JP6777351B2 - Programs, information processing equipment and information processing methods - Google Patents
Programs, information processing equipment and information processing methods Download PDFInfo
- Publication number
- JP6777351B2 JP6777351B2 JP2020093387A JP2020093387A JP6777351B2 JP 6777351 B2 JP6777351 B2 JP 6777351B2 JP 2020093387 A JP2020093387 A JP 2020093387A JP 2020093387 A JP2020093387 A JP 2020093387A JP 6777351 B2 JP6777351 B2 JP 6777351B2
- Authority
- JP
- Japan
- Prior art keywords
- integrated
- medical information
- sample
- report
- gene mutation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
本発明は、プログラム、情報処理装置および情報処理方法に関する。 The present invention relates to programs, information processing devices and information processing methods.
生検、採血または手術等により患者から採取された検体を用いて病理検査、遺伝子検査等が行なわれる。遺伝子検査においては、シーケンサを用いて読み取った核酸の塩基配列を可視化するゲノム解析装置等が提案されている(特許文献1) Pathological tests, genetic tests, etc. are performed using samples collected from patients by biopsy, blood sampling, surgery, etc. In genetic testing, a genome analyzer or the like that visualizes the base sequence of nucleic acid read by using a sequencer has been proposed (Patent Document 1).
塩基配列の変異状態と、抗がん剤の効果や患者の予後等との関係に関する情報は、多くの研究者および公的機関等により随時更新されている。治療方針を決定する際には、最新の情報に基づいて判断を行なうことが望ましい。一方、過去の治療方針の良否を判断する際には、治療方針を決定した時点の知見を参照する必要がある。 Information on the relationship between the mutation state of the base sequence and the effect of anticancer drugs and the prognosis of patients is updated from time to time by many researchers and public institutions. When deciding on a treatment policy, it is desirable to make a decision based on the latest information. On the other hand, when judging the quality of the past treatment policy, it is necessary to refer to the knowledge at the time when the treatment policy is decided.
しかしながら、特許文献1に記載されたゲノム解析装置では、検体から読み取られた塩基配列と、現在および過去の情報との関連を出力できない。
However, the genome analyzer described in
プログラムは、検体から検出された遺伝子変異を含む前記検体に関する解析結果を取得し、報告書出力要求を受け付けた場合、遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、過去の日付および当該日付における報告書出力要求を受け付けた場合、前記日付における前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、更新された前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する処理をコンピュータに実行させる。 The program obtains the analysis results for the specimen containing the detected mutation from biopsy material, when receiving a report output request, and gene mutation, and the acquired genetic alterations related to medical information from a plurality of sources, from the integrated DB that integrates in association with an acquisition date and the basis information of the medical information, extracts the medical information the acquired genetic variation as a key, and the analysis results on the specimen, and extracted medical information, of the integrated DB outputting a report recorded in association with the version, extracts medical information when receiving a report output request in a past date and the date, said from the integrated DB before Symbol date, the acquired the gene mutation as a key Then, a report was output in which the analysis result regarding the sample, the extracted medical information, and the version of the integrated DB were recorded in association with each other, and the integrated DB was updated by adding the medical information regarding the gene mutation. In the case, an additional report in which medical information is extracted from the updated integrated DB using the acquired gene mutation as a key, and the analysis result regarding the sample, the extracted medical information, and the version of the integrated DB are recorded in association with each other. Have the computer execute the process of outputting the book .
一つの側面では、検体から読み取られた塩基配列と、現在および過去の情報との関連を出力するプログラム等を提供することを目的とする。 One aspect is to provide a program or the like that outputs the relationship between the base sequence read from the sample and the current and past information.
[実施の形態1]
図1は、ゲノム解析システム10を用いた処理の流れを説明する説明図である。ゲノムは、1つの個体、ここでは一人のヒトの遺伝情報全体を意味する。
[Embodiment 1]
FIG. 1 is an explanatory diagram illustrating a flow of processing using the
患者から検体が採取される。検体は、腫瘍部と、正常部との両方からそれぞれ採取されることが望ましい。腫瘍部の検体は、病変部の生検または手術等により採取される。以下の説明では、腫瘍部から採取された検体を腫瘍検体と記載する。血液がん等、血液に異常がある患者を除き、正常部の検体は採血等により採取される場合が多い。血液がんの患者の場合には、血液から腫瘍部の検体が採取され、それ以外の正常組織から正常部の検体が採取される。 Specimens are taken from the patient. It is desirable that the sample be collected from both the tumor part and the normal part, respectively. The sample of the tumor part is collected by biopsy or surgery of the lesion part. In the following description, a sample collected from the tumor site is referred to as a tumor sample. Except for patients with abnormal blood such as blood cancer, samples of normal parts are often collected by blood sampling or the like. In the case of a patient with blood cancer, a sample of the tumor part is collected from the blood, and a sample of the normal part is collected from other normal tissues.
それぞれの検体から核酸、すなわちDNA(Deoxyribonucleic Acid)またはRNA(Ribonucleic Acid)が抽出される。以下の説明では、DNAが抽出される場合を例にして説明する。読取装置31によりDNAの塩基配列が読み取られ、ゲノムデータが作成される。ゲノムデータの詳細については後述する。以下の説明においては、読取装置31は次世代シーケンサである場合を例にして説明するが、読取装置31はDNAマイクロアレイその他塩基配列を読み取る任意の装置または機器であっても良い。
Nucleic acid, that is, DNA (Deoxyribonucleic Acid) or RNA (Ribonucleic Acid) is extracted from each sample. In the following description, a case where DNA is extracted will be described as an example. The base sequence of DNA is read by the
ゲノムデータが学習モデル53に入力される。学習モデル53から、臨床上意味のある遺伝子変異の予測が出力される。出力された遺伝子変異と、医学文献等から収集した情報を統合した統合DB(Database)52とに基づいて、報告書案が自動的に作成される。学習モデル53および統合DB52の詳細については後述する。
Genome data is input to the
なお、学習モデル53から臨床上の意味の有無にかかわらず遺伝子変異の予測が出力されても良い。そのようにする場合、学習モデル53から出力された遺伝子変異と、統合DB52とに基づいて、臨床上意味のある変異が抽出されて、報告書案が自動的に作成される。
In addition, the prediction of the gene mutation may be output from the
がん専門医および遺伝子学者等の専門家により構成されたエキスパートパネルが、報告書案をレビューし、必要に応じて修正することにより、報告書が完成する。患者の治療を担当する臨床医は、報告書を見て治療方針を判断する。報告書案および報告書の詳細については後述する。なお、エキスパートパネルによるレビューは行なわれなくても良い。このようにする場合、臨床医は、統合DB52から出力された報告書案を見て治療方針を判断する。
The report is completed by an expert panel of experts such as oncologists and geneticists reviewing the draft report and modifying it as necessary. The clinician in charge of treating the patient looks at the report and decides the treatment policy. The draft report and the details of the report will be described later. The review by the expert panel does not have to be performed. In this case, the clinician looks at the draft report output from the integrated
図2は、学習モデル53の生成方法を説明する説明図である。腫瘍部の検体を用いて病理検査が行なわれる。腫瘍部の検体から、腫瘍細胞を含む部分が切り取られる。切り取られた検体から、腫瘍部のDNAが抽出される。正常部の検体から、正常部のDNAが抽出される。正常部のDNAと、腫瘍部のDNAとが読取装置31に投入されて、ゲノムデータが作成される。
FIG. 2 is an explanatory diagram illustrating a method of generating the
病理検査の結果と、ゲノムデータと、その他の検査数値とに基づいて、腫瘍の良悪性、原発がんであるか否か、腫瘍部検体中の腫瘍含有量、効果を期待できる薬剤等を専門家が判断して、診断データを作成する。 Based on the results of pathological tests, genomic data, and other test values, experts on whether the tumor is benign or malignant, whether it is primary cancer, the tumor content in the tumor sample, and drugs that can be expected to be effective. Judges and creates diagnostic data.
ゲノムデータと診断データとが関連づけられて教師データDB51(図5参照)に記録される。教師データDB51の詳細については後述する。教師データDB51に基づいて教師あり機械学習を行ない、学習モデル53が生成される。学習モデル53は、検体に含まれる塩基配列を読み取ったゲノムデータが入力された場合に、検体にかかる遺伝子変異に関する予測を出力する学習済モデルである。
The genomic data and the diagnostic data are associated and recorded in the teacher data DB 51 (see FIG. 5). The details of the
図3は、統合DB52の概要を説明する説明図である。統合DB52は、複数の情報源から取得した遺伝子変異に関する医学情報と、当該医学情報の取得元とを関連づけて統合したDBである。情報源は、たとえば医学論文を公開するDB、国または研究機関等が、薬剤または治療法の臨床試験に関する情報を公開するDB、企業または大学等が発行した医療に関するプレスリリース等の公開情報を蓄積したDB等の、種々の医学情報DB58である。
FIG. 3 is an explanatory diagram illustrating an outline of the
医学情報DB58は、無償で公開されているDBであっても、有償で公開されているDBであっても良い。なお、有償で公開されているDBを使用する場合には、有償DBの提供元と、統合DB52の提供元との間で、適切なライセンス契約を締結する等の、ライセンス処理を行う。
The
それぞれの医学情報DB58には、異なるフォーマットで医学情報が記録されており、異なるタイミングで情報が更新される。それぞれの医学情報DB58にアクセスして、情報を収集してデータベース化するクローリングにより、統合DB52が作成される。
Medical information is recorded in different formats in each
クローリングは適宜行なわれ、更新された統合DB52が作成される。それぞれの統合DB52は、たとえば更新日または更新日時等が判別できる状態でバージョン管理される。統合DB52の詳細については後述する。
Crawling is performed as appropriate, and an updated
なお、それぞれの統合DB52には、前のバージョンとの差分、または、任意のバージョンとの差分が記録され、必要に応じて任意の時点における統合DB52を構築できるように構成されても良い。差分を記録することにより、統合DB52の記録容量を節約できる。
In addition, each
図4は、ゲノムデータの概要を説明する説明図である。検体に対して前処理が行なわれる。具体的には、前述のとおり検体からDNAが抽出される。抽出されたDNAに対して、精製、断片化および増幅等の処理が行なわれる。断片化により、DNAは後工程で使用される読取装置31による読み取りに適した長さの断片に切断される。
FIG. 4 is an explanatory diagram illustrating an outline of genomic data. Pretreatment is performed on the sample. Specifically, as described above, DNA is extracted from the sample. The extracted DNA is subjected to treatments such as purification, fragmentation and amplification. Fragmentation cuts the DNA into fragments of length suitable for reading by the
読取装置31は、断片化されたそれぞれのDNAの塩基配列を順次読み取る。1本のDNA断片から読み取られた塩基配列に関する情報はリードと呼ばれる。リードには、個々の塩基について読み取りの信頼度を示すクオリティスコアも記録される。
The
それぞれのリードは、たとえば日本人の基準ゲノム配列(Japanese Reference Genome:JRG)、または、国際ヒトゲノム参照配列等の参照配列にマッピングされる。マッピング結果は、たとえばBAM形式、SAM形式またはCRAM形式のファイルに記録される。 Each read is mapped to a reference sequence such as the Japanese Reference Genome (JRG) or the International Human Genome Reference Sequence. The mapping result is recorded in a file of, for example, BAM format, SAM format or CRAM format.
マッピング結果と、参照配列との相違点、すなわち参照配列に対して検体のゲノムが変異している箇所の位置および変異内容等についての情報が、たとえばVCF形式またはBCF形式のファイルに記録される。 Information about the difference between the mapping result and the reference sequence, that is, the position where the genome of the sample is mutated with respect to the reference sequence, the content of the mutation, and the like is recorded in a file in, for example, VCF format or BCF format.
