[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6786472B2 - Flux-cored wire for duplex stainless steel welding - Google Patents

Flux-cored wire for duplex stainless steel welding Download PDF

Info

Publication number
JP6786472B2
JP6786472B2 JP2017248305A JP2017248305A JP6786472B2 JP 6786472 B2 JP6786472 B2 JP 6786472B2 JP 2017248305 A JP2017248305 A JP 2017248305A JP 2017248305 A JP2017248305 A JP 2017248305A JP 6786472 B2 JP6786472 B2 JP 6786472B2
Authority
JP
Japan
Prior art keywords
flux
total
stainless steel
wire
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248305A
Other languages
Japanese (ja)
Other versions
JP2018130762A (en
Inventor
正明 鳥谷部
正明 鳥谷部
飛史 行方
飛史 行方
寛規 水田
寛規 水田
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Publication of JP2018130762A publication Critical patent/JP2018130762A/en
Application granted granted Critical
Publication of JP6786472B2 publication Critical patent/JP6786472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、二相ステンレス鋼の溶接用フラックス入りワイヤに関し、母材と同程度の強度及び靭性に優れた溶接金属性能が得られ、ブローホール等の耐気孔欠陥性に優れ、耐食性が良好で、かつ、全姿勢溶接での溶接作業性が良好な二相ステンレス鋼溶接用フラックス入りワイヤに関する。 The present invention provides weld metal performance with excellent strength and toughness equivalent to that of the base metal, excellent resistance to pore defects such as blow holes, and good corrosion resistance with respect to duplex stainless steel welded wire. The present invention relates to a flux-containing wire for two-phase stainless steel welding, which has good welding workability in full-position welding.

従来、SUS329J3L、SUS329J4Lに代表される二相ステンレス鋼は、優れた耐食性及び高い強度特性を持つステンレス鋼である。この二相ステンレス鋼のグレードとしては、その化学成分組織に含まれるCr、Mo、N、Wの各含有量を基にして、耐孔食性指数であるPRE(Cr+3.3Mo+16N)またはPREW(Cr+3.3(Mo+0.5W)+16N)を用いて分類されている。この二相ステンレス鋼は、耐食性が要求される化学プラント、化学機器、油井及びガス井等の耐食材料として使用され、また強度も高いことから、車両等の構造材としても広く用いられている。また近年では、耐孔食性指数の低い安価な二相ステンレス鋼の研究が進んでおり、ASTMではUNS S82122として規格化されている。 Conventionally, duplex stainless steels typified by SUS329J3L and SUS329J4L are stainless steels having excellent corrosion resistance and high strength characteristics. The grade of this duplex stainless steel is PRE (Cr + 3.3Mo + 16N) or PREW (Cr + 3.), which is a pitting corrosion resistance index, based on the respective contents of Cr, Mo, N, and W contained in the chemical composition structure. 3 (Mo + 0.5W) + 16N) is used for classification. This duplex stainless steel is used as a corrosion-resistant material for chemical plants, chemical equipment, oil wells, gas wells, etc., which are required to have corrosion resistance, and is also widely used as a structural material for vehicles, etc. because of its high strength. In recent years, research on inexpensive two-phase stainless steel having a low pitting corrosion resistance index has been progressing, and ASTM has standardized it as UNS S82122.

一般的に二相ステンレス鋼に適用される溶接材料は、溶接金属部の凝固偏析による局部的な耐食性の低下が考えられるため、母材より高い耐食性指数が求められる。 Generally, a welding material applied to duplex stainless steel is required to have a higher corrosion resistance index than the base metal because it is considered that the corrosion resistance is locally reduced due to solidification and segregation of the weld metal portion.

このような状況の中、これら二相ステンレス鋼の溶接に対応でき、かつ、全姿勢溶接性が良好なフラックス入りワイヤの開発が望まれている。しかし、Nを多く含有する二相ステンレス鋼を溶接した場合、ブローホール等の気孔欠陥が発生しやすくなるという問題点がある。加えて、立向上進溶接ではビード形状が凸状になる傾向にあり、グラインダーによる手直しを必要とする等の問題点があった。 Under such circumstances, it is desired to develop a flux-cored wire that can be welded to these duplex stainless steels and has good all-duplex weldability. However, when duplex stainless steel containing a large amount of N is welded, there is a problem that pore defects such as blow holes are likely to occur. In addition, there is a problem that the bead shape tends to be convex in the vertical improvement welding, and it is necessary to rework with a grinder.

この問題点を解決するための技術として、例えば、特許文献1には、溶接用フラックス入りワイヤ中のCr、Mo、Nの含有量を限定すると共に、スラグ剤として、TiO2、SiO2、ZrO2、Al23及びMgOの各含有量を規制することで、耐食性、低温靭性及び溶接作業性を良好にしたステンレス鋼溶接用フラックス入りワイヤが開示されている。しかし、特許文献1に記載されたステンレス鋼溶接用フラックス入りワイヤは、弗素化合物の含有量が多く、全姿勢溶接における溶接作業性も劣るという問題点があった。 As a technique for solving this problem, for example, in Patent Document 1, the contents of Cr, Mo, and N in the welding flux-containing wire are limited, and TiO 2 , SiO 2 , and ZrO are used as slag agents. 2. A flux-filled wire for welding stainless steel with improved corrosion resistance, low-temperature toughness and welding workability by regulating the contents of Al 2 O 3 and Mg O is disclosed. However, the flux-containing wire for stainless steel welding described in Patent Document 1 has a problem that the content of a fluorine compound is high and the welding workability in all-posture welding is also inferior.

また、特許文献2には、溶接用フラックス入りワイヤ中のTiO2、SiO2、ZrO2、Al23、金属Tiの含有量を限定することにより、アークが安定し、スパッタ発生量が少なく、さらにビード形状、スラグ被包性及びスラグ剥離性に優れる二相ステンレス鋼の全姿勢溶接用フラックス入りワイヤが開示されている。しかし、特許文献2に記載された二相ステンレス鋼の全姿勢溶接用フラックス入りワイヤは、Ti添加量が少ないので、立向上進溶接ではメタル垂れが発生しやすく、ビード形状も不良となる。また、Ti等の脱酸元素が不足しているため溶接金属中の酸素量が高く、溶接金属の靭性が低下してしまうという問題点があった。 Further, in Patent Document 2, by limiting the contents of TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , and metal Ti in the wire containing flux for welding, the arc is stabilized and the amount of spatter generated is small. Further, a flux-filled wire for duplex welding of duplex stainless steel, which is excellent in bead shape, slag encapsulation property and slag peelability, is disclosed. However, since the amount of Ti added to the duplex-containing wire for duplex stainless steel described in Patent Document 2 is small, metal sagging is likely to occur in duplex welding, and the bead shape is also poor. Further, since the deoxidizing element such as Ti is insufficient, the amount of oxygen in the weld metal is high, and there is a problem that the toughness of the weld metal is lowered.

特開2000−107890号公報Japanese Unexamined Patent Publication No. 2000-107890 特開2001−138092号公報Japanese Unexamined Patent Publication No. 2001-138902

そこで本発明は、上述した問題点に鑑みて案出されたものであり、二相ステンレス鋼溶接用フラックス入りワイヤに関し、母材と同程度の強度及び靭性に優れた溶接金属性能が得られ、ブローホール等の耐気孔欠陥性に優れ、耐食性が良好で、かつ、全姿勢溶接における溶接作業性が良好な二相ステンレス鋼溶接用フラックス入りワイヤを提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems, and the weld metal performance having excellent strength and toughness comparable to that of the base metal can be obtained with respect to the flux-containing wire for duplex stainless steel welding. It is an object of the present invention to provide a flux-containing wire for duplex stainless steel welding, which has excellent resistance to pore defects such as blow holes, good corrosion resistance, and good welding workability in full-position welding.

本発明の要旨は、ステンレス鋼外皮内にフラックスが充填された二相ステンレス鋼溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、ステンレス鋼外皮とフラックスとの合計で、Si:0.10〜1.0%、Mn:1.5〜3.5%、Ni:6.5〜10.5%、Cr:20〜24%、Mo:1.5〜3.5%、Ti:0.2〜1.5%、Al:0.05〜1.0%、N:0.08〜0.20%を含有し、C:0.04%以下、Cu:0.10%以下であり、さらに、ワイヤ全質量に対して質量%で、フラックス中に、Ti酸化物のTiO2換算値の合計:3〜7%、Si酸化物のSiO2換算値の合計:0.2〜2.5%、弗素化合物のF換算値の合計:0.1〜0.7%、Bi及びBi酸化物の一方または両方のBi換算値の合計:0.01〜0.05%、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:0.2〜3.0%を含有し、Al酸化物のAl23換算値の合計:0.06%以下、Zr酸化物のZrO2換算値の合計:0.06%以下であり、前記Cr、Mo、Nの含有量が下記(1)式から求められるA値が30〜37であり、残部はステンレス鋼外皮のFe分、フラックスの鉄粉、鉄合金からのFe分及び不可避不純物であることを特徴とする二相ステンレス鋼溶接用フラックス入りワイヤにある。
A=[Cr]+3.3[Mo]+16[N]・・・(1)
(但し、[Cr]、[Mo]、[N]はワイヤ全質量に対する質量%)
The gist of the present invention is that in a two-phase stainless steel welding flux-filled wire in which a flux is filled in a stainless steel outer skin, the total of the stainless steel outer skin and the flux is Si: 0.10. ~ 1.0%, Mn: 1.5 to 3.5%, Ni: 6.5 to 10.5%, Cr: 20 to 24%, Mo: 1.5 to 3.5%, Ti: 0. It contains 2 to 1.5%, Al: 0.05 to 1.0%, N: 0.08 to 0.20%, C: 0.04% or less, Cu: 0.10% or less. Further, in mass% with respect to the total mass of the wire, the total TiO 2 conversion value of Ti oxide: 3 to 7% and the total SiO 2 conversion value of Si oxide in the flux: 0.2 to 2.5. %, Total F conversion value of fluorine compound: 0.1 to 0.7%, Total Bi conversion value of one or both of Bi and Bi oxide: 0.01 to 0.05%, Na compound and K compound Total of Na 2 O conversion value and K 2 O conversion value: 0.2 to 3.0%, total Al 2 O 3 conversion value of Al oxide: 0.06% or less, of Zr oxide Total ZrO 2 conversion value: 0.06% or less, the content of Cr, Mo, N is 30 to 37 as A value obtained from the following formula (1), and the rest is the Fe content of the stainless steel outer skin. , Flux-containing wire for two-phase stainless steel welding, characterized by iron powder of flux, Fe content from an iron alloy, and unavoidable impurities.
A = [Cr] +3.3 [Mo] +16 [N] ... (1)
(However, [Cr], [Mo], and [N] are mass% of the total mass of the wire)

本発明を適用した二相ステンレス鋼溶接用フラックス入りワイヤによれば、二相ステンレス鋼の溶接において、母材と同程度の強度及び靭性に優れた溶接金属が得られ、ブローホール等の耐気孔欠陥性に優れ、耐食性が良好で、かつ、全姿勢溶接での溶接作業性が良好な二相ステンレス鋼溶接用フラックス入りワイヤを提供することができる。 According to the flux-containing wire for duplex stainless steel welding to which the present invention is applied, a weld metal having excellent strength and toughness comparable to that of the base metal can be obtained in duplex stainless steel welding, and air-resistant holes such as blow holes can be obtained. It is possible to provide a flux-containing wire for two-phase stainless steel welding, which has excellent defect resistance, good corrosion resistance, and good welding workability in full-position welding.

本発明者らは、上述した課題を解決するために、各種成分組成のフラックス入りワイヤを試作して詳細に検討した。その結果、フラックス入りワイヤ中のC、Ni、Cr、Mo、Al、N、Cu、Bi換算値及びZr酸化物の各含有量を適量にすることにより、溶接金属の必要な強度及び靭性を確保できることを見出した。また、Mnは溶接金属中のN固溶度を高める効果があるため、Nの歩留を向上させてオーステナイトを安定化させ、固溶強化によって溶接金属の強度を高めることも見出した。耐食性に関しては、フラックス入りワイヤ中のNi、Cr、Mo、N、Al及びZr酸化物の各含有量を適量にすることで、溶接金属のオーステナイト組織を安定化させて耐食性を改善でき、さらに、Cr、Mo、Nの各含有量を更に限定することで、耐食性をより改善できることを見出した。 In order to solve the above-mentioned problems, the present inventors have made prototypes of flux-cored wires having various component compositions and examined them in detail. As a result, the required strength and toughness of the weld metal are ensured by adjusting the C, Ni, Cr, Mo, Al, N, Cu, Bi conversion values and the Zr oxide contents in the flux-containing wire to appropriate amounts. I found out what I could do. It was also found that Mn has the effect of increasing the solid solution solubility of N in the weld metal, so that the yield of N is improved to stabilize austenite, and the strength of the weld metal is increased by strengthening the solid solution. Regarding corrosion resistance, by adjusting the content of each of Ni, Cr, Mo, N, Al and Zr oxide in the flux-filled wire to an appropriate amount, the austenite structure of the weld metal can be stabilized and the corrosion resistance can be improved. It has been found that the corrosion resistance can be further improved by further limiting the contents of Cr, Mo and N.

一方、Mn及びNの含有量が高くなるにつれ、ブローホール等の耐気孔欠陥性が劣下するといった問題点が生じる。また溶接による再熱により、オーステナイト/フェライト粒界中にCr窒化物を生成し、溶接金属の靭性が低下して局部腐食性が劣化するといった課題も生じたため、更なる検討を加えた。その結果、フェライト生成元素であるCr、Mo、Siの各含有量の調整を行い、フェライトの晶出を安定化し、フェライト相にNを固溶させることでブローホール等の耐気孔欠陥性の向上を図ることができ、またCr窒化物の析出を低減し、靭性や局部腐食性の劣化を抑制できることを見出した。 On the other hand, as the contents of Mn and N increase, there arises a problem that the pore defect resistance of blow holes and the like deteriorates. In addition, reheating by welding causes Cr nitride to be generated in the austenite / ferrite grain boundaries, which causes a problem that the toughness of the weld metal is lowered and the local corrosiveness is deteriorated. Therefore, further studies have been made. As a result, the contents of Cr, Mo, and Si, which are ferrite-forming elements, are adjusted to stabilize the crystallization of ferrite, and N is dissolved in the ferrite phase to improve the resistance to pore defects such as blow holes. It has been found that the precipitation of Cr nitride can be reduced and the deterioration of toughness and local corrosiveness can be suppressed.

溶接作業性に関しては、アークの安定性はNi、Ti酸化物、Si酸化物及びNa化合物及びK化合物の各含有量を適量とすることで、スラグ被包性はSi、Ti、Si酸化物及び弗素化合物の各含有量を適量とすることで、スラグ剥離性はTi、Al、N、Si酸化物、弗素化合物、Bi及びBi酸化物、Na化合物及びK化合物、Al酸化物及びZr酸化物の各含有量を適量とすることで、ビード形状及びビード外観はSi、Ti、Ti酸化物、Si酸化物及び弗素化合物の各含有量を適量とすることで良好にできることを見出した。また、Ti、Ti酸化物及びNa化合物及びK化合物の各含有量を適量とすることで、スラグの凝固速度を促進できるので、特に立向上進溶接での溶融金属の垂れ(以下、メタル垂れという。)を防止できることを見出した。 Regarding welding workability, the arc stability is set to an appropriate amount of each of Ni, Ti oxide, Si oxide and Na compound and K compound, and the slag encapsulation property is Si, Ti, Si oxide and By adjusting the content of each of the fluorine compounds to an appropriate amount, the slag releasability of Ti, Al, N, Si oxides, fluorine compounds, Bi and Bi oxides, Na compounds and K compounds, Al oxides and Zr oxides It was found that the bead shape and the appearance of the bead can be improved by setting each content to an appropriate amount, and by setting each content of Si, Ti, Ti oxide, Si oxide and a fluorine compound to an appropriate amount. Further, by setting the respective contents of Ti, Ti oxide, Na compound and K compound to appropriate amounts, the solidification rate of slag can be promoted, so that the molten metal drips especially in the vertical welding (hereinafter referred to as metal dripping). .) Was found to be preventable.

本発明は、ステンレス鋼外皮及び充填フラックスの各成分組成それぞれの単独及び共存による相乗効果によりなし得たもので、以下にそれぞれの各成分組成の添加理由及び限定理由を述べる。なお、各成分組成の含有量は、ワイヤ全質量に対する質量%で示すこととし、その質量%で示すときには単に%と記載して示すこととする。 The present invention has been made possible by the synergistic effect of each component composition of the stainless steel outer skin and the filling flux, either alone or coexisting, and the reasons for addition and the reasons for limiting each component composition will be described below. The content of each component composition shall be indicated by mass% with respect to the total mass of the wire, and when indicated by the mass%, it shall be indicated simply as%.

[ステンレス鋼外皮とフラックスの合計でSi:0.10〜1.0%]
Siは、ステンレス鋼外皮、金属Si、Fe−Si及びFe−Si−Mn等から添加され、一部酸化物となってスラグ被包性やビード形状を改善する効果を有する。Siが0.10%未満では、スラグ量が少なく、スラグ被包性及びビード形状が不良になると共に、ビード表面が酸化してテンパーカラーが付着してビード外観が不良になる。一方、Siが1.0%を超えると、溶融金属の粘性が低下し、ビード形状が不良になる。従って、ステンレス鋼外皮とフラックスの合計でSiは0.10〜1.0%とする。
[Stainless steel outer skin and flux total Si: 0.10 to 1.0%]
Si is added from a stainless steel outer skin, metal Si, Fe-Si, Fe-Si-Mn, etc., and partially becomes an oxide to have an effect of improving slag encapsulation and bead shape. When Si is less than 0.10%, the amount of slag is small, the slag encapsulation property and the bead shape are poor, and the bead surface is oxidized and the temper color is adhered to the bead appearance. On the other hand, if Si exceeds 1.0%, the viscosity of the molten metal decreases and the bead shape becomes poor. Therefore, the total of the stainless steel outer skin and the flux is 0.10 to 1.0%.

[ステンレス鋼外皮とフラックスの合計でMn:1.5〜3.5%]
Mnは、ステンレス鋼外皮、金属Mn、Fe−Mn、Fe−Si−Mn及び窒化Mn等から添加され、溶接金属中のN固溶度を高めて強度を向上する効果があるが、Nの含有量が高くなるにつれてブローホール等の耐気孔欠陥性が劣化する。Mnが1.5%未満では、N固溶度が不十分で、固溶強化によって溶接金属の強度を高める効果が十分に得ることができず目標とする強度が得られない。一方、Mnが3.5%を超えると、耐気孔欠陥性が劣化してブローホールが発生する。従って、ステンレス鋼外皮とフラックスの合計でMnは1.5〜3.5%とする。
[Stainless steel outer skin and flux total Mn: 1.5-3.5%]
Mn is added from stainless steel outer skin, metal Mn, Fe-Mn, Fe-Si-Mn, Mn nitride, etc., and has the effect of increasing the solid solubility of N in the weld metal to improve the strength, but contains N. As the amount increases, the air resistance defects such as blow holes deteriorate. If Mn is less than 1.5%, the N solid solution solubility is insufficient, and the effect of increasing the strength of the weld metal by solid solution strengthening cannot be sufficiently obtained, and the target strength cannot be obtained. On the other hand, if Mn exceeds 3.5%, the pore defect property deteriorates and blow holes occur. Therefore, the total Mn of the stainless steel outer skin and the flux is 1.5 to 3.5%.

[ステンレス鋼外皮とフラックスの合計でNi:6.5〜10.5%]
Niは、ステンレス鋼外皮、金属Ni及びFe−Ni等から添加され、オーステナイト相を安定化させて耐食性を改善すると共に、溶接金属の靱性や強度を改善する効果を有する。Niが6.5%未満では、オーステナイトの晶出量が減少して成分偏析を招き、耐食性が不良になると共に、溶接金属の靱性が低下する。一方、Niが10.5%を超えると、オーステナイトの晶出量が増加して、フェライトの形態が変化し、溶接金属の強度が低下し、またアークが不安定となる。従って、ステンレス鋼外皮とフラックスの合計でNiは6.5〜10.5%とする。
[Total of stainless steel skin and flux Ni: 6.5-10.5%]
Ni is added from a stainless steel outer skin, metal Ni, Fe-Ni, etc., and has the effect of stabilizing the austenite phase to improve corrosion resistance and improving the toughness and strength of the weld metal. If Ni is less than 6.5%, the amount of austenite crystallized decreases, causing component segregation, resulting in poor corrosion resistance and a decrease in toughness of the weld metal. On the other hand, when Ni exceeds 10.5%, the amount of austenite crystallized increases, the form of ferrite changes, the strength of the weld metal decreases, and the arc becomes unstable. Therefore, the total of the stainless steel outer skin and the flux is 6.5 to 10.5%.

[ステンレス鋼外皮とフラックスの合計でCr:20〜24%]
Crは、ステンレス鋼外皮、金属Cr、Fe−Cr及び窒化Cr等から添加され、溶接金属の耐食性を改善する目的で添加する。Crが20%未満では、溶接金属の耐食性を十分に得ることができない。一方、Crが24%を超えると、シグマ相が析出して脆化し、溶接金属の靭性が低下する。従って、ステンレス鋼外皮とフラックスの合計でCrは20〜24%とする。
[Cr: 20 to 24% in total of stainless steel outer skin and flux]
Cr is added from a stainless steel outer skin, metal Cr, Fe-Cr, Cr nitride, and the like, and is added for the purpose of improving the corrosion resistance of the weld metal. If Cr is less than 20%, the corrosion resistance of the weld metal cannot be sufficiently obtained. On the other hand, when Cr exceeds 24%, the sigma phase is precipitated and becomes brittle, and the toughness of the weld metal is lowered. Therefore, the total Cr of the stainless steel outer skin and the flux is set to 20 to 24%.

[ステンレス鋼外皮とフラックスの合計でMo:1.5〜3.5%]
Moは、ステンレス鋼外皮、金属Mo及びFe−Mo等から添加され、溶接金属の耐食性や靭性を改善する効果を有する。Moが1.5%未満では、溶接金属の靭性が低下すると共に、耐食性を十分に得ることができない。一方、Moが3.5%を超えると、溶接金属中にシグマ相が析出して脆化して靭性が低下する。従って、ステンレス鋼外皮とフラックスの合計でMoは1.5〜3.5%とする。
[Stainless steel outer skin and flux total Mo: 1.5-3.5%]
Mo is added from a stainless steel outer skin, metal Mo, Fe-Mo, etc., and has the effect of improving the corrosion resistance and toughness of the weld metal. If Mo is less than 1.5%, the toughness of the weld metal is lowered and corrosion resistance cannot be sufficiently obtained. On the other hand, when Mo exceeds 3.5%, the sigma phase is precipitated in the weld metal and becomes brittle, resulting in a decrease in toughness. Therefore, the total Mo of the stainless steel outer skin and the flux is 1.5 to 3.5%.

[ステンレス鋼外皮とフラックスの合計でTi:0.2〜1.5%]
Tiは、ステンレス鋼外皮、金属Ti及びFe−Ti等から添加され、その殆どがアーク中で酸化反応してTiO2となってスラグとして作用し、スラグ流動性を調整してスラグ被包性、スラグ剥離性及びビード形状を良好にする。また、TiO2の融点が1840℃であるのに対し、Tiの融点は1660℃と融点が低いため、早い時点でスラグ化し、特に立向上進溶接でのメタル垂れを防止する効果がある。Tiが0.2%未満では、その効果が十分に得られず、立向上進溶接でメタル垂れが発生し、スラグ被包性、スラグ剥離性及びビード形状が不良となる。一方、Tiが1.5%を超えると、溶接ビードのなじみが悪くなり、凸状のビード形状となる。従って、ステンレス鋼外皮とフラックスの合計でTiは0.2%〜1.5%とする。
[Total of stainless steel skin and flux Ti: 0.2-1.5%]
Ti is added from stainless steel outer skin, metal Ti, Fe-Ti, etc., and most of them undergo an oxidation reaction in an arc to form TiO 2 and act as slag, adjusting the slag fluidity to provide slag encapsulation. Improves slag peelability and bead shape. Further, while the melting point of TiO 2 is 1840 ° C., the melting point of Ti is as low as 1660 ° C., so that it becomes slag at an early stage, and it is particularly effective in preventing metal sagging in vertical welding. If the Ti content is less than 0.2%, the effect cannot be sufficiently obtained, metal sagging occurs in the vertical welding, and the slag encapsulation property, the slag peelability, and the bead shape become poor. On the other hand, when Ti exceeds 1.5%, the welding bead becomes unfamiliar and becomes a convex bead shape. Therefore, the total Ti of the stainless steel outer skin and the flux is set to 0.2% to 1.5%.

[ステンレス鋼外皮とフラックスの合計でAl:0.05〜1.0%]
Alは、ステンレス鋼外皮、金属Al及びFe−Al等から添加され、強力な脱酸元素であるので、溶接金属の靭性を高めると共に、耐食性を改善する効果がある。Alが0.05%未満では、溶接金属の靭性が低下し、耐食性も劣化する。一方、Alが1.0%を超えると、析出効果により強度過多となり靭性が低下するとともに、スラグ剥離性が不良になる。従って、ステンレス鋼外皮とフラックスの合計でAlは0.05〜1.0%とする。
[Total of stainless steel outer skin and flux Al: 0.05-1.0%]
Al is added from a stainless steel outer skin, metal Al, Fe-Al, etc., and is a strong deoxidizing element. Therefore, it has the effect of increasing the toughness of the weld metal and improving the corrosion resistance. If Al is less than 0.05%, the toughness of the weld metal is lowered and the corrosion resistance is also deteriorated. On the other hand, when Al exceeds 1.0%, the strength becomes excessive due to the precipitation effect, the toughness decreases, and the slag peelability becomes poor. Therefore, the total of the stainless steel outer skin and the flux is set to 0.05 to 1.0%.

[ステンレス鋼外皮とフラックスの合計でN:0.08〜0.20%]
Nは、ステンレス鋼外皮、窒化Cr及び窒化Mn等から添加され、固溶強化元素であるので、溶接金属の強度を高めると共に、耐食性を改善する効果がある。Nが0.08%未満では、溶接金属の強度が低下し、耐食性も劣化する。一方、Nが0.20%を超えると、ブローホールが発生すると共に、スラグ剥離性が不良になる。従って、ステンレス鋼外皮とフラックスの合計でNは0.08〜0.20%とする。
[Stainless steel outer skin and flux total N: 0.08 to 0.20%]
Since N is added from the outer skin of stainless steel, Cr nitride, Mn nitride and the like and is a solid solution strengthening element, it has the effect of increasing the strength of the weld metal and improving the corrosion resistance. If N is less than 0.08%, the strength of the weld metal is lowered and the corrosion resistance is also deteriorated. On the other hand, when N exceeds 0.20%, blow holes are generated and the slag peelability becomes poor. Therefore, the total N of the stainless steel outer skin and the flux is 0.08 to 0.20%.

[ステンレス鋼外皮とフラックスの合計でC:0.04%以下]
Cは、ステンレス鋼外皮、Fe−Mn、Fe−Si−Mn及びグラファイト等から添加され、溶接金属の強度を向上する効果があるが、過剰に添加すると、Cr及びMo等と化合して炭化物を生成して靭性を低下させるので、ステンレス鋼外皮とフラックスの合計でCは0.04%以下とし、望ましくは0.02%以下とする。
[C: 0.04% or less in total of stainless steel outer skin and flux]
C is added from stainless steel outer skin, Fe-Mn, Fe-Si-Mn, graphite, etc., and has the effect of improving the strength of the weld metal. However, if it is added in excess, it combines with Cr, Mo, etc. to form carbides. The total C of the stainless steel outer skin and the flux is 0.04% or less, preferably 0.02% or less, because it is formed and the toughness is lowered.

[ステンレス鋼外皮とフラックスの合計でCu:0.10%以下]
Cuは、ステンレス鋼用外皮及び金属Cu等から含有され、極微量の添加でオーステナイト組織を安定化させて溶接金属の靭性を改善する効果があるが、Cuが0.10%を超えると、Cuを含む金属間化合物を析出して溶接金属の靭性が低下するので、ステンレス鋼外皮とフラックスの合計でCuは0.10%以下とし、望ましくは0.01%以上含有させる。
[Cu: 0.10% or less in total of stainless steel outer skin and flux]
Cu is contained from the outer skin for stainless steel, metal Cu, etc., and has the effect of stabilizing the austenite structure and improving the toughness of the weld metal by adding a very small amount. However, when Cu exceeds 0.10%, Cu is used. Since the metal-to-metal compound containing the above is precipitated to reduce the toughness of the weld metal, the total amount of the stainless steel outer skin and the flux is 0.10% or less, preferably 0.01% or more.

[フラックス中のTi酸化物のTiO2換算値の合計:3〜7%]
Ti酸化物は、アークを安定にしてビード形状を良好にする。Ti酸化物のTiO2換算値の合計が3%未満では、アークが不安定になり、ビード形状が不良になる。また、立向上進溶接ではメタル垂れが生じやすくなる。一方、Ti酸化物のTiO2換算値の合計が7%を超えると、母材と溶接ビードとのなじみが悪くなり、凸状のビード形状となる。従って、フラックス中のTi酸化物のTiO2換算値の合計は3〜7%とする。なお、Ti酸化物は、フラックスからのルチール、酸化チタン、チタンスラグ、イルミナイト、チタン酸カリ及びチタン酸ソーダ等から添加できる。
[Total TiO 2 conversion value of Ti oxide in flux: 3 to 7%]
The Ti oxide stabilizes the arc and improves the bead shape. If the total of the TiO 2 conversion values of the Ti oxide is less than 3%, the arc becomes unstable and the bead shape becomes poor. In addition, metal sagging is likely to occur in vertical improvement welding. On the other hand, when the total of the TiO 2 conversion values of the Ti oxide exceeds 7%, the base metal and the weld bead become incompatible with each other, resulting in a convex bead shape. Therefore, the total TiO 2 conversion value of the Ti oxide in the flux is set to 3 to 7%. The Ti oxide can be added from rutile from flux, titanium oxide, titanium slag, illuminite, potassium titanate, sodium titanate and the like.

[フラックス中のSi酸化物のSiO2換算値の合計:0.2〜2.5%]
Si酸化物は、アークを安定にすると共に、スラグの流動性を調整してスラグ剥離性及びビード形状を良好にする効果がある。Si酸化物のSiO2換算値の合計が0.2%未満では、アークが不安定となり、スラグ剥離性及びビード形状が不良となる。一方、Si酸化物のSiO2換算値の合計が2.5%を超えると、スラグが流れやすくなり、スラグ被包性が不良となる。従って、フラックス中のSi酸化物のSiO2換算値の合計は0.2〜2.5%とする。なお、Si酸化物は、フラックスからの硅砂、硅石の他、カリ長石、ジルコンサンド、珪酸ソーダ等から添加できる。
[Total SiO 2 conversion value of Si oxide in flux: 0.2 to 2.5%]
The Si oxide has the effect of stabilizing the arc and adjusting the fluidity of the slag to improve the slag exfoliation property and the bead shape. If the total SiO 2 conversion value of the Si oxide is less than 0.2%, the arc becomes unstable, and the slag peelability and the bead shape become poor. On the other hand, when the total value of Si oxides converted to SiO 2 exceeds 2.5%, slag easily flows and the slag encapsulation property becomes poor. Therefore, the total value of Si oxides in the flux in terms of SiO 2 is 0.2 to 2.5%. The Si oxide can be added from silica sand and silica stone from flux, as well as potassium feldspar, zircon sand, sodium silicate and the like.

[フラックス中の弗素化合物のF換算値の合計:0.1〜0.7%]
弗素化合物は、スラグ融点を調整し、スラグ被包性、スラグ剥離性及びビード形状を良好とする効果がある。弗素化合物のF換算値の合計が0.1%未満では、スラグ被包性、スラグ剥離性及びビード形状が不良になる。一方、弗素化合物のF換算値の合計が0.7%を超えると、スラグの融点が著しく低下し、ビード形状が不良となる。従って、フラックス中の弗素化合物のF換算値の合計は0.1〜0.7%とする。なお、弗素化合物は、フラックスからのNaF、LiF、CaF2、AlF3、K2ZrF6、K2SiF6等から添加でき、F換算値はそれらに含有するFの含有量の合計である。
[Total F conversion value of fluorine compounds in flux: 0.1 to 0.7%]
The fluorine compound has the effect of adjusting the melting point of slag and improving the slag encapsulation property, slag exfoliation property and bead shape. If the total F conversion value of the fluorine compound is less than 0.1%, the slag encapsulation property, the slag removability and the bead shape become poor. On the other hand, when the total F-converted value of the fluorine compound exceeds 0.7%, the melting point of the slag is remarkably lowered and the bead shape becomes poor. Therefore, the total F conversion value of the fluorine compound in the flux is 0.1 to 0.7%. The fluorine compound can be added from NaF, LiF, CaF 2 , AlF 3 , K 2 ZrF 6 , K 2 SiF 6, etc. from the flux, and the F conversion value is the total content of F contained therein.

[フラックス中のBi及びBi酸化物の一方または両方のBi換算値の合計:0.01〜0.05%]
Biは、多層盛溶接において溶接スラグの溶接金属からの剥離を促進して、スラグ剥離性を良好にする。Bi及びBi酸化物の一方または両方のBi換算値の合計が0.01%未満であると、スラグ剥離を促進する効果が不十分である。一方、Bi及びBi酸化物の一方または両方のBi換算値の合計が0.05%を超えると、溶接金属に割れが生じる場合があり、また靭性が低下する。従って、フラックスのBi及びBi酸化物の一方または両方のBi換算値の合計は0.01〜0.05%とする。なお、Bi及びBi酸化物は、金属Bi等の合金粉末や酸化Bi等から添加できる。
[Total of Bi conversion values of Bi and one or both Bi oxides in the flux: 0.01 to 0.05%]
Bi promotes the peeling of the weld slag from the weld metal in the multi-layer welding to improve the slag peelability. If the sum of the Bi conversion values of one or both of Bi and Bi oxide is less than 0.01%, the effect of promoting slag exfoliation is insufficient. On the other hand, if the sum of the Bi conversion values of one or both of Bi and Bi oxide exceeds 0.05%, the weld metal may be cracked and the toughness is lowered. Therefore, the sum of the Bi conversion values of one or both of Bi and Bi oxide of the flux is 0.01 to 0.05%. Bi and Bi oxide can be added from alloy powder such as metal Bi or Bi oxide.

[フラックスに含有するNa化合物及びK化合物のNa2O換算値とK2O換算値の合計:0.2〜3.0%]
Na化合物及びK化合物は、アーク安定剤及びスラグ形成剤としてとして作用する。Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が0.2%未満であると、アークが不安定となりスパッタの発生量が多くなる。また、ビード外観も不良になる。一方、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が3.0%を超えると、ヒュームの発生量が多くなるとともにスラグ剥離性が不良となる。また、立向上進溶接ではメタル垂れが生じやすくなる。従って、フラックスに含有するNa化合物及びK化合物のNa2O換算値とK2O換算値の合計は0.2〜3.0%とする。なお、Na化合物及びK化合物は、珪酸ソーダや珪酸カリ、珪酸リチウムからなる水ガラスの固質成分、カリ長石、弗化ソーダや珪弗化カリ、弗化リチウム等の粉末から添加できる。
[Total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound contained in the flux: 0.2 to 3.0%]
The Na compound and the K compound act as an arc stabilizer and a slag forming agent. If the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is less than 0.2%, the arc becomes unstable and the amount of sputtering generated increases. Also, the bead appearance is poor. On the other hand, when the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound exceeds 3.0%, the amount of fume generated increases and the slag peelability becomes poor. In addition, metal sagging is likely to occur in vertical improvement welding. Therefore, the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound contained in the flux is 0.2 to 3.0%. The Na compound and the K compound can be added from a solid component of water glass composed of sodium silicate, potassium silicate, and lithium silicate, and powders such as potassium orthoclase, sodium fluoride, potassium silicate, and lithium fluoride.

[フラックス中のAl酸化物のAl23換算値の合計:0.06%以下]
Al酸化物は、フラックス中のTi酸化物、カリ長石、硅砂等の不純物として不可避に含有され、Al23換算値の合計が0.06%を超えると、母材または溶接金属中のC、N、Sと結合して固いスラグを生成し、ビード表面にスラグが焼付いてスラグ剥離性を不良にするので、フラックス中のAl酸化物のAl23換算値の合計は0.06%以下とする。なお、Al酸化物は、必須の成分ではなく、含有率がAl23換算値の合計で0%とされても良い。
[Total Al 2 O 3 conversion value of Al oxide in flux: 0.06% or less]
Al oxide is inevitably contained as an impurity such as Ti oxide, potassium slag, and slag in the flux, and when the total Al 2 O 3 conversion value exceeds 0.06%, C in the base metal or weld metal , N, S combine to form hard slag, and the slag seizes on the bead surface, resulting in poor slag peelability. Therefore, the total Al 2 O 3 conversion value of Al oxide in the flux is 0.06%. It is as follows. The Al oxide is not an essential component, and the content may be 0% in total of the Al 2 O 3 conversion values.

[フラックス中のZr酸化物のZrO2換算値の合計:0.06%以下]
Zr酸化物は、Ti酸化物、カリ長石、硅砂の不純物として不可避に含有され、Nとの親和力が高いので、ZrO2換算値の合計が0.06%超えると、Nと結合して強固なスラグを生成し、ビード表面にスラグが焼付いてスラグ剥離性を不良にする。また、溶接金属中にNと反応して窒化物を生成するので、溶接金属中の固溶Nが減少して耐食性が不良になり、靭性も低下するので、フラックス中のZr酸化物のZrO2換算値の合計は0.06%以下とする。なお、Zr酸化物は、必須の成分ではなく、ZrO2換算値の合計で0%とされても良い。
[Total ZrO 2 conversion value of Zr oxide in flux: 0.06% or less]
Zr oxide is inevitably contained as an impurity in Ti oxide, potash orthoclase, and slag, and has a high affinity for N. Therefore, when the total ZrO 2 conversion value exceeds 0.06%, it binds to N and becomes strong. Slag is generated and the slag is seized on the bead surface, resulting in poor slag peelability. Further, since a nitride is formed in the weld metal by reacting with N, the solid-dissolved N in the weld metal is reduced, the corrosion resistance is deteriorated, and the toughness is also lowered. Therefore, ZrO 2 of the Zr oxide in the flux is reduced. The total conversion value shall be 0.06% or less. The Zr oxide is not an essential component, and the total ZrO 2 conversion value may be 0%.

[A値:30〜37]
前記Cr、Mo及びNの含有量が下記(1)式で求められるA値で30〜37の範囲に限定することにより、安定した不動態被膜が生成され、溶接金属の耐食性を向上できる。A値が30未満では、この効果が十分得られず、溶接金属の耐食性が不良になる。一方、A値が37を超えると、Cr、Moの含有量が増加し、シグマ相が析出して脆化し、溶接金属の靭性が低下する。従って、A値は30〜37とする。
A=[Cr]+3.3[Mo]+16[N]・・・(1)
(但し、[Cr]、[Mo]、[N]はワイヤ全質量に対する質量%)
[A value: 30 to 37]
By limiting the contents of Cr, Mo and N to the range of 30 to 37 with the A value obtained by the following formula (1), a stable passivation film can be generated and the corrosion resistance of the weld metal can be improved. If the A value is less than 30, this effect cannot be sufficiently obtained, and the corrosion resistance of the weld metal becomes poor. On the other hand, when the A value exceeds 37, the contents of Cr and Mo increase, the sigma phase precipitates and becomes brittle, and the toughness of the weld metal decreases. Therefore, the A value is set to 30 to 37.
A = [Cr] +3.3 [Mo] +16 [N] ... (1)
(However, [Cr], [Mo], and [N] are mass% of the total mass of the wire)

残部は、Fe分及び不可避不純物である。Fe分はステンレス鋼外皮のFe分、フラックスの鉄粉、鉄合金(Fe−Si、Fe−Mn、Fe−Si−Mn等のフェロアロイ)などからのFe分である。不可避不純物は、P、S等の不可避に混入される不純物であり、耐割れ性の観点から、Pは0.040%以下、Sは0.020%以下が好ましい。 The balance is Fe and unavoidable impurities. The Fe content is the Fe content of the stainless steel outer skin, iron powder of flux, and Fe content from iron alloys (ferroalloys such as Fe-Si, Fe-Mn, and Fe-Si-Mn). The unavoidable impurities are impurities such as P and S that are unavoidably mixed, and from the viewpoint of crack resistance, P is preferably 0.040% or less and S is preferably 0.020% or less.

以上、本発明の二相ステンレス鋼溶接用フラックス入りワイヤの成分組成の限定理由を述べたが、二相ステンレス鋼溶接用フラックス入りワイヤの製造方法について、以下説明する。例えば、ステンレス鋼外皮を帯鋼から管状に成形する場合には、配合、混合、撹拌、乾燥した充填フラックスをU形に成形した溝に満たした後に丸形に成形し、所定のワイヤ径まで伸線する。この際、成形したステンレス鋼外皮シームを溶接することで、シームレスタイプの二相ステンレス鋼溶接用フラックス入りワイヤとすることもできる。また、ステンレス鋼外皮がパイプの場合には、パイプを振動させてフラックスを充填し、所定のワイヤ径まで伸線することができる。 The reasons for limiting the component composition of the duplex-containing wire for two-phase stainless steel welding of the present invention have been described above, and the method for manufacturing the flux-containing wire for duplex stainless steel welding will be described below. For example, in the case of forming a stainless steel outer skin into a tubular shape from a strip of steel, a filling flux that has been mixed, mixed, agitated, and dried is filled in a U-shaped groove, then formed into a round shape, and stretched to a predetermined wire diameter. Line up. At this time, by welding the formed stainless steel outer skin seam, a seamless type duplex stainless steel welding wire can be obtained. When the stainless steel outer skin is a pipe, the pipe can be vibrated to be filled with flux and drawn to a predetermined wire diameter.

また、充填するフラックスは、供給、充填が円滑に行えるように、固着剤(珪酸カリ及び珪酸ソーダの水溶液)を添加、造粒して用いることもできる。 Further, the flux to be filled can be used by adding and granulating a fixing agent (an aqueous solution of potassium silicate and sodium silicate) so that the flux can be smoothly supplied and filled.

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

表1に示す化学成分のステンレス鋼外皮を用い、ステンレス鋼外皮の帯鋼をU字型に成形してフラックスを充填し、ステンレス鋼外皮の合わせ目を溶接して縮径、焼鈍し、表2に示す各種組成の二相ステンレス鋼溶接用フラックス入りワイヤを試作した。ワイヤ径は1.2mm、フラックス充填率は18〜28%とした。 Using the stainless steel outer skin with the chemical composition shown in Table 1, the stainless steel outer skin strip was formed into a U shape and filled with flux, and the seams of the stainless steel outer skin were welded to reduce the diameter and shrink, and Table 2 We made prototypes of flux-containing wires for welding two-phase stainless steel with various compositions shown in. The wire diameter was 1.2 mm and the flux filling rate was 18 to 28%.

Figure 0006786472
Figure 0006786472

Figure 0006786472
Figure 0006786472

これら試作ワイヤを用いて、溶接作業性、溶着金属性能、耐気孔欠陥性及び耐食性について調査を行った。 Welding workability, weld metal performance, pore defect resistance and corrosion resistance were investigated using these prototype wires.

溶着金属試験は、表3に示す板厚20mmの二相ステンレス鋼板を用い、JIS Z 3111に準拠して開先角度20°、ルート間隔16mmの試験体に、表4に示す溶接条件で試験を行った。 For the weld metal test, a duplex stainless steel plate with a thickness of 20 mm shown in Table 3 is used, and a test piece with a groove angle of 20 ° and a root spacing of 16 mm is tested under the welding conditions shown in Table 4 in accordance with JIS Z 3111. went.

Figure 0006786472
Figure 0006786472

Figure 0006786472
Figure 0006786472

溶接作業性の評価は、表3に示す板厚20mmの二相ステンレス鋼板をT字に組み、表4に示す溶接条件で立向上進すみ肉溶接を行い、アーク安定性、メタル垂れの有無、スラグ被包性、スラグ剥離性、ビード形状及びビード外観について目視で調査した。 To evaluate the welding workability, duplex stainless steel plates with a thickness of 20 mm shown in Table 3 are assembled in a T shape, and fillet welding is performed under the welding conditions shown in Table 4, and arc stability and the presence or absence of metal sagging are evaluated. The slag encapsulation property, slag peelability, bead shape and bead appearance were visually investigated.

溶着金属性能の評価は、JIS Z 3111に準じて溶着金属試験を行い、溶着金属の厚板方向の中心部から引張試験片(A0号)及び衝撃試験片(Vノッチ試験片)を採取し、引張試験及び衝撃試験を実施した。引張強さの評価は、690MPa以上を良好とした。靭性の評価は、試験温度−20℃でシャルピー衝撃試験を行い、吸収エネルギーが3本の平均値で35J以上を良好とした。 To evaluate the weld metal performance, a weld metal test is performed according to JIS Z 3111, and a tensile test piece (A0) and an impact test piece (V notch test piece) are collected from the center of the weld metal in the plate direction. A tensile test and an impact test were carried out. The evaluation of the tensile strength was good at 690 MPa or more. The toughness was evaluated by performing a Charpy impact test at a test temperature of −20 ° C., and the average value of the absorbed energy of the three pieces was 35 J or more.

耐欠陥性及び耐割れ性の評価は、溶着金属試験後の溶接試験体を、JIS Z 3106に準拠してX線透過試験を実施し、ブローホール及び溶接割れの有無を調査した。 For the evaluation of defect resistance and crack resistance, the welded test piece after the weld metal test was subjected to an X-ray transmission test in accordance with JIS Z 3106, and the presence or absence of blow holes and weld cracks was investigated.

耐食性の評価は、溶着金属試験後の溶接試験体に、ASTM G48 METHOD Eに準拠して腐食試験を行い、臨界孔食発生温度(以下、CPTという。)が25℃以上を良好とした。それらの結果を表5にまとめて示す。 The corrosion resistance was evaluated by conducting a corrosion test on the welded test piece after the weld metal test in accordance with ASTM G48 METHOD E, and the critical pitting corrosion generation temperature (hereinafter referred to as CPT) was set to 25 ° C. or higher. The results are summarized in Table 5.

Figure 0006786472
Figure 0006786472

表2及び表5中のワイヤNo.1〜14が本発明例、ワイヤNo.15〜30は比較例である。本発明であるワイヤNo.1〜14は、ステンレス鋼外皮とフラックスとの合計のC、Si、Mn、Ni、Cr、Mo、Ti、Al、N、C、Cu及びフラックス中のTiO2換算値の合計、SiO2換算値の合計、F換算値の合計、Bi換算値の合計、Na2O換算値及びK2O換算値の合計、Al23換算値の合計、ZrO2換算値の合計及び前記Cr、Mo、Nから求められるA値が適正であるので、溶接作業性が良好で、ブローホールは無く、CPTも25℃以上であった。また、溶着金属の引張強さ及び吸収エネルギーも良好であり、極めて満足な結果であった。 Wire Nos. In Tables 2 and 5. 1 to 14 are examples of the present invention, wire Nos. 15 to 30 are comparative examples. The wire No. of the present invention. 1 to 14 are the total of C, Si, Mn, Ni, Cr, Mo, Ti, Al, N, C, Cu of the stainless steel outer skin and the flux, the total of the TiO 2 conversion values in the flux, and the SiO 2 conversion value. Total, F conversion value total, Bi conversion value total, Na 2 O conversion value and K 2 O conversion value total, Al 2 O 3 conversion value total, ZrO 2 conversion value total and Cr, Mo, Since the A value obtained from N was appropriate, the welding workability was good, there were no blow holes, and the CPT was 25 ° C. or higher. In addition, the tensile strength and absorbed energy of the weld metal were also good, and the results were extremely satisfactory.

ワイヤNo.15は、Siが少ないので、スラグ被包性、ビード形状及びビード外観が不良であった。また、Cuが多いので、溶着金属の吸収エネルギーが低かった。 Wire No. In No. 15, since the amount of Si was small, the slag encapsulation property, the bead shape and the bead appearance were poor. Moreover, since the amount of Cu was large, the absorbed energy of the weld metal was low.

ワイヤNo.16は、Siが多いので、ビード形状が不良であった。また、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が少ないので、アークが不安定でスパッタ発生量も多く、ビード外観も不良であった。 Wire No. No. 16 had a poor bead shape because it contained a large amount of Si. Further, since the sum of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound was small, the arc was unstable, the amount of spatter generated was large, and the bead appearance was also poor.

ワイヤNo.17は、Mnが少ないので、溶着金属の引張強さが低かった。また、Al23換算値の合計が多いので、スラグ剥離性が不良であった。さらに、Bi換算値が多いので、溶着金属の吸収エネルギーが低く、溶着金属に割れも生じた。 Wire No. In No. 17, since Mn was small, the tensile strength of the weld metal was low. Moreover, since the total of Al 2 O 3 conversion values was large, the slag peelability was poor. Further, since the Bi conversion value is large, the absorbed energy of the weld metal is low, and the weld metal is cracked.

ワイヤNo.18は、Niが少ないので、CPTが低く、溶着金属の靭性も低かった。また、Mnが多いので、ブローホールが発生した。さらに、SiO2換算値の合計が多いので、スラグ被包性が不良であった。 Wire No. In No. 18, since the amount of Ni was small, the CPT was low and the toughness of the weld metal was also low. Moreover, since Mn is large, blow holes are generated. Further, since the total of SiO 2 conversion values is large, the slag encapsulation property is poor.

ワイヤNo.19は、Crが少ないので、CPTが低かった。また、Niが多いので、アークが不安定で、溶着金属の引張強さが低かった。さらに、TiO2換算値の合計が多いので、ビード形状が不良であった。 Wire No. No. 19 had a low CPT because it had a small amount of Cr. Moreover, since the amount of Ni was large, the arc was unstable and the tensile strength of the weld metal was low. Furthermore, the bead shape was poor because the total of the TiO 2 conversion values was large.

ワイヤNo.20は、Nが多いので、スラグ剥離性が不良で、ブローホールが発生した。また、TiO2換算値の合計が少ないので、アークが不安定で、ビード形状が不良となるとともにメタル垂れが生じた。 Wire No. In No. 20, since N was large, the slag peelability was poor and blow holes were generated. In addition, since the total of the TiO 2 conversion values is small, the arc is unstable, the bead shape becomes poor, and metal sagging occurs.

ワイヤNo.21は、Moが少ないので、溶着金属の吸収エネルギーが低く、CPTも低かった。また、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が多いので、ヒュームの発生量が多くなるとともにスラグ剥離性が不良となり、メタル垂れも生じた。 Wire No. In No. 21, since the amount of Mo was small, the absorbed energy of the weld metal was low and the CPT was also low. In addition, since the sum of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is large, the amount of fume generated is large, the slag peelability is poor, and metal dripping also occurs.

ワイヤNo.22は、Moが多いので、溶着金属の吸収エネルギーが低かった。また、SiO2換算値の合計が少ないので、アークが不安定で、スラグ剥離性及びビード形状が不良であった。 Wire No. No. 22 had a large amount of Mo, so that the absorbed energy of the weld metal was low. In addition, since the total value converted to SiO 2 was small, the arc was unstable, and the slag peelability and bead shape were poor.

ワイヤNo.23は、Crが多いので、溶着金属の吸収エネルギーが低かった。また、Tiが少ないので、メタル垂れが発生し、スラグ被包性、スラグ剥離性及びビード形状が不良であった。 Wire No. In No. 23, since the amount of Cr was large, the absorbed energy of the weld metal was low. Further, since the amount of Ti was small, metal dripping occurred, and the slag encapsulation property, slag peelability, and bead shape were poor.

ワイヤNo.24は、Tiが多いので、ビード形状が不良であった。また、ZrO2換算値の合計が多いので、スラグ剥離性が不良で、溶着金属の吸収エネルギーが低く、CPTが低かった。 Wire No. No. 24 had a poor bead shape because it contained a large amount of Ti. Further, since the total of the ZrO 2 conversion values was large, the slag peelability was poor, the absorbed energy of the weld metal was low, and the CPT was low.

ワイヤNo.25は、Nが少ないので、溶着金属の引張強さが低く、CPTが低かった。 Wire No. In No. 25, since N was small, the tensile strength of the weld metal was low and the CPT was low.

ワイヤNo.26は、Alが少ないので、溶着金属の吸収エネルギーが低く、CPTが低かった。また、F換算値の合計が少ないので、スラグ被包性、スラグ剥離性及びビード形状が不良であった。 Wire No. In No. 26, since the amount of Al was small, the absorbed energy of the weld metal was low and the CPT was low. Further, since the total of the F conversion values was small, the slag encapsulation property, the slag peelability, and the bead shape were poor.

ワイヤNo.27は、Alが多いので、スラグ剥離性が不良で、溶着金属の吸収エネルギーが低くかった。また、F換算値の合計が多いので、ビード形状が不良であった。 Wire No. Since 27 had a large amount of Al, the slag peeling property was poor and the absorbed energy of the weld metal was low. Moreover, since the total of F conversion values is large, the bead shape is poor.

ワイヤNo.28は、Cが多いので、溶着金属の吸収エネルギーが低かった。また、Bi換算値の合計が少ないので、スラグ剥離性が不良であった。 Wire No. No. 28 had a large amount of C, so that the absorbed energy of the weld metal was low. Moreover, since the total of the Bi conversion values was small, the slag peelability was poor.

ワイヤNo.29は、A値が低いので、CPTが低かった。 Wire No. In 29, the A value was low, so the CPT was low.

ワイヤNo.30は、A値が高いので、溶着金属の吸収エネルギーが低かった。 Wire No. In No. 30, since the A value was high, the absorbed energy of the weld metal was low.

Claims (1)

ステンレス鋼外皮内にフラックスが充填された二相ステンレス鋼溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、ステンレス鋼外皮とフラックスとの合計で、
Si:0.10〜1.0%、
Mn:1.5〜3.5%、
Ni:6.5〜10.5%、
Cr:20〜24%、
Mo:1.5〜3.5%、
Ti:0.2〜1.5%、
Al:0.05〜1.0%、
N:0.08〜0.20%を含有し、
C:0.04%以下、
Cu:0.10%以下であり、
さらに、ワイヤ全質量に対して質量%で、フラックス中に、
Ti酸化物のTiO2換算値の合計:3〜7%、
Si酸化物のSiO2換算値の合計:0.2〜2.5%、
弗素化合物のF換算値の合計:0.1〜0.7%、
Bi及びBi酸化物の一方または両方のBi換算値の合計:0.01〜0.05%、
Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:0.2〜3.0%を含有し、
Al酸化物のAl23換算値の合計:0.06%以下、
Zr酸化物のZrO2換算値の合計:0.06%以下であり、
前記Cr、Mo、Nの含有量が下記(1)式から求められるA値が30〜37であり、残部はステンレス鋼外皮のFe分、フラックスの鉄粉、鉄合金からのFe分及び不可避不純物であることを特徴とする二相ステンレス鋼溶接用フラックス入りワイヤ。
A=[Cr]+3.3[Mo]+16[N]・・・(1)
(但し、[Cr]、[Mo]、[N]はワイヤ全質量に対する質量%)
In a flux-cored wire for two-phase stainless steel welding in which the inside of the stainless steel skin is filled with flux
Mass% of total wire mass, sum of stainless steel skin and flux,
Si: 0.10 to 1.0%,
Mn: 1.5-3.5%,
Ni: 6.5-10.5%,
Cr: 20-24%,
Mo: 1.5-3.5%,
Ti: 0.2-1.5%,
Al: 0.05-1.0%,
N: Containing 0.08 to 0.20%,
C: 0.04% or less,
Cu: 0.10% or less,
In addition, in the flux, in mass% of the total mass of the wire,
Total TiO 2 conversion value of Ti oxide: 3-7%,
Total SiO 2 equivalent of Si oxide: 0.2-2.5%,
Total F conversion value of fluorine compound: 0.1-0.7%,
Sum of Bi conversion values of one or both of Bi and Bi oxide: 0.01 to 0.05%,
The total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound: 0.2 to 3.0%,
Total Al 2 O 3 conversion value of Al oxide: 0.06% or less,
Total ZrO 2 conversion value of Zr oxide: 0.06% or less,
The Cr, Mo, and N contents are A values obtained from the following equation (1) of 30 to 37, and the balance is Fe content of stainless steel outer skin, iron powder of flux, Fe content from iron alloy, and unavoidable impurities. A flux-filled wire for duplex stainless steel welding, characterized by being
A = [Cr] +3.3 [Mo] +16 [N] ... (1)
(However, [Cr], [Mo], and [N] are mass% of the total mass of the wire)
JP2017248305A 2017-02-14 2017-12-25 Flux-cored wire for duplex stainless steel welding Active JP6786472B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017024723 2017-02-14
JP2017024723 2017-02-14

Publications (2)

Publication Number Publication Date
JP2018130762A JP2018130762A (en) 2018-08-23
JP6786472B2 true JP6786472B2 (en) 2020-11-18

Family

ID=63247874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248305A Active JP6786472B2 (en) 2017-02-14 2017-12-25 Flux-cored wire for duplex stainless steel welding

Country Status (1)

Country Link
JP (1) JP6786472B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131234A (en) * 2019-02-19 2020-08-31 日鉄溶接工業株式会社 Stainless steel flux-cored wire for self-shielded arc-welding
CN110170770A (en) * 2019-07-03 2019-08-27 南京工业大学 Double-phase stainless steel welding active agent and welding method
CN110842394B (en) * 2019-11-12 2021-10-01 北京金威焊材有限公司 Acid red flux stainless steel electrode with high crack resistance and porosity resistance
CN116372417B (en) * 2023-02-07 2023-11-03 中国机械总院集团哈尔滨焊接研究所有限公司 Double-phase stainless steel submerged-arc flux-cored welding strip and flux matched with same for use as well as preparation and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138242B2 (en) * 2007-03-14 2013-02-06 日鐵住金溶接工業株式会社 Flux-cored wire for duplex stainless steel welding
WO2009145347A1 (en) * 2008-05-27 2009-12-03 新日鐵住金ステンレス株式会社 Flux-cored wire for welding of duplex stainless steel which enables the miniaturization of solidified crystal particles
JP5938375B2 (en) * 2013-08-13 2016-06-22 日鐵住金溶接工業株式会社 Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP6599781B2 (en) * 2016-01-26 2019-10-30 日鉄溶接工業株式会社 Flux-cored wire for duplex stainless steel welding
JP2017148821A (en) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 Flux-cored wire for arc welding developed for duplex stainless steel and welding metal

Also Published As

Publication number Publication date
JP2018130762A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
JP6599781B2 (en) Flux-cored wire for duplex stainless steel welding
JP5289999B2 (en) Flux-cored wire for duplex stainless steel welding
JP6322093B2 (en) Flux-cored wire for gas shielded arc welding
JP6786472B2 (en) Flux-cored wire for duplex stainless steel welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2010274304A (en) Flux-cored wire for high-tensile strength steel
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6110800B2 (en) Stainless steel flux cored wire
JP5706354B2 (en) Coated arc welding rod for duplex stainless steel
JP6566928B2 (en) Stainless steel flux cored wire
JP6794295B2 (en) Flux-cored wire for 9% Ni steel welding
JP2011025298A (en) Gas shielded arc welding method
JP2014034051A (en) Wire including flux for stainless steel welding
JP6434381B2 (en) Stainless steel flux cored wire
JP6140069B2 (en) Stainless steel flux cored wire
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6438371B2 (en) Flux-cored wire for gas shielded arc welding
JP5417098B2 (en) Submerged arc welding method for low temperature steel
JP5431373B2 (en) Flux-cored wire for duplex stainless steel welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
WO2019189231A1 (en) Flux-cored wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250