[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6780256B2 - Active energy ray-curable resin composition - Google Patents

Active energy ray-curable resin composition Download PDF

Info

Publication number
JP6780256B2
JP6780256B2 JP2016022389A JP2016022389A JP6780256B2 JP 6780256 B2 JP6780256 B2 JP 6780256B2 JP 2016022389 A JP2016022389 A JP 2016022389A JP 2016022389 A JP2016022389 A JP 2016022389A JP 6780256 B2 JP6780256 B2 JP 6780256B2
Authority
JP
Japan
Prior art keywords
acrylate
meth
urethane
molecular weight
active energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016022389A
Other languages
Japanese (ja)
Other versions
JP2017141333A (en
Inventor
将啓 田中
将啓 田中
光司 楠本
光司 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2016022389A priority Critical patent/JP6780256B2/en
Publication of JP2017141333A publication Critical patent/JP2017141333A/en
Application granted granted Critical
Publication of JP6780256B2 publication Critical patent/JP6780256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、活性エネルギー線硬化型樹脂組成物に関する。 The present invention relates to an active energy ray-curable resin composition.

硬化性樹脂組成物は、活性エネルギー線の照射により直ちに硬化し、強度や耐薬品性に優れた硬化膜を形成することから、各種基材の表面を保護する目的で用いられている。
近年では、携帯電話やパソコン、テレビなどの液晶ディスプレイ等の画像表示装置用保護フィルム、反射防止フィルム、プリズムシート等の光学フィルムまたはシートや、電子機器や家電製品の筐体、表示パネル、スイッチボタンなどに使用されるインサート成形またはインモールド転写フィルムへの利用が拡大している。
このような用途で用いられる硬化性樹脂組成物には、良好な美観を長期間維持するための耐傷つき性、耐薬品性、耐候性、密着性や、成型加工を容易にし、生産性を向上させるための伸張性などの物性が求められる。これらの物性を良好なものとすべく、様々な検討がなされている。
The curable resin composition is used for the purpose of protecting the surface of various base materials because it is immediately cured by irradiation with active energy rays to form a cured film having excellent strength and chemical resistance.
In recent years, protective films for image display devices such as liquid crystal displays of mobile phones, personal computers, and televisions, antireflection films, optical films or sheets such as prism sheets, housings for electronic devices and home appliances, display panels, and switch buttons. The use for insert molding or in-mold transfer film used for such as is expanding.
The curable resin composition used in such applications has scratch resistance, chemical resistance, weather resistance, adhesion to maintain a good appearance for a long period of time, facilitates molding, and improves productivity. Physical properties such as extensibility are required to make it. Various studies have been conducted to improve these physical properties.

例えば特許文献1では、特定範囲の分子量のポリカプロラクトンポリオールを用いてウレタンアクリレートを合成し、さらに単独でポリマーとしたときに高いTgを示すアクリレートモノマーを配合する方法が開示されている。この組成物はポリオレフィン系フィルムに対して良好な密着性を示すが、高分子量のポリオールを用いるために硬化膜の強度が低く、傷付きやすいという課題があった。
特許文献2では、ヘキサメチレンジイソシアネートのイソシアヌレート変性体とポリカプロラクトン変性ヒドロキシエチルアクリレートを用いて合成したウレタンアクリレートが開示されている。また、特許文献3では、ポリカプロラクトン変性ポリオールと、ポリイソシアネートと、水酸基含有アクリレートを用いて合成したウレタンアクリレートが開示されている。これらの組成物は剛直な構造と柔軟な構造をバランス良く有し、硬化膜表面についた凹み傷を経時的に修復する自己修復性を示すことで、高い耐傷つき性を実現している。しかし、用途はレンズシートを想定しているためにPETフィルムへの密着性にのみ言及しており、ABSに対する密着性は十分でなかった。また、伸張性も未だ十分ではない。
特許文献4では、ポリカプロラクトン変性ポリオールと、ポリイソシアネートと、水酸基含有アクリレートを用いて合成したウレタンアクリレートと、これ以外のウレタンジアクリレート、およびアクリレートモノマーを配合する方法が開示されている。この組成物は良好な硬度を示すものの、硬度を上げるためにウレタンジアクリレートの割合を増やすと伸張性が著しく低下するため、耐傷つき性と伸張性の両立が困難であった。
このように、従来の方法では、指触り性、耐傷つき性、硬度、伸張性、基材への密着性、および耐カール性を同時に満たすことが困難であった。
For example, Patent Document 1 discloses a method of synthesizing urethane acrylate using a polycaprolactone polyol having a molecular weight in a specific range, and further blending an acrylate monomer showing a high Tg when made into a polymer alone. Although this composition exhibits good adhesion to a polyolefin-based film, there is a problem that the strength of the cured film is low due to the use of a high molecular weight polyol and it is easily damaged.
Patent Document 2 discloses a urethane acrylate synthesized by using an isocyanurate modified product of hexamethylene diisocyanate and a polycaprolactone-modified hydroxyethyl acrylate. Further, Patent Document 3 discloses a urethane acrylate synthesized by using a polycaprolactone-modified polyol, a polyisocyanate, and a hydroxyl group-containing acrylate. These compositions have a well-balanced rigid structure and a flexible structure, and exhibit high scratch resistance by exhibiting self-healing property for repairing dents on the surface of the cured film over time. However, since the application is intended for a lens sheet, only the adhesion to the PET film is mentioned, and the adhesion to the ABS is not sufficient. Also, the extensibility is still insufficient.
Patent Document 4 discloses a method of blending a polycaprolactone-modified polyol, a polyisocyanate, a urethane acrylate synthesized using a hydroxyl group-containing acrylate, another urethane diacrylate, and an acrylate monomer. Although this composition exhibits good hardness, it is difficult to achieve both scratch resistance and extensibility because the extensibility is remarkably lowered when the proportion of urethane diacrylate is increased in order to increase the hardness.
As described above, it has been difficult to simultaneously satisfy the touch property, scratch resistance, hardness, extensibility, adhesion to the substrate, and curl resistance by the conventional method.

特開2000−219821号公報Japanese Unexamined Patent Publication No. 2000-21821 特開2003−302501号公報Japanese Unexamined Patent Publication No. 2003-302501 特開2004−35599号公報Japanese Unexamined Patent Publication No. 2004-35599 特開2005−23194号公報Japanese Unexamined Patent Publication No. 2005-23194

本発明の課題は、良好な指触り性、自己修復性、表面硬度、伸張性、各種プラスチック基材への密着性、耐カール性を示す硬化物を得ることのできる活性エネルギー線硬化型樹脂組成物を提供することである。 An object of the present invention is an active energy ray-curable resin composition capable of obtaining a cured product exhibiting good touch property, self-healing property, surface hardness, extensibility, adhesion to various plastic substrates, and curl resistance. To provide things.

本発明者らは、上記課題を解決するために鋭意検討した結果、特定構造のウレタン(メタ)アクリレートと特定構造の単官能(メタ)アクリレートを含有する活性エネルギー線硬化型樹脂組成物が上記の課題を解決することの知見を見出し、本発明を完成するに至った。
すなわち、本発明は次の〔1〕〜〔2〕である。
As a result of diligent studies to solve the above problems, the present inventors have found an active energy ray-curable resin composition containing a urethane (meth) acrylate having a specific structure and a monofunctional (meth) acrylate having a specific structure. We have found the knowledge to solve the problems and have completed the present invention.
That is, the present invention is the following [1] to [2].

〔1〕下記のウレタン(メタ)アクリレート(A)、および、下記の単官能または二官能(メタ)アクリレート(B)を含有し、前記ウレタン(メタ)アクリレート(A)と前記単官能または二官能(メタ)アクリレート(B)の質量比が(A)/(B)=50/50〜95/5である活性エネルギー線硬化型樹脂組成物。
<ウレタン(メタ)アクリレート(A)>
数平均分子量300〜900のポリカプロラクトンポリオール(a1)、数平均分子量50〜300のジオール(a2)、脂肪族または脂環式ジイソシアネート(a3)、および水酸基含有(メタ)アクリレート(a4)のウレタン化反応物であり、
前記ジオール(a2)に対する前記ポリカプロラクトンポリオール(a1)のモル比(a1)/(a2)が0.2〜10.0であり、
前記ポリカプロラクトンポリオール(a1)と前記ジオール(a2)の水酸基の合計と、前記脂肪族または脂環式ジイソシアネート(a3)のイソシアネート基の当量比((a1)+(a2))/(a3)が0.65〜0.85であり、
重量平均分子量が2,000〜30,000であるウレタン(メタ)アクリレート
<単官能または二官能(メタ)アクリレート(B)>
脂環式構造、芳香族環、複素環構造の内少なくとも一つの構造を有する、単官能または二官能(メタ)アクリレート
[1] The following urethane (meth) acrylate (A) and the following monofunctional or bifunctional (meth) acrylate (B) are contained, and the urethane (meth) acrylate (A) and the monofunctional or bifunctional are contained. An active energy ray-curable resin composition having a mass ratio of (meth) acrylate (B) of (A) / (B) = 50/50 to 95/5.
<Urethane (meth) acrylate (A)>
Urethaneization of polycaprolactone polyols (a1) with a number average molecular weight of 300 to 900, diols (a2) with a number average molecular weight of 50 to 300, aliphatic or alicyclic diisocyanates (a3), and hydroxyl group-containing (meth) acrylates (a4). It is a reactant and
The molar ratio (a1) / (a2) of the polycaprolactone polyol (a1) to the diol (a2) is 0.2 to 10.0.
The sum of the hydroxyl groups of the polycaprolactone polyol (a1) and the diol (a2) and the equivalent ratio of the isocyanate groups of the aliphatic or alicyclic diisocyanate (a3) ((a1) + (a2)) / (a3) It is 0.65 to 0.85,
Urethane (meth) acrylate having a weight average molecular weight of 2,000 to 30,000 <monofunctional or bifunctional (meth) acrylate (B)>
A monofunctional or bifunctional (meth) acrylate having at least one of an alicyclic structure, an aromatic ring, and a heterocyclic structure.

〔2〕前記の〔1〕に記載の活性エネルギー線硬化型樹脂組成物を活性エネルギー線で硬化させて得られる硬化物。 [2] A cured product obtained by curing the active energy ray-curable resin composition according to the above [1] with an active energy ray.

本発明の活性エネルギー線硬化型樹脂組成物によれば、良好な指触り性、自己修復性、硬度、伸張性を有し、かつ基材への密着性と耐カール性が良好な硬化物を得ることができる。 According to the active energy ray-curable resin composition of the present invention, a cured product having good touch property, self-healing property, hardness, extensibility, and good adhesion to a substrate and curl resistance can be obtained. Obtainable.

以下、本発明をさらに詳細に説明する。
本発明の活性エネルギー線硬化型樹脂組成物は、ウレタン(メタ)アクリレート(A)および単官能または二官能(メタ)アクリレート(B)を含有する。以下に、各成分について説明する。
Hereinafter, the present invention will be described in more detail.
The active energy ray-curable resin composition of the present invention contains urethane (meth) acrylate (A) and monofunctional or bifunctional (meth) acrylate (B). Each component will be described below.

<ウレタン(メタ)アクリレート(A)>
本発明に用いるウレタン(メタ)アクリレート(A)は、次の(a1)〜(a4)の成分のウレタン化反応物である。
・数平均分子量300〜900のポリカプロラクトンポリオール(a1)、
・数平均分子量50〜300のジオール(a2)、
・脂肪族または脂環式ジイソシアネート(a3)、および
・水酸基含有(メタ)アクリレート(a4)
<Urethane (meth) acrylate (A)>
The urethane (meth) acrylate (A) used in the present invention is a urethanization reaction product of the following components (a1) to (a4).
Polycaprolactone polyol (a1) with a number average molecular weight of 300 to 900,
A diol (a2) having a number average molecular weight of 50 to 300,
-Aliphatic or alicyclic diisocyanate (a3), and-Hydroxy group-containing (meth) acrylate (a4)

[ポリカプロラクトンポリオール(a1)]
ポリカプロラクトンポリオール(a1)は、本発明の組成物に柔軟性を付与し、良好な伸張性を持たせるために用いる。ポリカプロラクトンポリオールとしてはポリカプロラクトンジオールまたはポリカプロラクトントリオールなどが挙げられ、単独または2種以上を組み合わせて使用することができる。ポリカプロラクトンポリオールの数平均分子量が300未満の場合、伸張性が十分でなく、自己修復性も損なわれる。一方、数平均分子量が900を超えると伸張性は十分であるが、柔らかくなりすぎるために表面硬度が低下する。傷付きに弱くなるために自己修復性が不十分となる。以上の傾向から、ポリカプロラクトンポリオール(a1)の数平均分子量は300〜900であり、好ましくは400〜700である。ポリカプロラクトンポリオールの入手可能な市販品としては、(株)ダイセル製の「プラクセル205」、「プラクセル205H」、「プラクセル205U」、「プラクセル205UC」、「プラクセルL205AL」、「プラクセル208」、「プラクセル303」、「プラクセル305」、「プラクセル305T」、「プラクセル308」などが挙げられる。
[Polycaprolactone polyol (a1)]
Polycaprolactone polyol (a1) is used to impart flexibility to the composition of the present invention and to provide good extensibility. Examples of the polycaprolactone polyol include polycaprolactone diol and polycaprolactone triol, which can be used alone or in combination of two or more. If the number average molecular weight of the polycaprolactone polyol is less than 300, the extensibility is not sufficient and the self-healing property is also impaired. On the other hand, when the number average molecular weight exceeds 900, the extensibility is sufficient, but the surface hardness decreases because it becomes too soft. Insufficient self-healing because it is vulnerable to scratches. From the above tendency, the number average molecular weight of the polycaprolactone polyol (a1) is 300 to 900, preferably 400 to 700. Available commercial products of polycaprolactone polyol include "Plaxel 205", "Plaxel 205H", "Plaxel 205U", "Plaxel 205UC", "Plaxel L205AL", "Plaxel 208", and "Plaxel" manufactured by Daicel Corporation. 303 ”,“ Praxel 305 ”,“ Praxel 305T ”,“ Praxel 308 ”and the like.

[数平均分子量50〜300のジオール(a2)]
数平均分子量50〜300のジオール(a2)は、本発明の組成物に強靭性を付与し、良好な伸張性と硬度を両立して発揮させるために用いる。数平均分子量50〜300のジオール(a2)としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコールなどが挙げられる。これらは単独で用いても良く、2種以上を併用して用いることもできる。
[Diol (a2) having a number average molecular weight of 50 to 300]
The diol (a2) having a number average molecular weight of 50 to 300 is used to impart toughness to the composition of the present invention and to exhibit both good extensibility and hardness at the same time. Examples of the diol (a2) having a number average molecular weight of 50 to 300 include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, and 1,4-butanediol. , 1,5-Pentanediol, 1,6-Hexanediol, neopentyl glycol and the like. These may be used alone or in combination of two or more.

[脂肪族または脂環式ジイソシアネート(a3)]
本発明に用いるイソシアネートとしては、耐黄変性に優れることから、脂肪族ジイソシアネート、または脂環式ジイソシアネートを用いることが好ましい。具体的には、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3−ビスイソシアナトメチルシクロヘキサン、1,4−ビスイソシアナトメチルシクロヘキサン、ノルボルナンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネートなどが挙げられる。これらの中でも、より強靭性に優れた硬化膜が得られることから、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネートが好ましい。これらは単独で用いても良く、2種以上を併用して用いることもできる。
[Aliphatic or alicyclic diisocyanate (a3)]
As the isocyanate used in the present invention, it is preferable to use an aliphatic diisocyanate or an alicyclic diisocyanate because it is excellent in yellowing resistance. Specific examples thereof include hexamethylene diisocyanate, isophorone diisocyanate, 1,3-bisisocyanatomethylcyclohexane, 1,4-bisisocyanatomethylcyclohexane, norbornane diisocyanate, and dicyclohexylmethane-4,4'-diisocyanate. Among these, isophorone diisocyanate and dicyclohexylmethane-4,4'-diisocyanate are preferable because a cured film having more excellent toughness can be obtained. These may be used alone or in combination of two or more.

[水酸基含有(メタ)アクリレート(a4)]
水酸基含有(メタ)アクリレート(a4)は、ウレタンプレポリマーの末端に重合性基を付加し、成分(A)にラジカル反応性を付与する成分であり、1分子中に少なくとも1個以上の水酸基と、1個以上の(メタ)アクリロイル基を有する水酸基含有(メタ)アクリレートである。具体的には、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートなどの不飽和脂肪酸ヒドロキシアルキルエステル、2−ヒドロキシエチル(メタ)アクリレートなどの不飽和脂肪酸ヒドロキシアルキルエステルのε−カプロラクトン付加物(平均付加モル数1〜10)、ポリエチレングリコール(平均付加モル数1〜10)モノ(メタ)アクリレート、ポリプロピレングリコール(平均付加モル数1〜10)モノ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレートなどが挙げられる。これら水酸基含有(メタ)アクリレートは、1種単独で用いてもよく、2種以上を組み合わせても良い。自己修復性、硬度、伸張性に優れる硬化物が得られるという観点から、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレートのε−カプロラクトン付加物(平均付加モル数1〜10)が好ましく、特に伸張性に優れるという観点から2−ヒドロキシエチル(メタ)アクリレートのε−カプロラクトン付加物(平均付加モル数1〜10)がより好ましい。
[Hydroxy group-containing (meth) acrylate (a4)]
The hydroxyl group-containing (meth) acrylate (a4) is a component that adds a polymerizable group to the end of the urethane prepolymer to impart radical reactivity to the component (A), and contains at least one or more hydroxyl groups in one molecule. , A hydroxyl group-containing (meth) acrylate having one or more (meth) acryloyl groups. Specifically, unsaturated fatty acid hydroxyalkyl esters such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate and the like. Ε-Caprolactone adduct of unsaturated fatty acid hydroxyalkyl ester (average addition molars 1-10), polyethylene glycol (average addition molars 1-10) mono (meth) acrylate, polypropylene glycol (average addition molars 1-10) Examples thereof include mono (meth) acrylate, pentaerythritol triacrylate, and dipentaerythritol pentaacrylate. These hydroxyl group-containing (meth) acrylates may be used alone or in combination of two or more. 2-Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl from the viewpoint of obtaining a cured product having excellent self-healing property, hardness, and extensibility. The ε-caprolactone adduct of (meth) acrylate (average addition mole number 1 to 10) is preferable, and the ε-caprolactone adduct of 2-hydroxyethyl (meth) acrylate (average addition molar number 1) is particularly excellent from the viewpoint of excellent extensibility. 10) is more preferable.

本発明に用いるウレタン(メタ)アクリレート(A)の重量平均分子量は2,000〜30,000である。重量平均分子量が2,000未満では自己修復性と伸張性が不十分であり、30,000を超えると自己修復性と硬度が不十分である。好ましくは3,000〜20,000であり、より好ましくは4,000〜10,000である。 The weight average molecular weight of the urethane (meth) acrylate (A) used in the present invention is 2,000 to 30,000. If the weight average molecular weight is less than 2,000, the self-healing property and extensibility are insufficient, and if it exceeds 30,000, the self-healing property and hardness are insufficient. It is preferably 3,000 to 20,000, more preferably 4,000 to 10,000.

ウレタン(メタ)アクリレート(A)の製造において、ポリカプロラクトンポリオール(a1)成分と、分子量50〜300のジオール(a2)のモル比は、(a1)/(a2)で表したとき、0.2〜10.0であり、好ましくは0.3〜8.0である。この範囲内であれば、(a1)成分および(a2)成分は十分量となり、本願特有の配合の効果が得られる。10.0を超えると、すなわち(a1)成分が極端に多い場合、(a2)成分を配合したことによる効果がほとんど得られない。0.2未満、すなわち(a2)成分が極端に多い場合、伸張性が低下する上、生成するウレタン結合による増粘の影響が大きくなりすぎ、ウレタン(メタ)アクリレート(A)の取扱いが困難になる。 In the production of urethane (meth) acrylate (A), the molar ratio of the polycaprolactone polyol (a1) component to the diol (a2) having a molecular weight of 50 to 300 is 0.2 when represented by (a1) / (a2). It is ~ 10.0, preferably 0.3 ~ 8.0. Within this range, the components (a1) and (a2) are in sufficient amounts, and the effect of the formulation peculiar to the present application can be obtained. If it exceeds 10.0, that is, when the component (a1) is extremely large, the effect of blending the component (a2) is hardly obtained. If it is less than 0.2, that is, if the component (a2) is extremely large, the extensibility is lowered and the effect of thickening due to the urethane bond formed becomes too large, making it difficult to handle the urethane (meth) acrylate (A). Become.

ウレタン(メタ)アクリレート(A)の製造において、(a1)成分と(a2)成分の水酸基の合計と(a3)成分のイソシアネート基の当量比は、((a1)+(a2))/(a3)で表したとき、0.65〜0.85であり、好ましくは0.75〜0.85である。この範囲内であれば、ウレタン化反応における分子量が過大にならずウレタン(メタ)アクリレート(A)の取扱いに問題が生じないし、自己修復性を十分に発揮することができ、硬度も十分となる。0.85を超えると、すなわち(a1)成分と(a2)成分の合計が多い場合、ウレタン化反応において分子量が大きくなりすぎ、自己修復性が低下し、ウレタン(メタ)アクリレート(A)の取扱いが困難になる。0.65未満、すなわち(a3)成分の量が多い場合、ウレタン化反応において分子量が小さくなり、自己修復性を十分に発揮することが出来ず、硬度も不十分となる。 In the production of urethane (meth) acrylate (A), the total of the hydroxyl groups of the components (a1) and (a2) and the equivalent ratio of the isocyanate groups of the component (a3) are ((a1) + (a2)) / (a3). ), It is 0.65 to 0.85, preferably 0.75 to 0.85. Within this range, the molecular weight in the urethanization reaction does not become excessive, there is no problem in handling the urethane (meth) acrylate (A), self-healing property can be sufficiently exhibited, and the hardness becomes sufficient. .. If it exceeds 0.85, that is, when the total of the components (a1) and (a2) is large, the molecular weight becomes too large in the urethanization reaction, the self-healing property deteriorates, and the handling of urethane (meth) acrylate (A) Becomes difficult. If it is less than 0.65, that is, if the amount of the component (a3) is large, the molecular weight becomes small in the urethanization reaction, self-repairing property cannot be sufficiently exhibited, and the hardness becomes insufficient.

ウレタン(メタ)アクリレート(A)の製造において、(a1)成分、(a2)成分および(a4)成分の水酸基の合計と(a3)成分のイソシアネート基の当量比は、((a1)+(a2)+(a4))/(a3)で表したとき、好ましくは0.9〜1.1であり、より好ましくは0.95〜1.05である。この範囲内であれば、製造物の貯蔵安定性が高くなり、長期間安定的に保管することができる。 In the production of urethane (meth) acrylate (A), the total of the hydroxyl groups of the components (a1), (a2) and (a4) and the equivalent ratio of the isocyanate groups of the component (a3) are ((a1) + (a2). ) + (A4)) / (a3), it is preferably 0.9 to 1.1, and more preferably 0.95 to 1.05. Within this range, the storage stability of the product is high, and the product can be stably stored for a long period of time.

[ウレタン(メタ)アクリレート(A)の製造]
上記の(a1)〜(a4)の成分を公知の常法によってウレタン化反応を行うことによって、本発明に用いるウレタン(メタ)アクリレート(A)が得られる。例えば、反応容器中に成分(a1)〜(a4)を一括で投入し、ウレタン化触媒、重合禁止剤、黄変防止剤、有機溶剤を投入して反応させることができる。また、反応中の温度制御をし易くし、さらに得られるウレタン(メタ)アクリレート(A)の分子量分布を制御しやすくなることから、まず成分(a1)〜(a3)、およびウレタン化触媒、重合禁止剤、黄変防止剤、有機溶剤を投入して、30〜100℃にて反応させたのち、さらに成分(a4)を投入して30〜100℃にて反応させる方法が好ましい。
[Manufacturing of urethane (meth) acrylate (A)]
The urethane (meth) acrylate (A) used in the present invention can be obtained by subjecting the above components (a1) to (a4) to a urethanization reaction by a known conventional method. For example, the components (a1) to (a4) can be put into the reaction vessel all at once, and the urethanization catalyst, the polymerization inhibitor, the yellowing inhibitor, and the organic solvent can be put into the reaction vessel to react. Further, since it is easy to control the temperature during the reaction and further to control the molecular weight distribution of the obtained urethane (meth) acrylate (A), first, the components (a1) to (a3), the urethanization catalyst, and the polymerization A method is preferable in which a banning agent, an anti-yellowing agent, and an organic solvent are added and reacted at 30 to 100 ° C., and then the component (a4) is further added and reacted at 30 to 100 ° C.

ウレタン化反応において、反応時間を短縮できることから、ウレタン化触媒を用いることが好ましい。ウレタン化触媒としては、ジブチルスズジラウレートなどの有機スズ化合物、ジブチルビスマスジラウレートなどの有機ビスマス化合物、トリエチルアミンなどの3級アミン、テトラアルキルアンモニウムブロマイドなどの4級アンモニウムなどを用いることができる。これらのウレタン化触媒は、反応原料の総量に対して0.005〜1.0重量%の量で用いられる。 In the urethanization reaction, it is preferable to use a urethanization catalyst because the reaction time can be shortened. As the urethanization catalyst, an organotin compound such as dibutyltin dilaurate, an organic bismuth compound such as dibutylbismuth dilaurate, a tertiary amine such as triethylamine, and a quaternary ammonium such as tetraalkylammonium bromide can be used. These urethanization catalysts are used in an amount of 0.005 to 1.0% by weight based on the total amount of the reaction raw materials.

<単官能または二官能(メタ)アクリレート(B)>
本発明に用いる単官能または二官能(メタ)アクリレート(B)は、脂環式構造、芳香族環、複素環構造の内少なくとも一つの構造を有する、単官能または二官能(メタ)アクリレートであり、樹脂組成物の基材に対する密着性を付与し、さらに硬化後の樹脂組成物の伸張性を高める目的で用いられる。
<Monofunctional or bifunctional (meth) acrylate (B)>
The monofunctional or bifunctional (meth) acrylate (B) used in the present invention is a monofunctional or bifunctional (meth) acrylate having at least one of an alicyclic structure, an aromatic ring, and a heterocyclic structure. , The resin composition is used for the purpose of imparting adhesion to the substrate and further enhancing the extensibility of the resin composition after curing.

前記(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどの脂環式構造を有する(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フタル酸モノヒドロキシエチルアクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカノールジ(メタ)アクリレートなどの芳香族環を有する(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリロイルモルホリン、イミド(メタ)アクリレートなどの複素環構造を有する(メタ)アクリレートを用いることができる。 Examples of the (meth) acrylate include cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and dicyclopentanyloxyethyl (meth). (Meta) acrylate having an alicyclic structure such as acrylate and isobornyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, Monohydroxyethyl phthalate acrylate, o-phenylphenol (meth) acrylate ethoxylated, bisphenol A di (meth) acrylate ethoxylated, tricyclodecanoldi (meth) acrylate and other (meth) acrylates having an aromatic ring, tetrahydro A (meth) acrylate having a heterocyclic structure such as furfuryl (meth) acrylate, acryloyl morpholine, and imide (meth) acrylate can be used.

これらの中でも、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレートは、本発明の硬化物が良好な硬度と自己修復性を示すことから好ましく、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートは、より優れた自己修復性と硬度、および良好な伸張性を示すため、さらに好ましい。 Among these, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, Dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, and ethoxylated bisphenol A di (meth) acrylate are preferable because the cured product of the present invention exhibits good hardness and self-repairing property. , Phenoxyethyl (meth) acrylates, tetrahydrofurfuryl (meth) acrylates are even more preferred as they exhibit better self-healing and hardness and good extensibility.

<活性エネルギー線硬化型樹脂組成物>
本発明の活性エネルギー線樹脂組成物は、ウレタン(メタ)アクリレート(A)と単官能または二官能(メタ)アクリレート(B)の質量比が(A)/(B)=50/50〜95/5であることを特徴とし、好ましくは60/40〜90/10である。50/50未満では硬化性、硬化物の硬度、伸張性が十分でなく、95/5を超えると硬化物の密着性が不十分となる。
<Active energy ray-curable resin composition>
In the active energy ray resin composition of the present invention, the mass ratio of urethane (meth) acrylate (A) to monofunctional or bifunctional (meth) acrylate (B) is (A) / (B) = 50/50 to 95 /. It is characterized by being 5, preferably 60/40 to 90/10. If it is less than 50/50, the curability, hardness and extensibility of the cured product are not sufficient, and if it exceeds 95/5, the adhesion of the cured product is insufficient.

本発明の活性エネルギー線硬化型樹脂組成物には、光重合開始剤を配合しても良い。前記光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル等のベンゾインまたはベンゾインアルキルエーテル;ベンゾフェノン、ベンゾイル安息香酸等の芳香族ケトン;ベンジルジメチルケタール、ベンジルジエチルケタール等のベンジルケタール;1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニル−1−プロパン−1−オン等のアセトフェノン;2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキシド等のアシルフォスフィンオキシドが挙げられる。 A photopolymerization initiator may be added to the active energy ray-curable resin composition of the present invention. Examples of the photopolymerization initiator include benzoin or benzoin alkyl ether such as benzoin and benzoin methyl ether; aromatic ketones such as benzophenone and benzoylbenzoic acid; benzyl ketal such as benzyl dimethyl ketal and benzyl diethyl ketal; 1-hydroxycyclohexyl. Acetophenone such as phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-1-propane-1-one; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) Examples thereof include acylphosphine oxides such as phenylphosphine oxide.

さらに、任意成分として、本発明の効果を損なわない範囲で(メタ)アクリル重合体、表面調整剤、レベリング剤、充填剤、顔料、シランカップリング剤、帯電防止剤、消泡剤、防汚剤、酸化防止剤、紫外線吸収剤、光安定剤、有機溶剤等を配合することができる。 Further, as an optional component, a (meth) acrylic polymer, a surface conditioner, a leveling agent, a filler, a pigment, a silane coupling agent, an antistatic agent, an antifoaming agent, and an antifouling agent, as long as the effects of the present invention are not impaired. , Antistatic agent, ultraviolet absorber, light stabilizer, organic solvent and the like can be blended.

本発明の活性エネルギー線硬化性樹脂組成物を基材上に塗布硬化することによって、本発明の塗布硬化層を表面に有する硬化物を得ることができる。本発明の活性エネルギー線硬化型樹脂組成物を硬化させる方法としては、赤外線、可視光線、紫外線、X線、γ線、および電子線などの活性エネルギー線の群より選ばれる光線を選択することが出来る。活性エネルギー線の照射方法は、通常の硬化性樹脂組成物の硬化方法を用いることが出来る。活性エネルギー線照射装置として紫外線を用いる場合、波長が200〜450nmの領域にスペクトル分布を有するフュージョンUVシステムズ(株)製Hバルブ等の無電極ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ等が挙げられる。活性エネルギー線の照射量は、積算光量として通常10〜3,000mJ/cm2であり、100〜2,500mJ/cm2が好ましく、200〜2,000mJ/cm2がより好ましい。照射時の雰囲気は空気中でも良く、窒素やアルゴン等の不活性ガス中で硬化しても良い。 By applying and curing the active energy ray-curable resin composition of the present invention on a substrate, a cured product having the coating and curing layer of the present invention on the surface can be obtained. As a method for curing the active energy ray-curable resin composition of the present invention, it is possible to select a light beam selected from a group of active energy rays such as infrared rays, visible rays, ultraviolet rays, X-rays, γ-rays, and electron beams. You can. As the method of irradiating the active energy rays, a usual method of curing the curable resin composition can be used. When ultraviolet rays are used as the active energy ray irradiation device, electrodeless lamps such as H-valves manufactured by Fusion UV Systems Co., Ltd., low-pressure mercury lamps, high-pressure mercury lamps, and ultra-high-pressure mercury lamps that have a spectral distribution in the wavelength range of 200 to 450 nm. , Xenon lamps, gallium lamps, metal halide lamps and the like. The dose of the active energy rays are usually 10~3,000mJ / cm 2 as the accumulated light quantity is preferably 100~2,500mJ / cm 2, 200~2,000mJ / cm 2 is more preferable. The atmosphere at the time of irradiation may be in air, and may be cured in an inert gas such as nitrogen or argon.

本発明の活性エネルギー線硬化型樹脂組成物は、ディスプレイ画面、モバイル機器の筐体、加飾フィルム等の各種コーティング剤として有用である。 The active energy ray-curable resin composition of the present invention is useful as various coating agents for display screens, housings for mobile devices, decorative films, and the like.

以下に実施例を示す。なお、以下において特に規定しない限り、「部」は質量部、「%」は質量%を示す。
<合成例1:ウレタン(メタ)アクリレート(UA−1)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量530のポリカプロラクトンジオール((株)ダイセル製プラクセル205U)を89.7g、ジエチレングリコール((株)日本触媒製)を12.0g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を83.5g、酢酸ブチルを50.0g、ジブチルスズジラウレートを0.037g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が3.50%以下であることを確認した。次に、ポリカプロラクトン変性ヒドロキシエチルアクリレート((株)ダイセル製プラクセルFA2D)を64.7g、メトキシハイドロキノンを0.05g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量4,240のウレタンアクリレート(UA−1)を293.7g得た。
An example is shown below. Unless otherwise specified, "parts" means parts by mass and "%" means% by mass.
<Synthesis Example 1: Production of Urethane (Meta) Acrylate (UA-1)>
89.7 g of polycaprolactone diol (Plaxel 205U manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 530 were placed in a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer. 12.0 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.) 83.5 g, butyl acetate 50.0 g, dibutyltin dilaurate 0.037 g were added, and the internal temperature was raised to 60 ° C while blowing air. After reacting with the mixture for 4 hours, it was confirmed by the method of JIS K 7301 that the isocyanate group content was 3.50% or less. Next, 64.7 g of polycaprolactone-modified hydroxyethyl acrylate (Plaxel FA2D manufactured by Daicel Corporation) and 0.05 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and a urethane acrylate (UA-1) having a weight average molecular weight of 4,240 was confirmed. ) Was obtained in an amount of 293.7 g.

<合成例2:ウレタン(メタ)アクリレート(UA−2)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量530のポリカプロラクトンジオール((株)ダイセル製プラクセル205U)を34.0g、ジエチレングリコール((株)日本触媒製)を20.4g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を71.3g、酢酸ブチルを85.7g、ジブチルスズジラウレートを0.032g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が2.66%以下であることを確認した。次に、ポリカプロラクトン変性ヒドロキシエチルアクリレート((株)ダイセル製プラクセルFA5)を88.5g、メトキシハイドロキノンを0.043g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量4,490のウレタンアクリレート(UA−2)を295.5g得た。
<Synthesis Example 2: Production of Urethane (Meta) Acrylate (UA-2)>
34.0 g of polycaprolactone diol (Plaxel 205U manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 530 were placed in a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer. 20.4 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.) was added 71.3 g, butyl acetate 85.7 g, and dibutyltin dilaurate 0.032 g were added, and the internal temperature was raised to 60 ° C while blowing air. After reacting for 4 hours, it was confirmed that the isocyanate group content was 2.66% or less by the method of JIS K 7301. Next, 88.5 g of polycaprolactone-modified hydroxyethyl acrylate (Plaxel FA5 manufactured by Daicel Corporation) and 0.043 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and urethane acrylate (UA-2) having a weight average molecular weight of 4,490 was confirmed. ) Was obtained in an amount of 295.5 g.

<合成例3:ウレタン(メタ)アクリレート(UA−3)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量530のポリカプロラクトンジオール((株)ダイセル製プラクセル205U)を55.5g、ジエチレングリコール((株)日本触媒製)を16.7g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を69.8g、酢酸ブチルを85.7g、ジブチルスズジラウレートを0.032g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が2.02%以下であることを確認した。次に、ポリカプロラクトン変性ヒドロキシエチルアクリレート((株)ダイセル製プラクセルFA5)を72.2g、メトキシハイドロキノンを0.043g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量6,540のウレタンアクリレート(UA−3)を294.3g得た。
<Synthesis Example 3: Production of Urethane (Meta) Acrylate (UA-3)>
In a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer, 55.5 g of polycaprolactone diol (Plaxel 205U manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 530 was placed. 16.7 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.) 69.8 g, butyl acetate 85.7 g, dibutyltin dilaurate 0.032 g were added, and the internal temperature was raised to 60 ° C while blowing air. After reacting for 4 hours, it was confirmed that the isocyanate group content was 2.02% or less by the method of JIS K 7301. Next, 72.2 g of polycaprolactone-modified hydroxyethyl acrylate (Plaxel FA5 manufactured by Daicel Corporation) and 0.043 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and a urethane acrylate (UA-3) having a weight average molecular weight of 6,540 was confirmed. ) Was obtained in an amount of 294.3 g.

<合成例4:ウレタン(メタ)アクリレート(UA−4)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量530のポリカプロラクトンジオール((株)ダイセル製プラクセル205U)を122.3g、ジエチレングリコール((株)日本触媒製)を3.5g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を73.2g、酢酸ブチルを85.7g、ジブチルスズジラウレートを0.032g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が2.03%以下であることを確認した。次に、2−ヒドロキシエチルアクリレート((株)日本触媒製HEA)を15.3g、メトキシハイドロキノンを0.043g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量5,200のウレタンアクリレート(UA−4)を294.6g得た。
<Synthesis Example 4: Production of Urethane (Meta) Acrylate (UA-4)>
122.3 g of polycaprolactone diol (Plaxel 205U manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 530 were placed in a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer. Add 3.5 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrourethane Co., Ltd.) 73.2 g, butyl acetate 85.7 g, and dibutyltin dilaurate 0.032 g, and keep the internal temperature at 60 ° C while blowing air. After reacting for 4 hours, it was confirmed that the isocyanate group content was 2.03% or less by the method of JIS K 7301. Next, 15.3 g of 2-hydroxyethyl acrylate (HEA manufactured by Nippon Shokubai Co., Ltd.) and 0.043 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and a urethane acrylate (UA-4) having a weight average molecular weight of 5,200 was confirmed. ) Was obtained in an amount of 294.6 g.

<合成例5:ウレタン(メタ)アクリレート(UA−5)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量830のポリカプロラクトンジオール((株)ダイセル製プラクセル208)を136.2g、ジエチレングリコール((株)日本触媒製)を11.6g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を81.0g、酢酸ブチルを50.0g、ジブチルスズジラウレートを0.037g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が2.87%以下であることを確認した。次に、2−ヒドロキシエチルアクリレート((株)日本触媒製HEA)を21.2g、メトキシハイドロキノンを0.05g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量4,380のウレタンアクリレート(UA−5)を292.8g得た。
<Synthesis Example 5: Production of Urethane (Meta) Acrylate (UA-5)>
In a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer, 136.2 g of polycaprolactone diol (Plaxel 208 manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 830 was placed. 11.6 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.) was added at 81.0 g, butyl acetate at 50.0 g, and dibutyltin dilaurate at 0.037 g, and the internal temperature was raised to 60 ° C while blowing air. After reacting for 4 hours, it was confirmed that the isocyanate group content was 2.87% or less by the method of JIS K 7301. Next, 21.2 g of 2-hydroxyethyl acrylate (HEA manufactured by Nippon Shokubai Co., Ltd.) and 0.05 g of methoxyhydroquinone were added. After maintaining the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and a urethane acrylate (UA-5) having a weight average molecular weight of 4,380 was confirmed. ) Was obtained in an amount of 292.8 g.

<比較合成例1:ウレタン(メタ)アクリレート(UA’−1)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量530のポリカプロラクトンジオール((株)ダイセル製プラクセル205U)を120.7g、ジエチレングリコール((株)日本触媒製)を1.6g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を71.9g、酢酸ブチルを50.0g、ジブチルスズジラウレートを0.037g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が2.82%以下であることを確認した。次に、ポリカプロラクトン変性ヒドロキシエチルアクリレート((株)ダイセル製プラクセルFA2D)を55.7g、メトキシハイドロキノンを0.05g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量5,070のウレタンアクリレート(UA’−1)を292.8g得た。
<Comparative Synthesis Example 1: Production of Urethane (Meta) Acrylate (UA'-1)>
In a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer, 120.7 g of polycaprolactone diol (Plaxel 205U manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 530 was placed. 1.6 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrourethane Co., Ltd.) was added 71.9 g, butyl acetate 50.0 g, and dibutyltin dilaurate 0.037 g were added, and the internal temperature was raised to 60 ° C while blowing air. After reacting with the mixture for 4 hours, it was confirmed by the method of JIS K 7301 that the isocyanate group content was 2.82% or less. Next, 55.7 g of polycaprolactone-modified hydroxyethyl acrylate (Plaxel FA2D manufactured by Daicel Corporation) and 0.05 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and urethane acrylate (UA'-) having a weight average molecular weight of 5,070 was confirmed. 1) was obtained in an amount of 292.8 g.

<比較合成例2:ウレタン(メタ)アクリレート(UA’−2)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量2,000のポリカプロラクトンジオール((株)ダイセル製プラクセル220)を158.3g、ジエチレングリコール((株)日本触媒製)を8.4g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を46.9g、酢酸ブチルを50.0g、ジブチルスズジラウレートを0.037g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が1.75%以下であることを確認した。次に、ポリカプロラクトン変性ヒドロキシエチルアクリレート((株)ダイセル製プラクセルFA2D)を36.3g、メトキシハイドロキノンを0.05g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量7,580のウレタンアクリレート(UA’−2)を288.9g得た。
<Comparative Synthesis Example 2: Production of Urethane (Meta) Acrylate (UA'-2)>
158.3 g of polycaprolactone diol (Plaxel 220 manufactured by Daicel Corporation) having a number average molecular weight of 2,000 and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) in a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer. ), 46.9 g of isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.), 50.0 g of butyl acetate, and 0.037 g of dibutyltin dilaurate, and the internal temperature is adjusted while blowing air. After keeping the temperature at 60 ° C. and reacting for 4 hours, it was confirmed by the method of JIS K 7301 that the isocyanate group content was 1.75% or less. Next, 36.3 g of polycaprolactone-modified hydroxyethyl acrylate (Plaxel FA2D manufactured by Daicel Corporation) and 0.05 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and a urethane acrylate (UA'-) having a weight average molecular weight of 7,580 was confirmed. 2) was obtained in an amount of 288.9 g.

<比較合成例3:ウレタン(メタ)アクリレート(UA’−3)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量530のポリカプロラクトンジオール((株)ダイセル製プラクセル205U)を88.6g、ジエチレングリコール((株)日本触媒製)を14.2g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を74.2g、酢酸ブチルを100.0g、ジブチルスズジラウレートを0.030g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が1.06%以下であることを確認した。次に、ポリカプロラクトン変性ヒドロキシエチルアクリレート((株)ダイセル製プラクセルFA2D)を23.0g、メトキシハイドロキノンを0.04g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量9,570のウレタンアクリレート(UA’−3)を295.5g得た。
<Comparative Synthesis Example 3: Production of Urethane (Meta) Acrylate (UA'-3)>
88.6 g of polycaprolactone diol (Plaxel 205U manufactured by Daicel Corporation) and diethylene glycol (manufactured by Nippon Catalyst Co., Ltd.) having a number average molecular weight of 530 were placed in a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer. 14.2 g, isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.) was added at 74.2 g, butyl acetate at 100.0 g, and dibutyltin dilaurate at 0.030 g, and the internal temperature was raised to 60 ° C while blowing air. After reacting with the mixture for 4 hours, it was confirmed by the method of JIS K 7301 that the isocyanate group content was 1.06% or less. Next, 23.0 g of polycaprolactone-modified hydroxyethyl acrylate (Plaxel FA2D manufactured by Daicel Corporation) and 0.04 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and the urethane acrylate (UA'-) having a weight average molecular weight of 9,570 was confirmed. 3) was obtained in an amount of 295.5 g.

<比較合成例4:ウレタン(メタ)アクリレート(UA’−4)の製造>
撹拌装置、空気導入管、温度計を備えた四つ口フラスコに、数平均分子量700のポリプロピレングリコール((株)日油製ユニオールD−700)を97.8g、ジエチレングリコール((株)日本触媒製)を9.9g、イソホロンジイソシアネート(住化コベストロウレタン(株)製デスモジュールI)を68.9g、酢酸ブチルを50.0g、ジブチルスズジラウレートを0.037g投入し、空気を吹き込みながら内温を60℃に保持して4時間反応させた後、JIS K 7301の方法でイソシアネート基含有量が3.00%以下であることを確認した。次に、ポリオキシプロピレンモノアクリレート((株)日油製ブレンマーAP−400)を73.3g、メトキシハイドロキノンを0.05g投入した。空気を吹き込みながら内温を75℃に保持して5時間反応させた後、イソシアネート基含有量が0.2%以下であることを確認し、重量平均分子量5,150のウレタンアクリレート(UA’−4)を292.5g得た。
<Comparative Synthesis Example 4: Production of Urethane (Meta) Acrylate (UA'-4)>
97.8 g of polypropylene glycol (Uniol D-700 manufactured by Nichiyu Co., Ltd.) with a number average molecular weight of 700 and diethylene glycol (manufactured by Japanese Industrial Standards Co., Ltd.) in a four-necked flask equipped with a stirrer, an air introduction tube, and a thermometer. ), 68.9 g of isophorone diisocyanate (Death Module I manufactured by Sumika Cobestrolurethane Co., Ltd.), 50.0 g of butyl acetate, and 0.037 g of dibutyltin dilaurate, and the internal temperature is adjusted while blowing air. After holding at 60 ° C. and reacting for 4 hours, it was confirmed by the method of JIS K 7301 that the isocyanate group content was 3.00% or less. Next, 73.3 g of polyoxypropylene monoacrylate (Blemmer AP-400 manufactured by NOF CORPORATION) and 0.05 g of methoxyhydroquinone were added. After keeping the internal temperature at 75 ° C. and reacting for 5 hours while blowing air, it was confirmed that the isocyanate group content was 0.2% or less, and a urethane acrylate (UA'-) having a weight average molecular weight of 5,150 was confirmed. 4) was obtained in an amount of 292.5 g.

Figure 0006780256
Figure 0006780256

<実施例1〜11、比較例1〜7>
合成例1〜5、および比較合成例1〜4で得られたウレタンアクリレート、表2記載のアクリレートモノマーおよび表3または表4に記載の添加剤、溶剤を表3または表4記載の重量で50mL褐色スクリュー管に量りとり、ボルテックスミキサーにて1分間混合させ活性エネルギー線硬化型樹脂組成物を得た。
<Examples 1 to 11 and Comparative Examples 1 to 7>
The urethane acrylates obtained in Synthesis Examples 1 to 5 and Comparative Synthesis Examples 1 to 4, the acrylate monomers shown in Table 2, and the additives and solvents shown in Table 3 or Table 4 are 50 mL by weight shown in Table 3 or Table 4. Weighed in a brown screw tube and mixed with a vortex mixer for 1 minute to obtain an active energy ray-curable resin composition.

Figure 0006780256
Figure 0006780256

指触り性、自己修復性、硬度、耐カール性の評価を行う試験片を、以下の方法で作製した。得られた活性エネルギー線硬化型樹脂組成物を、100μmPETフィルム(東洋紡績(株)製コスモシャインA4300)上に乾燥膜厚が25μmとなるよう塗工し、80℃の恒温槽内に5分間静置し、有機溶剤を蒸発させた。続いて、80W/cmの無電極UVランプ(Hバルブ)を用いて積算光量1,000mJ/cm2のエネルギー量を照射することで硬化物を得た。 Test pieces for evaluating touchability, self-healing property, hardness, and curl resistance were prepared by the following methods. The obtained active energy ray-curable resin composition is coated on a 100 μm PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) so that the dry film thickness is 25 μm, and is allowed to stand in a constant temperature bath at 80 ° C. for 5 minutes. It was placed and the organic solvent was evaporated. Subsequently, a cured product was obtained by irradiating an energy amount of an integrated light amount of 1,000 mJ / cm 2 using an 80 W / cm electrodeless UV lamp (H bulb).

伸張性の評価を行う試験片を、以下の方法で作製した。得られた活性エネルギー線硬化型樹脂組成物を、脱脂処理を行ったガラス基板上に乾燥膜厚が100μmとなるよう塗工し、80℃の恒温槽内に5分間静置し、有機溶剤を蒸発させた。続いて、80W/cmの無電極UVランプ(Hバルブ)を用いて積算光量1,000mJ/cm2のエネルギー量を照射することで硬化物を得た。得られた硬化物を静かにガラス基板から剥離したのち、型抜き器を用いてダンベル型試験片を作製した。 A test piece for evaluating extensibility was prepared by the following method. The obtained active energy ray-curable resin composition is coated on a degreased glass substrate so that the dry film thickness is 100 μm, and allowed to stand in a constant temperature bath at 80 ° C. for 5 minutes to apply an organic solvent. Evaporated. Subsequently, a cured product was obtained by irradiating an energy amount of an integrated light amount of 1,000 mJ / cm 2 using an 80 W / cm electrodeless UV lamp (H bulb). The obtained cured product was gently peeled from the glass substrate, and then a dumbbell-shaped test piece was prepared using a die-cutting device.

密着性の評価を行う試験片を、以下の方法で作製した。得られた活性エネルギー線硬化型樹脂組成物を、2mmABS樹脂上に乾燥膜厚が25μmとなるよう塗工し、80℃の恒温槽内に5分間静置し、有機溶剤を蒸発させた。続いて、80W/cmの無電極UVランプ(Hバルブ)を用いて積算光量1,000mJ/cm2のエネルギー量を照射することで硬化物を得た。 A test piece for evaluating the adhesion was prepared by the following method. The obtained active energy ray-curable resin composition was coated on a 2 mm ABS resin so as to have a dry film thickness of 25 μm, and allowed to stand in a constant temperature bath at 80 ° C. for 5 minutes to evaporate the organic solvent. Subsequently, a cured product was obtained by irradiating an energy amount of an integrated light amount of 1,000 mJ / cm 2 using an 80 W / cm electrodeless UV lamp (H bulb).

<指触り性>
得られた硬化物の表面を指でなぞり、タック感の有無で判定した。
○: タック感なし
×: タック感あり
<自己修復性>
<Finger touch>
The surface of the obtained cured product was traced with a finger, and the presence or absence of a tack feeling was determined.
○: No tack feeling ×: Tack feeling <Self-healing>

温度25℃、相対湿度60RH%の雰囲気下、真鍮ブラシを用いて硬化物表面を1kg荷重で10往復擦り、硬化物表面に入った傷が復元するか否か、または傷が復元するまでの時間を測定し、下記の基準により判定した。
◎: 傷が5秒未満で復元する
○: 傷が5秒以上10秒未満で復元する
△: 傷が10秒以上5分未満で復元する
×: 5分経過後も傷が復元しない
In an atmosphere of a temperature of 25 ° C. and a relative humidity of 60 RH%, the surface of the cured product is rubbed 10 times with a load of 1 kg using a brass brush to determine whether or not the scratches on the surface of the cured product are restored, or the time until the scratches are restored. Was measured and judged according to the following criteria.
◎: Scratch is restored in less than 5 seconds ○: Scratch is restored in 5 seconds or more and less than 10 seconds △: Scratch is restored in 10 seconds or more and less than 5 minutes ×: Scratch is not restored even after 5 minutes have passed

<硬度>
JIS K 5600に準拠して、荷重750gの条件で引掻き硬度(鉛筆法)を測定し、傷がつかない中で最も硬い鉛筆硬度を結果とし、下記の基準で評価した。
◎: 鉛筆硬度がH以上
○: 鉛筆硬度がHB〜F
△: 鉛筆硬度がB
×: 鉛筆硬度が2B以下
<Hardness>
In accordance with JIS K 5600, the scratch hardness (pencil method) was measured under the condition of a load of 750 g, and the hardest pencil hardness without being scratched was obtained as a result and evaluated according to the following criteria.
◎: Pencil hardness is H or higher ○: Pencil hardness is HB to F
Δ: Pencil hardness is B
×: Pencil hardness is 2B or less

<伸張性>
引張速度50mm/min、チャック間距離50mmの条件で引張試験を行い、測定した破断伸度を下記の基準で評価した。
◎: 破断伸度が200%以上
○: 破断伸度が150%以上200%未満
△: 破断伸度が100%以上150%未満
×: 破断伸度が100%未満
<Extensibility>
A tensile test was conducted under the conditions of a tensile speed of 50 mm / min and a distance between chucks of 50 mm, and the measured elongation at break was evaluated according to the following criteria.
⊚: Breaking elongation is 200% or more ○: Breaking elongation is 150% or more and less than 200% Δ: Breaking elongation is 100% or more and less than 150% ×: Breaking elongation is less than 100%

<密着性>
JIS K 5600に準拠して、碁盤目剥離試験を行い、下記の基準で評価した。
◎: 残存面積が100%
○: 残存面積が80%以上100%未満
×: 残存面積が80%未満
<Adhesion>
A grid peeling test was conducted in accordance with JIS K 5600 and evaluated according to the following criteria.
⊚: Remaining area is 100%
◯: Residual area is 80% or more and less than 100% ×: Residual area is less than 80%

<耐カール性>
PET基材ごと10cm×10cmの試験片を切り出し、水平な台の上に静置したときの4辺の浮き上がり高さを測定し、その平均値を下記の基準で評価した。
◎: 浮き上がり高さが2mm未満
○: 浮き上がり高さが2mm以上10mm未満
×: 浮き上がり高さが10mm以上
<Curl resistance>
A 10 cm × 10 cm test piece was cut out together with the PET substrate, and the heights of the four sides raised when the test piece was allowed to stand on a horizontal table were measured, and the average value was evaluated according to the following criteria.
⊚: Lifting height is less than 2 mm ○: Lifting height is 2 mm or more and less than 10 mm ×: Lifting height is 10 mm or more

Figure 0006780256
Figure 0006780256

Figure 0006780256
Figure 0006780256

表3に示すように、実施例1〜11は指触り性、自己修復性、硬度、伸張性、密着性、耐カール性がいずれも良好な樹脂組成物である。 As shown in Table 3, Examples 1 to 11 are resin compositions having good touchability, self-healing property, hardness, extensibility, adhesion, and curl resistance.

一方、表4に示すように、本発明の範囲外となる比較例1〜7のような場合には、いずれかの物性を十分に満足することが出来ない。 On the other hand, as shown in Table 4, in the cases of Comparative Examples 1 to 7 which are outside the scope of the present invention, any of the physical properties cannot be sufficiently satisfied.

比較例1は(a2)成分を用いていないために架橋密度が低下し、硬度が不十分である。比較例2は(a1)成分の分子量が範囲を超えて大きく、架橋密度が低下し、硬度が不十分である。比較例3は((a1)+(a2))/(a3)の比が範囲を超えて高く、自己修復速度が低下する。また、アクリロイル基濃度が低下するため、タックが生じる。比較例4はウレタン(メタ)アクリレート(A)の原料にポリプロピレングリコールを用いているために指触り性、自己修復性、硬度が不十分であり、また強度が著しく低下することから伸張性も不十分となる。さらにABSとの密着性が低下する。 In Comparative Example 1, since the component (a2) is not used, the crosslink density is lowered and the hardness is insufficient. In Comparative Example 2, the molecular weight of the component (a1) is large beyond the range, the crosslink density is lowered, and the hardness is insufficient. In Comparative Example 3, the ratio of ((a1) + (a2)) / (a3) is higher than the range, and the self-healing speed is lowered. In addition, the concentration of acryloyl groups decreases, so that tack occurs. In Comparative Example 4, since polypropylene glycol is used as the raw material of urethane (meth) acrylate (A), the touch property, self-healing property, and hardness are insufficient, and the strength is significantly reduced, so that the extensibility is also poor. Will be enough. Further, the adhesion with ABS is lowered.

比較例5はアクリレートモノマー(B)の構造中に環状構造を保有していないことから、硬度が不十分となり、伸びに対しても脆くなるため伸張性が低下し、さらに密着性も低下する。比較例6はアクリレートモノマー(B)を使用していないために、密着性が不十分である。比較例7はアクリレートモノマー(B)の割合が範囲を超えて多いために硬化不良が起き、タックが残る。また硬度と伸張性が低下する。 In Comparative Example 5, since the structure of the acrylate monomer (B) does not have a cyclic structure, the hardness becomes insufficient and the acrylate monomer (B) becomes brittle with respect to elongation, so that the extensibility is lowered and the adhesion is also lowered. Since Comparative Example 6 does not use the acrylate monomer (B), the adhesion is insufficient. In Comparative Example 7, since the proportion of the acrylate monomer (B) is too large to exceed the range, curing failure occurs and tack remains. It also reduces hardness and extensibility.

Claims (2)

下記のウレタン(メタ)アクリレート(A)、および、下記の単官能または二官能(メタ)アクリレート(B)を含有し、前記ウレタン(メタ)アクリレート(A)と前記単官能または二官能(メタ)アクリレート(B)の質量比が(A)/(B)=50/50〜95/5である活性エネルギー線硬化型樹脂組成物。
<ウレタン(メタ)アクリレート(A)>
数平均分子量400〜700のポリカプロラクトンポリオール(a1)、数平均分子量50〜300のジオール(a2)、脂肪族または脂環式ジイソシアネート(a3)、および水酸基含有(メタ)アクリレート(a4)のウレタン化反応物であり、
前記ジオール(a2)に対する前記ポリカプロラクトンポリオール(a1)のモル比(a1)/(a2)が0.2〜10.0であり、
前記ポリカプロラクトンポリオール(a1)と前記ジオール(a2)の水酸基の合計と、前記脂肪族または脂環式ジイソシアネート(a3)のイソシアネート基の当量比((a1)+(a2))/(a3)が0.65〜0.85であり、
重量平均分子量が2,000〜30,000であるウレタン(メタ)アクリレート
<単官能または二官能(メタ)アクリレート(B)>
脂環式構造、芳香族環、複素環構造の内少なくとも一つの構造を有する、単官能または二官能(メタ)アクリレート
It contains the following urethane (meth) acrylate (A) and the following monofunctional or bifunctional (meth) acrylate (B), and the urethane (meth) acrylate (A) and the monofunctional or bifunctional (meth). An active energy ray-curable resin composition having a mass ratio of acrylate (B) of (A) / (B) = 50/50 to 95/5.
<Urethane (meth) acrylate (A)>
Urethaneization of polycaprolactone polyols (a1) with a number average molecular weight of 400 to 700 , diols (a2) with a number average molecular weight of 50 to 300, aliphatic or alicyclic diisocyanates (a3), and hydroxyl group-containing (meth) acrylates (a4). It is a reactant and
The molar ratio (a1) / (a2) of the polycaprolactone polyol (a1) to the diol (a2) is 0.2 to 10.0.
The sum of the hydroxyl groups of the polycaprolactone polyol (a1) and the diol (a2) and the equivalent ratio of the isocyanate groups of the aliphatic or alicyclic diisocyanate (a3) ((a1) + (a2)) / (a3) It is 0.65 to 0.85,
Urethane (meth) acrylate having a weight average molecular weight of 2,000 to 30,000 <monofunctional or bifunctional (meth) acrylate (B)>
Alicyclic structure, aromatic ring, to have at least one structure of a heterocyclic structure, a monofunctional or difunctional (meth) acrylate
請求項1に記載の活性エネルギー線硬化型樹脂組成物を活性エネルギー線で硬化させて得られる硬化物。 A cured product obtained by curing the active energy ray-curable resin composition according to claim 1 with an active energy ray.
JP2016022389A 2016-02-09 2016-02-09 Active energy ray-curable resin composition Active JP6780256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022389A JP6780256B2 (en) 2016-02-09 2016-02-09 Active energy ray-curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022389A JP6780256B2 (en) 2016-02-09 2016-02-09 Active energy ray-curable resin composition

Publications (2)

Publication Number Publication Date
JP2017141333A JP2017141333A (en) 2017-08-17
JP6780256B2 true JP6780256B2 (en) 2020-11-04

Family

ID=59629034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022389A Active JP6780256B2 (en) 2016-02-09 2016-02-09 Active energy ray-curable resin composition

Country Status (1)

Country Link
JP (1) JP6780256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077767A (en) * 2017-10-24 2019-05-23 Dic株式会社 Active energy ray-curable composition for vinyl chloride-made flooring material
CN107987768B (en) * 2017-12-20 2020-06-02 广州市嵩达新材料科技有限公司 Ultraviolet-cured self-repairing coating adhesive and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889858B2 (en) * 1997-07-25 2007-03-07 共栄社化学株式会社 Urethane / unsaturated organooligomer and process for producing the same
JPH11286531A (en) * 1998-04-03 1999-10-19 Daicel Ucb Kk Noncrystalline urethane (meth)acrylate and its composition
JP2000219712A (en) * 1999-01-29 2000-08-08 Daicel Ucb Kk Acrylate composition, cured article thereof, and composition for floor coating
JP3922697B2 (en) * 2002-06-28 2007-05-30 ナトコ株式会社 Urethane (meth) acrylate, active energy ray-curable composition containing the same, and use thereof
JP4598122B2 (en) * 2006-03-31 2010-12-15 三井化学株式会社 Light curable paint
JP2007314779A (en) * 2006-04-24 2007-12-06 Sanyo Chem Ind Ltd Photosensitive resin composition
JP6565613B2 (en) * 2015-11-05 2019-08-28 日油株式会社 Active energy ray-curable resin composition

Also Published As

Publication number Publication date
JP2017141333A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5126455B1 (en) Radical curable hot melt urethane resin composition and optical molded article
JP4868654B2 (en) Active energy ray-curable pressure-sensitive adhesive composition and method for producing the composition
JP5950107B2 (en) Method for producing self-healing material, and method for producing composition for producing self-healing material
JP2006328364A (en) Active energy ray-curable resin composition and article and molded product using the same
JP2006045504A (en) Active energy ray curable resin composition, method for producing the same, and coating agent composition using the same
JP6025010B2 (en) Active energy ray-curable composition and film using the same
JP2004204096A (en) Urethane (meth)acrylate-based compound and active energy ray-curable resin composition using the same
JP2004143233A (en) Active energy ray-curable type adhesive composition
JP5633770B1 (en) Active energy ray-curable composition, cured film thereof, and article having the cured film
JP2014065788A (en) Active energy ray-curable composition, coating agent for glass, and glass member having cured coating film of the coating agent
JP6780256B2 (en) Active energy ray-curable resin composition
JP5812328B2 (en) Active energy ray-curable resin composition and film using the same
JP4750473B2 (en) Active energy ray curable resin composition and coating agent using the same
JP2019085558A (en) Active energy ray curable resin composition and coating agent
KR20190129848A (en) Active energy ray curable resin composition and coating agent
JP6596852B2 (en) Curable resin composition and laminated structure
JP2015063616A (en) Active energy ray-curable composition, cured coating film of the same, and article having the cured film
JP6565613B2 (en) Active energy ray-curable resin composition
JP2019157092A (en) Active energy ray-curable resin composition, and coating agent and sheet using the same
JP2019178193A (en) Curable resin composition
JP2004196965A (en) Urethane (meth)acrylate compound and actinic energy ray curable resin composition using the same
JP5686228B1 (en) Active energy ray-curable composition, cured film thereof, and article having the cured film
JP2008222985A (en) Active energy ray-curable resin composition
JP2005097373A (en) Energy ray-curable resin composition and coating material using the same
JP7376849B2 (en) Active energy ray-curable coating composition, cured product, laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6780256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250