なお、VCF形式のファイルには、遺伝情報がコードされていないイントロンの変異、および、コードされたアミノ酸に変化を生じない同義変異等、臨床的な重要性の低い変異が多数含まれる。したがって、VCF形式のファイルから、治療方針等を定めるための情報を読み取るには、高度な専門知識を要する。 The VCF format file contains many mutations of low clinical importance, such as intron mutations in which the genetic information is not encoded and synonymous mutations in which the encoded amino acids are not changed. Therefore, reading information for determining a treatment policy or the like from a VCF format file requires a high degree of specialized knowledge.
FASTQ形式のファイルおよび参照配列が与えられれば、公知の解析手法により、BAM形式、SAM形式、CRAM形式およびVCF形式のファイルに変換できる。以上に説明した、FASTQ形式、BAM形式、SAM形式、CRAM形式、VCF形式およびBCF形式のデータを総称して、ゲノムデータと呼ぶ。ゲノムデータは、ここに例示した形式以外の任意の形式のデータであっても良い。 Given a FASTQ format file and a reference sequence, it can be converted into a BAM format, a SAM format, a CRAM format and a VCF format file by a known analysis method. The data in FASTQ format, BAM format, SAM format, CRAM format, VCF format and BCF format described above are collectively referred to as genomic data. The genomic data may be in any format other than the format exemplified here.
たとえば、読取装置31がFASTQ形式のファイルを出力し、図示を省略する解析装置がBAM形式およびVCF形式のファイルに変換する。読取装置31が解析装置を内蔵し、直接BAM形式およびVCF形式のファイルを出力しても良い。後述する情報処理装置20(図5参照)が、FASTQ形式またはBAM形式のファイルを取得して、VCF形式に変換しても良い。
For example, the
CNA(Copy Number Alteration:体細胞コピー数異常)解析を行なう場合には、患者から採取した複数の正常部の検体から得られたゲノムデータと、腫瘍部の検体から得られたゲノムデータとを比較する。 When performing CNA (Copy Number Alteration) analysis, the genomic data obtained from multiple normal part samples collected from patients is compared with the genomic data obtained from tumor part samples. To do.
CNA解析には、PON(Panel Of Normals)の手法が使用されても良い。PONを用いる場合には、複数の人から採取された正常部検体について、たとえばBAM形式またはSAM形式のゲノムデータを作成し、保存しておく。患者から採取された腫瘍部の検体から得られたゲノムデータと、保存済のゲノムデータとを比較して、解析を行なう。 A PON (Panel Of Normals) method may be used for CNA analysis. When PON is used, genomic data in, for example, BAM format or SAM format is created and stored for normal part samples collected from a plurality of people. The genomic data obtained from the tumor sample collected from the patient is compared with the preserved genomic data for analysis.
図5は、ゲノム解析システム10の構成を説明する説明図である。ゲノム解析システム10は、情報処理装置20、読取装置31およびデータサーバ32を備える。
FIG. 5 is an explanatory diagram illustrating the configuration of the
情報処理装置20は、制御部21、主記憶装置22、補助記憶装置23、通信部24、およびバスを備える。制御部21は、本実施の形態のプログラムを実行する演算制御装置である。制御部21は、一もしくは複数のCPU(Central Processing Unit)、マルチコアCPUまたはGPU(Graphics Processing Unit)等により構成される。制御部21は、バスを介して情報処理装置20を構成するハードウェア各部と接続されている。
The
主記憶装置22は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の記憶装置である。主記憶装置22には、制御部21が行なう処理の途中で必要な情報および制御部21で実行中のプログラムが一時的に保存される。
The
補助記憶装置23は、SRAM、フラッシュメモリまたはハードディスク等の記憶装置である。補助記憶装置23には、教師データDB51、統合DB52、学習モデル53、報告書案DB55、報告書DB56、制御部21に実行させるプログラム、およびプログラムの実行に必要な各種データが保存される。なお、教師データDB51、統合DB52、学習モデル53、報告書案DB55および報告書DB56は、情報処理装置20に接続された外部の大容量記憶装置、または、データサーバ32等に保存されていても良い。
The
通信部24は、情報処理装置20とネットワークとの間の通信を行なうインターフェイスである。
The
前述のとおり、読取装置31は、次世代シーケンサ、DNAマイクロアレイその他塩基配列を読み取る任意の装置または機器である。読取装置31が読み取った塩基配列に基づいて作成されたゲノムデータはデータサーバ32に記録される。制御部21は、通信部24およびネットワークを介してデータサーバ32に記録されたゲノムデータを取得できる。なお、制御部21は、データサーバ32を介さず、読取装置31から直接ゲノムデータを取得してもよい。
As described above, the
本実施の形態の情報処理装置20は、汎用のパソコン、タブレット、大型計算機、または、大型計算機上で動作する仮想マシンである。情報処理装置20は、複数のパソコン、タブレットまたは大型計算機等のハードウェアにより構成されても良い。情報処理装置20は、量子コンピュータにより構成されても良い。情報処理装置20は、読取装置31と一体化されていても良い。情報処理装置20は、いわゆるクラウドコンピューティングにより実現されても良い。
The
図6は、教師データDB51のレコードレイアウトを説明する説明図である。教師データDB51は、ゲノムデータと診断データとを関連づけて記録するDBである。図6には、教師データDB51の1つのレコードを示す。
FIG. 6 is an explanatory diagram illustrating a record layout of the
教師データDB51は、検体フィールド、ゲノムデータフィールドおよび診断データフィールドを有する。検体フィールドは、正常部検体フィールドおよび腫瘍部検体フィールドを有する。ゲノムデータフィールドは、正常部ゲノムフィールドおよび腫瘍部ゲノムフィールドを有する。なお、教師データDB51は、正常部ゲノムフィールドを有さなくても良い。
The
診断データフィールドは、非同義体細胞変異フィールド、生殖細胞変異フィールドおよび腫瘍含有量フィールドを有する。非同義体細胞変異フィールドは、遺伝子フィールドおよびDNA変異フィールドを有する。生殖細胞変異フィールドは、遺伝子フィールドおよびDNA変異フィールドを有する。教師データDB51は、1組の教師データについて1つのレコードを有する。なお、診断データフィールドは、腫瘍含有量フィールドを有さなくてもよい。
Diagnostic data fields include non-synonymous cell mutation fields, germline mutation fields and tumor content fields. The non-synonymous cell mutation field has a gene field and a DNA mutation field. The germline mutation field has a gene field and a DNA mutation field. The
正常部検体フィールドには、正常部の検体が採取された部位が記録される。腫瘍部検体フィールドには、腫瘍部の検体が採取された部位が記録される。正常部ゲノムフィールドには、正常部検体から取得したゲノムデータのファイル名が記録される。腫瘍部ゲノムフィールドには、腫瘍部検体から取得したゲノムデータのファイル名が記録される。 In the normal part sample field, the part where the normal part sample was collected is recorded. In the tumor part sample field, the site where the tumor part sample was collected is recorded. In the normal part genome field, the file name of the genome data obtained from the normal part sample is recorded. In the tumor part genome field, the file name of the genome data obtained from the tumor part sample is recorded.
非同義体細胞変異フィールドのサブフィールドには、腫瘍部ゲノムに含まれる非同義体細胞変異、すなわちDNAの塩基配列にコードされたアミノ酸に変化を生じさせる体細胞変異を有する遺伝子と、変異内容とが記録される。体細胞変異は、正常部ゲノムには生じていないが、腫瘍部ゲノムには生じている変異を意味する。すなわち非同義体細胞変異は、腫瘍の特性に関する変異である。 In the subfield of the non-synonymous cell mutation field, there are genes having non-synonymous cell mutations contained in the tumor genome, that is, somatic mutations that cause changes in amino acids encoded by the DNA base sequence, and mutation contents. Is recorded. Somatic mutations mean mutations that do not occur in the normal genome but do occur in the tumor genome. That is, non-synonymous cell mutations are mutations related to tumor characteristics.
たとえば、図6の非同義体細胞変異フィールドの1行目は、ARID1A(AT-rich interactive domain 1A)遺伝子の5164番目の塩基がC(シトシン)からT(チミン)に変異していることを示す。同様に2行目はTP53遺伝子の743番目の塩基がG(グアニン)からA(アデニン)に変異していることを示す。 For example, the first line of the non-synonymous cell mutation field in FIG. 6 shows that the 5164th base of the ARID1A (AT-rich interactive domain 1A) gene is mutated from C (cytosine) to T (thymine). .. Similarly, the second line shows that the 743rd base of the TP53 gene is mutated from G (guanine) to A (adenine).
生殖細胞変異フィールドのサブフィールドには、正常部ゲノムに含まれる変異を有する遺伝子と、変異内容とが記録される。たとえば、図6の生殖細胞変異フィールドの1行目は、BRAF遺伝子の1791番目の塩基がTからGに変異していることを示す。 In the subfield of the germline mutation field, a gene having a mutation contained in the normal genome and the content of the mutation are recorded. For example, the first line of the germline mutation field in FIG. 6 shows that the 1791 base of the BRAF gene is mutated from T to G.
非同義体細胞フィールドおよび生殖細胞変異フィールドには、検体から検出された遺伝子変異のうち、教師データに記録する必要がある任意の数の遺伝子が記録される。 In the non-synonymous cell field and germline mutation field, any number of gene mutations detected in the sample that need to be recorded in the teacher data are recorded.
なお、正常部の検体を採取してゲノムデータを取得する代わりに、日本人の基準ゲノム配列等の参照配列を使用する場合がある。このようにする場合には、生殖細胞変異に関する結果は、推定結果である。 In addition, instead of collecting a sample of a normal part and acquiring genomic data, a reference sequence such as a Japanese reference genomic sequence may be used. In this case, the results for germline mutations are putative results.
診断データフィールドは、同義体細胞変異を記録する同義体細胞変異フィールドを有しても良い。非同義体細胞変異フィールドの代わりに体細胞変異フィールドを有し、同義体細胞変異と非同義体細胞変異の両方を記録しても良い。 The diagnostic data field may have a synonymous cell mutation field that records the synonymous cell mutation. It may have a somatic mutation field instead of a non-synonymous cell mutation field and record both a somatic cell mutation and a non-synonymous cell mutation.
腫瘍含有量フィールドには、腫瘍部から採取した検体の腫瘍含有量が記録される。腫瘍含有量は、たとえばヘテロSNP(Single Nucleotide Polymorphism)数に基づいて算出される。BAMファイルまたはSAMファイルに記録されたアリル頻度、または、BAMファイルまたはSAMファイルに記録されたデータから算出されたアリル頻度に基づいて、腫瘍含有量が算出されても良い。 In the tumor content field, the tumor content of the sample collected from the tumor site is recorded. Tumor content is calculated, for example, based on the number of hetero SNPs (Single Nucleotide Polymorphisms). Tumor content may be calculated based on the allele frequency recorded in the BAM file or SAM file, or the allele frequency calculated from the data recorded in the BAM file or SAM file.
