JP6782546B2 - Plasma chemical vapor deposition equipment and methods - Google Patents
Plasma chemical vapor deposition equipment and methods Download PDFInfo
- Publication number
- JP6782546B2 JP6782546B2 JP2016047075A JP2016047075A JP6782546B2 JP 6782546 B2 JP6782546 B2 JP 6782546B2 JP 2016047075 A JP2016047075 A JP 2016047075A JP 2016047075 A JP2016047075 A JP 2016047075A JP 6782546 B2 JP6782546 B2 JP 6782546B2
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- chamber
- chemical vapor
- plasma chemical
- circumferential pumping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005229 chemical vapour deposition Methods 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 39
- 238000005086 pumping Methods 0.000 claims description 73
- 239000000758 substrate Substances 0.000 claims description 31
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims 1
- 210000004369 blood Anatomy 0.000 claims 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 27
- 235000012431 wafers Nutrition 0.000 description 18
- 238000004140 cleaning Methods 0.000 description 12
- 238000000151 deposition Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
- H01J37/32633—Baffles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
Description
本発明はプラズマ化学気相蒸着(PE−CVD)装置およびプラズマ化学気相蒸着の実施方法に関する。 The present invention relates to a plasma chemical vapor deposition (PE-CVD) apparatus and a method for performing plasma chemical vapor deposition.
プラズマ化学気相蒸着は、さまざまな材料を蒸着させるための周知の技術である。半導体デバイスの生産においてプラズマ化学気相蒸着を行うことは周知である。他の半導体処理方法と共通して、商業的に有用なプロセスの実現における非常に重要な要因は、システムの処理能力である。処理能力を低減させる主要な問題は、清浄プロセスにある。清浄プロセスは、プラズマ化学気相蒸着プロセスチャンバの内部表面から蒸着した材料を除去するために必要である。清浄プロセスの実施に要する時間または清浄プロセス間の時間の短縮は、より高い処理能力とより低い保有コスト(COO)を結果としてもたらすことになる。近代的な清浄プロセスは、チャンバの全表面にわたり均一である清浄速度を有する。しかしながら、少なくとも一部のプラズマ化学気相蒸着プロセスは、結果として、蒸着厚みの不均等な分布を有するチャンバの内部表面上の蒸着をもたらす。特に低い蒸着温度での窒化ケイ素の蒸着は、蒸着した材料の極めて不均等な厚み分布を生成するプラズマ化学気相蒸着プロセスの一例である。 Plasma chemical vapor deposition is a well-known technique for depositing various materials. It is well known that plasma chemical vapor deposition is performed in the production of semiconductor devices. In common with other semiconductor processing methods, a very important factor in the realization of commercially useful processes is the processing power of the system. The main problem that reduces processing power is in the cleaning process. A cleaning process is required to remove the deposited material from the internal surface of the plasma chemical vapor deposition process chamber. Shortening the time required to perform a cleaning process or between cleaning processes results in higher processing power and lower cost of ownership (COO). Modern cleaning processes have a uniform cleaning rate over the entire surface of the chamber. However, at least some plasma chemical vapor deposition processes result in deposition on the inner surface of the chamber with an uneven distribution of deposition thickness. Silicon nitride deposition, especially at low deposition temperatures, is an example of a plasma chemical vapor deposition process that produces a very uneven thickness distribution of the deposited material.
プラズマ化学気相蒸着は、シリコンウエハーを処理するために、一般的に使用されている。典型的なプラズマ化学気相蒸着単一ウエハーチャンバシステム設計方法は、システム内への気体の導通を制限することにある。これは、ウエハーを横断するシステムの正味ポンピング流の方向を半径方向にするという意図をもって行なわれる。意図は、ウエハーを横断して均一な蒸着を提供することにある。大部分の市販の単一ウエハープラズマ化学気相蒸着システムは、システムのアース平面を調整し、プラズマの形状に影響を及ぼし、気体のこの半径方向導通を達成するためにセラミックスペーサを使用する。図1は、内部に配置されたプラテン14を有するチャンバ12を含む、全体を10という番号で表わした先行技術のプラズマ化学気相蒸着チャンバの一例を示す。チャンバ12の最上部にある「シャワーヘッド」16は、気体をチャンバ12内に導入するために使用される。当該技術分野において周知の通り、プラズマ生成装置(図示せず)を用いてプラズマが形成される。システム10はさらに、下部セラミックスペーサ18と上部セラミックスペーサ20とを含む。上部セラミックスペーサ20およびプラテン14は、比較的小さい第1のギャップ22を画定する。上部セラミック20と下部セラミック18は、円周方向ポンピングチャンバ26に導く比較的小さい第2のギャップ24を画定する。円周方向ポンピングチャンバは、ポンピングポートと気体導通連通状態にある。ポンピングポートは図1には示されていないが、図2には、ポンピングポート28とウエハー取込みスロット29とが明確に示されている。図2については、以下でさらに詳述する。ポンピングポートは、チャンバからの気体を排気してチャンバ内部で所望の圧力を維持するための好適なポンプを含む排気ラインに連結されている。したがって、気体は、チャンバから、第1のポンピングギャップ22、第2のポンピングギャップ24および円周方向ポンピングチャネル26を含む流路を通じてチャンバから排気される。第1および第2のポンピングギャップ22、24は、比較的小さく、システムの気体導通度を減少させて、半径方向流を生成する。
Plasma chemical vapor deposition is commonly used to process silicon wafers. A typical plasma chemical vapor deposition single wafer chamber system design method is to limit the conduction of gas into the system. This is done with the intention of making the net pumping flow of the system across the wafer radial. The intent is to provide uniform deposition across the wafer. Most commercially available single-wafer plasma chemical vapor deposition systems adjust the ground plane of the system, affect the shape of the plasma, and use ceramic spacers to achieve this radial conduction of the gas. FIG. 1 shows an example of a prior art plasma chemical vapor deposition chamber, all represented by the
本発明は、その実施形態の少なくとも一部において、上述の問題に対処する。詳細には、本発明は、その実施形態の少なくとも一部において、プラズマ化学気相蒸着プロセスに付随する清浄時間を短縮する。このことは、それ自体、処理能力の改善および保有コストCOOの低下をもたらすことができる。 The present invention addresses the above problems in at least some of its embodiments. In particular, the present invention reduces the cleaning time associated with a plasma chemical vapor deposition process in at least some of its embodiments. This in itself can result in improved processing power and lower cost of ownership COO.
本発明の第1の態様によると、プラズマ化学気相蒸着装置において、
円周方向ポンピングチャネルを含むチャンバと、
チャンバ内部に配置された基板支持体と、
チャンバ内に気体を導入するための1つ以上の気体注入口と、
チャンバ内でプラズマを生成するためのプラズマ生成装置と、
チャンバ内に配置された上部および下部要素と、
を含む装置であって、
上部要素が、基板支持体から間隔を開けて配置され、プラズマを閉じ込めかつ第1の円周方向ポンピングギャップを定め、上部要素は円周方向ポンピングチャネルの半径方向内向きの壁として作用しており、
上部要素および下部要素は、半径方向に間隔を開けて配置され、円周方向ポンピングチャネルに対する入口として作用する第2の円周方向ポンピングギャップを定め、第2の円周方向ポンピングギャップが第1の円周方向ポンピングギャップよりも広い、プラズマ化学気相蒸着装置が提供される。
According to the first aspect of the present invention, in the plasma chemical vapor deposition apparatus,
With a chamber containing a circumferential pumping channel,
The board support placed inside the chamber and
One or more gas inlets for introducing gas into the chamber,
A plasma generator for generating plasma in the chamber,
With the upper and lower elements placed in the chamber,
Is a device that includes
The top element is spaced apart from the substrate support to confine the plasma and define the first circumferential pumping gap, and the top element acts as a radial inward wall of the circumferential pumping channel. ,
The upper and lower elements are spaced radially apart to define a second circumferential pumping gap that acts as an inlet to the circumferential pumping channel, with the second circumferential pumping gap being the first. Provided is a plasma chemical vapor deposition apparatus that is wider than the circumferential pumping gap.
下部要素は、基板支持体から半径方向に間隔を開けて配置され、円周方向ポンピングチャネルの下方に配置され、この円周方向ポンピングチャネルと半径方向に重複している補助的円周方向ポンピングチャネルを定める。第1の円周方向ポンピングギャップは、補助的円周方向ポンピングチャネルへの入口として作用してよい。円周方向ポンピングギャップは、補助的円周方向ポンピングチャネルの出口として作用してよい。 The lower elements are spaced radially apart from the substrate support and below the circumferential pumping channel, with an auxiliary circumferential pumping channel that overlaps this circumferential pumping channel in the radial direction. To determine. The first circumferential pumping gap may act as an inlet to the auxiliary circumferential pumping channel. The circumferential pumping gap may act as an outlet for the auxiliary circumferential pumping channel.
下部要素は、ベース部分およびベース部分から立上る壁を含んでいてよい。下部要素の横断面は、概してL字形であってよい。 The lower element may include a base portion and a wall rising from the base portion. The cross section of the lower element may be generally L-shaped.
下部要素は、チャンバの内壁の一部分と当接するライナーであってよい。チャンバの内壁は、ライナーが上に配置される1つの段を含んでいてよい。 The lower element may be a liner that contacts a portion of the inner wall of the chamber. The inner wall of the chamber may include one step on which the liner is placed.
上部要素は、チャンバ内に垂下する壁を含んでいてよい。上部要素の壁は、上部部分と下部部分を含んでいてよい。上部部分は下部部分よりも厚くてよい。 The top element may include a hanging wall within the chamber. The wall of the upper element may include an upper part and a lower part. The upper part may be thicker than the lower part.
下部要素の壁は、半径方向内向きの面を有していてよい。上部要素の壁は、半径方向外向きの面を有していてよい。下部要素の壁の半径方向内向きの面と上部要素の壁の半径方向外向きの面は、半径方向に間隔を開けて配置され、第2の円周方向ポンピングギャップを定めてもよい。 The wall of the lower element may have a radial inward facing surface. The wall of the top element may have a radial outward facing surface. The radial inward surface of the lower element wall and the radial outward surface of the upper element wall may be spaced radially apart to define a second circumferential pumping gap.
上部要素の壁は、円周方向ポンピングチャネルの半径方向内向きの壁として作用してよい。 The wall of the top element may act as a radial inward wall of the circumferential pumping channel.
上部および下部要素は各々、誘電体材料から形成されていてよい。上部および下部要素は各々、セラミック材料から形成されていてよい。 The upper and lower elements may each be formed from a dielectric material. The upper and lower elements may each be formed from a ceramic material.
上部および下部要素は環状であってよい。典型的に、上部および下部要素は各々、一体的構造として提供される。ただし、原則的に、上部および下部要素の一方および両方を2つ以上の構造で提供することが可能である。上部および下部要素の各々が単体構造としてチャンバ内に配置されることが好ましいものの、上部要素と下部要素の一方または両方を、複数の別個の間隔を開けて配置された構造としてチャンバ内に配置される多重構造とすることも、原則的に可能である。 The upper and lower elements may be annular. Typically, the upper and lower elements are each provided as an integral structure. However, in principle, it is possible to provide one or both of the upper and lower elements in two or more structures. Although each of the upper and lower elements is preferably placed in the chamber as a single structure, one or both of the upper and lower elements are placed in the chamber as a structure arranged at multiple separate intervals. In principle, it is possible to have a multiple structure.
基板支持体は、基板支持体がその使用位置にある場合のレベルを画定する上部表面を有していてよい。円周方向ポンピングチャネルの少なくとも一部分が、前記レベルの上方に位置していてよい。 The substrate support may have an upper surface that defines the level when the substrate support is in its position of use. At least a portion of the circumferential pumping channel may be located above the level.
第2の円周方向ポンピングギャップは第2の円周方向ポンピングギャップの少なくとも2倍の幅を有していてよい。 The second circumferential pumping gap may have at least twice the width of the second circumferential pumping gap.
気体注入口は、シャワーヘッドなどの任意の好適な形態で提供されてよい。当業者であれば、他の多くの構成を容易に着想するものと思われる。 The gas inlet may be provided in any suitable form, such as a shower head. Those skilled in the art will easily come up with many other configurations.
プラズマ生成装置は、当業者にとって周知であるものなど、任意の好適な種類のものであってよい。好適なデバイスの一例としては、容量結合プラズマ生成装置がある。 The plasma generator may be of any suitable type, such as those well known to those skilled in the art. An example of a suitable device is a capacitively coupled plasma generator.
本発明の第2の態様によると、基板を処理するためのプラズマ化学気相蒸着方法において、
本発明の第1の態様に係る装置を提供するステップと、
基板支持体上に基板を配置するステップと、
プラズマ化学気相蒸着を実施することによって基板を処理するステップであって、気体は、1つ以上の気体注入口を通してチャンバ内に導入され、第1および第2の円周方向ポンピングギャップおよび円周方向ポンピングチャネルを含む流路を介してチャンバから除去される、ステップと、
を含む方法が提供される。
According to the second aspect of the present invention, in the plasma chemical vapor deposition method for treating a substrate,
The step of providing the apparatus according to the first aspect of the present invention, and
Steps to place the board on the board support,
In the step of processing the substrate by performing plasma chemical vapor deposition, the gas is introduced into the chamber through one or more gas inlets and the first and second circumferential pumping gaps and circumferences. With steps, which are removed from the chamber through a flow path containing a directional pumping channel,
Methods are provided that include.
気体は、3000sccm(1standard cc/minを1.69×10-3 Pa m3/sとすると、5.07 Pa m3/sに換算される)超、好ましくは5000sccm(8.45 Pa m3/s)超、最も好ましくは7000sccm(1.183×10 Pa m3/s)超の流量でチャンバ内に導入されてよい。 The gas is more than 3000 sccm (converted to 5.07 P m 3 / s when 1 standard cc / min is 1.69 × 10 -3 P m 3 / s), preferably more than 5000 sccm (8.45 P m 3 / s), most. Preferably, it may be introduced into the chamber at a flow rate greater than 7000 sccm (1.183 × 10 Pa m 3 / s).
基板上に窒化ケイ素を蒸着させるためにプラズマ化学気相蒸着が実施されてよい。 Plasma chemical vapor deposition may be performed to deposit silicon nitride on the substrate.
代替的には、基板上に二酸化ケイ素、オキシ窒化ケイ素または非晶質ケイ素を蒸着させるために、プラズマ化学気相蒸着が実施されてよい。 Alternatively, plasma chemical vapor deposition may be performed to deposit silicon dioxide, silicon nitride or amorphous silicon onto the substrate.
本発明によって提供される比較的高い気体導通度は、チャンバと円周方向ポンピングチャネルの間の圧力差を減少させる可能性のあることが指摘されてきた。プラズマ化学気相蒸着処理中、円周方向ポンピングチャネル内の圧力は、チャンバ内の圧力の5%以内、好ましくは4%以内であってよい。 It has been pointed out that the relatively high gas conductivity provided by the present invention may reduce the pressure difference between the chamber and the circumferential pumping channel. During the plasma chemical vapor deposition process, the pressure in the circumferential pumping channel may be within 5%, preferably within 4% of the pressure in the chamber.
基板は、半導体基板であってよい。基板は、シリコン基板であってよい。典型的には、シリコン基板はシリコンウエハーである。 The substrate may be a semiconductor substrate. The substrate may be a silicon substrate. Typically, the silicon substrate is a silicon wafer.
本発明について以上で説明したが、本発明は、以上に記した、あるいは以下の明細書、図面またはクレームの範囲内の特徴の任意の発明力ある組合せまで拡大される。例えば、本発明の第1の態様に関連して記載された任意の特徴は、本発明の第2の態様に関連しても同様に開示されたものとみなされ、逆もまた同じである。 Although the present invention has been described above, the present invention extends to any inventive combination of features described above or within the scope of the description, drawings or claims below. For example, any feature described in connection with the first aspect of the invention is considered to be similarly disclosed in connection with the second aspect of the invention, and vice versa.
本発明に係る装置および方法の実施形態について、ここで、添付図面を参照しながら説明する。 Embodiments of the apparatus and method according to the present invention will be described here with reference to the accompanying drawings.
図3は、内部に配置された基板支持体34を有するチャンバ32を含む、全体として30で表わしたプラズマ化学気相蒸着装置を示す。基板支持体34は、上に半導体ウエハーが配置されるプラテンであってよい。典型的には、ウエハーを収容するための下降位置とプラズマ化学気相蒸着によりウエハーを処理するための上昇使用位置との間で、プラテンを移動させることができる。図3は、上昇した使用位置にあるプラテン34を示す。装置30はさらに、チャンバ32の最上部に配置されたシャワーヘッド36を含む。シャワーヘッド36は、所望の気体または気体混合物を気体供給システム(図示せず)からチャンバ32内に導入することのできる複数の気体注入口を含む。典型的には、1つ以上のキャリアガスと組合せた形で1つ以上のプロセスガスを含む気体混合物がチャンバ32に供給される。プラズマ生成装置(図示せず)を用いて、主チャンバ32内でプラズマが作り出される。こうして、所望のプロセスにより半導体ウエハー上に材料が蒸着することになる。プラズマ化学気相蒸着プロセスおよび付随するプラズマ生成装置は、当業者には周知である。1つの実施形態において、図3に示された装置30は、容量結合プラズマ生成装置を用いて実施可能である。装置30はさらに、上部要素38と下部要素40を含む。上部および下部要素38、40は、各々、セラミックスペーサの形態を成している。
FIG. 3 shows a plasma chemical vapor deposition apparatus represented by 30 as a whole, including a
チャンバ32は、第1および第2の段区分32(a)、32(b)を含む。第1の段区分32(a)は、L字形横断面を有する環状リング構造である下部要素40を収容する。第2の段区分32(a)は上部要素38との組み合せにより、主円周方向ポンピングチャネルを定める。
The
装置のアース平面を変更すること、プラズマの形状に影響を与えること、およびプラズマから装置を保護することなどの1つ以上の公知の目的のために、セラミックスの上部および下部要素38、40を使用することが可能である。詳細には、上部要素38は環状形態のものであり、ウエハーおよび基板支持体34の最上位部分を取り囲むように配置される。上部要素は、プラズマを閉じ込めるように作用する。下部要素40は、プラズマからチャンバ32の壁を保護するように作用する。さらに、上部および下部要素38、40は、チャンバ32から気体が排出されるにつれてそれに沿って気体が流れる流路の一部を定める。上部要素38は、基板支持体34から離れて配置されて第1のポンピングギャップを定める。第1のポンピングギャップ内を流れる気体は次に、補助的ポンピングチャネルとされる1つの領域44の中に入る。補助的ポンピングチャネルは、下部要素40とウエハー支持体34の側方領域とによって定められる。下部要素38の最上位部分および上部要素40の最下位部分は、主円周方向ポンピングチャネル42へと導く第2のポンピングチャネルを定める。主円周方向ポンピングチャンバ42は、ポンピングポート46と気体導通連通状態にある。ポンピングポート46は、図4に示され、この図は同様に、ウエハー取込みポート48をも示している。ポンピングポート46は、好適なポンプを含む真空ライン(図示せず)に連結されている。真空ラインは、本質的に従来の構造のものであってよい。
Ceramic top and
図1の先行技術の装置と図3に示された本発明の装置とを用いて、実験を行なった。窒化ケイ素は両方のチャンバ内で蒸着される。図2は、先行技術の装置を用いた場合に記号Xで表わされた部域27内に窒化ケイ素が蒸着していることを示している。図4は、本発明の装置を使用した場合に記号Xにより表わされた場所50に窒化ケイ素が蒸着したことを示している。先行技術の装置が、極めて非対称的に窒化ケイ素を蒸着させていることがわかる。これとは対照的に、図3の装置では、窒化ケイ素の蒸着は、チャンバ全体にわたりはるかに均等に拡がっている。これは、本発明のチャンバ上の窒化ケイ素蒸着の厚みが削減したことの帰結である。これに比較して、先行技術の装置は、蒸着した窒化ケイ素の厚みが比較的厚い部域を発生させる。先行技術の装置で得られるより厚い蒸着の帰結は、蒸着した材料を除去するのにより長い清浄時間を要するということである。SiN/SiN/SiOスタックを生成するために低温「via revealビア露呈」アプリケーションを実行する実験を実施した。先行技術の装置に比べ、本発明の装置は清浄時間を720秒から130秒に短縮することがわかった。これは、その帰結として実質的な処理能力の改善をもたらす。同様に、図2に示されている非対称的蒸着パターンのさらなる帰結として、比較的薄い蒸着層を有する部域が過度に清浄されることになるということも指摘される。
Experiments were performed using the prior art device of FIG. 1 and the device of the present invention shown in FIG. Silicon nitride is deposited in both chambers. FIG. 2 shows that silicon nitride is deposited in the
一定範囲のプロセスレシピを用いた窒化ケイ素および酸化ケイ素のプラズマ化学気相蒸着についてのプロセスパラメータおよび膜特性に対する本発明の効果を調査するためにも同様に、実験を実施した。一定数の直径300mmのシリコンウエハー基板を用いて、実験を実施した。表1は、重要な誘電体膜特性を示す。本発明を用いて得た膜の特性が、先行技術の装置を用いて得た等価の膜と比べてはるかに優れていることがわかる。実際、先行技術の装置および本発明の装置を用いて得られた測定上の特性は、測定のための関連するエラーバンドの範囲内で一致している。同様に、両方の種類の装置で同一のNF3清浄レシピを用いて、終点信号(プラズマ内の励起されたフリーラジカルフッ素種の光学的測定)とDCバイアス信号のプロファイルが非常に類似していることがわかった。さらに、本発明の装置は、C3F8/O2清浄の電気および光学特性に対しても全く影響を及ぼさないことがわかった。 Experiments were also carried out to investigate the effect of the present invention on process parameters and film properties for plasma chemical vapor deposition of silicon nitride and silicon oxide using a range of process recipes. The experiment was carried out using a certain number of silicon wafer substrates having a diameter of 300 mm. Table 1 shows important dielectric film properties. It can be seen that the properties of the film obtained using the present invention are far superior to those of the equivalent film obtained using the prior art device. In fact, the measurement properties obtained using the prior art device and the device of the present invention are consistent within the relevant error band for measurement. Similarly, the profiles of the endpoint signal (optical measurement of excited free radical fluorine species in the plasma) and the DC bias signal are very similar using the same NF 3 cleaning recipe on both types of equipment. I understand. Furthermore, it has been found that the apparatus of the present invention has no effect on the electrical and optical properties of C 3 F 8 / O 2 cleaning.
表2は、表1の先行技術の装置および表3の本発明の装置の主チャンバおよび円周方向ポンピングチャンバ内の測定上の圧力を示す。先行技術の装置が、主チャンバと円周方向ポンピングチャンバの間で有意な圧力差を発生させることがわかる。このことは、円周方向ポンピングチャネル26に導く制限されたポンピングギャップ22、24の観点から、理論的に容易に説明がつく。以上で説明した通り、これは、ウエハーを横断する半径方向流を達成する目的で気体導通を削減するために意図された恣意的な設計上の特徴である。これとは対照的に、本発明は、チャンバと円周方向ポンピングチャネルの間にはるかに削減された圧力差を提供する。現在のところ、ウエハーを横断する流れが半径方向であるか否かは確認されていない。何らかの特定の理論または推測によって制限されることは望まないが、それは、間隔を開けて配置された上部および下部要素38、40により画定されたより大きい第2のポンピングギャップの観点から見て理論的に説明できると考えられている。補助的円周方向ポンピングチャンバ44の体積および/または流路が、1つの役割を果たしていることも同様に可能である。たとえ本発明の場合に気体導通度がより高いものであるにせよ、先行技術の装置および本発明の装置の両方のチャンバ内の絶対圧力はプラズマ化学気相蒸着プロセス中同じであったことが指摘される。これは、排気ライン上の絞り弁を制御することによって達成された。
Table 2 shows the measured pressures in the main chamber and the circumferential pumping chamber of the prior art device of Table 1 and the device of the present invention of Table 3. It can be seen that the prior art device produces a significant pressure difference between the main chamber and the circumferential pumping chamber. This can be easily explained theoretically in terms of the
図5は、図3の装置を用いて得た典型的なビア露呈SiN/SiO2スタックについてのウエハー間膜厚を示す。清浄は、連続するウエハー処理の間に実施された。図5では、菱形記号52はSiO2膜に関し、正方形記号54は窒化ケイ素蒸着膜に関し、三角形記号56はスタック全体の厚みに関するものである。図5は同様に、スタック全体の不均一性をも示す。X記号58は、スタック不均一性データを意味する。本発明の装置が優れた膜特性を示すことがわかった。
FIG. 5 shows the interwafer film thickness for a typical via exposed SiN / SiO 2 stack obtained using the apparatus of FIG. Cleaning was performed during successive wafer processing. In FIG. 5, the
本発明は、高い気体流量を有するプラズマ化学気相蒸着プロセスと併用した場合に極めて優れた結果を提供すると考えられている。しかしながら、本発明は、高流量プロセスに限定されるものではない。本発明が提供する有利な効果は、使用される明確なプロセスレシピに限定されるものとは考えられていない。反対に、本発明は、酸化ケイ素、オキシ窒化ケイ素および非晶質ケイ素などの広範囲の蒸着材料を提供するために、広範囲の蒸着レシピに対し利用可能であると考えられる。 The present invention is believed to provide extremely good results when used in combination with a plasma chemical vapor deposition process with a high gas flow rate. However, the present invention is not limited to high flow processes. The beneficial effects provided by the present invention are not believed to be limited to the explicit process recipes used. Conversely, the present invention is believed to be available for a wide range of vapor deposition recipes to provide a wide range of vapor deposition materials such as silicon oxide, silicon oxynitride and amorphous silicon.
Claims (17)
チャンバと、
チャンバ内に配置される基板支持体と、
チャンバ内に気体を導入するための1つ以上の気体注入口と、
チャンバ内でプラズマを生成するためのプラズマ生成装置と、
チャンバ内に配置される上部要素および下部要素と、
を含み、
上部要素の半径方向内面と、基板支持体の側面は、チャンバの半径方向において第1の距離だけ間隔をあけて配置され、この間隔が第1の円周方向ポンピングギャップを定め、
上部要素は、主円周方向ポンピングチャネルの半径方向内側を区切る、半径方向外側に向いた表面を有し、
下部要素は、チャンバの半径方向において基板支持体の側面に向き、該側面に間隔をあけて配置され、これによってチャンバの補助円周方向ポンピングチャネルを区切り、この補助円周方向ポンピングチャネルは主円周方向ポンピングチャネルの下方であってチャンバの半径方向において重なるように配置され、第1の円周方向ポンピングギャップは補助円周方向ポンピングチャネルへの入口を構成し、
上部要素の最下部および下部要素の最上部は、半径方向に第2の距離だけオフセットして、主円周方向ポンピングチャネルへの入口と補助円周方向ポンピングチャネルの出口の両方を構成する第2周方向ポンピングギャップを定め、
第2の距離が第1の距離よりも大きく、
基板支持体上に基板を配置し、
主円周方向ポンピングチャネルの半径方向内側に配置されたチャンバのプロセス領域に1以上の気体注入口から気体を導入し、
気体を励起してプラズマを形成し、
プラズマを使用して基板に材料を堆積し、
第1の周方向ポンピングギャップ、補助円周方向ポンピングチャネル、第2の円周方向ポンピングギャップ、主円周方向ポンピングチャネルを介して、チャンバのプロセス領域内のガスを装置から除去する、
プラズマ化学気相蒸着装置。 In plasma chemical vapor deposition equipment
And blood Yanba,
The substrate support placed in the chamber and
One or more gas inlets for introducing gas into the chamber,
A plasma generator for generating plasma in the chamber,
With the upper and lower elements placed in the chamber,
Only including,
The radial inner surface of the top element and the side surface of the substrate support are spaced apart by a first distance in the radial direction of the chamber, which defines the first circumferential pumping gap.
The top element has a radial outward facing surface that separates the radial inside of the main circumferential pumping channel.
The lower elements face the sides of the substrate support in the radial direction of the chamber and are spaced apart from the sides, thereby separating the auxiliary circumferential pumping channels of the chamber, which auxiliary circumferential pumping channels are the main circle. Arranged below the circumferential pumping channel and overlapping in the radial direction of the chamber, the first circumferential pumping gap constitutes the inlet to the auxiliary circumferential pumping channel.
The bottom of the top element and the top of the bottom element are offset by a second distance in the radial direction to form both the entrance to the main circumferential pumping channel and the exit of the auxiliary circumferential pumping channel. Determine the circumferential pumping gap
The second distance is greater than the first distance,
Place the board on the board support and
Gas is introduced from one or more gas inlets into the process area of the chamber located radially inside the main circumferential pumping channel.
Exciting a gas to form a plasma,
Using plasma to deposit material on the substrate,
The gas in the process area of the chamber is removed from the device through the first circumferential pumping gap, the auxiliary circumferential pumping channel, the second circumferential pumping gap, and the main circumferential pumping channel.
Plasma chemical vapor deposition equipment.
請求項1に記載の装置を提供するステップと、
少なくとも1つの基板支持体上に基板を配置するステップと、
プラズマ化学気相蒸着を実施することによって基板を処理するステップであって、気体は、1つ以上の気体注入口を通してチャンバ内に導入され、第1および第2の円周方向ポンピングギャップおよび円周方向ポンピングチャネルを含む流路を介してチャンバから除去される、ステップと、
を含むことを特徴とする方法。 In a method of performing plasma chemical vapor deposition to process a substrate,
The step of providing the apparatus according to claim 1 and
The step of placing the board on at least one board support,
In the step of processing the substrate by performing plasma chemical vapor deposition, the gas is introduced into the chamber through one or more gas inlets and the first and second circumferential pumping gaps and circumferences. With steps, which are removed from the chamber through a flow path containing a directional pumping channel,
A method characterized by including.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1504202.1 | 2015-03-12 | ||
GB201504202A GB201504202D0 (en) | 2015-03-12 | 2015-03-12 | PE-CVD apparatus and method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016191147A JP2016191147A (en) | 2016-11-10 |
JP2016191147A5 JP2016191147A5 (en) | 2020-06-25 |
JP6782546B2 true JP6782546B2 (en) | 2020-11-11 |
Family
ID=53016020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016047075A Active JP6782546B2 (en) | 2015-03-12 | 2016-03-10 | Plasma chemical vapor deposition equipment and methods |
Country Status (7)
Country | Link |
---|---|
US (1) | US9783886B2 (en) |
EP (1) | EP3067914B1 (en) |
JP (1) | JP6782546B2 (en) |
KR (1) | KR102538276B1 (en) |
CN (1) | CN105970190B (en) |
GB (1) | GB201504202D0 (en) |
TW (1) | TWI695084B (en) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558717A (en) * | 1994-11-30 | 1996-09-24 | Applied Materials | CVD Processing chamber |
US5855681A (en) | 1996-11-18 | 1999-01-05 | Applied Materials, Inc. | Ultra high throughput wafer vacuum processing system |
US6051286A (en) | 1997-02-12 | 2000-04-18 | Applied Materials, Inc. | High temperature, high deposition rate process and apparatus for depositing titanium layers |
EP0855452B1 (en) | 1997-01-24 | 2003-06-04 | Applied Materials, Inc. | Process and apparatus for depositing titanium layers |
US6372668B2 (en) * | 2000-01-18 | 2002-04-16 | Advanced Micro Devices, Inc. | Method of forming silicon oxynitride films |
US6863835B1 (en) * | 2000-04-25 | 2005-03-08 | James D. Carducci | Magnetic barrier for plasma in chamber exhaust |
US7879409B2 (en) | 2004-07-23 | 2011-02-01 | Applied Materials, Inc. | Repeatability of CVD film deposition during sequential processing of substrates in a deposition chamber |
US20070065597A1 (en) | 2005-09-15 | 2007-03-22 | Asm Japan K.K. | Plasma CVD film formation apparatus provided with mask |
KR100914354B1 (en) * | 2006-06-05 | 2009-08-28 | 어플라이드 머티어리얼스, 인코포레이티드 | Elimination of first wafer effect for pecvd films |
WO2008096981A1 (en) * | 2007-02-06 | 2008-08-14 | Sosul Co., Ltd. | Apparatus for forming a layer |
JP5347294B2 (en) * | 2007-09-12 | 2013-11-20 | 東京エレクトロン株式会社 | Film forming apparatus, film forming method, and storage medium |
JP2009088298A (en) | 2007-09-29 | 2009-04-23 | Tokyo Electron Ltd | Plasma treatment apparatus and plasma treatment method |
US20110151142A1 (en) * | 2009-12-22 | 2011-06-23 | Applied Materials, Inc. | Pecvd multi-step processing with continuous plasma |
US8778813B2 (en) | 2010-05-12 | 2014-07-15 | Applied Materials, Inc. | Confined process volume PECVD chamber |
KR20120091564A (en) * | 2011-02-09 | 2012-08-20 | 엘아이지에이디피 주식회사 | Apparatus for supplying gas and method for controlling the same |
US10099245B2 (en) | 2013-03-14 | 2018-10-16 | Applied Materials, Inc. | Process kit for deposition and etching |
TWI600786B (en) | 2013-05-01 | 2017-10-01 | 應用材料股份有限公司 | Cobalt removal for chamber clean or pre-clean process |
-
2015
- 2015-03-12 GB GB201504202A patent/GB201504202D0/en not_active Ceased
-
2016
- 2016-03-09 US US15/064,631 patent/US9783886B2/en active Active
- 2016-03-10 CN CN201610136744.5A patent/CN105970190B/en active Active
- 2016-03-10 JP JP2016047075A patent/JP6782546B2/en active Active
- 2016-03-11 TW TW105107538A patent/TWI695084B/en active
- 2016-03-11 EP EP16159924.6A patent/EP3067914B1/en active Active
- 2016-03-14 KR KR1020160030539A patent/KR102538276B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP3067914B1 (en) | 2018-11-28 |
KR20160110273A (en) | 2016-09-21 |
EP3067914A1 (en) | 2016-09-14 |
KR102538276B1 (en) | 2023-05-30 |
TWI695084B (en) | 2020-06-01 |
CN105970190B (en) | 2019-08-30 |
CN105970190A (en) | 2016-09-28 |
US20160265108A1 (en) | 2016-09-15 |
US9783886B2 (en) | 2017-10-10 |
JP2016191147A (en) | 2016-11-10 |
GB201504202D0 (en) | 2015-04-29 |
TW201643269A (en) | 2016-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7551720B2 (en) | Semiconductor processing chamber for multiple precursor flows - Patents.com | |
JP7176860B2 (en) | Semiconductor processing chamber to improve precursor flow | |
US11127567B2 (en) | Systems and methods for suppressing parasitic plasma and reducing within-wafer non-uniformity | |
KR102605757B1 (en) | Method of plasma-enhanced atomic layer etching | |
US10354843B2 (en) | Chemical control features in wafer process equipment | |
TWI607503B (en) | Semiconductor processing systems having multiple plasma configurations | |
KR102598660B1 (en) | Systems and methods for reducing backside deposition and mitigating thickness changes at substrate edges | |
US9219006B2 (en) | Flowable carbon film by FCVD hardware using remote plasma PECVD | |
JP6679591B2 (en) | Method and system for enhancing process uniformity | |
JP5514310B2 (en) | Plasma processing method | |
CN111712924B (en) | Air gap forming process | |
JP7175266B2 (en) | sputtering shower head | |
US11222771B2 (en) | Chemical control features in wafer process equipment | |
JP6782546B2 (en) | Plasma chemical vapor deposition equipment and methods | |
KR20130085905A (en) | Cvd conformal vacuum/pumping guiding design | |
US20180258531A1 (en) | Diffuser design for flowable cvd | |
US20230081862A1 (en) | Focus Ring Regeneration | |
CN115461837A (en) | High conductivity process kit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190215 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200129 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200225 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20200515 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201020 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6782546 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |