に乾燥塗布量5.0g/mとなるようにバーコーターにてベタ塗工し、60℃で1分間 オーブン乾燥して、塗工物P−1〜46を得た。
<Manufacturing of laser marking coating>
[Examples 57 to 112, Comparative Examples 4 to 6]
(Manufacturing of laser marking coated products P-1 to 59)
The obtained laser marking composition LM-1 to 59 was solidly coated on plain paper with a bar coater so as to have a dry coating amount of 5.0 g / m 2, and dried in an oven at 60 ° C. for 1 minute. Coatings P-1 to 46 were obtained.

<レーザーマーキング塗工物の評価>
得られたレーザーマーキング塗工物P−1〜59について、以下の評価を実施した。結果を表7に示す。
<Evaluation of laser marking coating>
The following evaluations were carried out on the obtained laser marking coated products P-1 to 59. The results are shown in Table 7.

(発色性)
得られたレーザーマーキング塗工物に、レーザー波長808nm、レーザー走査速度10mm/sec、レーザー出力50mWの条件で、レーザー光を照射し、発色剤由来の、鮮明な線を描画させた。得られた線の発色性を目視で比較し、下記のような基準で評価した。〇以上が実用化に対して十分なレベルで、◎は極めて高濃度の線が描画できており、近赤外線吸収色素の削減が可能である。
◎:濃度が非常に高く、極めて鮮明な線が描画できている。
○:濃度が高く、鮮明な線が描画できている。
△:線が目視で確認できる。
×:濃度が低く、識別が困難である。
(Color development)
The obtained laser marking coated product was irradiated with laser light under the conditions of a laser wavelength of 808 nm, a laser scanning speed of 10 mm / sec, and a laser output of 50 mW to draw clear lines derived from a color former. The color development of the obtained lines was visually compared and evaluated according to the following criteria. 〇 and above are at a level sufficient for practical use, and ◎ is able to draw extremely high-concentration lines, and it is possible to reduce near-infrared absorbing dyes.
⊚: The density is very high, and extremely clear lines can be drawn.
◯: The density is high and clear lines can be drawn.
Δ: The line can be visually confirmed.
X: The concentration is low and it is difficult to identify.

本発明の造塩化合物を含むレーザーマーキング用組成物は、非常に優れた発色性を示した。特に、スクアリリウム[A]のシクロ環のX、X、X及びXがメチル基で置換された造塩化合物 6〜9、11〜14、43、44を含むレーザーマーキング用組成物を使用した塗工物が極めて良好な結果であり、非常に高濃度の線が描画されており、添加量の削減が容易に可能であると考えられる。一方で、本発明ではない近赤外線吸収色素の場合、近赤外線吸収色素[F−2]を使用している比較例5以外は、実用化レベルの発色性は得られていない。また、この近赤外線吸収色素[F−2]に関しては、前述の通り、インキとしての粘度や保存安定性に課題があるため、実用化レベルには達していない。本発明のレーザーマーキング用組成物は、「インキとしての安定性」と「光学特性」を両立しており、レーザーマーキングした際の発色性も非常に優れている。 The composition for laser marking containing the salt-forming compound of the present invention exhibited extremely excellent color development. In particular, a composition for laser marking containing salt-forming compounds 6 to 9, 11 to 14, 43, 44 in which X 3 , X 4 , X 7 and X 8 of the cyclo ring of squarylium [A] are substituted with methyl groups. The coated material used was extremely good, and very high-concentration lines were drawn, and it is considered that the amount of addition can be easily reduced. On the other hand, in the case of the near-infrared absorbing dye which is not the present invention, the color-developing property at a practical level has not been obtained except for Comparative Example 5 in which the near-infrared absorbing dye [F-2] is used. Further, as described above, the near-infrared absorbing dye [F-2] has not reached the practical level because of problems in viscosity and storage stability as ink. The composition for laser marking of the present invention has both "stability as an ink" and "optical characteristics", and is also extremely excellent in color development when laser marking is performed.

Claims (7)

下記一般式(1)で表されるスクアリリウム[A]と側鎖にカチオン性基を有する樹脂[B]との造塩化合物、発色剤[C]、顕色剤[D]及び樹脂[E]を含有し、前記側鎖にカチオン性基を有する樹脂[B]が、下記一般式(2)で表される構造単位を含むビニル系樹脂である、レーザーマーキング用組成物。
一般式(1)


[一般式(1)中、X〜X10は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、アミノ基、置換アミノ基、−SONR、−COOR、−CONR、ニトロ基、シアノ基又はハロゲン原子を表し、隣接した基同士が環を形成しても良い。R〜Rは、それぞれ独立に、水素原子又は置換基を有してもよいアルキル基を表す。nは、1〜4の整数を表す。Zは、水素イオン又は無機若しくは有機のカチオンを表す。]
一般式(2)


[一般式(2)中、Rは、水素原子又は置換基を有してもよいアルキル基を表す。R〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基又は置換基を有してもよいアリール基を表し、R〜Rのうち2つが互いに結合して環を形成しても良い。Qは、アルキレン基、アリーレン基、−CONH−R10−又は−COO−R11−を表し、R10及びR11は、アルキレン基を表す。Yは、無機又は有機のアニオンを表す。]
A salt-forming compound of a squarylium [A] represented by the following general formula (1) and a resin [B] having a cationic group in the side chain, a color former [C], a color developer [D] and a resin [E]. A composition for laser marking , wherein the resin [B] having a cationic group in the side chain is a vinyl-based resin containing a structural unit represented by the following general formula (2) .
General formula (1)


[In the general formula (1), X 1 to X 10 each independently have a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, and a substituent. Aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an amino group, a substituted amino group, and -SO 2 NR. 1 R 2 , -COOR 3 , -CONR 4 R 5 , represents a nitro group, a cyano group or a halogen atom, and adjacent groups may form a ring. R 1 to R 5 each independently represent an alkyl group which may have a hydrogen atom or a substituent. n represents an integer of 1 to 4. Z + represents a hydrogen ion or an inorganic or organic cation. ]
General formula (2)


[In the general formula (2), R 6 represents an alkyl group which may have a hydrogen atom or a substituent. R 7 to R 9 each independently represent a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or an aryl group which may have a substituent, and R Two of 7 to R 9 may be bonded to each other to form a ring. Q is an alkylene group, an arylene group, -CONH-R 10 - or -COO-R 11 - represents, R 10 and R 11 represents an alkylene group. Y represents an inorganic or organic anion. ]
一般式(1)におけるnが1又は2である請求項1記載のレーザーマーキング用組成物。 The composition for laser marking according to claim 1 , wherein n in the general formula (1) is 1 or 2. 側鎖にカチオン性基を有する樹脂[B]の固形分の4級アンモニウム塩価が、20〜130mgKOH/gである請求項1または2に記載のレーザーマーキング用組成物。 The composition for laser marking according to claim 1 or 2 , wherein the quaternary ammonium salt value of the solid content of the resin [B] having a cationic group in the side chain is 20 to 130 mgKOH / g. レーザーマーキング用組成物の全固形分中、スクアリリウム[A]と側鎖にカチオン性基を有する樹脂[B]との造塩化合物の含有率が、0.05〜5質量%である請求項1〜いずれか一項に記載のレーザーマーキング用組成物。 Claim 1 in which the content of the salt-forming compound of the squarylium [A] and the resin [B] having a cationic group in the side chain is 0.05 to 5% by mass in the total solid content of the composition for laser marking. ~ 3 The composition for laser marking according to any one of the items. 請求項1〜いずれか一項に記載のレーザーマーキング用組成物を塗工してなる塗工物。 A coated product obtained by coating the composition for laser marking according to any one of claims 1 to 4 . 請求項記載の塗工物に、レーザー光を照射して記録してなる記録材。 A recording material obtained by irradiating the coated object according to claim 5 with a laser beam and recording the material. 請求項記載の塗工物に、レーザー光を照射して記録する記録方法。 A recording method for recording by irradiating a coated object according to claim 5 with a laser beam.
JP2017095669A 2017-05-12 2017-05-12 Composition for laser marking and its use Active JP6787249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017095669A JP6787249B2 (en) 2017-05-12 2017-05-12 Composition for laser marking and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095669A JP6787249B2 (en) 2017-05-12 2017-05-12 Composition for laser marking and its use

Publications (2)

Publication Number Publication Date
JP2018192636A JP2018192636A (en) 2018-12-06
JP6787249B2 true JP6787249B2 (en) 2020-11-18

Family

ID=64571228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095669A Active JP6787249B2 (en) 2017-05-12 2017-05-12 Composition for laser marking and its use

Country Status (1)

Country Link
JP (1) JP6787249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350083B1 (en) * 2020-07-10 2022-01-10 이상주 Marker composition and laser irradiation method using thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765036B2 (en) * 1986-07-22 1995-07-12 ソニー株式会社 Reversible thermochromic material
US5405976A (en) * 1990-11-21 1995-04-11 Polaroid Corporation Benzpyrylium squarylium and croconylium dyes, and processes for their preparation and use
JPH0725153A (en) * 1993-07-14 1995-01-27 Fuji Photo Film Co Ltd Thermal recording material for infrared laser
JP3762493B2 (en) * 1996-10-15 2006-04-05 富士写真フイルム株式会社 Laser-induced heat mode recording material
JP4873101B2 (en) * 2010-04-21 2012-02-08 東洋インキScホールディングス株式会社 Coloring composition for color filter, and color filter
JP2012013866A (en) * 2010-06-30 2012-01-19 Toyo Ink Sc Holdings Co Ltd Coloring composition for color filter, and color filter
JP6766573B2 (en) * 2016-10-04 2020-10-14 東洋インキScホールディングス株式会社 Salt-forming compounds, image-forming materials using them, and their uses
JP6760040B2 (en) * 2016-12-19 2020-09-23 東洋インキScホールディングス株式会社 Laser welding resin composition

Also Published As

Publication number Publication date
JP2018192636A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
TWI598684B (en) Potential additives and compositions containing the same
TWI462896B (en) Aromatic sulfonium salt compounds
US8211613B2 (en) Photoradical polymerization initiator, radical generator, photosensitive compound and photosensitive resin composition containing these materials and product or its accessory portions using the composition
TW201716448A (en) Oxime ester compound and polymerization initiator containing said compound
TWI226970B (en) Laser marking method
EP3173249A1 (en) Laser markable compositions and methods to manufacture a packaging therewith
KR20070090040A (en) Coating compositions for marking substrates
TW200916542A (en) Laser-sensitive coating formulation
KR101941982B1 (en) Novel compound, dye and colored photosensitive composition
US20130041062A1 (en) Dye and coloring photosensitive composition
JP6766573B2 (en) Salt-forming compounds, image-forming materials using them, and their uses
CN111132963A (en) Compound, composition, cured product, and method for producing cured product
TWI794298B (en) Composition, hardened product and method for producing hardened product
TW200906995A (en) Heat-sensitive coating compositions based on resorcinyl triazine derivatives
TWI596173B (en) Coatings and near infrared absorption filter
WO2018097279A1 (en) (meth)acrylic polymer, (meth)acrylic block copolymer, pigment dispersion, photosensitive coloring composition, color filter, ink composition, composite block copolymer, pigment dispersant, and coating agent
CN107580555B (en) It can laser labelling composition, product and file
TWI604270B (en) Colored photosensitive resin composition
JP6787249B2 (en) Composition for laser marking and its use
EP3753958A1 (en) Radical polymerization initiator, composition containing same, cured product of composition, production method for cured product, and compound
JP6874522B2 (en) Composition for laser marking and its use
TW201008961A (en) Pigment dispersants with modified copolymers
KR20160094362A (en) Novel compound and composition containing novel compound
KR102545326B1 (en) Oxime ester compound and photopolymerization initiator containing the compound
KR0124055B1 (en) Aqueous resin dispersion liquid for heat-sensitive recording material and heat-sensitive recording material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R151 Written notification of patent or utility model registration

Ref document number: 6787249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250