病理検査により観察された有核細胞の数と腫瘍細胞の数との比、または、顕微鏡視野内で腫瘍細胞が占める面積に基づいて、腫瘍含有量が算出されても良い。腫瘍含有量の定義は任意であるが、教師データDB51に含まれるすべての教師データにおいて、統一した定義が用いられていることが望ましい。
Tumor content may be calculated based on the ratio of the number of nucleated cells to the number of tumor cells observed by pathological examination, or the area occupied by the tumor cells in the microscopic field of view. The definition of tumor content is arbitrary, but it is desirable that a unified definition be used for all teacher data included in the
図7は、統合DB52のレコードレイアウトを説明する説明図である。統合DB52は、複数の情報源から取得した遺伝子変異に関する医学情報と、当該医学情報の取得元とを関連づけて統合したDBである。統合DB52は、バージョンフィールド、ゲノム変異フィールドおよび知識データフィールドを有する。
FIG. 7 is an explanatory diagram illustrating the record layout of the
バージョンフィールドには、統合DB52のバージョンが記録されている。本実施の形態では、統合DB52は更新日付で管理されている。ゲノム変異フィールドは、検体フィールド、遺伝子フィールドおよび変異内容フィールドを有する。知識データフィールドは、発がん性フィールド、臨床的意義フィールド、対応薬剤フィールド、対応疾患フィールド、レベルフィールドおよび根拠情報フィールドを有する。統合DB52は、遺伝子変異に関する1件の医学情報について、1つのレコードを有する。
The version of the
検体フィールドには、検体が採取された部位が記録される。遺伝子フィールドには、変異が検出された遺伝子が記録される。なお、複数の変異の組合せに関する医学情報が記録されたレコードにおいては、遺伝子フィールドに複数の遺伝子が記録される。 In the sample field, the site where the sample was collected is recorded. In the gene field, the gene in which the mutation is detected is recorded. In the record in which medical information regarding a combination of a plurality of mutations is recorded, a plurality of genes are recorded in the gene field.
変異内容フィールドには、非同義体細胞変異または生殖細胞変異等の、変異の内容が記録される。なお、コードされたアミノ酸に変化が生じない同義体細胞変異に関する情報も統合DB52に記録される場合がある。
In the mutation content field, the content of the mutation, such as a non-synonymous cell mutation or a germline mutation, is recorded. In addition, information on synonymous cell mutations in which the encoded amino acid does not change may also be recorded in the
発がん性フィールドには、ゲノム変異の発がん性のレベルが記録される。臨床的意義フィールドには、ゲノム変異の臨床的意義が記録される。知識データフィールドは、発がん性フィールドと、臨床的意義フィールドは、いずれか一方のみを有してもよい。 In the carcinogenicity field, the carcinogenicity level of the genomic mutation is recorded. The clinical significance of genomic mutations is recorded in the clinical significance field. The knowledge data field may have only one of the carcinogenicity field and the clinical significance field.
対応薬剤フィールドには、ゲノム変異を有する患者に投与した場合に効果がある薬剤が記録される。対応薬剤フィールドに、治験中の薬剤が記録されても良い。対応疾患フィールドには、ゲノム変異に対応する疾患が記録される。レベルフィールドには、ゲノム変異の重要度のレベルが記録される。根拠情報フィールドには、レコードに記載された情報の根拠である文献、データベース名、または、情報に固有に付与されたID(Identifier)等の、根拠情報にアクセスするための情報が記録される。 In the corresponding drug field, drugs that are effective when administered to patients with genomic mutations are recorded. The drug under investigation may be recorded in the corresponding drug field. Diseases corresponding to genomic mutations are recorded in the corresponding disease field. The level field records the level of importance of the genomic mutation. In the rationale information field, information for accessing the rationale information such as a document, a database name, or an ID (Identifier) uniquely assigned to the information, which is the basis of the information described in the record, is recorded.
知識データフィールドの各サブフィールドにおいて「−」は対応する情報がないことを意味する。 A "-" in each subfield of the knowledge data field means that there is no corresponding information.
図8は、報告書DB56のレコードレイアウトを説明する説明図である。報告書DB56は、検体に関する情報と、検体に基づく診断データとを関連づけて記録したDBである。図8には、報告書DB56の1つのレコードを示す。
FIG. 8 is an explanatory diagram illustrating the record layout of the
報告書DB56は、検体IDフィールド、検体フィールド、ゲノムデータフィールド、統合DBVer.フィールド、診断データフィールドおよびエキスパートIDフィールドを有する。検体フィールドは、正常部検体フィールドおよび腫瘍部検体フィールドを有する。ゲノムデータフィールドは、正常部ゲノムフィールドおよび腫瘍部ゲノムフィールドを有する。 The report DB56 contains a sample ID field, a sample field, a genome data field, and an integrated DB Ver. It has fields, diagnostic data fields and expert ID fields. The sample field includes a normal part sample field and a tumor part sample field. The genomic data field has a normal genomic field and a tumor genomic field.
診断データフィールドは、非同義体細胞変異フィールド、生殖細胞変異フィールドおよび腫瘍含有量フィールドを有する。非同義体細胞変異フィールドは、診断データフィールドおよび知識データフィールドを有する。診断データフィールドは、遺伝子フィールドおよびDNA変異フィールドを有する。知識データフィールドは、発がん性フィールド、臨床的意義フィールド、対応薬剤フィールド、対応疾患フィールド、レベルフィールドおよび根拠情報フィールドを有する。 Diagnostic data fields include non-synonymous cell mutation fields, germline mutation fields and tumor content fields. The non-synonymous cell mutation field has a diagnostic data field and a knowledge data field. The diagnostic data field has a gene field and a DNA mutation field. The knowledge data field has a carcinogenicity field, a clinical significance field, a corresponding drug field, a corresponding disease field, a level field and a rationale information field.
生殖細胞変異フィールドは、診断データフィールドおよび知識データフィールドを有する。診断データフィールドは、遺伝子フィールドおよびDNA変異フィールドを有する。知識データフィールドは、臨床的意義フィールド、レベルフィールドおよび根拠情報フィールドを有する。報告書DB56は、1組の検体について、1つのレコードを有する。 The germline mutation field has a diagnostic data field and a knowledge data field. The diagnostic data field has a gene field and a DNA mutation field. The knowledge data field has a clinical significance field, a level field and a rationale information field. Report DB56 has one record for a set of samples.
検体IDフィールドには、1組の検体に固有に付与された検体IDが記録される。検体IDは、電子カルテシステム等と連携して、患者に紐付けられている。正常部検体フィールドには、正常部の検体が採取された部位が記録される。腫瘍部検体フィールドには、腫瘍部の検体が採取された部位が記録される。正常部ゲノムフィールドには、正常部検体から取得したゲノムデータのファイル名が記録される。腫瘍部ゲノムフィールドには、腫瘍部検体から取得したゲノムデータのファイル名が記録される。統合DBVer.フィールドには、報告書レコードの作成時に用いられた統合DB52のバージョンが記録される。
In the sample ID field, a sample ID uniquely assigned to one set of samples is recorded. The sample ID is associated with the patient in cooperation with an electronic medical record system or the like. In the normal part sample field, the part where the normal part sample was collected is recorded. In the tumor part sample field, the site where the tumor part sample was collected is recorded. In the normal part genome field, the file name of the genome data obtained from the normal part sample is recorded. In the tumor part genome field, the file name of the genome data obtained from the tumor part sample is recorded. Integrated DB Ver. In the field, the version of the
非同義体細胞変異フィールド中の診断データフィールドのサブフィールドには、非同義体細胞変異を有する遺伝子と、変異内容とが記録される。知識データフィールドの各サブフィールドには、診断データフィールドに記録された遺伝子変異に関連する医学情報が記録される。各サブフィールドに記録される情報は、図7を使用して説明した統合DB52中の同名のサブフィールドに記録される情報と同様であるため、説明を省略する。
In the subfield of the diagnostic data field in the non-synonymous cell mutation field, the gene having the non-synonymous cell mutation and the mutation content are recorded. Each subfield of the knowledge data field records medical information related to the gene mutation recorded in the diagnostic data field. Since the information recorded in each subfield is the same as the information recorded in the subfield of the same name in the
生殖細胞変異フィールド中の診断データフィールドのサブフィールドには、生殖細胞変異を有する遺伝子と、変異内容とが記録される。知識データフィールドの各サブフィールドには、診断データフィールドに記録された遺伝子変異に関連する医学情報が記録される。各サブフィールドに記録される情報は、図7を使用して説明した統合DB52中の同名のサブフィールドに記録される情報と同様であるため、説明を省略する。
In the subfield of the diagnostic data field in the germline mutation field, the gene having the germline mutation and the mutation content are recorded. Each subfield of the knowledge data field records medical information related to the gene mutation recorded in the diagnostic data field. Since the information recorded in each subfield is the same as the information recorded in the subfield of the same name in the
エキスパートIDフィールドには、後述するプログラムにより制御部21が自動的に作成した報告書案をレビューしたエキスパートパネルを構成した専門家にそれぞれ固有に付与された専門家IDが記録される。複数の専門家が参加する専門家グループに対して、1つのエキスパートIDが付与されてもよい。
In the expert ID field, an expert ID uniquely assigned to each expert who constitutes the expert panel that reviews the draft report automatically created by the
報告書案DB55のレコードレイアウトは、エキスパートIDフィールドを有さない他は、図8を使用して説明した報告書DB56のレコードレイアウトと同一であるため、図示および詳細な説明を省略する。
Since the record layout of the
図9は、学習モデル53を説明する説明図である。学習モデル53は、入力層531、中間層532および出力層533を備えるニューラルネットワークである。図9においては、学習モデル53はCNNである場合を例示する。なお、畳み込み層およびプーリング層については、図示を省略する。
FIG. 9 is an explanatory diagram illustrating the
学習モデル53の入力は、腫瘍部のゲノムデータ、正常部のゲノムデータ、腫瘍部検体が採取された部位および正常部検体が採取された部位である。ゲノムデータは、たとえばパイルアップされたアラインメント情報のテンソルであり、塩基配列、ストランド情報、ベースクオリティおよびマップクオリティ等を構成要素に含む。塩基配列は、A、T、G、Cの各塩基のカウントで表されてもよい。学習モデル53に入力されたデータは、図示を省略する畳み込み層およびプーリング層の繰り返しを介して、入力層531に入力する。
The inputs of the
学習モデル53の出力は、たとえば診断データの各項目の確率である。具体的には、臨床的に意味のある変異それぞれが発生じている確率、および、腫瘍含有量が所定の値である確率である。たとえば図9において一番上の出力ノードには、BRCA遺伝子の6952番目の塩基がCからTに変異した体細胞変異が生じている確率が、2番目の出力ノードには、BRCA遺伝子の6952番目の塩基がCからTに変異した生殖細胞変異が生じている確率がそれぞれ出力される。
The output of the
なお、体細胞は対立遺伝子を含むため、検体の体細胞は父親由来の「BRCA遺伝子の6952番目の塩基」と、母親由来の「BRCA遺伝子の6952番目の塩基」とを有する。したがって、体細胞の変異には、父親由来の遺伝子と母親由来遺伝子との双方が変異している場合、父親由来の遺伝子のみが変異している場合、および、母親由来の遺伝子のみが変異している場合が含まれる。 Since the somatic cell contains an allele, the somatic cell of the sample has a "base 6952 of the BRCA gene" derived from the father and a "base 6952 of the BRCA gene" derived from the mother. Therefore, somatic cell mutations include mutations in both the father-derived gene and the mother-derived gene, mutations in only the father-derived gene, and mutations in only the mother-derived gene. Includes cases where
たとえば、学習モデル53の出力は、HomoRef、Hetero、および、HomoAltのスコアであってもよい。HomoRef、Hetero、および、HomoAltは、deepvariant等のゲノム解析用バリアントコーラーで使用される指標である。
For example, the output of the
図9の一番下の出力ノードには、腫瘍含有量が10パーセントである確率が出力される。出力ノードは、たとえば10パーセント刻み等の任意の腫瘍含有量である確率を出力するノードを含む。 The output node at the bottom of FIG. 9 outputs the probability that the tumor content is 10 percent. Output nodes include nodes that output the probability of any tumor content, eg, in 10 percent increments.
学習モデル53は、入力層531にゲノムデータおよび検体採取部位が入力された場合に、出力層533に臨床的に意味のあるそれぞれの変異が生じている、および、所定の腫瘍含有量である確率を出力する。学習段階においては、制御部21は、ゲノムデータおよび検体採取部位と、臨床上の意味のある変異の有無および腫瘍含有量に関する診断データとを関連づけて記録した教師データDB51を用いて、誤差逆伝播法等を用いて中間層532のパラメータを演算することにより、教師あり機械学習を行なう。
In the
教師あり機械学習は、たとえばロジスティック回帰、SVM(Support Vector Machine)、ランダムフォレスト、CNN、RNNまたは、XGBoost(eXtreme Gradient Boosting)等の任意の手法により行なえる。 Supervised machine learning can be performed by any method such as logistic regression, SVM (Support Vector Machine), random forest, CNN, RNN, or XGBost (eXtreme Gradient Boosting).
学習モデル53は任意のコンピュータを用いて生成されても良い。生成された学習モデル53は、ネットワーク等を介して情報処理装置20に送信されて、補助記憶装置23に記録される。教師あり学習の代わりに、半教師あり学習が用いられてもよい。
The
図10は、報告書60の例を説明する説明図である。報告書60は、報告書DB56のレコードに記録された情報、および、電子カルテに記録された情報を、ユーザが閲覧しやすい形式に整形して作成される。報告書60は、書誌事項欄61、コメント欄62、非同義体細胞変異欄63、生殖細胞変異欄64および解析欄65を含む。
FIG. 10 is an explanatory diagram illustrating an example of
書誌事項欄61は、ID欄611、患者情報欄612、検体欄613、病理組織診断欄614および検体番号欄615を含む。ID欄611には、患者に固有に付与された患者IDが表示される。患者情報欄612には、患者の性別および年齢が表示される。なお、患者情報欄612は、表示されなくてもよい。
The
検体欄613には、ゲノム解析に用いた正常部検体および腫瘍部検体が表示される。図10において「FFPE(Formalin Fixed Paraffin Embedded)肺」は、ホルマリン固定パラフィン包埋を行なった肺組織であることを意味する。 In the sample column 613, the normal part sample and the tumor part sample used for the genome analysis are displayed. In FIG. 10, “FFPE (Formalin Fixed Paraffin Embedded) lung” means that the lung tissue is embedded with formalin-fixed paraffin.
病理組織診断欄614には、検体を顕微鏡で観察する病理診断による所見が表示される。検体番号欄615には、検体に固有に付与された検体番号が表示される。書誌事項欄61に表示される情報は、図8を使用して説明した報告書レコードの検体IDをキーとして電子カルテシステムから取得される。
In the
図11は、コメント欄62の例を説明する説明図である。図11Aから図11Cは、それぞれ異なる報告書に表示されるコメント欄62の例を示す。図11Aは、「Pathologic」すなわち病原性を有することが確実な生殖細胞変異が発見された検体に関する報告書のコメント欄62を示す。病原性を有する生殖細胞変異が生じた遺伝子および変異位置と、その根拠、ならびに生殖細胞変異に関する今後の対応についてのアドバイスが表示される。
FIG. 11 is an explanatory diagram illustrating an example of the
図11Bは、腫瘍含有量が低い、すなわち腫瘍部検体の質に問題がある可能性がある検体に関する報告書のコメントの例を示す。図11Cは、腫瘍部検体にがん化変異が発見された検体に関するコメントの例を示す。がん化に関連する体細胞変異が生じた遺伝子と、その遺伝子に関連する臨床試験についての情報が表示される。 FIG. 11B shows an example of a report comment on a specimen having a low tumor content, i.e., a specimen that may have a problem with the quality of the tumor specimen. FIG. 11C shows an example of comments regarding a sample in which a carcinogenic mutation was found in a tumor part sample. Information about genes with somatic mutations associated with carcinogenesis and clinical trials associated with those genes is displayed.
コメント欄62に表示される文章は、報告書DB56の診断フィールドに記録された情報に基づいて、公知の手法により定型文を組み合わせて作成される。検体に生じている複数の遺伝子変異うち、病原性または発がん性が高い遺伝子変異に関連する定型文を選択して表示することにより、遺伝子検査に関する知識が少ない臨床医であっても重要性の高い情報を速やかに把握できる。
The text displayed in the
図12は、非同義体細胞変異欄63の例を説明する説明図である。図12においては、図8に例示した報告書レコード中の非同義体細胞変異フィールドに基づいて表示される非同義体細胞変異欄63の例を示す。
FIG. 12 is an explanatory diagram illustrating an example of a non-synonymous
非同義体細胞変異欄63は、遺伝子欄631、サイトバンド欄632、DNA変異欄633、アミノ酸変異欄634、アリル頻度欄635および知識データ欄636を含む。遺伝子欄631、DNA変異欄633および知識データ欄636には、それぞれ非同義体細胞変異フィールドに記録された情報が表示される。
The non-synonymous
サイトバンド欄632には、染色体上の遺伝子の位置が表示される。アミノ酸変異欄634には、DNA変異に起因するアミノ酸の変異が表示される。アリル頻度欄635には、たとえばBAMファイルまたはSAMファイルに記録されたアリル頻度、または、BAMファイルまたはSAMファイルに記録されたデータから算出されたアリル頻度が表示される。
The position of the gene on the chromosome is displayed in the
非同義体細胞変異欄63の上部には、非同義体細胞変異欄63に記載していない体細胞変異も含めた総体細胞変異数および総体細胞変異頻度が表示される。総体細胞変異数および総体細胞変異頻度は、VCF形式のファイルから取得できる。
At the upper part of the non-synonymous
図13は、生殖細胞変異欄64の例を説明する説明図である。図13においては、図8に例示した報告書レコード中の生殖細胞変異フィールドに基づいて表示される生殖細胞変異欄64の例を示す。
FIG. 13 is an explanatory diagram illustrating an example of a
生殖細胞変異欄64は、遺伝子欄641、サイトバンド欄642、DNA変異欄643、アミノ酸変異欄644、正常部アリル頻度欄647、腫瘍部アリル頻度欄648および知識データ欄645を含む。遺伝子欄641、DNA変異欄643および知識データ欄645には、それぞれ生殖細胞変異フィールドに記録された情報が表示される。
The
サイトバンド欄642には、染色体上の遺伝子の位置が表示される。アミノ酸変異欄644には、DNA変異に起因するアミノ酸の変異が記録される。正常部アリル頻度欄647には、たとえばBAM形式またはSAM形式のファイルに記録された正常部のアリル頻度が表示される。腫瘍部アリル頻度欄648には、たとえばBAM形式またはSAM形式のファイルに記録された腫瘍部のアリル頻度が表示される。
The position of the gene on the chromosome is displayed in the
図14は、解析欄65の例を説明する説明図である。解析欄65は、推定腫瘍含有量欄651および変異頻度相関係数欄652を含む。推定腫瘍含有量欄651には、学習モデル53の出力に基づく推定腫瘍含有量が表示される。
FIG. 14 is an explanatory diagram illustrating an example of the
変異頻度相関係数欄652には、正常部から採取した検体中の遺伝子変異頻度と、腫瘍部から採取した検体中の遺伝子変異頻度との相関係数が表示される。相関係数が高い場合には、正常部と異常部とで、同一の塩基が変異している場合が多く、同一患者由来の検体であると判定される。相関係数が閾値よりも低い場合には、検体の取り違え、または、コンタミネーション等の発生が疑われる。
In the mutation frequency
変異頻度相関係数欄652は表示されなくても良い。たとえば、正常部検体を使用せずに解析を行なう場合には、変異頻度相関係数欄652は不要である。
The mutation frequency
ユーザが、図10から図14を使用して説明した各欄をたとえば右クリック等により選択した場合、制御部21は、報告書レコードの根拠情報フィールドに記録された情報を表示する。制御部21は、根拠情報フィールドに基づいて根拠情報へのリンクを表示するか、根拠情報自体を表示しても良い。ユーザは、報告書60の記載の根拠を閲覧することにより、報告書の信頼性を確認できる。
When the user selects each column described with reference to FIGS. 10 to 14 by, for example, right-clicking, the
報告書60には、レビューを実施したエキスパートパネルの連絡先等が、表示されても良い。ユーザは、報告書60に基づいてエキスパートパネルへの質問、相談等を行なえる。
In the
報告書は、検体に行なった前処理、読取装置31が塩基配列を読み取ったリード数、または、参照配列へのマッピング深度等の情報を含んでも良い。遺伝子検査に詳しい臨床医であれば、これらの情報に基づいて報告書の信頼度を判断できる。
The report may include information such as pretreatment performed on the sample, the number of reads read by the
図15は、プログラムの処理の流れを説明するフローチャートである。制御部21は、報告書作成要求に基づいてデータサーバ32からゲノムデータを取得する(ステップS501)。制御部21は、報告書案DB55に新規レコードを作成し、検体IDフィールド、検体フィールドおよびゲノムデータフィールドにそれぞれデータを記録する(ステップS502)。
FIG. 15 is a flowchart illustrating a process flow of the program. The
制御部21は、取得したゲノムデータを学習モデル53に入力して、出力層533の各ノードの予測確率を取得する(ステップS503)。制御部21は、出力層533の遺伝子変異にかかるノードから所定の閾値以上の確率が出力された遺伝子変異を抽出する(ステップS504)。閾値は、遺伝子変異ごとに異なる値であっても、一定の値であっても良い。
The
制御部21は、出力層533の腫瘍含有量にかかるノードのうちの、最も確率が高いノードに基づいて、検体中の腫瘍含量を判定する(ステップS505)。制御部21は、ステップS502で作成した報告書案レコードの非同義体細胞変異フィールドまたは生殖細胞変異フィールドの診断データフィールドに、ステップS504で抽出した変異を、腫瘍含有量フィールドにステップS505で判定した腫瘍含有量をそれぞれ記録する(ステップS506)。
The
なお、腫瘍含有量は、図15に示すプログラムとは別の独立したプログラムにより算出されてもよい。そのようにする場合には、ステップS505は不要である。 The tumor content may be calculated by an independent program different from the program shown in FIG. In that case, step S505 is unnecessary.
制御部21は、報告書案レコードに記録された検体の採取部位と遺伝子変異とをキーとして統合DB52を検索し、抽出されたレコードの知識データフィールドから知識データを取得する(ステップS507)。制御部21は、報告書レコードに取得した知識データを記録する(ステップS508)。
The
制御部21は、報告書案レコードに記録されたすべての遺伝子変異の処理を終了したか否かを判定する(ステップS509)。終了していないと判定した場合(ステップS509でNO)、制御部21はステップS507に戻る。終了したと判定した場合(ステップS509でYES)、制御部21は報告書レコードに基づいて図10を使用して説明した報告書60の案を作成し、補助記憶装置23またはデータサーバ32に記録する(ステップS510)。
The
エキスパートパネルのメンバーである専門家は、定期的または不定期に開催されるエキスパート会議において報告書60の案をレビューし、必要に応じて修正する。エキスパート会議は、専門家が実際に1室に集合して行なわれても、テレビ会議または電話会議等で行なわれても良い。エキスパート会議は、チャットシステム等を用いた電子会議で行なわれても良い。
Experts who are members of the Expert Panel will review the
エキスパートパネルは、必要に応じてFASTQ形式、BAM形式、VCF形式等のゲノムデータを参照する。エキスパートパネルは、病理検査時に撮影された顕微鏡写真等を参照しても良い。エキスパートパネルは病理検査を担当した病理医、または、患者を担当する臨床医から情報収集しても良い。 The expert panel refers to genomic data such as FASTQ format, BAM format, and VCF format as needed. The expert panel may refer to a micrograph or the like taken at the time of pathological examination. The expert panel may collect information from the pathologist in charge of the pathological examination or the clinician in charge of the patient.
制御部21は、エキスパート会議で決定された修正を受け付ける(ステップS511)。制御部21は、報告書案レコードに記録された情報を修正した報告書レコードを報告書DB56に記録する(ステップS512)。制御部21は、報告書レコードのエキスパートIDフィールドに、レビューを行なった専門家に固有に付与されたエキスパートIDを記録する。制御部21は処理を終了する。
The
制御部21は、メールその他任意の手段を用いて、臨床医に対して報告書が作成されたことを通知してもよい。制御部21は、電子カルテシステムに報告書をアップロードしても良い。制御部は、臨床医がゲノム解析システム10にログインした場合に、新規報告書があることを通知しても良い。
The
制御部21は、図15を使用して説明したプログラムの開始時に、報告書60を作成する統合DB52の日付の指定を受け付けても良い。日付の指定を受け付けた場合、制御部21はステップS507において指定した日付における最新の統合DB52を使用して、知識データを取得する。ステップS510において、制御部21は、指定された日付における最新情報に基づく報告書案を記録する。
The
たとえば、過去に判断された治療方針等の妥当性を検証する場合、その医療行為が行なわれた日付を指定して図15を使用して説明したプログラムを実行することにより、その日付における最新情報に基づく報告書案を作成できる。 For example, when verifying the validity of a treatment policy determined in the past, the latest information on that date can be obtained by specifying the date on which the medical practice was performed and executing the program described using FIG. Can prepare a draft report based on.
報告書DB56に記録された情報、治療後の情報、および、投薬後の情報等に基づいて、教師データDB51にデータを追加して、学習モデル53の再学習を行なっても良い。専門家によるレビューが行なわれたデータを教師データに追加することにより、学習モデル53の精度を高めることができる。
Data may be added to the
本実施の形態によると、検体から読み取られた塩基配列に基づいて、臨床上重要な変異の自動抽出を行なう学習モデル53を提供できる。学習モデル53を使用することにより、遺伝子検査に関する高度な専門知識を有さない医師であっても、臨床上重要な遺伝子変異の有無を判断できる。
According to this embodiment, it is possible to provide a
本実施の形態によると、統合DB52を使用することにより遺伝子変異に関する医学情報をユーザに提示するゲノム解析システム10を提供できる。遺伝子検査の分野は研究スピードが速く、頻繁に新たな知見が発表されるため、個々の医師が常に最新情報を把握することは困難である。統合DB52に基づいて、医学情報を提供されるとともに、その根拠も提示されるため、医師は必要に応じて根拠を確認して、患者に対して適切な医療を提供できる。
According to this embodiment, it is possible to provide a
報告書案をエキスパートパネルでレビューして、エキスパートパネルによる修正を反映することにより、信頼性の高い報告書60を作成するゲノム解析システム10を提供できる。エキスパートパネルがレビューを行なうことにより、教師データDB51に含まれていない新しい情報に基づいて報告書60を作成できる。
By reviewing the draft report on the expert panel and reflecting the corrections made by the expert panel, it is possible to provide the
臨床医が、遺伝子検査に関する専門知識を有する場合には、エキスパートパネルによるレビューを省略して、報告書案をそのまま報告書60に使用しても良い。患者本人または臨床医が報告書案およびゲノムデータを取得し、自ら選択した専門医に意見を求めても良い。
If the clinician has expertise in genetic testing, the draft report may be used as is for
[実施の形態2]
本実施の形態は、DNAに加えてRNAの塩基配列の解析も行なうゲノム解析システム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 2]
The present embodiment relates to a
本実施の形態においては、腫瘍部から採取された検体は3つに分けられる。1つは病理検査に、1つはDNAの解析に使用される。最後の1つは、前処理にてRNAが抽出されて、読取装置31によりRNAの塩基配列が読み取られ、DNAと同様の手法により解析される。
In the present embodiment, the sample collected from the tumor portion is divided into three. One is used for pathological examination and one is used for DNA analysis. In the last one, RNA is extracted by pretreatment, the base sequence of RNA is read by the
RNAを解析することにより、腫瘍部で発現している遺伝子異常に関する情報を得ることができる。腫瘍部で発現している遺伝子異常は、たとえば複数のDNAが転座または遺伝子再構成により融合した融合遺伝子、または、DNAがRNAに転写される際に、一部が脱落するエクソンスキッピングである。本実施の形態の報告書60には、たとえば非同義体細胞変異欄63と生殖細胞変異欄64との間に、RNAを解析して得た情報を表示するRNA欄66が表示される。
By analyzing RNA, information on genetic abnormalities expressed in tumors can be obtained. The gene abnormality expressed in the tumor site is, for example, a fusion gene in which a plurality of DNAs are fused by translocation or gene rearrangement, or exon skipping in which a part of the DNA is dropped when it is transcribed into RNA. In the
図16は、RNA欄66の例を説明する説明図である。図16Aと図16Bとは、それぞれ異なる報告書に表示されるRNA欄66の例を示す。図16Aは、RNAに異常が発見されない検体に関するRNA欄66の例を示す。図16Bは、融合遺伝子およびエクソンスキッピングが発見された検体に関するRNA欄66の例を示す。
FIG. 16 is an explanatory diagram illustrating an example of
図16Bに示すRNA欄66は、遺伝子欄661、変異欄667、サイトバンド欄662、リード数欄668および知識データ欄666を含む。遺伝子欄661には、RNAが転写された転写元の遺伝子が表示される。
The
変異欄667には、RNAの変異が表示される。たとえば図16Bの一番上の行には、PAX3遺伝子とFOXO1遺伝子との融合遺伝子が検出されたことが表示される。図16Bの一番下の行には、MET遺伝子のエクソン1スキッピングが検出されたことが表示される。
Mutations in RNA are displayed in the
サイトバンド欄662には、染色体上の遺伝子の位置が表示される。リード数欄668には、読取装置31により読み取られたリードのうち、変異が検出されたリードの数および割合が表示される。リード数欄668に表示される情報は、FASTQ形式のファイルから読み取られる。知識データ欄666には、統合DB52から取得された情報が表示される。
The position of the gene on the chromosome is displayed in the
本実施の形態によると、腫瘍で発現している遺伝子の異常を検出して、報告書60に表示するゲノム解析システム10を提供できる。
According to this embodiment, it is possible to provide a
[実施の形態3]
本実施の形態は、統合DB52が更新された場合に、過去に出力した報告書60の変更点を示す追加報告書を出力するゲノム解析システム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 3]
The present embodiment relates to a
図17は、変更履歴DBのレコードレイアウトを説明する説明図である。変更履歴DBは、統合DB52に記録された遺伝子変異と、知識データが変更された変更日とを関連づけて記録するDBである。変更履歴DBは、ゲノム変異フィールドおよび変更日フィールドを有する。
FIG. 17 is an explanatory diagram illustrating a record layout of the change history DB. The change history DB is a DB that records the gene mutation recorded in the
ゲノム変異フィールドは、腫瘍部検体フィールド、遺伝子フィールドおよび変異内容フィールドを有する。変更日フィールドは、第1変更日フィールド、第2変更日フィールド等、任意の数のサブフィールドを有する。変更履歴DBは、統合DB52に記録された1つの医学情報について、1つのレコードを有する。
The genome mutation field has a tumor part sample field, a gene field, and a mutation content field. The change date field has an arbitrary number of subfields such as a first change date field and a second change date field. The change history DB has one record for one medical information recorded in the
腫瘍部検体フィールドには、検体が採取された部位が記録される。遺伝子フィールドには、変異が検出された遺伝子が記録される。なお、複数の変異の組合せに関する医学情報が記録されたレコードにおいては、遺伝子フィールドに複数の遺伝子が記録される。 In the tumor part sample field, the site where the sample was collected is recorded. In the gene field, the gene in which the mutation is detected is recorded. In the record in which medical information regarding a combination of a plurality of mutations is recorded, a plurality of genes are recorded in the gene field.
第1変更日フィールドには、ゲノム変異フィールドに記録された遺伝子変異に関するレコードが統合DB52に記録された日付が記録される。第2変更日フィールド以降には、統合DB52に記録された医学情報が変更された日付が記録される。
In the first modification date field, the date on which the record relating to the gene mutation recorded in the genome mutation field is recorded in the
図18は、実施の形態3の報告書DB56のレコードレイアウトを説明する説明図である。本実施の形態の報告書DB56は、図8を使用して説明した実施の形態1の報告書DB56に確認日フィールドが追加されている。確認日フィールドには、統合DB52の更新状況を確認した日付が記録される。
FIG. 18 is an explanatory diagram illustrating a record layout of the
図19は、追加報告書を出力するプログラムの処理の流れを説明するフローチャートである。制御部21は、報告書DB56に記録された報告書レコードを取得する(ステップS521)。制御部21は、正常部検体フィールドおよび腫瘍部検体フィールドに記録された、検体が採取された部位を取得する(ステップS522)。制御部21は、確認日フィールドに記録された確認日を取得する(ステップS523)。
FIG. 19 is a flowchart illustrating a processing flow of a program that outputs an additional report. The
制御部21は、非同義体細胞変異フィールドまたは生殖細胞変異フィールドの遺伝子フィールドに記録された遺伝子変異を取得する(ステップS524)。制御部21はステップS522で取得した検体が採取された部位およびステップS524で取得した遺伝子変異をキーとして変更履歴DBを検索してレコードを抽出する。制御部21は、抽出したレコードの変更日フィールドに記録された日付と、ステップS523で取得した確認日とを比較し、確認日以後に知識データが変更されたか否か判定する(ステップS525)。
The
知識データが変更されていないと判定した場合(ステップS525でNO)、制御部21はステップS524に戻る。知識データが変更されたと判定した場合(ステップS525でYES)、制御部21はステップS522で取得した検体が採取された部位およびステップS524で取得した遺伝子変異をキーとして、最新の統合DB52を検索してレコードを抽出する。制御部21は、抽出したレコードから知識データを取得する(ステップS526)。
When it is determined that the knowledge data has not been changed (NO in step S525), the
制御部21は、報告書レコードの知識データフィールドに、ステップS526で取得した知識データを記録する(ステップS527)。制御部21は報告書レコードのコピーを作成して、ステップS526で取得した知識データを記録しても良い。
The
制御部21は、ステップS521で取得した報告書レコードに記録されたすべての変異の処理を終了したか否かを判定する(ステップS528)。終了していないと判定した場合(ステップS528でNO)、制御部21はステップS524に戻る。
The
終了したと判定した場合(ステップS528でYES)、制御部21はステップS525で知識データが変更されていると判定した遺伝子変異があるか否かを判定する(ステップS529)。あると判定した場合(ステップS529でYES)、制御部21は臨床医に対して、報告書が変更されたことを通知する(ステップS530)。通知は、たとえば電子メールまたはメッセンジャー等の、任意の手段により行なえる。
When it is determined that the process is completed (YES in step S528), the
制御部21は、ステップS530においてエキスパートパネルに対して通知を行ない、レビュー結果に基づく修正を受け付けた後に、臨床医、または、病院に対する通知を行なっても良い。知識データが変更されていると判定した遺伝子変異がないと判定した場合(ステップS529でNO)またはステップS530の終了後、制御部21は処理を終了するか否かを判定する(ステップS531)。
The
終了しないと判定した場合(ステップS531でNO)、制御部21はステップS521に戻る。終了すると判定した場合(ステップS531でYES)、制御部21は処理を終了する。
If it is determined that the process is not completed (NO in step S531), the
本実施の形態によると、過去に作成した報告書に関連する新たな医学情報が公開された場合に、追加報告書を出力するゲノム解析システム10を提供できる。臨床医は、治療中の患者に対して効果が期待できる薬剤、治験または治療法等に関する追加情報を受け取り、治療方針に反映させることができる。
According to this embodiment, it is possible to provide a
制御部21は、追加情報を必要としない報告書60の指定を受け付けても良い。臨床医は、治療を終了した患者に関する報告書60等について追加報告書を必要としない旨を指定できる。制御部21は、ステップS521において、追加情報を必要としない報告書を取得対象から外すことにより、必要とされない追加報告書の作成を回避する。
The
[実施の形態4]
本実施の形態は、エキスパートパネルに参加した専門家に対してインセンティブを付与するゲノム解析システム10に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 4]
The present embodiment relates to a
図20は、専門家DBのレコードレイアウトを説明する説明図である。専門家DBは、エキスパートパネルに参加する専門家に固有に付与されたエキスパートIDと、専門分野と、ポイントとを関連づけて記録するDBである。 FIG. 20 is an explanatory diagram illustrating a record layout of the expert DB. The expert DB is a DB that records an expert ID uniquely assigned to an expert participating in the expert panel, a specialized field, and points in association with each other.
専門家DBは、エキスパートIDフィールド、専門分野フィールドおよびポイントフィールドを有する。エキスパートIDフィールドには、エキスパートIDが記録される。専門分野フィールドには、専門家の専門分野が記録されている。ポイントフィールドには、専門家に付与されたポイントが記録されている。 The expert DB has an expert ID field, a specialty field, and a point field. The expert ID is recorded in the expert ID field. In the field of specialization, the field of specialization of the specialist is recorded. In the point field, the points given to the expert are recorded.
専門家は、エキスパートパネルに参加して報告書案のレビューを行なうごとに、ポイントを獲得できる。専門家は溜まったポイントをたとえば、金券、報告書60の作成を依頼する際に利用できる報告書作成依頼券、または、学習モデル53を利用した遺伝子解析を依頼する際に利用できる学習モデル利用券等と交換できる。ポイントにより、専門家に対してエキスパートパネルに参加するインセンティブを与えることができる。
Experts can earn points each time they participate in an expert panel and review a draft report. Experts can use the accumulated points, for example, a gold ticket, a report creation request ticket that can be used when requesting the creation of
ポイントは、たとえば1回のレビューに5ポイントのように定められていても良い。エキスパートレビュー時の発言量または意見の内容に基づいて、たとえばエキスパートパネルのリーダが個々の専門家に付与するポイントを決定しても良い。エキスパートパネルへの参加頻度に基づいて、1回のレビューに付与されるポイントが定められても良い。 The points may be set as, for example, 5 points in one review. Based on the amount of remarks or the content of opinions at the time of expert review, for example, the leader of the expert panel may determine the points to be given to individual experts. The points to be awarded for one review may be determined based on the frequency of participation in the expert panel.
図21は、エキスパートパネルへの参加者を選択する画面の例を説明する説明図である。図21に示す画面は、エキスパートパネルの事務局担当者が使用するパソコン、タブレットまたはスマートフォン等の情報機器に表示される。事務局担当者が使用する情報機器は、ネットワークを介して情報処理装置20に接続されている。
FIG. 21 is an explanatory diagram illustrating an example of a screen for selecting a participant to the expert panel. The screen shown in FIG. 21 is displayed on an information device such as a personal computer, tablet, or smartphone used by the secretariat staff of the expert panel. The information device used by the secretariat staff is connected to the
エキスパートパネルへの参加者を選択する画面は、検体情報欄74、絞込条件欄75、再検索ボタン76、候補リスト77、確認ボタン78および依頼送信ボタン79を含む。検体情報欄74には、エキスパートパネルでのレビューを行なう検体に関する情報が表示されている。
The screen for selecting participants in the expert panel includes a
絞込条件欄75には、専門家の絞込を行なう際に使用する項目が表示されている。ユーザは、各項目の先頭に表示されているチェックボックスを選択することにより、絞込条件を選択できる。なお、絞込条件欄75は、フリーキーワードを受け付ける欄を有しても良い。候補リスト77には、エキスパートパネルに参加する専門家の候補リストが表示されている。
In the narrowing
ユーザは、絞込条件欄75を使用して、所望の条件を設定して、再検索ボタン76を選択する。設定された条件が、情報処理装置20に送信される。制御部21は、設定された条件に合う専門家を抽出して、ユーザの使用する情報機器に送信する。
The user sets a desired condition using the narrowing
候補リスト77に、設定された条件に合致する専門家のリストが表示される。ユーザは、候補リスト77の右端に表示されたチェックボックスを使用して、エキスパートパネルへの参加を依頼する専門家を選択する。
The
候補リスト77に表示される専門家の数が多すぎる場合、または、少なすぎる場合には、ユーザは絞込条件欄75の設定を適宜変更して、再検索を行なう。ユーザが確認ボタン78を選択した場合、選択された専門家の一覧が表示される。ユーザが依頼送信ボタン79を選択した場合、選択された専門家の一覧が情報処理装置20に送信される。
If the number of experts displayed in the
制御部21は、検体IDと、選択された専門家のエキスパートIDとを関連づけて、補助記憶装置23に記憶する。制御部21は、それぞれの専門家に対してURL(Uniform Resource Locator)を記載した電子メールを送信する。
The
図22は、エキスパートパネルへの参加依頼を確認する画面の例を説明する説明図である。図22は、専門家がURLにより示されたWEBサイトにアクセスした場合に、専門家の使用する情報機器に表示される画面である。 FIG. 22 is an explanatory diagram illustrating an example of a screen for confirming a request for participation in the expert panel. FIG. 22 is a screen displayed on the information device used by the expert when the expert accesses the WEB site indicated by the URL.
エキスパートパネルへの参加依頼を確認する画面は、依頼リスト72および参加ボタン71を含む。依頼リスト72には、専門家に参加を依頼するエキスパートパネルのリストが表示されている。それぞれのエキスパートパネルについて、検体の採取部位、患者情報、報告書60の作成を依頼した医療機関等の情報が表示されている。
The screen for confirming the participation request to the expert panel includes the
専門家は、依頼リスト72を見て、参加を希望するエキスパートパネルについて参加ボタン71を選択する。制御部21は、参加ボタン71を選択した専門家が参加する電子会議室を設定し、報告書案をアップロードする。参加者は、電子会議室上で報告書のレビューを行なう。あらかじめ指名されたリーダが結論をまとめて、電子会議室を終了させる。なお、電子会議システムは従来から広く使用されているため、制御部21が行なう処理の詳細については説明を省略する。
The expert looks at the
電子会議室の終了後、制御部21はエキスパートパネルに参加した専門家にポイントを付与する。具体的には、制御部21は、専門家DBからエキスパートパネルに参加した専門家にかかるレコードを抽出し、ポイントフィールドにポイントを加算する。
After the end of the electronic conference room, the
図23は、実施の形態4の修正受付のサブルーチンの処理の流れを説明するフローチャートである。修正受付のサブルーチンは、エキスパートパネルへの専門家の参加を受け付け、参加した専門家にポイントを付与するサブルーチンである。修正受付のサブルーチンは、図15を使用して説明した実施の形態1のプログラムのステップS511の代わりに起動する。 FIG. 23 is a flowchart illustrating a processing flow of the subroutine of the modification reception of the fourth embodiment. The modification reception subroutine is a subroutine that accepts the participation of experts in the expert panel and gives points to the participating experts. The modification reception subroutine is activated instead of step S511 of the program of the first embodiment described with reference to FIG.
制御部21は、専門家DBに登録された専門家ごとに図22を使用して説明したエキスパートパネル参加依頼画面を作成し、URLを記載したメールを送信して、参加依頼を通知する(ステップS541)。
The
制御部21は、専門家DBの専門分野フィールドに記録された専門分野に基づいて、どの専門家にどの報告書案のレビューを依頼するかを定めることができる。たとえば制御部21は、呼吸器から腫瘍部検体が採取された症例、および、呼吸器科から依頼された症例に関するエキスパートパネルについては、専門分野フィールドに呼吸器が登録された専門家に参加依頼を通知する。
The
制御部21は、専門家DBに登録された専門家をカテゴリごとに選択して、参加依頼を通知しても良い。制御部21は、専門家DBに登録された専門家全員に、参加依頼を通知しても良い。制御部21は、専門家による参加ボタン71の選択を受け付けることにより、エキスパートパネルへの参加を受け付ける(ステップS542)。制御部21は、それぞれのエキスパートパネルへの参加者を登録した電子会議室を設定する(ステップS543)。制御部21は、電子会議室へのアクセス情報を、それぞれの参加者に送信する。
The
制御部21は、電子会議室に報告書案をアップロードし、参加者が閲覧できる状態にする(ステップS544)。参加者は、電子会議室を通じて他の参加者とのコミュニュケーションを行ない、報告書案をレビューする。
The
あらかじめ指名されたリーダが結論をまとめて、電子会議室を終了する操作を行なう。制御部21は、終了操作を受け付ける(ステップS545)。制御部21は、電子会議室を閉鎖する(ステップS546)。制御部21は、専門家DBからエキスパートパネルに参加した専門家にかかるレコードを抽出し、ポイントフィールドにポイントを加算する(ステップS547)。制御部21は、処理を終了する。
A pre-designated leader summarizes the conclusions and performs the operation of terminating the electronic conference room. The
本実施の形態によると、エキスパートパネルへの参加に対するインセンティブを与えるゲノム解析システム10を提供できる。学習モデル利用料金および報告書作成料金等で得る収益を、ポイントにより専門家に分配することで、エキスパートパネルに参加する専門家を確保しやすいゲノム解析システム10を提供できる。
According to this embodiment, it is possible to provide a
それぞれのエキスパートパネルに参加するか否かを、専門家自身が決定できるため、意欲がある参加者を集められるゲノム解析システム10を提供できる。電子会議室を用いてエキスパートレビューを行なうため、多忙な専門家であってもエキスパートパネルに参加しやすいゲノム解析システム10を提供できる。
Since the experts themselves can decide whether or not to participate in each expert panel, it is possible to provide a
[実施の形態5]
本実施の形態は、統合DB52に記録される情報のレビューを専門家に依頼するゲノム解析システム10に関する。実施の形態4と共通する部分については、説明を省略する。
[Embodiment 5]
The present embodiment relates to a
図24は、統合DBレビュー参加依頼画面の例を説明する説明図である。制御部21は、それぞれの専門家に対してURLを記載した電子メールを送信する。専門家がパソコンまたはスマートフォン等の情報機器を用いてURLにより示されたWEBサイトにアクセスした場合に、図24に示す統合DBレビュー参加依頼画面が情報機器に表示される。
FIG. 24 is an explanatory diagram illustrating an example of an integrated DB review participation request screen. The
統合DBレビュー参加依頼画面は、依頼リスト73および参加ボタン71を含む。依頼リスト73には、専門家にレビューを依頼する医学情報のリストが表示されている。それぞれの医学情報について、対象の遺伝子、DNA変異および情報源が表示されている。統合DBレビューの対象は、図24のNo.3に例示するように、特定の遺伝子変異に関係しない情報であっても良い。
The integrated DB review participation request screen includes a
専門家は、依頼リスト73を見て自分の専門領域である薬剤、疾患または治験に関する医学情報であるか否かを判断できる。専門家は、レビューへの参加を希望する場合には、参加ボタン71を選択する。制御部21は、参加ボタン71を選択した専門家が参加する電子会議室を設定し、報告書案をアップロードする。参加者は、電子会議室上で報告書のレビューを行なう。あらかじめ指名されたリーダが結論をまとめて、電子会議室を終了させる。
The expert can look at the
なお、レビューは1名の専門家が単独で実施しても良い。その場合には、電子会議室を使用しなくても良い。 The review may be conducted independently by one expert. In that case, it is not necessary to use the electronic conference room.
制御部21は、レビュー結果に基づいて、統合DB52への新規レコードの追加、または既存レコードの更新を実行する。
The
図25は、統合DB52を更新するプログラムの処理の流れを説明するフローチャートである。以下の説明では、情報処理装置20が統合DB52の更新を行なう場合を例にして説明する。統合DB52の更新は情報処理装置20以外の情報機器で実行されても良い。
FIG. 25 is a flowchart illustrating a processing flow of a program for updating the
制御部21は、様々な医学情報DB58を巡回して、遺伝子変異に関する新たな医学情報を収集してデータベース化するクローリングを行なう(ステップS551)。クローリングは、クローラまたはロボットと呼ばれるプログラムにより実行される。クローリングは従来から広く行なわれているため、詳細については説明を省略する。
The
制御部21は、クローリングにより収集された医学情報を選択して、統合DB52に既に記録されている遺伝子変異に関する情報であるか否かを判定する(ステップS552)。統合DB52に記録されている遺伝子変異に関する情報であると判定した場合(ステップS552でYES)、制御部21は統合DB52に記録されている情報と同一の内容であるか否かを判定する(ステップS553)。
The
統合DB52に記録されている遺伝子変異に関する情報ではないと判定した場合(ステップS552でNO)、または、統合DB52に記録されている情報と同一の内容ではないとト判定した場合(ステップS553でNO)、制御部21は、処理中の医学情報がレビュー対象である旨を記録する(ステップS554)。
When it is determined that the information is not related to the gene mutation recorded in the integrated DB 52 (NO in step S552), or when it is determined that the information is not the same as the information recorded in the integrated DB 52 (NO in step S553). ), The
同一内容であると判定した場合(ステップS553でYES)、またはステップS554の終了後、制御部21はステップS551で収集した医学情報の処理を終了したか否かを判定する(ステップS555)。終了していないと判定した場合(ステップS555でNO)、制御部21はステップS552に戻る。
If it is determined that the contents are the same (YES in step S553), or after the end of step S554, the
終了したと判定した場合(ステップS555でYES)、制御部21は、専門家DBに登録された専門家ごとに図24を使用して説明した統合DBレビュー参加依頼画面を作成し、URLを記載したメールを送信して、参加依頼を通知する(ステップS561)。
When it is determined that the process has been completed (YES in step S555), the
制御部21は、専門家による参加ボタン71の選択を受け付けることにより、レビューへの参加を受け付ける(ステップS562)。制御部21は、それぞれのレビューへの参加者を登録した電子会議室を設定する(ステップS563)。制御部21は、電子会議室へのアクセス情報を、それぞれの参加者に送信する。
The
制御部21は、電子会議室にクローリングにより収集した医学情報をアップロードし、参加者が閲覧できる状態にする(ステップS564)。参加者は、電子会議室を通じて他の参加者とのコミュニュケーションを行ない、医学情報をレビューする。
The
あらかじめ指名されたリーダが結論をまとめて、電子会議室を終了する操作を行なう。結論は、参加した専門家の多数決により決定されてもよい。制御部21は、終了操作を受け付ける(ステップS565)。制御部21は、電子会議室を閉鎖する(ステップS566)。制御部21は、専門家DBからレビューに参加した専門家にかかるレコードを抽出し、ポイントフィールドにポイントを加算する(ステップS567)。制御部21は、それぞれの医学情報に関するレビュー結果に基づいて、統合DB52を更新する(ステップS568)。制御部21は、処理を終了する。
A pre-designated leader summarizes the conclusions and performs the operation of terminating the electronic conference room. The conclusion may be decided by a majority vote of the participating experts. The
本実施の形態によると、統合DB52に登録する情報をクローリングにより自動収集した後に、専門家によるレビューを経て統合DB52を更新するゲノム解析システム10を提供できる。クローリング技術を活用することにより、統合DB52に新しい医学情報を適宜反映させるゲノム解析システム10を提供できる。
According to this embodiment, it is possible to provide a
収集した医学情報を統合DB52に登録する前に専門家によるレビューを実施することにより、統合DB52の信頼度を保ち、正確な報告書60を出力するゲノム解析システム10を提供できる。
By conducting a review by an expert before registering the collected medical information in the
学習モデル利用料金および報告書作成料金等で得る収益を、ポイントにより専門家に分配することで、レビューに参加する専門家を確保しやすいゲノム解析システム10を提供できる。
By distributing the profits obtained from the learning model usage fee, the report preparation fee, etc. to the experts by points, it is possible to provide the
それぞれのレビューに参加するか否かを、専門家自身が決定できるため、意欲があるレビュー参加者を集められるゲノム解析システム10を提供できる。電子会議室を用いてレビューを行なうため、多忙な専門家であってもレビューに参加しやすいゲノム解析システム10を提供できる。
Since the expert himself can decide whether or not to participate in each review, it is possible to provide a
[実施の形態6]
図26は、ゲノムデータから臨床上意味のある遺伝子変異を予測する段階における情報処理装置20の機能ブロック図である。情報処理装置20は、ゲノムデータ取得部81と、ゲノムデータ入力部82と、出力部83とを有する。
[Embodiment 6]
FIG. 26 is a functional block diagram of the
ゲノムデータ取得部81は、検体に含まれる塩基配列を読み取ったゲノムデータを取得する。ゲノムデータ入力部82は、ゲノムデータを受け付けて遺伝子変異に関する予測を出力する学習モデル53に、ゲノムデータ取得部81が取得したゲノムデータを入力する。出力部83は、ゲノムデータ入力部82により入力されたゲノムデータに基づいて学習モデル53から出力された予測を出力する。
The genome
図27は、遺伝子変異と統合DB52とに基づいて報告書を作成する段階における情報処理装置20の機能ブロック図である。情報処理装置20は、第1受付部84と、第1出力部85と、第2受付部86と、第2出力部87とを有する。
FIG. 27 is a functional block diagram of the
第1受付部84は、検体から検出された遺伝子変異を受け付ける。第1出力部85は、第1受付部84が受け付けた遺伝子変異と、複数の情報源から取得した遺伝子変異に関する医学情報、医学情報の取得日および根拠情報を関連づけて統合した統合DB52とに基づいて、検体に関する解析結果と、統合DB52のバージョンとを関連づけて記録した報告書を出力する。
The
第2受付部86は、過去の日付、当該日付における報告書出力要求、および、検体から検出された遺伝子変異を受け付ける。第2出力部87は、第2受付部86が受け付けた遺伝子変異と、当該日付における統合DB52とに基づいて、検体に関する解析結果と、統合DB52のバージョンとを関連づけて記録した報告書を出力する。
The
[実施の形態7]
本実施の形態は、汎用のコンピュータ90とプログラム97とを組み合わせて動作させることにより、本実施の形態のゲノム解析システム10を実現する形態に関する。図28は、実施の形態7のゲノム解析システム10の構成を説明する説明図である。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 7]
The present embodiment relates to a mode in which the
本実施の形態のゲノム解析システム10は、コンピュータ90と、読取装置31と、データサーバ32とを含む。
The
コンピュータ90は、制御部21、主記憶装置22、補助記憶装置23、通信部24、読取部29およびバスを備える。コンピュータ90は、汎用のパーソナルコンピュータ、タブレットまたはサーバコンピュータ等の情報機器である。
The
プログラム97は、可搬型記録媒体96に記録されている。制御部21は、読取部29を介してプログラム97を読み込み、補助記憶装置23に保存する。また制御部21は、コンピュータ90内に実装されたフラッシュメモリ等の半導体メモリ98に記憶されたプログラム97を読出しても良い。さらに、制御部21は、通信部24および図示しないネットワークを介して接続される図示しない他のサーバコンピュータからプログラム97をダウンロードして補助記憶装置23に保存しても良い。
The
プログラム97は、コンピュータ90の制御プログラムとしてインストールされ、主記憶装置22にロードして実行される。これにより、コンピュータ90は上述した情報処理装置20として機能する。
The
各実施例で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The technical features (constituent requirements) described in each embodiment can be combined with each other, and by combining them, a new technical feature can be formed.
The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
10 ゲノム解析システム
20 情報処理装置
21 制御部
22 主記憶装置
23 補助記憶装置
24 通信部
29 読取部
31 読取装置
32 データサーバ
51 教師データDB
52 統合DB
53 学習モデル
531 入力層
532 中間層
533 出力層
55 報告書案DB
56 報告書DB
58 医学情報DB
60 報告書
61 書誌事項欄
611 ID欄
612 患者情報欄
613 検体欄
614 病理組織診断欄
615 検体番号欄
62 コメント欄
63 非同義体細胞変異欄
631 遺伝子欄
632 サイトバンド欄
633 DNA変異欄
634 アミノ酸変異欄
635 アリル頻度欄
636 知識データ欄
64 生殖細胞変異欄
641 遺伝子欄
642 サイトバンド欄
643 DNA変異欄
644 アミノ酸変異欄
645 知識データ欄
647 正常部アリル頻度欄
648 腫瘍部アリル頻度欄
65 解析欄
651 推定腫瘍含有量欄
652 変異頻度相関係数欄
66 RNA欄
661 遺伝子欄
662 サイトバンド欄
666 知識データ欄
667 変異欄
668 リード数欄
71 参加ボタン
72 依頼リスト
73 依頼リスト
74 検体情報欄
75 絞込条件欄
76 再検索ボタン
77 候補リスト
78 確認ボタン
79 依頼送信ボタン
81 ゲノムデータ取得部
82 ゲノムデータ入力部
83 出力部
84 第1受付部
85 第1出力部
86 第2受付部
87 第2出力部
90 コンピュータ
96 可搬型記録媒体
97 プログラム
98 半導体メモリ
10
52 Integrated DB
53 Learning model 531
56 Report DB
58 Medical Information DB
60
Claims (10)
報告書出力要求を受け付けた場合、
遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、
過去の日付および当該日付における報告書出力要求を受け付けた場合、
前記日付における前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、
遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、
更新された前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する
処理をコンピュータに実行させるプログラム。 Obtain the analysis result of the sample including the gene mutation detected in the sample,
When the report output request is accepted
Extraction and gene mutation, a medical information on the gene mutation acquired from multiple sources, from the integrated DB acquired date and integrated in association with the basis information of the medical information, medical information acquired the gene mutation as a key And
Output a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
When a report output request on a past date and that date is accepted
From the integrated DB in the date, extracts medical information acquired the gene mutation as a key,
Output a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
When the integrated DB is updated by adding medical information about gene mutation,
Medical information is extracted from the updated integrated DB using the acquired gene mutation as a key.
A program that causes a computer to execute a process of outputting an additional report that records an analysis result of the sample, extracted medical information, and a version of the integrated DB in association with each other.
ゲノムデータを受け付けて遺伝子変異に関する予測を出力する学習モデルに、取得したゲノムデータを入力し、
入力されたゲノムデータに基づいて前記学習モデルから出力された遺伝子変異に関する予測を取得し、
遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記予測をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、
遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、
更新された前記統合DBから、取得した前記予測をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する
処理をコンピュータに実行させるプログラム。 Obtain the analysis result of the sample including the genomic data obtained by reading the base sequence contained in the sample.
Input the acquired genomic data into a learning model that accepts genomic data and outputs predictions about gene mutations.
Based on the input genomic data, the prediction about the gene mutation output from the learning model is acquired, and the prediction is obtained.
Extraction and gene mutation, a medical information on the gene mutation acquired from multiple sources, before Symbol integrated DB that integrates in association with an acquisition date and the basis information of the medical information, medical information the acquired predicted as a key And
Output a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
When the integrated DB is updated by adding medical information about gene mutation,
Medical information is extracted from the updated integrated DB using the acquired prediction as a key.
A program that causes a computer to execute a process of outputting an additional report that records an analysis result of the sample, extracted medical information, and a version of the integrated DB in association with each other.
送信したレビュー依頼に対するレビュー結果を受け付け、
受け付けたレビュー結果に対するインセンティブを前記専門家と関連づけて記録する
請求項1または請求項2に記載のプログラム。 Send a review request regarding the update of the integrated DB to an expert,
Accept the review results for the submitted review request,
Record incentives for accepted review results in association with the expert
The program according to claim 1 or 2 .
送信したレビュー依頼に対するレビュー結果を受け付け、
受け付けたレビュー結果に対するインセンティブを前記専門家と関連づけて記録する
請求項1から請求項3のいずれか一つに記載のプログラム。 Send a review request for the report to an expert
Accept the review results for the submitted review request,
The program according to any one of claims 1 to 3 , which records an incentive for the received review result in association with the expert.
請求項3または請求項4に記載のプログラム。 The incentive is a cash voucher, a report creation request voucher, or a learning model voucher.
The program according to claim 3 or 4 .
請求項3から請求項5のいずれか一つに記載のプログラム。 The incentive varies based on the review results.
The program according to any one of claims 3 to 5 .
報告書出力要求を受け付けた場合、
前記第1受付部が受け付けた遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出する第1抽出部と、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力する第1出力部と、
過去の日付および当該日付における報告書出力要求を受け付ける第2受付部と、
前記日付における前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出する第2抽出部と、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力する第2出力部と、
遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、
更新された前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出する第3抽出部と、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する追加出力部と
を備える情報処理装置。 The first reception section that receives the analysis results for the sample containing the gene mutation detected in the sample, and
When the report output request is accepted
A gene mutation in which the first receiving unit has received a medical information on the gene mutation acquired from multiple sources, from the integrated DB that integrates in association with an acquisition date and the basis information of the medical information, said gene obtained The first extraction unit that extracts medical information using mutation as a key,
A first output unit that outputs a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
The second reception department that accepts past dates and report output requests on that date,
From the integrated DB in the date, a second extractor for extracting medical information acquired the gene mutation as a key,
A second output unit that outputs a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other .
When the integrated DB is updated by adding medical information about gene mutation,
A third extraction unit that extracts medical information from the updated integrated DB using the acquired gene mutation as a key.
An information processing device including an additional output unit that outputs an additional report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other .
ゲノムデータを受け付けて遺伝子変異に関する予測を出力する学習モデルに、受け付けたゲノムデータを入力し、入力されたゲノムデータに基づいて前記学習モデルから出力された遺伝子変異に関する予測を取得する予測取得部と、 A prediction acquisition unit that inputs the received genome data into the learning model that receives the genome data and outputs the prediction about the gene mutation, and acquires the prediction about the gene mutation output from the learning model based on the input genome data. ,
遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記予測をキーとして医学情報を抽出する第1抽出部と、 Medical information is extracted using the acquired prediction as a key from the integrated DB that integrates the gene mutation, the medical information related to the gene mutation acquired from a plurality of information sources, and the acquisition date and the basis information of the medical information. The first extraction unit and
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力する第1出力部と、 A first output unit that outputs a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、 When the integrated DB is updated by adding medical information about gene mutation,
更新された前記統合DBから、取得した前記予測をキーとして医学情報を抽出する第3抽出部と、 A third extraction unit that extracts medical information from the updated integrated DB using the acquired prediction as a key.
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する追加出力部と An additional output unit that outputs an additional report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
を備える情報処理装置。 Information processing device equipped with.
報告書出力要求を受け付けた場合、
遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、
過去の日付および当該日付における報告書出力要求を受け付けた場合、
前記日付における前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、
遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、
更新された前記統合DBから、取得した前記遺伝子変異をキーとして医学情報を抽出し、
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する
処理をコンピュータに実行させる情報処理方法。 Obtain the analysis result of the sample including the gene mutation detected in the sample,
When the report output request is accepted
Extraction and gene mutation, a medical information on the gene mutation acquired from multiple sources, from the integrated DB acquired date and integrated in association with the basis information of the medical information, medical information acquired the gene mutation as a key And
Output a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
When a report output request on a past date and that date is accepted
From the integrated DB in the date, extracts medical information acquired the gene mutation as a key,
Output a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
When the integrated DB is updated by adding medical information about gene mutation,
Medical information is extracted from the updated integrated DB using the acquired gene mutation as a key.
An information processing method in which a computer executes a process of outputting an additional report recorded by associating an analysis result of the sample with the extracted medical information and a version of the integrated DB .
ゲノムデータを受け付けて遺伝子変異に関する予測を出力する学習モデルに、取得したゲノムデータを入力し、 Input the acquired genomic data into a learning model that accepts genomic data and outputs predictions about gene mutations.
入力されたゲノムデータに基づいて前記学習モデルから出力された遺伝子変異に関する予測を取得し、 Based on the input genomic data, the prediction about the gene mutation output from the learning model is acquired, and the prediction is obtained.
遺伝子変異と、複数の情報源から取得した前記遺伝子変異に関する医学情報と、前記医学情報の取得日および根拠情報とを関連づけて統合した統合DBから、取得した前記予測をキーとして医学情報を抽出し、 Medical information is extracted using the acquired prediction as a key from the integrated DB that integrates the gene mutation, the medical information related to the gene mutation acquired from a plurality of information sources, and the acquisition date and the basis information of the medical information. ,
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した報告書を出力し、 Output a report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
遺伝子変異に関する医学情報が追加されることにより前記統合DBが更新された場合、 When the integrated DB is updated by adding medical information about gene mutation,
更新された前記統合DBから、取得した前記予測をキーとして医学情報を抽出し、 Medical information is extracted from the updated integrated DB using the acquired prediction as a key.
前記検体に関する解析結果と、抽出した医学情報と、前記統合DBのバージョンとを関連づけて記録した追加報告書を出力する Output an additional report that records the analysis result of the sample, the extracted medical information, and the version of the integrated DB in association with each other.
処理をコンピュータに実行させる情報処理方法。 An information processing method that causes a computer to perform processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093387A JP6777351B2 (en) | 2020-05-28 | 2020-05-28 | Programs, information processing equipment and information processing methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093387A JP6777351B2 (en) | 2020-05-28 | 2020-05-28 | Programs, information processing equipment and information processing methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019041409A Division JP6737519B1 (en) | 2019-03-07 | 2019-03-07 | Program, learning model, information processing device, information processing method, and learning model generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020144940A JP2020144940A (en) | 2020-09-10 |
JP6777351B2 true JP6777351B2 (en) | 2020-10-28 |
Family
ID=72354377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020093387A Active JP6777351B2 (en) | 2020-05-28 | 2020-05-28 | Programs, information processing equipment and information processing methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6777351B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112233725A (en) * | 2020-10-14 | 2021-01-15 | 合肥达徽基因科技有限公司 | ATP7B gene mutation second-generation sequencing automated analysis reading method and report system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1222602B1 (en) * | 1999-08-27 | 2015-12-09 | Iris Biotechnologies Inc. | Artificial intelligence system for genetic analysis |
JP2007122679A (en) * | 2005-09-27 | 2007-05-17 | Fujifilm Corp | Diagnostic reading support system |
US7757161B2 (en) * | 2006-03-15 | 2010-07-13 | Business Objects Software Ltd | Apparatus and method for automatically sizing fields within reports |
JP5581602B2 (en) * | 2009-03-19 | 2014-09-03 | 富士通株式会社 | Medical information display control method, medical information display control device, and program |
US20140032125A1 (en) * | 2011-02-12 | 2014-01-30 | Siemens Healthcare Diagnostics Inc. | Environment and Method for Rapid Analysis of Genomic Sequence Data |
WO2016035168A1 (en) * | 2014-09-03 | 2016-03-10 | 大塚製薬株式会社 | Pathology determination assistance device, method, program and storage medium |
CA2985491A1 (en) * | 2015-06-22 | 2016-12-29 | Counsyl, Inc. | Methods of predicting pathogenicity of genetic sequence variants |
JP6883584B2 (en) * | 2015-08-27 | 2021-06-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Integrated methods and systems for identifying functional patient-specific somatic abnormalities using multiomic cancer profiles |
JP7141029B2 (en) * | 2017-07-12 | 2022-09-22 | シスメックス株式会社 | How to build a database |
-
2020
- 2020-05-28 JP JP2020093387A patent/JP6777351B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020144940A (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Uddin et al. | Artificial intelligence for precision medicine in neurodevelopmental disorders | |
Vora et al. | An approach to integrating exome sequencing for fetal structural anomalies into clinical practice | |
Marx | The DNA of a nation | |
CN108474040A (en) | Recommended using the treatment based on group of Cell-free DNA | |
US20220183571A1 (en) | Predicting fractional flow reserve from electrocardiograms and patient records | |
WO2021207684A1 (en) | Predicting likelihood and site of metastasis from patient records | |
CN107406876A (en) | Show detection and treatment and the system and method for transmitting test result of the heterogeneous disease of sick cell | |
JP2003021630A (en) | Method of providing clinical diagnosing service | |
EP1839229A2 (en) | Methods, systems, and computer program products for developing and using predictive models for predicting a plurality of medical outcomes, for evaluating intervention strategies, and for simultaneously validating biomarker causality | |
US20220013195A1 (en) | Systems and methods for access management and clustering of genomic or phenotype data | |
Garringer et al. | Hearing impairment susceptibility in elderly men and the DFNA18 locus | |
US20230110360A1 (en) | Systems and methods for access management and clustering of genomic, phenotype, and diagnostic data | |
US20110093448A1 (en) | System method and computer program product for pedigree analysis | |
KR100314666B1 (en) | A method and network system for genome genealogy and family genome information service | |
US20230287516A1 (en) | Determination of a physiological condition with nucleic acid fragment endpoints | |
JP6737519B1 (en) | Program, learning model, information processing device, information processing method, and learning model generation method | |
JP6777351B2 (en) | Programs, information processing equipment and information processing methods | |
JP2007102709A (en) | Gene diagnostic marker selection program, device and system executing this program, and gene diagnostic system | |
WO2022024221A1 (en) | Program, learning model, information processing device, information processing method, and method for generating learning model | |
Møller et al. | The clinical utility of genetic testing in breast cancer kindreds: a prospective study in families without a demonstrable BRCA mutation | |
Sugawara et al. | Maternity Log study: a longitudinal lifelog monitoring and multiomics analysis for the early prediction of complicated pregnancy | |
Lu et al. | Case-cohort designs and analysis for clustered failure time data | |
JP2005309836A (en) | Cancer diagnosis support system | |
Eisenstein | The clinical code-breakers | |
US20230253115A1 (en) | Methods and systems for predicting in-vivo response to drug therapies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200707 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200707 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6777351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |