[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6774735B2 - Polyolefin resin composition for coating electric wires and cables and electric wires and cables - Google Patents

Polyolefin resin composition for coating electric wires and cables and electric wires and cables Download PDF

Info

Publication number
JP6774735B2
JP6774735B2 JP2015041473A JP2015041473A JP6774735B2 JP 6774735 B2 JP6774735 B2 JP 6774735B2 JP 2015041473 A JP2015041473 A JP 2015041473A JP 2015041473 A JP2015041473 A JP 2015041473A JP 6774735 B2 JP6774735 B2 JP 6774735B2
Authority
JP
Japan
Prior art keywords
resin
coating
cable
resin composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015041473A
Other languages
Japanese (ja)
Other versions
JP2016162634A (en
Inventor
宏樹 千葉
宏樹 千葉
稔 齋藤
稔 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015041473A priority Critical patent/JP6774735B2/en
Publication of JP2016162634A publication Critical patent/JP2016162634A/en
Application granted granted Critical
Publication of JP6774735B2 publication Critical patent/JP6774735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、電線・ケーブル被覆用ポリオレフィン樹脂組成物、および、これを用いた電線・ケーブルに関する。 The present invention relates to a polyolefin resin composition for coating electric wires and cables, and electric wires and cables using the same.

電気・電子機器に用いられる電線(絶縁電線ともいう)、電力ケーブルおよび通信ケーブル等の各種ケーブル(上記電線および各種ケーブルをまとめて電線等という)は、導体、芯線、導体束またはファイバ心線等(導体等ということがある)の外周にポリオレフィン樹脂からなる被覆を備えるものが汎用されている。
絶縁電線の絶縁被覆または各種ケーブルのシース(被覆ということがある)には、優れた強度特性や高い耐摩耗性が求められている。
Various cables such as electric wires (also referred to as insulated electric wires), power cables and communication cables used in electrical and electronic equipment (the above electric wires and various cables are collectively referred to as electric wires, etc.) include conductors, core wires, conductor bundles or fiber core wires. Those having a coating made of a polyolefin resin on the outer periphery (sometimes called a conductor or the like) are widely used.
The insulation coating of insulated wires or the sheath (sometimes referred to as coating) of various cables is required to have excellent strength characteristics and high wear resistance.

電線等の被覆を形成するための樹脂組成物として、特許文献1には、下記要件(b1)〜(b4)の全てを充足するエチレン−α−オレフィン共重合体(I)と、下記要件(c1)〜(c2)を充足する高密度ポリエチレン(II)とを特定の含有率で含み、下記要件(a1)〜(a5)の全てを充足する電線被覆用またはシース用樹脂組成物が記載されている(同文献の請求項1)。
(a1)メルトフローレート(MFR(2.16))が0.2〜2g/10分
(a2)密度が920〜940kg/m
(a3)110℃以下の融解成分割合(HL110)が30〜75%
(a4)流動の活性化エネルギー(Ea)が40kJ/mol以上
(a5)分子量分布(Mw/Mn)が6〜25
(b1)メルトフローレート(MFR)が0.05〜2g/10分
(b2)密度が905〜935kg/m
(b3)流動の活性化エネルギー(Ea)が40kJ/mol以上
(b4)分子量分布(Mw/Mn)が6〜25
(c1)メルトフローレート(MFR)が0.2〜20g/10分
(c2)密度が940〜975kg/m
As a resin composition for forming a coating of an electric wire or the like, Patent Document 1 describes an ethylene-α-olefin copolymer (I) satisfying all of the following requirements (b1) to (b4) and the following requirements (I). Described is a resin composition for wire coating or sheath, which contains high-density polyethylene (II) satisfying c1) to (c2) at a specific content and satisfies all of the following requirements (a1) to (a5). (Claim 1 of the same document).
(A1) Melt flow rate (MFR (2.16)) is 0.2 to 2 g / 10 minutes (a2) Density is 920 to 940 kg / m 3
(A3) The melting component ratio (HL110) of 110 ° C. or lower is 30 to 75%.
(A4) Flow activation energy (Ea) is 40 kJ / mol or more (a5) Molecular weight distribution (Mw / Mn) is 6 to 25
(B1) Melt flow rate (MFR) is 0.05 to 2 g / 10 minutes (b2) Density is 905 to 935 kg / m 3
(B3) Flow activation energy (Ea) is 40 kJ / mol or more (b4) Molecular weight distribution (Mw / Mn) is 6 to 25
(C1) Melt flow rate (MFR) is 0.2 to 20 g / 10 minutes (c2) Density is 940 to 975 kg / m 3

特許第5163237号公報Japanese Patent No. 5163237

ところで、被覆を備えた電線等は、通常、導体等の外周にポリオレフィン樹脂組成物を押出成形して、製造される。
ところが、従来のポリオレフィン樹脂組成物では、以下の問題があり、その解決が望まれていた。すなわち、被覆用のポリオレフィン樹脂組成物として、需要が高く、材料供給性がよい、フィルムグレードのポリオレフィン樹脂を含有する樹脂組成物を用いると、低コストで被覆を形成できる。しかし、このようなポリオレフィン樹脂組成物で形成した被覆は、表面が平滑にならずに外観荒れを生じる。この外観荒れは、フィルムグレードのポリオレフィン樹脂組成物に限らず、従来、被覆用として用いられている他のポリオレフィン樹脂組成物であっても発生することがあった。特に、被覆の外観荒れは、製造効率を高めるために、押出成形での線速を高くすると顕著に生じる。
また、従来のポリオレフィン樹脂組成物では、押出成形時に押出成形機にかかる負荷が大きくなって、押出成形が困難になる(容易な(低負荷での)押出性に劣る)ことがある。特に、押出性は、押出成形での線速を高くすると、急激に低下する。
さらに、近年、電線等の多様化によって、複雑な断面形状を有する電線等、大径化した電線等、被覆を厚肉化した電線等が用いられるようになってきている。しかし、押出性を確保するためにポリオレフィン樹脂組成物の押出性を高めると、押出成形されたポリオレフィン樹脂組成物が押出直後の形状を維持できずに(形状維持性に劣る)、ポリオレフィン樹脂組成物の形状が崩れ(ドローダウン)、その結果、所定形状の電線等を製造できなくなる。
By the way, an electric wire or the like having a coating is usually manufactured by extruding a polyolefin resin composition on the outer periphery of a conductor or the like.
However, the conventional polyolefin resin composition has the following problems, and it has been desired to solve them. That is, when a resin composition containing a film-grade polyolefin resin, which is in high demand and has good material supply, is used as the polyolefin resin composition for coating, the coating can be formed at low cost. However, the coating formed of such a polyolefin resin composition does not have a smooth surface and causes a rough appearance. This roughness in appearance may occur not only in film-grade polyolefin resin compositions but also in other polyolefin resin compositions conventionally used for coating. In particular, the appearance roughness of the coating becomes remarkable when the linear velocity in extrusion molding is increased in order to increase the manufacturing efficiency.
Further, in the conventional polyolefin resin composition, the load applied to the extrusion molding machine at the time of extrusion molding becomes large, which may make extrusion molding difficult (inferior in easy (low load) extrusion property). In particular, the extrudability decreases sharply when the linear velocity in extrusion molding is increased.
Further, in recent years, due to the diversification of electric wires and the like, electric wires having a complicated cross-sectional shape, electric wires having a large diameter, and electric wires having a thick coating have come to be used. However, if the extrudability of the polyolefin resin composition is increased in order to ensure the extrudability, the extruded polyolefin resin composition cannot maintain its shape immediately after extrusion (it is inferior in shape retention), and the polyolefin resin composition The shape of the wire collapses (drawdown), and as a result, it becomes impossible to manufacture an electric wire or the like having a predetermined shape.

本発明は、押出成形機への負荷を低減することができ、しかも押出成形後の形状維持性にも優れ、さらには耐摩耗性が高く、外観にも優れた被覆を形成可能な電線・ケーブル被覆用ポリオレフィン樹脂組成物、および、それを用いた電線・ケーブルを提供することを、課題とする。 INDUSTRIAL APPLICABILITY According to the present invention, the load on the extruder can be reduced, the shape can be maintained after extrusion molding, the wear resistance is high, and a coating having an excellent appearance can be formed. An object of the present invention is to provide a polyolefin resin composition for coating and an electric wire / cable using the same.

本発明者らは、電線等の被覆に用いられるポリオレフィン樹脂組成物において、特定の密度およびメルトフローレート(MFR)を持つポリエチレン樹脂(a1)と、この樹脂(a1)よりも高い密度と所定のMFRを持つ樹脂(a2)と、ポリプロピレン系樹脂(a3)とを特定の割合で含有させ、得られる樹脂組成物のMFRを特定の値に設定すると、樹脂組成物の流動性を高めて押出成形機への負荷を低減できるにもかかわらず、高い形状維持性をも兼ね備え、しかも耐摩耗性が高く、外観にも優れた被覆を形成できることを見出した。本発明はこの知見に基づきさらに検討を重ね、完成されるに至ったものである。 In the polyolefin resin composition used for coating electric wires and the like, the present inventors have a polyethylene resin (a1) having a specific density and melt flow rate (MFR), and a predetermined density higher than that of this resin (a1). When the resin (a2) having MFR and the polypropylene-based resin (a3) are contained in a specific ratio and the MFR of the obtained resin composition is set to a specific value, the fluidity of the resin composition is increased and extrusion molding is performed. It has been found that, despite being able to reduce the load on the machine, it also has high shape retention, high wear resistance, and can form a coating with excellent appearance. Based on this finding, the present invention has been further studied and completed.

本発明の課題は以下の手段によって達成された。
<1>密度が0.900〜0.935g/cmであり、メルトフローレート(190℃、21.18N)が10g/10分以下であるポリエチレン樹脂(a1)40〜67質量%と、
エチレン−αオレフィン共重合体およびエチレン単独重合体からなる群より選択される少なくとも1種の重合体の樹脂であって、密度が0.940〜0.965g/cmであり、メルトフローレート(190℃、21.18N)が0.2〜10g/10分である樹脂(a2)30〜57質量%と、
メルトフローレート(230℃、21.18N)が0.8〜50g/10分であるポリプロピレン系樹脂(a3)3〜25質量%とを含有し、
メルトフローレート(190℃、21.18N)が0.61〜5.0g/10分である電線・ケーブル被覆用ポリオレフィン樹脂組成物。
>カーボンブラック(b)を含有する<1>に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。
>前記ポリエチレン樹脂(a1)が、メタロセン触媒を用いて合成されたポリエチレン樹脂である<1>または<2>に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。
>前記ポリプロピレン系樹脂(a3)が、プロピレンの単独重合体、プロピレンとエチレンとの共重合体、プロピレンと1−ブテンとの共重合体、プロピレンとエチレンと1−ブテンとの3元共重合体からなる群より選択される少なくとも1種の重合体からなるポリプロピレン系樹脂を含有する<1>〜<>のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。
>前記カーボンブラック(b)の含有量が、前記ポリエチレン樹脂(a1)、前記樹脂(a2)および前記ポリプロピレン系樹脂(a3)の合計100質量部に対して1.5〜5.0質量部である<>〜<>のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。
>前記ポリエチレン樹脂(a1)の前記メルトフローレート(190℃、21.18N)が1.0g/10分以上である<1>〜<>のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。
>上記<1>〜<>のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物を押出成形してなる被覆を有することを特徴とする電線・ケーブル。
本明細書において「〜」を用いて表される数値範囲は、「〜」前後に記載される数値を下限値および上限値として含む範囲を意味する。
The subject of the present invention has been achieved by the following means.
<1> Polyethylene resin (a1) having a density of 0.9000 to 0.935 g / cm 3 and a melt flow rate (190 ° C., 21.18 N) of 10 g / 10 minutes or less, 40 to 67 % by mass.
A resin of at least one polymer selected from the group consisting of an ethylene-α-olefin copolymer and an ethylene homopolymer, having a density of 0.940 to 0.965 g / cm 3 and a melt flow rate (melt flow rate). 190 ° C., 21.18N) is 0.2 to 10 g / 10 minutes, and the resin (a2) is 30 to 57 % by mass.
It contains 3 to 25% by mass of a polypropylene resin (a3) having a melt flow rate (230 ° C., 21.18N) of 0.8 to 50 g / 10 minutes .
A polyolefin resin composition for coating electric wires and cables having a melt flow rate (190 ° C., 21.18N) of 0.61 to 5.0 g / 10 minutes.
< 2 > The polyolefin resin composition for electric wire / cable coating according to <1> , which contains carbon black (b).
< 3 > The polyolefin resin composition for electric wire / cable coating according to <1> or <2> , wherein the polyethylene resin (a1) is a polyethylene resin synthesized by using a metallocene catalyst.
< 4 > The polypropylene-based resin (a3) is a homopolymer of propylene, a copolymer of propylene and ethylene, a copolymer of propylene and 1-butene, and a ternary polymer of propylene, ethylene and 1-butene. at least one containing polypropylene resins consisting of polymers <1> to wire and cable coatings for the polyolefin resin composition according to any one of <3> is selected from the group consisting of polymer.
< 5 > The content of the carbon black (b) is 1.5 to 5.0 mass with respect to 100 parts by mass of the total of the polyethylene resin (a1), the resin (a2) and the polypropylene resin (a3). The polyolefin resin composition for coating an electric wire / cable according to any one of < 2 > to < 4 >.
< 6 > The electric wire / cable according to any one of <1> to < 5 >, wherein the melt flow rate (190 ° C., 21.18N) of the polyethylene resin (a1) is 1.0 g / 10 minutes or more. Polyolefin resin composition for coating.
< 7 > An electric wire / cable having a coating formed by extruding the polyolefin resin composition for coating an electric wire / cable according to any one of <1> to < 6 > above.
The numerical range represented by using "~" in the present specification means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

本発明の電線・ケーブル被覆用ポリオレフィン樹脂組成物は、押出成形機への負荷を低減でき(押出性に優れ)、しかも押出成形後の形状を維持できる(形状維持性に優れる)。また、本発明のケーブル被覆用ポリオレフィン樹脂組成物は、耐摩耗性が高く、表面が平滑で外観にも優れた被覆を形成することができる。この電線・ケーブル被覆用ポリオレフィン樹脂組成物は、押出成形での線速を例えば100m/min程度まで高めても、上記の優れた、押出性、形状維持性および外観を保持できる。 The polyolefin resin composition for coating electric wires and cables of the present invention can reduce the load on the extrusion molding machine (excellent extrudability) and can maintain the shape after extrusion molding (excellent shape retention). Further, the polyolefin resin composition for cable coating of the present invention can form a coating having high abrasion resistance, a smooth surface, and an excellent appearance. This polyolefin resin composition for coating electric wires and cables can maintain the above-mentioned excellent extrudability, shape retention and appearance even if the linear velocity in extrusion molding is increased to, for example, about 100 m / min.

本発明の好ましい電線・ケーブルとしてのスロット型光ケーブルを示す概略図である。It is the schematic which shows the slot type optical cable as a preferable electric wire / cable of this invention. 本発明の別の好ましい電線・ケーブルとしての漏洩同軸ケーブルの形状および構造を示す概略説明図である。It is the schematic explanatory drawing which shows the shape and structure of the leakage coaxial cable as another preferable electric wire / cable of this invention.

<<電線・ケーブル被覆用ポリオレフィン樹脂組成物>>
本発明の電線・ケーブル被覆用ポリオレフィン樹脂組成物(以下、本発明の樹脂組成物ということがある)は、密度が0.900〜0.935g/cmであり、メルトフローレート(190℃、21.18N)が10g/10分以下であるポリエチレン樹脂(a1)20〜70質量%と、エチレン−αオレフィン共重合体およびエチレン単独重合体からなる群より選択される少なくとも1種の重合体の樹脂であって、密度が0.940〜0.965g/cmであり、メルトフローレート(190℃、21.18N)が0.2〜10g/10分である樹脂(a2)20〜75質量%と、ポリプロピレン系樹脂(a3)3〜25質量%とを含有する。これら成分を含有する本発明の樹脂組成物は、メルトフローレート(190℃、21.18N)が0.61〜5.0g/10分の範囲にある。
<< Polyolefin resin composition for wire / cable coating >>
The polymer resin composition for coating electric wires and cables of the present invention (hereinafter, may be referred to as the resin composition of the present invention) has a density of 0.900 to 0.935 g / cm 3 and a melt flow rate (190 ° C., 21.18N) is 10 g / 10 minutes or less of polyethylene resin (a1) 20 to 70% by mass, and at least one polymer selected from the group consisting of ethylene-α olefin copolymers and ethylene homopolymers. Resin (a2) 20 to 75 mass of resin having a density of 0.940 to 0.965 g / cm 3 and a melt flow rate (190 ° C., 21.18 N) of 0.2 to 10 g / 10 minutes. % And 3 to 25% by mass of the polypropylene-based resin (a3). The resin composition of the present invention containing these components has a melt flow rate (190 ° C., 21.18N) in the range of 0.61 to 5.0 g / 10 minutes.

本発明に用いる各成分について説明する。
なお、各成分および本発明の樹脂組成物において、密度、MFR(190℃、21.18N)等の測定方法は、実施例にて、詳細に説明する。
Each component used in the present invention will be described.
The method for measuring the density, MFR (190 ° C., 21.18N), etc. of each component and the resin composition of the present invention will be described in detail in Examples.

<(a1)ポリエチレン樹脂>
本発明に用いるポリエチレン樹脂(a1)は、密度およびMFRが所定のものであれば特に限定されず、例えば、エチレンと炭素数4〜12のα−オレフィンとの共重合体が挙げられる。α−オレフィンとしては、特に限定されず、例えば、1−ブテン、1−へキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン等が挙げられる。
<(A1) Polyethylene resin>
The polyethylene resin (a1) used in the present invention is not particularly limited as long as it has a predetermined density and MFR, and examples thereof include a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms. The α-olefin is not particularly limited, and examples thereof include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.

上記共重合体において、エチレン構成成分の含有率は、特に限定されないが、形状維持性の点で、共重合体の全構成成分中、50〜99.9質量%が好ましく、75〜99.9質量%がより好ましい。エチレン構成成分の含有率は、例えば赤外分光光度法によって、求めることができる。 In the above-mentioned copolymer, the content of ethylene constituents is not particularly limited, but from the viewpoint of shape retention, 50 to 99.9% by mass is preferable, and 75 to 99.9% by mass, based on all the constituents of the copolymer. More preferably by mass. The content of ethylene constituents can be determined, for example, by infrared spectrophotometry.

ポリエチレン樹脂(a1)としては、特に限定されないが、例えば、LDPE(低密度ポリエチレン)、LLDPE(直鎖状低密度ポリエチレン)、MDPE(中密度ポリエチレン)、メタロセン触媒存在下に合成されたポリエチレン樹脂等が挙げられる。メタロセン触媒存在下に合成されたポリエチレン樹脂は、メタロセン触媒存在下で、エチレンおよびα−オレフィンを共重合させた樹脂である。ポリエチレン樹脂(a1)としては、引張強度や環境応力き裂(ESCR)の点で、LLDPEまたはメタロセン触媒存在下に合成されたポリエチレン樹脂が好ましい。 The polyethylene resin (a1) is not particularly limited, but for example, LDPE (low density polyethylene), LLDPE (linear low density polyethylene), MDPE (medium density polyethylene), polyethylene resin synthesized in the presence of a metallocene catalyst, and the like. Can be mentioned. The polyethylene resin synthesized in the presence of a metallocene catalyst is a resin obtained by copolymerizing ethylene and α-olefin in the presence of a metallocene catalyst. As the polyethylene resin (a1), a polyethylene resin synthesized in the presence of LLDPE or a metallocene catalyst is preferable in terms of tensile strength and environmental stress crack (ESCR).

ポリエチレン樹脂(a1)の密度は、0.900〜0.935g/cmであり、好ましくは0.910〜0.925g/cmであり、さらに好ましくは0.912〜0.923g/cmである。密度が小さすぎると被覆に高い耐摩耗性を付与できないことがある。一方、密度が大きすぎると押出性に劣るものとなる。また、密度が上記範囲にあると、電線等に、バランスに優れた柔軟性と耐摩耗性とを付与でき、さらに低温衝撃性も付与することができる。 The density of the polyethylene resin (a1) is a 0.900~0.935g / cm 3, preferably 0.910~0.925g / cm 3, more preferably 0.912~0.923g / cm 3 Is. If the density is too low, it may not be possible to impart high wear resistance to the coating. On the other hand, if the density is too high, the extrudability will be inferior. Further, when the density is in the above range, it is possible to impart well-balanced flexibility and abrasion resistance to the electric wire and the like, and further to impart low temperature impact resistance.

ポリエチレン樹脂(a1)のMFR(190℃、21.18N)は、10g/10分以下であり、好ましくは1.0〜5.0g/10分、さらに好ましくは1.0〜3.0g/10分である。MFRが10g/10分を超えると、押出成形後に電線・ケーブル被覆用ポリオレフィン樹脂組成物の形状が崩れて、形状維持性が低下する。特に、後述する、異形電線・ケーブル、大径厚肉電線・ケーブル、または、自己支持型の電線・ケーブル等を製造する場合に、その断面形状が崩れやすくなる。 The MFR (190 ° C., 21.18N) of the polyethylene resin (a1) is 10 g / 10 minutes or less, preferably 1.0 to 5.0 g / 10 minutes, and more preferably 1.0 to 3.0 g / 10 minutes. Minutes. If the MFR exceeds 10 g / 10 minutes, the shape of the polyolefin resin composition for coating electric wires / cables is deformed after extrusion molding, and the shape maintainability is lowered. In particular, when a deformed electric wire / cable, a large-diameter thick-walled electric wire / cable, or a self-supporting electric wire / cable, which will be described later, is manufactured, the cross-sectional shape is liable to collapse.

ポリエチレン樹脂(a1)は、上記の密度およびMFRを満たす市販品を用いてもよく、適宜、常法に基づいて合成して用いてもよい。
市販品としては、例えば、「カーネル」(商品名、日本ポリエチレン社製)、「エボリュー」(商品名、プライムポリマー社製)、「モアテック」(商品名、プライムポリマー社製)、「NUC」(商品名、日本ユニカー社製)、「ノバテック」(商品名、日本ポリエチレン社製)等を挙げることができる。
As the polyethylene resin (a1), a commercially available product satisfying the above density and MFR may be used, or may be appropriately synthesized and used according to a conventional method.
Examples of commercially available products include "Kernel" (trade name, manufactured by Japan Polyethylene Corporation), "Evolu" (trade name, manufactured by Prime Polymer Co., Ltd.), "More Tech" (trade name, manufactured by Prime Polymer Co., Ltd.), and "NUC" (trade name, manufactured by Prime Polymer Co., Ltd.). Product name, manufactured by Nippon Unicar Co., Ltd.), "Novatec" (trade name, manufactured by Japan Polyethylene Corporation), etc. can be mentioned.

ポリエチレン樹脂(a1)を合成する場合は、エチレンおよびα−オレフィンを、例えば、気相重合装置または液相重合装置を用いて、チーグラー・ナッタ触媒またはメタロセン触媒存在下で、共重合させる。このとき、密度は、例えば、α−オレフィンの種類や導入量等によって、所定の範囲に設定できる。また、MFRは、例えば、平均分子量等によって、所定の範囲に設定できる。 When synthesizing the polyethylene resin (a1), ethylene and α-olefin are copolymerized in the presence of a Ziegler-Natta catalyst or a metallocene catalyst, for example, using a gas phase polymerization apparatus or a liquid phase polymerization apparatus. At this time, the density can be set in a predetermined range depending on, for example, the type of α-olefin and the amount introduced. Further, the MFR can be set in a predetermined range depending on, for example, the average molecular weight.

ポリエチレン樹脂(a1)は、通常、溶融粘度が小さく、特に異形電線・ケーブル等を製造する場合には形状維持性に劣る。しかし、ポリエチレン樹脂(a1)を、後述する範囲の含有率の樹脂(a2)およびポリプロピレン系樹脂(a3)と併用し、かつ、ポリエチレン樹脂(a1)の、本発明の樹脂組成物中の含有率を20〜70質量%にすると、形状維持性が改善され、しかも、優れた押出性を有し、高い耐摩耗性と優れた外観の被覆を形成できる樹脂組成物となる。しかも、上記の優れた、押出性、形状維持性および外観は、押出成形での線速を例えば100m/min程度まで高めても、得られる。ポリエチレン樹脂(a1)の含有率が20質量%未満であると、押出成形機への負荷が増大し、特に線速を高めると押出成形できないことがある。一方、70質量%を超えると、耐摩耗性に劣るものとなる。
ポリエチレン樹脂(a1)の含有率は、押出性および形状維持性を両立し、被覆に高い耐摩耗性と優れた外観を付与できる点で、40〜67質量%であることが好ましく、40〜60質量%であることがさらに好ましい。
The polyethylene resin (a1) usually has a small melt viscosity, and is inferior in shape retention, especially when a deformed electric wire, a cable, or the like is manufactured. However, the polyethylene resin (a1) is used in combination with the resin (a2) and the polypropylene-based resin (a3) having a content in the range described later, and the content of the polyethylene resin (a1) in the resin composition of the present invention. When the value is 20 to 70% by mass, the resin composition has improved shape retention, has excellent extrudability, and can form a coating having high wear resistance and excellent appearance. Moreover, the above-mentioned excellent extrudability, shape retention and appearance can be obtained even if the linear velocity in extrusion molding is increased to, for example, about 100 m / min. If the content of the polyethylene resin (a1) is less than 20% by mass, the load on the extrusion molding machine increases, and in particular, if the linear velocity is increased, extrusion molding may not be possible. On the other hand, if it exceeds 70% by mass, the wear resistance becomes inferior.
The content of the polyethylene resin (a1) is preferably 40 to 67% by mass, preferably 40 to 60%, in that both extrudability and shape retention can be achieved, and high abrasion resistance and excellent appearance can be imparted to the coating. It is more preferably by mass%.

ポリエチレン樹脂(a1)は、1種単独で使用してもよく、また2種以上を併用してもよい。2種以上を併用する場合、MFR、好ましくは密度を、共重合体それぞれが満たしているのがよいが、2種以上の共重合体のブレンド物が全体として満たしていてもよい。 The polyethylene resin (a1) may be used alone or in combination of two or more. When two or more kinds are used in combination, the MFR, preferably the density, is preferably satisfied by each of the copolymers, but a blend of two or more kinds of copolymers may be satisfied as a whole.

<樹脂(a2)>
本発明に用いる樹脂(a2)は、エチレン−αオレフィン共重合体およびエチレン単独重合体からなる群より選択される少なくとも1種の重合体の樹脂である。エチレン−αオレフィン共重合体は、密度およびMFRが所定のものであれば特に限定されず、例えば、エチレンと炭素数4〜12のα−オレフィンとの共重合体が挙げられる。α−オレフィンとしては、特に限定されず、例えば、1−ブテン、1−へキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン等が挙げられる。
<Resin (a2)>
The resin (a2) used in the present invention is a resin of at least one polymer selected from the group consisting of an ethylene-α-olefin copolymer and an ethylene homopolymer. The ethylene-α-olefin copolymer is not particularly limited as long as it has a predetermined density and MFR, and examples thereof include a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms. The α-olefin is not particularly limited, and examples thereof include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.

エチレン−αオレフィン共重合体において、エチレン構成成分の含有率は、特に限定されないが、強度特性や形状維持性の点で、共重合体の全構成成分中、95質量%以上が好ましく、97〜100質量%がより好ましい。エチレン構成成分の含有率は上記方法で求めることができる。
樹脂(a2)は、エチレン単独重合体、および、エチレン−αオレフィン共重合体の樹脂のなかでも、エチレン単独重合体の樹脂が好ましい。
In the ethylene-α-olefin copolymer, the content of the ethylene constituent component is not particularly limited, but in terms of strength characteristics and shape retention, 95% by mass or more is preferable in the total constituent components of the copolymer, and 97 to 97 to 100% by mass is more preferable. The content of ethylene constituents can be determined by the above method.
The resin (a2) is preferably an ethylene homopolymer resin, among the ethylene homopolymer and ethylene-α-olefin copolymer resins.

樹脂(a2)としては、特に限定されないが、例えば、HDPE(高密度ポリエチレン)、超高分子量ポリエチレン(UHMWPE)等が挙げられる。なかでも、HDPEが好ましい。
樹脂(a2)の密度は、0.940〜0.965g/cmであり、好ましくは0.945〜0.960g/cmであり、さらに好ましくは0.948〜0.958g/cmである。密度が小さすぎると機械的強度や耐摩耗性が維持できないことがある。一方、密度が大きすぎると押出性に劣るものとなる。
The resin (a2) is not particularly limited, and examples thereof include HDPE (high density polyethylene) and ultra high molecular weight polyethylene (UHMWPE). Of these, HDPE is preferable.
The density of the resin (a2) is 0.940 to 0.965 g / cm 3 , preferably 0.945 to 0.960 g / cm 3 , and more preferably 0.948 to 0.958 g / cm 3 . is there. If the density is too low, mechanical strength and wear resistance may not be maintained. On the other hand, if the density is too high, the extrudability will be inferior.

樹脂(a2)のMFR(190℃、21.18N)は、0.2〜10g/10分未満であり、好ましくは0.8〜5g/10分であり、さらに好ましくは0.8〜3g/10分である。MFRが0.2g/10分未満であると、押出成形機にかかるモーター負荷が高くなり、押出成形性に劣る。特に押出成形での線速を高めると押出成形性が大幅に低下する(高速成形性に劣る)。一方、10g/10分を超えると、押出成形後に電線・ケーブル被覆用ポリオレフィン樹脂組成物がドローダウンして、形状維持性が低下する。 The MFR (190 ° C., 21.18N) of the resin (a2) is less than 0.2 to 10 g / 10 minutes, preferably 0.8 to 5 g / 10 minutes, and more preferably 0.8 to 3 g / min. 10 minutes. If the MFR is less than 0.2 g / 10 minutes, the motor load applied to the extruder becomes high and the extrusion moldability is inferior. In particular, when the linear velocity in extrusion molding is increased, the extrusion moldability is significantly reduced (inferior in high speed moldability). On the other hand, if it exceeds 10 g / 10 minutes, the polyolefin resin composition for wire / cable coating draws down after extrusion molding, and the shape retention property deteriorates.

上記範囲の密度およびMFRを有する樹脂(a2)は、上記の特性を満たす市販品を用いてもよく、適宜、常法に基づいて合成して用いてもよい。
エチレン―αオレフィン共重合体の樹脂の市販品としては、例えば、「エボリューH」(商品名、プライムポリマー社製)、「SURPASS」(商品名、NOVAケミカルズ社製)等を挙げることができる。
エチレン単独重合体の樹脂の市販品としては、例えば、「ハイゼックス」(商品名、プライムポリマー社製)、「ニポロンハード」(商品名、東ソー社製)、「ノバテック」(商品名、日本ポリエチレン社製)等を挙げることができる。
As the resin (a2) having a density and MFR in the above range, a commercially available product satisfying the above characteristics may be used, or may be appropriately synthesized and used according to a conventional method.
Examples of commercially available products of ethylene-α-olefin copolymer resins include "Evolu H" (trade name, manufactured by Prime Polymer Co., Ltd.) and "SURPASS" (trade name, manufactured by NOVA Chemicals).
Commercially available products of ethylene homopolymer resins include, for example, "HIZEX" (trade name, manufactured by Prime Polymer Co., Ltd.), "Nipolon Hard" (trade name, manufactured by Tosoh Co., Ltd.), and "Novatec" (trade name, manufactured by Nippon Polyethylene). ) Etc. can be mentioned.

樹脂(a2)を合成する場合は、エチレン、所望によりα−オレフィンを、例えば、チーグラー・ナッタ触媒を用いた低圧法、または、中圧法等により、重合または共重合させる。このとき、密度およびMFRは、ポリエチレン樹脂(a1)と同様にして、所定の範囲に設定できる。 When synthesizing the resin (a2), ethylene, preferably α-olefin, is polymerized or copolymerized by, for example, a low-pressure method using a Ziegler-Natta catalyst, a medium-pressure method, or the like. At this time, the density and MFR can be set in a predetermined range in the same manner as the polyethylene resin (a1).

樹脂(a2)の、本発明の樹脂組成物中の含有率は、20〜75質量%である。この含有率が20質量%未満であると、耐摩耗性に劣るものとなる。一方、75質量%を超えると、押出成形機への負荷が増大し、特に線速を高めると押出成形できないことがある。
樹脂(a2)の含有率は、形状維持性を低下させることなく、押出成形機への負荷を低減できる点で、30〜57質量%であることが好ましく、40〜60質量%であることがさらに好ましい。
The content of the resin (a2) in the resin composition of the present invention is 20 to 75% by mass. If this content is less than 20% by mass, the wear resistance will be inferior. On the other hand, if it exceeds 75% by mass, the load on the extrusion molding machine increases, and in particular, if the linear velocity is increased, extrusion molding may not be possible.
The content of the resin (a2) is preferably 30 to 57% by mass, preferably 40 to 60% by mass, in that the load on the extrusion molding machine can be reduced without lowering the shape retention. More preferred.

樹脂(a2)は、1種単独で使用してもよく、また2種以上を併用してもよい。2種以上を併用する場合、それぞれが密度およびMFRを満たしているのがよいが、2種以上のポリエチレンブレンド物が全体として密度およびMFRを満たしていてもよい。 The resin (a2) may be used alone or in combination of two or more. When two or more kinds are used together, it is preferable that each of them satisfies the density and MFR, but the polyethylene blend of two or more kinds may satisfy the density and MFR as a whole.

<(a3)ポリプロピレン系樹脂>
本発明においては、ポリプロピレン系樹脂(a3)を用いる。ポリエチレン樹脂(a1)および樹脂(a2)にポリプロピレン系樹脂を特定量含有させることにより、ポリエチレン樹脂(a1)および樹脂(a2)の特性を維持しつつ、優れた外観を被覆に付与できる。
本発明に用いるポリプロピレン系樹脂(a3)は、特に限定されず、プロピレン単独重合体の樹脂(ホモポリプロピレン樹脂)や、プロピレン−αオレフィンランダム共重合体の樹脂、エチレン−プロピレンブロック共重合体の樹脂等を用いることができる。ここで、プロピレン−αオレフィンランダム共重合体の樹脂は、αオレフィン構成成分の含有率が1〜10質量%程度のものをいい、αオレフィン構成成分がプロピレン鎖中にランダムに取り込まれているものをいう。また、エチレン−プロピレンブロック共重合体は、ポリエチレンやエチレン―プロピレンゴム(EPR)の含有率が5〜20質量%程度のものをいい、ポリプロピレンの中にポリエチレンやEPRが独立して存在する海島構造であるものをいう。
プロピレン−αオレフィンランダム共重合体としては、特に限定されず、例えば、プロピレンとエチレンとの共重合体、プロピレンと1−ブテンとの共重合体、プロピレンとエチレンと1−ブテンとの3元共重合体等が挙げられる。
<(A3) Polypropylene resin>
In the present invention, polypropylene-based resin (a3) is used. By containing a specific amount of a polypropylene-based resin in the polyethylene resin (a1) and the resin (a2), it is possible to impart an excellent appearance to the coating while maintaining the characteristics of the polyethylene resin (a1) and the resin (a2).
The polypropylene-based resin (a3) used in the present invention is not particularly limited, and is a propylene homopolymer resin (homopolypropylene resin), a propylene-α-olefin random copolymer resin, or an ethylene-propylene block copolymer resin. Etc. can be used. Here, the resin of the propylene-α-olefin random copolymer means that the content of the α-olefin component is about 1 to 10% by mass, and the α-olefin component is randomly incorporated into the propylene chain. To say. The ethylene-propylene block copolymer has a polyethylene or ethylene-propylene rubber (EPR) content of about 5 to 20% by mass, and has a sea-island structure in which polyethylene or EPR independently exists in polypropylene. It means something that is.
The propylene-α-olefin random copolymer is not particularly limited, and for example, a copolymer of propylene and ethylene, a copolymer of propylene and 1-butene, and a ternary copolymer of propylene, ethylene and 1-butene. Examples include copolymers.

ポリプロピレン系樹脂(a3)としては、押出成形後の外観の点で、プロピレン単独重合体の樹脂またはプロピレン−αオレフィンランダム共重合体の樹脂が好ましく、プロピレンの単独重合体、プロピレンとエチレンとの共重合体、プロピレンと1−ブテンとの共重合体、プロピレンとエチレンと1−ブテンとの3元共重合体からなる群より選択される少なくとも1種の重合体の樹脂がさらに好ましい。 As the polypropylene-based resin (a3), a propylene homopolymer resin or a propylene-α-olefin random copolymer resin is preferable from the viewpoint of appearance after extrusion molding, and a propylene homopolymer, a copolymer of propylene and ethylene, is preferable. A resin of at least one polymer selected from the group consisting of a polymer, a copolymer of propylene and 1-butene, and a ternary copolymer of propylene, ethylene and 1-butene is more preferable.

ポリプロピレン系樹脂(a3)の密度は、特に限定されず、例えば、0.900〜0.920g/cmが好ましい。 The density of the polypropylene-based resin (a3) is not particularly limited, and is preferably 0.900 to 0.920 g / cm 3 , for example.

ポリプロピレン系樹脂(a3)のMFR(230℃、21.18N)は、特に限定されず、例えば、好ましくは0.5〜50g/10分であり、より好ましくは0.5〜30g/10分であり、さらに好ましくは0.5〜10g/10分である。このようなMFR値を有するポリプロピレン系樹脂を用いることにより、本発明に使用可能な、ポリエチレン樹脂(a1)およびと樹脂(a2)両者の分子量分布を広げることができ、電線等の外観を向上させることができる。 The MFR (230 ° C., 21.18N) of the polypropylene resin (a3) is not particularly limited, and is, for example, preferably 0.5 to 50 g / 10 minutes, more preferably 0.5 to 30 g / 10 minutes. Yes, more preferably 0.5-10 g / 10 minutes. By using a polypropylene-based resin having such an MFR value, the molecular weight distribution of both the polyethylene resin (a1) and the resin (a2) that can be used in the present invention can be widened, and the appearance of electric wires and the like can be improved. be able to.

ポリプロピレン系樹脂(a3)は、上記の特性を満たす市販品を用いてもよく、適宜、常法に基づいて合成して用いてもよい。
市販品としては、例えば、「サンアロマーPP」(商品名、サンアロマー社製)、「プライムポリプロ」(商品名、プライムポリマー社製)、「ノバテックPP」(商品名、日本ポリプロ社製)等を挙げることができる。
As the polypropylene-based resin (a3), a commercially available product satisfying the above characteristics may be used, or may be appropriately synthesized and used according to a conventional method.
Examples of commercially available products include "SunAllomer PP" (trade name, manufactured by SunAllomer Ltd.), "Prime Polypro" (trade name, manufactured by Prime Polymer Co., Ltd.), "Novatec PP" (trade name, manufactured by Japan Polypropylene Corporation), and the like. be able to.

ポリプロピレン系樹脂を合成する場合は、プロピレン、所望によりα−オレフィンを、例えば、気相重合装置または液相重合装置を用いて、各種触媒の存在下で、共重合させる。このとき、密度およびMFRは、ポリエチレン樹脂(a1)と同様にして、所定の範囲に設定できる。 When synthesizing a polypropylene-based resin, propylene, preferably an α-olefin, is copolymerized in the presence of various catalysts using, for example, a gas phase polymerization apparatus or a liquid phase polymerization apparatus. At this time, the density and MFR can be set in a predetermined range in the same manner as the polyethylene resin (a1).

ポリプロピレン系樹脂(a3)の、本発明の樹脂組成物中の含有率は、3〜25質量%であり、好ましくは5〜15質量%である。この含有率が3質量%未満であると、耐摩耗性および外観に劣るものとなる。一方、25質量%を超えると、押出成形機への負荷が増大し、特に線速を高めると押出成形できないことがある。また、柔軟性が損なわれ、耐寒性や耐候性にも劣る電線等(被覆)となる。 The content of the polypropylene-based resin (a3) in the resin composition of the present invention is 3 to 25% by mass, preferably 5 to 15% by mass. If this content is less than 3% by mass, the wear resistance and appearance will be inferior. On the other hand, if it exceeds 25% by mass, the load on the extrusion molding machine increases, and in particular, if the linear velocity is increased, extrusion molding may not be possible. In addition, the flexibility is impaired, and the wire or the like (coating) is inferior in cold resistance and weather resistance.

ポリプロピレン系樹脂(a3)は、1種単独で使用してもよく、また2種以上を併用してもよい。2種以上を併用する場合、それぞれが密度およびMFRを満たしているのがよいが、2種以上のポリプロピレン系樹脂のブレンド物が全体として密度およびMFRを満たしていてもよい。 The polypropylene-based resin (a3) may be used alone or in combination of two or more. When two or more kinds are used in combination, it is preferable that each of them satisfies the density and MFR, but a blend of two or more kinds of polypropylene-based resins may satisfy the density and MFR as a whole.

<(b)カーボンブラック>
本発明に用いるカーボンブラック(b)としては、その種類は特に限定されず、種々のものを用いることができる。例えば、ファーネスブラック、サーマルブラック等の補強用カーボンブラック、アセチレンブラック、ケッチェンブラック等の導電性カーボンブラック等が挙げられる。なかでも、ファーネスブラックが好ましい。
カーボンブラック(b)の平均粒径は、特に限定されないが、好ましくは10〜500nmである。
カーボンブラック(b)は、1種単独で使用してもよく、また2種以上を併用してもよい。
カーボンブラック(b)としては、例えば、「旭カーボン」、「SUNBLACK」(商品名、いずれも旭カーボン社製)等を挙げることができる。
<(B) Carbon black>
The type of carbon black (b) used in the present invention is not particularly limited, and various carbon blacks can be used. For example, reinforcing carbon black such as furnace black and thermal black, and conductive carbon black such as acetylene black and ketjen black can be mentioned. Of these, furnace black is preferable.
The average particle size of the carbon black (b) is not particularly limited, but is preferably 10 to 500 nm.
The carbon black (b) may be used alone or in combination of two or more.
Examples of the carbon black (b) include "Asahi Carbon" and "SUNBLACK" (trade names, both manufactured by Asahi Carbon Co., Ltd.).

カーボンブラック(b)の、本発明の樹脂組成物中の含有量は、特に限定されない。例えば、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)の合計100質量部に対して、1.5〜5.0質量部が好ましく、2.0〜3.0質量部がさらに好ましい。この含有量が上記範囲にあると、被覆の機械特性や外観を損なわずに、屋外で使用され紫外線に曝されても長期間にわたる機械特性を維持できる。 The content of carbon black (b) in the resin composition of the present invention is not particularly limited. For example, 1.5 to 5.0 parts by mass is preferable, and 2.0 to 3.0 parts by mass is preferable with respect to a total of 100 parts by mass of the polyethylene resin (a1), the resin (a2) and the polypropylene resin (a3). More preferred. When this content is in the above range, the mechanical properties of the coating can be maintained for a long period of time even when used outdoors and exposed to ultraviolet rays without impairing the mechanical properties and appearance of the coating.

<その他成分>
本発明の樹脂組成物は、電線、ケーブル、コード、チューブ、電線部品、シート等において、一般的に使用されている各種の添加剤、例えば、酸化防止剤、金属不活性剤、難燃剤、難燃(助)剤、充填剤、滑剤等を、目的とする効果を損なわない範囲で、適宜に含有することができる。また、本発明の樹脂組成物は、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)以外の樹脂を、目的とする効果を損なわない範囲で、適宜に含有することができる。
<Other ingredients>
The resin composition of the present invention contains various additives generally used in electric wires, cables, cords, tubes, electric wire parts, sheets, etc., such as antioxidants, metal deactivators, flame retardants, and flame retardants. A fuel (auxiliary) agent, a filler, a lubricant and the like can be appropriately contained as long as the desired effect is not impaired. Further, the resin composition of the present invention can appropriately contain a resin other than the polyethylene resin (a1), the resin (a2) and the polypropylene-based resin (a3) as long as the desired effect is not impaired.

酸化防止剤は、本発明の樹脂組成物に好ましく含有される。
本発明に用いることができる酸化防止剤は、通常、電線等に用いられるものであればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤、その他の酸化防止剤が挙げられる。なかでも、フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
本発明において、酸化防止剤は、1種単独で使用してもよく、また2種以上を併用してもよい。
The antioxidant is preferably contained in the resin composition of the present invention.
The antioxidant that can be used in the present invention may be any one that is usually used for electric wires and the like, and examples thereof include phenolic antioxidants, phosphorus antioxidants, and other antioxidants. Of these, phenolic antioxidants and phosphorus antioxidants are preferable.
In the present invention, one type of antioxidant may be used alone, or two or more types may be used in combination.

フェノール系酸化防止剤としては、特に限定されないが、例えば、ペンタエリスリチル−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。
フェノール系酸化防止剤の市販品としては、例えば、「イルガノックス」(商品名、BASF社製)等を挙げることができる。
フェノール系酸化防止剤の、本発明の樹脂組成物中の含有量は、特に限定されず、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)の合計100質量部に対して、0.01〜1.0質量部が好ましく、0.05〜0.5質量部がより好ましく、0.1〜0.3質量部がさらに好ましい。
The phenolic antioxidant is not particularly limited, but for example, pentaerythrityl-tetrax (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, octadecyl-3- (3,5-) Examples thereof include di-t-butyl-4-hydroxyphenyl) propionate and 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene.
Examples of commercially available phenolic antioxidants include "Irganox" (trade name, manufactured by BASF) and the like.
The content of the phenolic antioxidant in the resin composition of the present invention is not particularly limited, and is based on 100 parts by mass of the total of the polyethylene resin (a1), the resin (a2) and the polypropylene resin (a3). 0.01 to 1.0 parts by mass is preferable, 0.05 to 0.5 parts by mass is more preferable, and 0.1 to 0.3 parts by mass is further preferable.

リン系酸化防止剤としては、特に限定されないが、例えば、トリス(2,4−ジ−tert−ブチルフェニル)干すファイト、ビス(2,4−ジ−tert−ブチル−6−メチルフェニル)−エチル−ホスファイト等が挙げられる。
フェノール系酸化防止剤の市販品としては、例えば、「イルガフォス」(商品名、BASF社製)等を挙げることができる。
リン系酸化防止剤の、本発明の樹脂組成物中の含有量は、特に限定されず、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)の合計100質量部に対して、0.01〜1.0質量部が好ましく、0.05〜0.5質量部がより好ましく、0.1〜0.3質量部がさらに好ましい。
The phosphorus-based antioxidant is not particularly limited, but is, for example, tris (2,4-di-tert-butylphenyl) dried fight, bis (2,4-di-tert-butyl-6-methylphenyl) -ethyl. − Examples include phosphite.
Examples of commercially available phenolic antioxidants include "Irgafos" (trade name, manufactured by BASF) and the like.
The content of the phosphorus-based antioxidant in the resin composition of the present invention is not particularly limited, and is based on 100 parts by mass of the total of the polyethylene resin (a1), the resin (a2) and the polypropylene-based resin (a3). 0.01 to 1.0 parts by mass is preferable, 0.05 to 0.5 parts by mass is more preferable, and 0.1 to 0.3 parts by mass is further preferable.

その他の酸化防止剤としては、例えば、4,4'−ジオクチル・ジフェニルアミン、N,N'−ジフェニル−p−フェニレンジアミン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物等のアミン系酸化防止剤、ビス(2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−t−ブチルフェニル)スルフィド、2−メルカプトベンヅイミダゾールおよびその亜鉛塩、ペンタエリスリトール−テトラキス(3−ラウリル−チオプロピオネート)等のイオウ系酸化防止剤等が挙げられる。 Other antioxidants include, for example, polymers of 4,4'-dioctyl-diphenylamine, N, N'-diphenyl-p-phenylenediamine, 2,2,4-trimethyl-1,2-dihydroquinoline and the like. Amine-based antioxidant, bis (2-methyl-4- (3-n-alkylthiopropionyloxy) -5-t-butylphenyl) sulfide, 2-mercaptobenzimidazole and its zinc salt, pentaerythritol-tetrakis (3) -Lauryl-thiopropionate) and other sulfur-based antioxidants can be mentioned.

滑剤としては、特に限定されず、例えば、炭化水素系滑剤、脂肪酸系滑剤、脂肪酸アミド系滑剤、エステル系滑剤、アルコール系滑剤、金属石けん系滑剤、シリコーンガム等が挙げられる。 The lubricant is not particularly limited, and examples thereof include hydrocarbon-based lubricants, fatty acid-based lubricants, fatty acid amide-based lubricants, ester-based lubricants, alcohol-based lubricants, metal soap-based lubricants, and silicone gums.

<本発明の樹脂組成物の特性>
本発明の樹脂組成物は、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)を上記含有率で含有する。これにより、本発明の樹脂組成物は、0.61〜5.0g/10分のMFR(190℃、21.18N)を有する。さらに、本発明の樹脂組成物は、以下の特性を有することが好ましい。これらにより、形状維持性と押出性を兼ね備え、しかも耐摩耗性が高く、外観にも優れた被覆を形成することができる。本発明の樹脂組成物は、好ましくは、押出成形での線速を例えば100m/min程度まで高めても、上記の優れた、押出性、形状維持性および外観を保持できる。さらに好ましくは、電線・ケーブル(電線またはケーブル)の被覆に求められる特性、例えば機械強度、柔軟性、耐衝撃性、耐摩耗性、耐寒性、耐環境応力亀裂特性等をも付与することができる。
<Characteristics of the resin composition of the present invention>
The resin composition of the present invention contains a polyethylene resin (a1), a resin (a2) and a polypropylene-based resin (a3) at the above contents. As a result, the resin composition of the present invention has an MFR (190 ° C., 21.18N) of 0.61 to 5.0 g / 10 min. Furthermore, the resin composition of the present invention preferably has the following properties. As a result, it is possible to form a coating that has both shape retention and extrusion properties, has high wear resistance, and has an excellent appearance. The resin composition of the present invention can preferably retain the above-mentioned excellent extrudability, shape retention and appearance even when the linear velocity in extrusion molding is increased to, for example, about 100 m / min. More preferably, it is possible to impart characteristics required for coating electric wires / cables (electric wires or cables), such as mechanical strength, flexibility, impact resistance, wear resistance, cold resistance, environmental stress crack resistance, and the like. ..

(MFR(190℃、21.18N))
本発明の樹脂組成物は、MFR(190℃、21.18N)が0.61〜5.0g/10分である。MFRが0.61g/10分未満であると、押出性、特に押出成形での線速を高めたときの押出性が低下する。一方、5.0g/10分を超えると、形状維持性、特に押出成形での線速を高めたときの押出性が低下する。押出成形での線速を高めた場合にも、優れた形状維持性および押出性を示し、高い耐摩耗性と優れた外観を有する被覆を形成できる点で、MFRは、0.61〜5g/10分が好ましく、0.8〜2.0g/10分がより好ましい。
(MFR (190 ° C., 21.18N))
The resin composition of the present invention has an MFR (190 ° C., 21.18N) of 0.61 to 5.0 g / 10 minutes. If the MFR is less than 0.61 g / 10 minutes, the extrudability, particularly the extrudability when the linear velocity in extrusion molding is increased, is lowered. On the other hand, if it exceeds 5.0 g / 10 minutes, the shape retention property, particularly the extrudability when the linear velocity in extrusion molding is increased, is lowered. The MFR is 0.61 to 5 g / g in that it can form a coating with excellent shape retention and extrudability, high wear resistance and excellent appearance even when the linear velocity in extrusion molding is increased. 10 minutes is preferable, and 0.8 to 2.0 g / 10 minutes is more preferable.

(密度)
本発明の樹脂組成物の密度は、特に限定されないが、電線・ケーブルとしての機械強度および柔軟性を両立できる点で、0.935〜0.975g/cmが好ましく、0.940〜0.973g/cmがより好ましい。
(density)
The density of the resin composition of the present invention is not particularly limited, but is preferably 0.935 to 0.975 g / cm 3 from the viewpoint of achieving both mechanical strength and flexibility as an electric wire / cable, and 0.940 to 0. 973 g / cm 3 is more preferable.

本発明の樹脂組成物において、MFRおよび密度は、例えば、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)の種類、含有率もしくはこれらの組み合わせ、または、添加剤の種類もしくは含有量等により、所定の範囲に設定できる。 In the resin composition of the present invention, the MFR and density are, for example, the type, content rate or combination thereof of polyethylene resin (a1), resin (a2) and polypropylene-based resin (a3), or the type or content of additives. It can be set within a predetermined range depending on the amount and the like.

上記のような特性を有する本発明の樹脂組成物は、電線・ケーブルの被覆として好ましく用いられる。電線・ケーブルは、後述するように、その形態は特に限定されず、従来の電線等でもよいが、特に、後述する、異形電線・ケーブル、大径・厚肉電線・ケーブル、または、自己支持型の電線・ケーブルとしても好ましく用いられる。 The resin composition of the present invention having the above-mentioned characteristics is preferably used as a coating for electric wires and cables. As will be described later, the form of the electric wire / cable is not particularly limited and may be a conventional electric wire or the like, but in particular, a deformed electric wire / cable, a large-diameter / thick-walled electric wire / cable, or a self-supporting type, which will be described later. It is also preferably used as an electric wire / cable.

<本発明の樹脂組成物の製造方法>
本発明の樹脂組成物は、ポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)、所望により各種添加剤を、上記含有率となる割合で、混合機、混練機等を用いて、混合(溶融混練を含む)して、製造できる。
このとき、混合する際の混合順は、特に限定されず、上記成分をどのような順で混合してもよい。
<Method for producing the resin composition of the present invention>
The resin composition of the present invention contains a polyethylene resin (a1), a resin (a2), a polypropylene-based resin (a3), and various additives as desired, in a proportion of the above content, using a mixer, a kneader, or the like. , Can be mixed (including melt kneading) to produce.
At this time, the mixing order at the time of mixing is not particularly limited, and the above components may be mixed in any order.

上述の成分を混合する混合温度は、少なくともポリエチレン樹脂(a1)、樹脂(a2)およびポリプロピレン系樹脂(a3)が溶融する温度以上であれば特に限定されない。例えば、160〜250℃が好ましく、180〜220℃がより好ましい。
また、混合時間等の混合条件も、特に限定されず、上記成分が混合されればよく、適宜に決定することができる。例えば、5〜30分間とすることができる。
The mixing temperature at which the above-mentioned components are mixed is not particularly limited as long as it is at least a temperature at which the polyethylene resin (a1), the resin (a2) and the polypropylene-based resin (a3) are melted. For example, 160 to 250 ° C. is preferable, and 180 to 220 ° C. is more preferable.
Further, the mixing conditions such as the mixing time are not particularly limited, and the above components may be mixed and can be appropriately determined. For example, it can be 5 to 30 minutes.

混合方法としては、通常用いられる方法であればよく、混合機または混練機として、一軸押出機、二軸押出機、ロール、バンバリーミキサーまたは各種のニーダー等が用いられる。なかでも、二軸押出機、バンバリーミキサー、ニーダー等がカーボンブラックや添加剤の分散性の点で、好ましい。 The mixing method may be any commonly used method, and a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, various kneaders, or the like is used as the mixer or kneader. Among them, a twin-screw extruder, a Banbury mixer, a kneader and the like are preferable in terms of dispersibility of carbon black and additives.

<<電線・ケーブル>>
本発明の電線・ケーブル(以下、本発明の電線等という)は、導体等の外周に、本発明の樹脂組成物を押出成形してなる押出被覆を絶縁層またはシース等として有する。
本発明の樹脂組成物が押し出される導体等は、特に限定されず、本発明の電線等の種類、用途等に応じて適宜に選択される。また、導体等の材質、形状、寸法等も、従来のものを適宜選択して用いることができる。
<< Electric wires / cables >>
The electric wire / cable of the present invention (hereinafter referred to as the electric wire or the like of the present invention) has an extruded coating formed by extrusion-molding the resin composition of the present invention on the outer periphery of a conductor or the like as an insulating layer or a sheath.
The conductor or the like from which the resin composition of the present invention is extruded is not particularly limited, and is appropriately selected according to the type, application, and the like of the electric wire and the like of the present invention. Further, as for the material, shape, size and the like of the conductor and the like, conventional ones can be appropriately selected and used.

電線等は、電気・電子機器に用いられるものであれば特に限定されず、電気・電子機器の内部および外部配線に使用されるものを含む。
また、ケーブルとしては、各種ケーブルが特に限定されずに適用でき、屋内に配設されるケーブルおよび屋外に配設されるケーブルを含む。例えば、電力ケーブル、通信ケーブル等が好ましく挙げられる。
The electric wires and the like are not particularly limited as long as they are used for electric / electronic devices, and include those used for internal and external wiring of electric / electronic devices.
Further, as the cable, various cables can be applied without particular limitation, and includes a cable arranged indoors and a cable arranged outdoors. For example, a power cable, a communication cable, and the like are preferable.

本発明の電線等は、断面形状が円形の電線・ケーブル、外径が30mm以下の電線・ケーブル、被覆の厚さが5mm以下の電線・ケーブル等の従来の電線・ケーブルが挙げられる。また、円形以外の断面形状、例えば、楕円形、矩形(平型)、切込み(ノッチ)を有する形状、もしくは、これらを組み合わせた形状を持つ異形電線・ケーブル、大径化もしくは被覆厚さを厚くした大径・厚肉電線・ケーブル、または、支持線が埋設された支持線部を備えた自己支持型の電線・ケーブルも挙げられる。
本発明の電線等は、従来、製造が困難であった、異形電線・ケーブル、大径・厚肉電線・ケーブル、または、自己支持型の電線・ケーブルであることが好ましい。このような電線・ケーブルとしては、例えば、電力用捻回電線、通信ケーブル用テープ心線、通信ケーブル等が挙げられる。通信ケーブルとしては、例えば、スロット型光ケーブル、漏洩同軸ケーブル、スロットレス光ケーブル、中間分岐型架空光ケーブル、光ドロップケーブル、インドア光ケーブル等が挙げられる。これらのなかでも、形状維持性が求められる、大径・厚肉の、スロット型光ケーブル、漏洩同軸ケーブルが好ましく、また、自己支持型の電線・ケーブルも好ましい。
Examples of the electric wire and the like of the present invention include electric wires and cables having a circular cross-sectional shape, electric wires and cables having an outer diameter of 30 mm or less, and electric wires and cables having a coating thickness of 5 mm or less. In addition, a cross-sectional shape other than a circle, for example, an elliptical shape, a rectangular shape (flat type), a shape having a notch (notch), or a deformed electric wire / cable having a shape obtained by combining these, the diameter is increased or the coating thickness is increased. Examples thereof include large-diameter, thick-walled electric wires and cables, and self-supporting electric wires and cables having a support wire portion in which a support wire is embedded.
The electric wire or the like of the present invention is preferably a deformed electric wire / cable, a large-diameter / thick-walled electric wire / cable, or a self-supporting electric wire / cable, which has been difficult to manufacture in the past. Examples of such electric wires / cables include twisted electric wires for electric power, tape core wires for communication cables, communication cables, and the like. Examples of the communication cable include a slot type optical cable, a leaky coaxial cable, a slotless optical cable, an intermediate branch type aerial optical cable, an optical drop cable, an indoor optical cable and the like. Among these, large-diameter, thick-walled, slot-type optical cables and leakage coaxial cables, which are required to maintain their shape, are preferable, and self-supporting electric wires and cables are also preferable.

以下に、本発明の好ましい電線等を、図面を参照して説明するが、本発明はこれらに限定されるものではない。 Hereinafter, preferred electric wires and the like of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

本発明の好ましい電線等として、図1に示されるスロット型光ケーブル1が挙げられる。図1(a)はスロット型光ケーブル1の端面輪郭を示す端面図であり、図1(b)はスロット型光ケーブル1の概略斜視図であり、図1(c)はスロット型光ケーブル1のケーブル部11の端面を示す概略端面図である。 A preferred electric wire or the like of the present invention is the slot type optical cable 1 shown in FIG. FIG. 1A is an end view showing the outline of the end face of the slot type optical cable 1, FIG. 1B is a schematic perspective view of the slot type optical cable 1, and FIG. 1C is a cable portion of the slot type optical cable 1. It is the schematic end view which shows the end face of 11.

スロット型光ケーブル1は、被覆、すなわちシース12b、19および首部13(図1(b)参照)が本発明の樹脂組成物で形成されていること以外は、従来のスロット型光ケーブルと同様の形状および構成等をとることができる。
すなわち、スロット型光ケーブル1は、自己支持型(SSW型)の光ケーブルであり、図1に示されるように、端面(断面)形状が略円形の支持線部12と断面形状が略円型のケーブル部11とが複数の首部(連結部)13で連結された断面形状を有している。このように、スロット型光ケーブル1の断面形状は、単純な形状ではなく、複雑な形状になっている。
The slot-type optical cable 1 has the same shape and shape as the conventional slot-type optical cable, except that the coating, that is, the sheaths 12b, 19 and the neck portion 13 (see FIG. 1B) are formed of the resin composition of the present invention. It can be configured.
That is, the slot type optical cable 1 is a self-supporting type (SSW type) optical cable, and as shown in FIG. 1, a support wire portion 12 having a substantially circular end face (cross section) and a cable having a substantially circular cross section. It has a cross-sectional shape in which the portion 11 is connected by a plurality of neck portions (connecting portions) 13. As described above, the cross-sectional shape of the slot type optical cable 1 is not a simple shape but a complicated shape.

ケーブル部11は、図1(c)に示されるように、テンションメンバー14の周面上にスロット15が被覆され、そのスロット15の軸線に沿って形成された5本の収納溝15aに光ファイバ心線16が所定の数落とし込まれ、引き裂き紐17、押さえ巻きテープ18とともに被覆(シースともいう)19に埋設されている。
支持線部12は、図1(b)に示されるように、複数の支持線12aと、支持線12aを被覆する被覆(シース)12bを有している。
As shown in FIG. 1 (c), the cable portion 11 has a slot 15 coated on the peripheral surface of the tension member 14, and an optical fiber is formed in five storage grooves 15a formed along the axis of the slot 15. A predetermined number of core wires 16 are dropped, and they are embedded in a coating (also referred to as a sheath) 19 together with a tear cord 17 and a presser winding tape 18.
As shown in FIG. 1B, the support wire portion 12 has a plurality of support wires 12a and a coating (sheath) 12b that covers the support wires 12a.

スロット型光ケーブル1は、ケーブル部11の外径が大きく、シース19の厚さが厚くなっている。一概にはいえないが、一例を挙げると、ケーブル部11の外径は8〜35mmである。なお、シース19の厚さは後述する。 In the slot type optical cable 1, the outer diameter of the cable portion 11 is large, and the thickness of the sheath 19 is large. Although it cannot be said unconditionally, for example, the outer diameter of the cable portion 11 is 8 to 35 mm. The thickness of the sheath 19 will be described later.

シース12b、19および首部13は、いずれも、本発明の樹脂組成物で形成されている。したがって、ケーブル部11の外径が大きく、シース19の厚さが厚くても、また、スロット型光ケーブル1が自己支持型で支持線部12および首部13を有する複雑な断面形状であっても、シース12b、19および首部13は所定の形状を維持している。
スロット型光ケーブル1において、支持線12a、テンションメンバー14、スロット15、光ファイバ心線16、引き裂き紐17および押さえ巻きテープ18は、通常の光ケーブルに用いられるものであれば、特に限定されることなく、用いることができる。
The sheaths 12b, 19 and the neck 13 are all formed of the resin composition of the present invention. Therefore, even if the outer diameter of the cable portion 11 is large and the thickness of the sheath 19 is thick, or even if the slot type optical cable 1 is a self-supporting type and has a support wire portion 12 and a neck portion 13, it has a complicated cross-sectional shape. The sheaths 12b, 19 and the neck 13 maintain a predetermined shape.
In the slot type optical cable 1, the support wire 12a, the tension member 14, the slot 15, the optical fiber core wire 16, the tear cord 17, and the presser winding tape 18 are not particularly limited as long as they are used for a normal optical cable. , Can be used.

本発明の別の好ましい電線等として、図2に示される漏洩同軸ケーブル2が挙げられる。図2に、漏洩同軸ケーブル2の端面形状および構造等を示す。 Another preferred electric wire or the like of the present invention is the leaky coaxial cable 2 shown in FIG. FIG. 2 shows the end face shape and structure of the leaky coaxial cable 2.

漏洩同軸ケーブル2は、被覆、すなわち、シース22b、28および首部23が本発明の樹脂組成物で形成されていること以外は、従来の漏洩同軸ケーブルと同様の形状および構成等をとることができる。
すなわち、漏洩同軸ケーブル2は、自己支持型(SSW型)のケーブルであり、図2に示されるように、端面(断面)形状が略円形の支持線部22と断面形状が略円型のケーブル部21とが複数の首部(連結部)23で連結された断面形状を有している。このように、漏洩同軸ケーブル2の断面形状は、単純な形状ではなく、複雑な形状になっている。
The leaky coaxial cable 2 can have the same shape and configuration as the conventional leaky coaxial cable except that the sheath, that is, the sheaths 22b, 28 and the neck portion 23 are formed of the resin composition of the present invention. ..
That is, the leaky coaxial cable 2 is a self-supporting type (SSW type) cable, and as shown in FIG. 2, a support wire portion 22 having a substantially circular end face (cross section) and a cable having a substantially circular cross section. The portion 21 has a cross-sectional shape in which the portions 21 are connected by a plurality of neck portions (connecting portions) 23. As described above, the cross-sectional shape of the leaky coaxial cable 2 is not a simple shape but a complicated shape.

ケーブル部21は、内部導体24上に絶縁体ポリエチレン紐25および絶縁体ポリエチレンパイプ26にて覆われ、その上に外部導体27を有し、一括して被覆(シース)28に埋没されている。
支持線部22は、複数の支持線22aと、支持線22aを被覆する被覆(シース)22bを有している。
The cable portion 21 is covered with an insulating polyethylene string 25 and an insulating polyethylene pipe 26 on an inner conductor 24, has an outer conductor 27 on the inner conductor 24, and is collectively embedded in a coating (sheath) 28.
The support wire portion 22 has a plurality of support wires 22a and a coating (sheath) 22b that covers the support wires 22a.

漏洩同軸ケーブル2は、ケーブル部21の外径が大きく、シース28の厚さが厚くなっている。一概にはいえないが、一例を挙げると、ケーブル部21の外径は20〜60mmである。なお、シース28の厚さは後述する。 In the leaky coaxial cable 2, the outer diameter of the cable portion 21 is large, and the thickness of the sheath 28 is large. Although it cannot be said unconditionally, for example, the outer diameter of the cable portion 21 is 20 to 60 mm. The thickness of the sheath 28 will be described later.

シース22b、28および首部23は、いずれも、本発明の樹脂組成物で形成されている。したがって、ケーブル部21の外径が大きく、シース28の厚さが厚くなっていいても、また、漏洩同軸ケーブル2が自己支持型で支持線部22および首部23を有する複雑な形状であっても、シース22b、28および首部23は所定の形状を維持している。
漏洩同軸ケーブル2において、支持線22a、内部導体24、絶縁体ポリエチレン紐25、絶縁体ポリエチレンパイプ26および外部導体27は、通常の漏洩同軸ケーブルに用いられるものであれば、特に限定されることなく、用いることができる。
The sheaths 22b and 28 and the neck portion 23 are all formed of the resin composition of the present invention. Therefore, even if the outer diameter of the cable portion 21 is large and the thickness of the sheath 28 is thick, even if the leaky coaxial cable 2 is a self-supporting type and has a support wire portion 22 and a neck portion 23, it has a complicated shape. , Sheaths 22b, 28 and neck 23 maintain a predetermined shape.
In the leaky coaxial cable 2, the support wire 22a, the inner conductor 24, the insulator polyethylene string 25, the insulator polyethylene pipe 26 and the outer conductor 27 are not particularly limited as long as they are used for a normal leaky coaxial cable. , Can be used.

スロット型光ケーブル1および漏洩同軸ケーブル2において、ケーブル部11、21および支持線部12、22は、いずれも、断面形状が略円形になっているが、これ以外にも、略矩形、楕円形のようなものもある。 In the slot-type optical cable 1 and the leaky coaxial cable 2, the cable portions 11, 21 and the support wire portions 12, 22 all have a substantially circular cross-sectional shape, but in addition to this, a substantially rectangular or elliptical shape is formed. There is also something like.

本発明の電線等は、導体等の外周に、例えば押出成形機、押出し被覆装置内で本発明の樹脂組成物を溶融混合しながら被覆させる等により、製造することができる。
このとき、本発明の樹脂組成物を導体等とともに押し出すと、電線・ケーブルの断面形状に対応する複雑な断面形状を崩すことなく、この形状を維持したまま成形できる。また、押出成形での線速を例えば100m/min程度まで高めても、優れた、押出性、形状維持性および外観を保持できる。したがって、形状の再現性がよく、高い歩留まりで、しかも高い構造効率で、本発明の電線等を製造できる。
さらに、本発明の樹脂組成物は、押出成形機に過大な負荷をかけることがなく、生産性もよい。
The electric wire or the like of the present invention can be produced by coating the outer periphery of a conductor or the like with the resin composition of the present invention while melting and mixing, for example, in an extrusion molding machine or an extrusion coating device.
At this time, if the resin composition of the present invention is extruded together with a conductor or the like, molding can be performed while maintaining this shape without breaking the complicated cross-sectional shape corresponding to the cross-sectional shape of the electric wire / cable. Further, even if the linear velocity in extrusion molding is increased to, for example, about 100 m / min, excellent extrusion property, shape retention and appearance can be maintained. Therefore, the electric wire or the like of the present invention can be manufactured with good shape reproducibility, high yield, and high structural efficiency.
Further, the resin composition of the present invention does not impose an excessive load on the extrusion molding machine and has good productivity.

本発明に用いることができる導体としては、電線の導体となりうるものであれば特に限定されず、例えば、軟銅の単線または撚線(導体束ともいう)等が挙げられる。この導体は、裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するもの(芯線ともいう)を用いることもできる。本発明に用いうるファイバ心線、テンションメンバーおよび支持線は上記した通りである。 The conductor that can be used in the present invention is not particularly limited as long as it can be a conductor of an electric wire, and examples thereof include a single wire or a stranded wire (also referred to as a conductor bundle) of annealed copper. As the conductor, in addition to the bare wire, a tin-plated conductor or a conductor having an enamel-coated insulating layer (also referred to as a core wire) can be used. The fiber core wire, tension member and support wire that can be used in the present invention are as described above.

本発明の樹脂組成物で形成される被覆の厚さは、用途等に応じて、適宜に決定される。
絶縁層の厚さ(最大厚さ)は、特に限定されないが、通常、0.15〜5mm程度である。シースの厚さは、特に限定されないが、通常、0.15〜30mm程度である。
The thickness of the coating formed of the resin composition of the present invention is appropriately determined according to the intended use and the like.
The thickness (maximum thickness) of the insulating layer is not particularly limited, but is usually about 0.15 to 5 mm. The thickness of the sheath is not particularly limited, but is usually about 0.15 to 30 mm.

本発明の樹脂組成物を押出成形する際の条件は、本発明の樹脂組成物を押し出すことができれば特に限定されないが、押出成形機への負荷を低減でき、しかも形状維持性をも確保できる点で、押出温度(ヘッド部)が140〜240℃であるのが好ましく、160〜210℃であるのがより好ましい。また、押出成形の他の条件として、スクリュー回転数が2〜80rpmであり、線速が2〜120m/minであることが好ましく、2〜100m/minであることが好ましく、さらに好ましくは2〜80m/minである。
押出成形機のスクリュー構成は、特に限定されず、通常のフルフライトスクリュー、ダブルフライトスクリュー、先端ダブルフライトスクリュー、マドックスクリュー等を使用できる。
The conditions for extrusion molding the resin composition of the present invention are not particularly limited as long as the resin composition of the present invention can be extruded, but the load on the extrusion molding machine can be reduced and the shape retention can be ensured. The extrusion temperature (head portion) is preferably 140 to 240 ° C, more preferably 160 to 210 ° C. Further, as another condition of extrusion molding, the screw rotation speed is preferably 2 to 80 rpm, the linear velocity is preferably 2 to 120 m / min, preferably 2 to 100 m / min, and more preferably 2 to 100 m / min. It is 80 m / min.
The screw configuration of the extrusion molding machine is not particularly limited, and a normal full flight screw, double flight screw, tip double flight screw, Maddock screw and the like can be used.

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれらに限定されない。表1および表2の各配合の数値は質量部を表す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. The numerical values of each formulation in Table 1 and Table 2 represent parts by mass.

各例に用いた成分を以下に示す。
ポリエチレン樹脂(a1)および樹脂(a2)は、それぞれ、エチレンと、必要によりαオレフィンを、チーグラー・ナッタ触媒またはメタロセン触媒の存在下、気相重合装置または液相重合装置を用い、70〜150℃で共重合して、合成した。用いた触媒濃度は、重合が十分に進行する濃度でよいが、重合反応器内容物の質量を基準として、0.0001〜5質量%用いた。
The components used in each example are shown below.
The polyethylene resin (a1) and the resin (a2) each contain ethylene and, if necessary, an α-olefin at 70 to 150 ° C. in the presence of a Ziegler-Natta catalyst or a metallocene catalyst using a gas phase copolymerization device or a liquid phase polymerization device. It was copolymerized with and synthesized. The catalyst concentration used may be a concentration at which the polymerization proceeds sufficiently, but 0.0001 to 5% by mass was used based on the mass of the contents of the polymerization reactor.

<(a1)ポリエチレン樹脂>
ポリエチレン樹脂(a1−1):
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.920g/cm、MFR(190℃、21.18N)1.00g/10分
ポリエチレン樹脂(a1−2)
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.920g/cm、MFR(190℃、21.18N)10.00g/10分
ポリエチレン樹脂(a1−3)
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.900g/cm、MFR(190℃、21.18N)1.00g/10分
ポリエチレン樹脂(a1−4)
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.935g/cm、MFR(190℃、21.18N)1.00g/10分
ポリエチレン樹脂(a1−5)
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.890g/cm、MFR(190℃、21.18N)1.00g/10分
ポリエチレン樹脂(a1−6)
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.940g/cm、MFR(190℃、21.18N)1.00g/10分
ポリエチレン樹脂(a1−7)
エチレンと1−ブテンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.920g/cm、MFR(190℃、21.18N)12.00g/10分
<(A1) Polyethylene resin>
Polyethylene resin (a1-1):
Copolymer of ethylene and 1-butene, content of ethylene components is 90% by mass, density 0.920g / cm 3 , MFR (190 ℃, 21.18N) 1.00g / 10 minutes Polyethylene resin (a1- 2)
Copolymer of ethylene and 1-butene, content of ethylene components is 90% by mass, density 0.920g / cm 3 , MFR (190 ℃, 21.18N) 10.00g / 10 minutes Polyethylene resin (a1- 3)
Copolymer of ethylene and 1-butene, content of ethylene component is 90% by mass, density 0.900g / cm 3 , MFR (190 ℃, 21.18N) 1.00g / 10 minutes Polyethylene resin (a1- 4)
Copolymer of ethylene and 1-butene, content of ethylene component is 90% by mass, density 0.935g / cm 3 , MFR (190 ℃, 21.18N) 1.00g / 10 minutes Polyethylene resin (a1- 5)
Copolymer of ethylene and 1-butene, content of ethylene components is 90% by mass, density 0.890g / cm 3 , MFR (190 ℃, 21.18N) 1.00g / 10 minutes Polyethylene resin (a1- 6)
Copolymer of ethylene and 1-butene, content of ethylene components is 90% by mass, density 0.940g / cm 3 , MFR (190 ℃, 21.18N) 1.00g / 10 minutes Polyethylene resin (a1- 7)
Copolymer of ethylene and 1-butene, content of ethylene components is 90% by mass, density 0.920 g / cm 3 , MFR (190 ° C, 21.18 N) 12.00 g / 10 minutes

<(a2)樹脂>
樹脂(a2−1)
エチレン単独重合体、密度0.960g/cm、MFR(190℃、21.18N)0.70g/10分
樹脂(a2−2)
エチレン単独重合体、密度0.955g/cm、MFR(190℃、21.18N)0.20g/10分
樹脂(a2−3)
エチレン単独重合体、密度0.958g/cm、MFR(190℃、21.18N)10.00g/10分
樹脂(a2−4)
エチレン単独重合体、密度0.940g/cm、MFR(190℃、21.18N)0.80g/10分
樹脂(a2−5)
エチレン単独重合体、密度0.965g/cm、MFR(190℃、21.18N)5.50g/10分
樹脂(a2−6)
エチレンと1−ヘキセンとの共重合体、エチレン構成成分の含有率は90質量%、密度0.945g/cm、MFR(190℃、21.18N)1.70g/10分
樹脂(a2−7)
エチレン単独重合体、密度0.970g/cm、MFR(190℃、21.18N)1.00g/10分
樹脂(a2−8)
エチレン単独重合体、密度0.958g/cm、MFR(190℃、21.18N)0.10g/10分
樹脂(a2−9)
エチレン単独重合体、密度0.950g/cm、MFR(190℃、21.18N)13.00g/10分
<(A2) resin>
Resin (a2-1)
Ethylene homopolymer, density 0.960 g / cm 3 , MFR (190 ° C., 21.18N) 0.70 g / 10 minutes Resin (a2-2)
Ethylene homopolymer, density 0.955 g / cm 3 , MFR (190 ° C, 21.18 N) 0.20 g / 10 minutes Resin (a2-3)
Ethylene homopolymer, density 0.958 g / cm 3 , MFR (190 ° C., 21.18N) 10.00 g / 10 minutes Resin (a2-4)
Ethylene homopolymer, density 0.940 g / cm 3 , MFR (190 ° C., 21.18N) 0.80 g / 10 minutes Resin (a2-5)
Ethylene homopolymer, density 0.965 g / cm 3 , MFR (190 ° C., 21.18 N) 5.50 g / 10 minutes Resin (a2-6)
Copolymer of ethylene and 1-hexene, content of ethylene components is 90% by mass, density 0.945g / cm 3 , MFR (190 ℃, 21.18N) 1.70g / 10 minutes Resin (a2-7) )
Ethylene homopolymer, density 0.970 g / cm 3 , MFR (190 ° C., 21.18N) 1.00 g / 10 minutes Resin (a2-8)
Ethylene homopolymer, density 0.958 g / cm 3 , MFR (190 ° C., 21.18 N) 0.10 g / 10 minutes Resin (a2-9)
Ethylene homopolymer, density 0.950 g / cm 3 , MFR (190 ° C, 21.18 N) 13.00 g / 10 min

<(a3)ポリプロピレン系樹脂>
ポリプロピレン樹脂(a3)は、それぞれ、プロピレンと、必要によりαオレフィンを、チーグラー・ナッタ触媒またはメタロセン触媒の存在下、気相重合装置または液相重合装置を用い、60〜100℃で共重合して、合成した。用いた触媒濃度は、重合が十分に進行する濃度でよいが、重合反応器内容物の質量を基準として、0.01〜0.1質量%用いた。
ポリプロピレン系樹脂(a3−1)
プロピレンとエチレンとの共重合体、プロピレン構成成分の含有率は95質量%、密度0.900g/cm、MFR(230℃、21.18N)0.80g/10分
ポリプロピレン系樹脂(a3−2)
プロピレンとエチレンとの共重合体、プロピレン構成成分の含有率は95質量%、密度0.900g/cm、MFR(230℃、21.18N)0.50g/10分
ポリプロピレン系樹脂(a3−3)
プロピレンとエチレンとの共重合体、プロピレン構成成分の含有率は95質量%、密度0.900g/cm、MFR(230℃、21.18N)10.00g/10分
ポリプロピレン系樹脂(a3−4)
プロピレンとエチレンとの共重合体、プロピレン構成成分の含有率は95質量%、密度0.900g/cm、MFR(230℃、21.18N)50.00g/10分
ポリプロピレン系樹脂(a3−5)
プロピレンとエチレンとの共重合体、プロピレン構成成分の含有率は95質量%、密度0.900g/cm、MFR(230℃、21.18N)0.30g/10分
ポリプロピレン系樹脂(a3−6)
プロピレンとエチレンとの共重合体、プロピレン構成成分の含有率は95質量%、密度0.900g/cm、MFR(230℃、21.18N)60.00g/10分
<(A3) Polypropylene resin>
The polypropylene resin (a3) is copolymerized with propylene and, if necessary, an α-olefin at 60 to 100 ° C. in the presence of a Ziegler-Natta catalyst or a metallocene catalyst using a gas phase polymerization apparatus or a liquid phase polymerization apparatus. , Synthesized. The catalyst concentration used may be a concentration at which the polymerization proceeds sufficiently, but 0.01 to 0.1% by mass was used based on the mass of the contents of the polymerization reactor.
Polypropylene resin (a3-1)
Copolymer of propylene and ethylene, content of propylene component is 95% by mass, density 0.900g / cm 3 , MFR (230 ° C, 21.18N) 0.80g / 10 minutes Polypropylene resin (a3-2) )
Copolymer of propylene and ethylene, content of propylene component is 95% by mass, density 0.900g / cm 3 , MFR (230 ° C, 21.18N) 0.50g / 10 minutes Polypropylene resin (a3-3) )
Copolymer of propylene and ethylene, content of propylene component is 95% by mass, density 0.900g / cm 3 , MFR (230 ° C, 21.18N) 10.00g / 10 minutes Polypropylene resin (a3-4) )
Copolymer of propylene and ethylene, content of propylene component is 95% by mass, density 0.900g / cm 3 , MFR (230 ° C, 21.18N) 50.00g / 10 minutes Polypropylene resin (a3-5) )
Copolymer of propylene and ethylene, content of propylene component is 95% by mass, density 0.900g / cm 3 , MFR (230 ° C, 21.18N) 0.30g / 10 minutes Polypropylene resin (a3-6) )
Copolymer of propylene and ethylene, content of propylene component is 95% by mass, density 0.900g / cm 3 , MFR (230 ° C, 21.18N) 60.00g / 10 minutes

<カーボンブラック(b)>
「旭カーボン#70」(商品名、旭カーボン社製、平均粒径28nm)
<Carbon black (b)>
"Asahi Carbon # 70" (trade name, manufactured by Asahi Carbon Co., Ltd., average particle size 28 nm)

実施例1〜13、参考例1〜5および比較例1〜11
各例では、図1(a)に示す端面輪郭を有する、所謂「眼鏡状」の簡易試験ケーブルを製造して、下記項目を評価した。この簡易試験ケーブルはスロット型光ケーブルの簡易試験体である。以下、簡易試験ケーブルを構成する部材のうち、図1に示すスロット型光ケーブル1を構成する部材に対応するものには、便宜的に、これと同一の符号を付す。
Examples 1-13 , Reference Examples 1-5 and Comparative Examples 1-11
In each example, a so-called "glasses-shaped" simple test cable having the end face contour shown in FIG. 1A was manufactured, and the following items were evaluated. This simple test cable is a simple test piece of a slot type optical cable. Hereinafter, among the members constituting the simple test cable, those corresponding to the members constituting the slot type optical cable 1 shown in FIG. 1 are designated by the same reference numerals for convenience.

表1および表2に示す、ポリエチレン樹脂(a1)、樹脂(a2)、ポリプロピレン系樹脂(a3)およびカーボンブラック(b)を、表1および表2に示す含有率で、2Lバンバリーミキサーを用いて、200℃で20分間、溶融混合した後、ペレット化して、本発明の電線・ケーブル被覆用ポリオレフィン樹脂組成物を得た。
次に、得られた各電線・ケーブル被覆用ポリオレフィン樹脂組成物を、L/D(スクリュー有効長Lと直径Dとの比)が25で、スクリュー直径が40mmφの電線用押出成形機(聖製作所社製、モーター負荷限界:80A)、および、断面形状が眼鏡状である押出ダイスを用いて、下記押出温度条件により、並行に並べた1.0mmφの導体(軟銅線)の上に、下記のようにして一体的に押出し、被覆して、簡易試験ケーブルを製造した。
Polyethylene resin (a1), resin (a2), polypropylene resin (a3) and carbon black (b) shown in Tables 1 and 2 were mixed in the contents shown in Tables 1 and 2 using a 2L Banbury mixer. After melt-mixing at 200 ° C. for 20 minutes, pelletization was performed to obtain the polyolefin resin composition for coating electric wires and cables of the present invention.
Next, each of the obtained polyolefin resin compositions for coating electric wires and cables was extruded into an electric wire extrusion machine having an L / D (ratio of effective screw length L to diameter D) of 25 and a screw diameter of 40 mmφ. Using an extrusion die with a motor load limit of 80A) and a cross-sectional shape of eyeglasses, the following is placed on a 1.0 mmφ conductor (annealed copper wire) arranged in parallel under the following extrusion temperature conditions. In this way, they were integrally extruded and coated to produce a simple test cable.

ケーブル部11として、電線・ケーブル被覆用ポリオレフィン樹脂組成物を、一方の導体の外周に、外径5.0mmφ、被覆厚さ2.0mmとなるように押し出した。また、支持線部12として、他方の導体の外周に、外径2.0mmφ、被覆厚さ0.5mmとなるように押し出した。さらに、ケーブル部11および支持線部12として押し出された電線・ケーブル被覆用ポリオレフィン樹脂組成物それぞれが厚さ1.0mmの連結部13によって繋がれるように、電線・ケーブル被覆用ポリオレフィン樹脂組成物を連結部13として押し出した。 As the cable portion 11, a polyolefin resin composition for wire / cable coating was extruded on the outer circumference of one of the conductors so as to have an outer diameter of 5.0 mmφ and a coating thickness of 2.0 mm. Further, the support wire portion 12 was extruded to the outer periphery of the other conductor so as to have an outer diameter of 2.0 mmφ and a coating thickness of 0.5 mm. Further, the polyolefin resin composition for electric wire / cable coating is formed so that the polyolefin resin composition for electric wire / cable coating extruded as the cable portion 11 and the support wire portion 12 is connected by the connecting portion 13 having a thickness of 1.0 mm. It was extruded as a connecting portion 13.

また、0.8mmφの導体(軟銅線)の上に、外径2.4mmφ、被覆厚さ0.8mmとなる耐摩耗性試験用電線(断面形状は円形)を、簡易試験ケーブルの製造と同様にして、作製した。 Further, on a conductor (annealed copper wire) of 0.8 mmφ, an electric wire for abrasion resistance test (cross-sectional shape is circular) having an outer diameter of 2.4 mmφ and a coating thickness of 0.8 mm is formed in the same manner as in the manufacture of a simple test cable. And made it.

押出条件(温度)は、押出成形機のシリンダー部分における温度制御をフィーダー側からダイス側に向けて3ゾーンC1、C2、C3に分け、C1ゾーンを170℃、C2ゾーンを190℃、C3ゾーンを200℃、ダイス温度200℃に、設定した。
線速は、10m/minまたは100m/minに設定した。
Regarding the extrusion conditions (temperature), the temperature control in the cylinder part of the extrusion molding machine is divided into 3 zones C1, C2, and C3 from the feeder side to the die side, the C1 zone is 170 ° C, the C2 zone is 190 ° C, and the C3 zone is divided into three zones. The temperature was set to 200 ° C. and the die temperature was set to 200 ° C.
The line speed was set to 10 m / min or 100 m / min.

各樹脂および得られた電線・ケーブル被覆用ポリオレフィン樹脂組成物の密度、MFRを下記方法により測定した。結果を表1および表2に示す。 The densities and MFRs of each resin and the obtained polyolefin resin composition for coating electric wires and cables were measured by the following methods. The results are shown in Tables 1 and 2.

<MFRの測定>
MFR(190℃、21.18N)は、JIS K 7210に規定の「A法(手動切り落とし法)」基づき、190℃、21.18Nの条件Dで計測した。
ポリプロピレン樹脂(a3)のMFR(230℃、21.18N)は、温度230℃の条件Mに変更したこと以外は、MFR(190℃、21.18N)と同様にして、測定した。
<Measurement of MFR>
The MFR (190 ° C., 21.18N) was measured under the condition D of 190 ° C., 21.18N based on the "A method (manual cutting method)" specified in JIS K 7210.
The MFR (230 ° C., 21.18N) of the polypropylene resin (a3) was measured in the same manner as the MFR (190 ° C., 21.18N) except that the condition M was changed to a temperature of 230 ° C.

<密度>
密度は、JIS K 7112:1999に規定の「A法(水中置換法)」に基づいて、測定した。
<Density>
The density was measured based on the "A method (underwater substitution method)" specified in JIS K 7112: 1999.

<外観試験(表面粗さ)>
各線速で押出成形して得られた簡易試験ケーブルの外観を、JIS B 0601:2013に規定の算術平均表面粗さ(Ra)を下記測定条件で測定し、下記評価基準により、評価した。外観試験は、評価「B」が本試験の合格レベルであり、「A」以上であると望ましいレベルにある。
−測定条件−
作製した簡易試験ケーブルの算術平均表面粗さ(Ra)は、簡易試験ケーブルの被覆を、ランダムに5箇所サンプリングし、JIS B 0601:2013に基づき、表面粗さ測定機(MITUTOYO社製、サーフテストSJ−301(商品名))を用いて、算術平均表面粗さ(Ra、μm)を求めた。
−評価基準―
AA:1.5μm以下
A:1.5μmを超え2.5μm以下
B:2.5μmを超え3.5μm以下
C:3.5μmを超える
<Appearance test (surface roughness)>
The appearance of the simple test cable obtained by extrusion molding at each linear velocity was measured by measuring the arithmetic mean surface roughness (Ra) specified in JIS B 0601: 2013 under the following measurement conditions, and evaluated according to the following evaluation criteria. In the appearance test, the evaluation "B" is the passing level of this test, and it is desirable that the evaluation is "A" or higher.
-Measurement conditions-
The arithmetic mean surface roughness (Ra) of the prepared simple test cable was obtained by randomly sampling the coating of the simple test cable at five locations and based on JIS B 0601: 2013, a surface roughness measuring machine (manufactured by Mitutoyo, surf test). The arithmetic mean surface roughness (Ra, μm) was determined using SJ-301 (trade name)).
-Evaluation criteria-
AA: 1.5 μm or less A: 1.5 μm or more and 2.5 μm or less B: 2.5 μm or more and 3.5 μm or less C: 3.5 μm or less

<耐摩耗性試験>
水平に設置した耐摩耗性試験用電線の上に、15Nの荷重を加え、0.25mmφのピアノ線を用いて被覆を摩耗させた。ピアノ線が導体に達するまで連続して往復させ、その往復回数を測定した。摩耗させる部分は、1サンプルにつき、円周方向に90、180、270および360°の4か所として4回実施し、4回の往復回数の平均値を、耐摩耗性の指標とした。耐摩耗性を往復回数の平均値により下記評価基準で評価した。耐摩耗性試験は、評価「B」が本試験の合格レベルであり、「A」以上であると望ましいレベルにある。
−評価基準―
AA:300回以上
A:200回以上300回未満
B:100回以上200回未満
C:100回未満
<Abrasion resistance test>
A load of 15 N was applied onto the horizontally installed wear resistance test wire, and the coating was worn using a 0.25 mmφ piano wire. The piano wire was continuously reciprocated until it reached the conductor, and the number of reciprocations was measured. The portion to be abraded was carried out four times per sample at four locations of 90, 180, 270 and 360 ° in the circumferential direction, and the average value of the number of reciprocations of the four times was used as an index of wear resistance. Abrasion resistance was evaluated according to the following evaluation criteria based on the average number of round trips. In the wear resistance test, the evaluation "B" is the passing level of this test, and it is desirable that the evaluation is "A" or higher.
-Evaluation criteria-
AA: 300 times or more A: 200 times or more and less than 300 times B: 100 times or more and less than 200 times C: Less than 100 times

<形状維持性(耐ドローダウン性)試験>
各簡易試験ケーブルを、10m/minの線速で押出成形して製造した各例において、上記押出成形機により押し出された各電線・ケーブル被覆用ポリオレフィン樹脂組成物を冷水等で冷却することなく大気中に最長20秒放置し、所定の形状を維持しているか否かを目視にて、確認し、下記評価基準により、評価した。本試験において、形状を維持しているとは、押出成形した後(押出成形機から押し出された後)から所定時間経過するまでに、ケーブル被覆用ポリオレフィン樹脂組成物にて連結された押出後の簡易電線連結部13の傾き角度が、押出ダイスの形状に対して5度以内で保たれていることをいう。形状維持性試験は、評価「B」が本試験の合格レベルであり、「A」以上であると望ましいレベルにある。
−評価基準―
AA:20秒放置しても形状を維持していた場合
A:10秒放置しても形状を維持し、20秒放置すると形状を維持できない場合
B:5秒放置しても形状を維持し、10秒放置すると形状を維持できない場合
C:5秒未満で形状が崩れた場合
<Shape retention (drawdown resistance) test>
In each example manufactured by extruding each simple test cable at a linear speed of 10 m / min, each electric wire / cable coating polyolefin resin composition extruded by the extrusion molding machine is not cooled with cold water or the like and is in the atmosphere. It was left inside for a maximum of 20 seconds, visually confirmed whether or not it maintained the predetermined shape, and evaluated according to the following evaluation criteria. In this test, maintaining the shape means that the shape is maintained after extrusion, which is connected with a polyolefin resin composition for cable coating by a predetermined time after extrusion molding (after being extruded from an extrusion molding machine). It means that the inclination angle of the simple electric wire connecting portion 13 is maintained within 5 degrees with respect to the shape of the extruded die. In the shape retention test, the evaluation "B" is the passing level of this test, and it is desirable that the evaluation is "A" or higher.
-Evaluation criteria-
AA: When the shape is maintained even after being left for 20 seconds A: When the shape is maintained even after being left for 10 seconds and when the shape cannot be maintained after being left for 20 seconds B: When the shape is maintained even after being left for 5 seconds, If the shape cannot be maintained after leaving it for 10 seconds C: If the shape collapses in less than 5 seconds

<押出性試験>
簡易試験ケーブルを線速が100m/minで押出成形して製造した各例において、上記押出成形機により各電線・ケーブル被覆用ポリオレフィン樹脂組成物を押出成形した際の、押出成形機のモーターに作用した負荷値の最大値を読み取った。
読み取った値をモーター負荷限界値で除して、モーター負荷限界に対する負荷率(%)を算出した。電線・ケーブル被覆用ポリオレフィン樹脂組成物の押出性を、上記負荷率を指標として、下記評価基準により、評価した。押出性試験は、評価が「B」であると押出機にかかる負荷が許容でき、本試験の合格レベルであり、「A」以上であると望ましいレベルにある。
−評価基準―
AA:74%以下
A:74%を超え85%以下
B:85%を超え100%以下
C:100%を超える
<Extrusion test>
In each example manufactured by extruding a simple test cable at a linear velocity of 100 m / min, it acts on the motor of the extrusion molding machine when each wire / cable coating polyolefin resin composition is extruded by the above extrusion molding machine. The maximum value of the loaded load value was read.
The read value was divided by the motor load limit value to calculate the load factor (%) with respect to the motor load limit. The extrudability of the polyolefin resin composition for coating electric wires and cables was evaluated by the following evaluation criteria using the above load factor as an index. In the extrudability test, when the evaluation is "B", the load applied to the extruder can be tolerated, which is the passing level of this test, and when the evaluation is "A" or higher, it is at a desirable level.
-Evaluation criteria-
AA: 74% or less A: 74% or more and 85% or less B: 85% or more and 100% or less C: 100% or less

<耐寒性試験>
各実施例及び各参考例で調製した電線・ケーブル被覆用ポリオレフィン樹脂組成物を厚さ2mmのシート状に成形した試験片を用いて、JIS C 3005に基づき、脆化温度を測定した。その結果、実施例1〜13および参考例1〜5で調製した電線・ケーブル被覆用ポリオレフィン樹脂組成物で作製した試験片は、いずれも、クラック発生温度が−40℃以下であり、耐寒性に優れていた。
<Cold resistance test>
The embrittlement temperature was measured based on JIS C 3005 using a test piece obtained by molding the polyolefin resin composition for wire / cable coating prepared in each Example and each reference example into a sheet having a thickness of 2 mm. As a result, the test pieces prepared from the polyolefin resin compositions for wire / cable coating prepared in Examples 1 to 13 and Reference Examples 1 to 5 all had a crack generation temperature of −40 ° C. or lower and became cold-resistant. It was excellent.

Figure 0006774735
Figure 0006774735

Figure 0006774735
Figure 0006774735

表1および表2の結果から以下のことがわかる。
すなわち、特定の密度およびMFRを持つポリエチレン樹脂(a1)と、特定の密度およびMFRを持つ樹脂(a2)と、ポリプロピレン系樹脂(a3)とを特定の割合で含有させ、MFRを特定の値に設定した、本発明の電線・ケーブル被覆用ポリオレフィン樹脂組成物は、いずれも、形成する被覆の断面形状が眼鏡状であっても、押出性および形状維持性に優れていた。また、これらケーブル被覆用ポリオレフィン樹脂組成物により、耐摩耗性が高く、表面が平滑で外観にも優れた被覆を形成することができた。しかも、線速を100m/minの高速に設定して押出成形しても、上記の優れた、押出性、形状維持性および外観を保持していた。
The following can be seen from the results in Tables 1 and 2.
That is, the polyethylene resin (a1) having a specific density and MFR, the resin (a2) having a specific density and MFR, and the polypropylene resin (a3) are contained in a specific ratio, and the MFR is set to a specific value. All of the set polyolefin resin compositions for coating electric wires and cables were excellent in extrudability and shape retention even when the cross-sectional shape of the coating to be formed was spectacle-like. Further, with these polyolefin resin compositions for cable coating, it was possible to form a coating having high wear resistance, a smooth surface, and an excellent appearance. Moreover, even when the linear speed was set to a high speed of 100 m / min and extrusion molding was performed, the above-mentioned excellent extrudability, shape retention and appearance were maintained.

これに対して、ポリエチレン樹脂(a1)の含有率が高い比較例1は耐摩耗性が十分ではなかった。一方、ポリエチレン樹脂(a1)の含有率が低い比較例2は、MFRが小さすぎ、押出性が十分ではなく、押出性と形状維持性とを両立できなかった。ポリエチレン樹脂(a1)の密度が小さすぎる比較例3は耐摩耗性が十分ではなかった。一方、ポリエチレン樹脂(a1)の密度が大きすぎる比較例4は押出性が十分ではなく、押出性と形状維持性とを両立できなかった。ポリエチレン樹脂(a1)のMFRが大きすぎる比較例5は形状維持性が十分ではなく、押出性と形状維持性とを両立できなかった。
また、樹脂(a2)の密度が大きすぎる比較例6および樹脂(a2)のMFRが小さすぎる比較例7は押出性が十分ではなく、押出性と形状維持性とを両立できなかった。樹脂(a2)のMFRが大きすぎる比較例8は形状維持性が十分ではなく、押出性と形状維持性とを両立できなかった。
さらに、ポリプロピレン系樹脂(a3)を含有しない比較例10は外観および耐摩耗性が十分ではなかった。一方、ポリプロピレン系樹脂(a3)の含有率が高い比較例11は押出性が十分ではなく、押出性と形状維持性とを両立できなかった。電線・ケーブル被覆用ポリオレフィン樹脂組成物のMFRが小さすぎる比較例9は押出性が十分ではなく、押出性と形状維持性とを両立できなかった。
On the other hand, Comparative Example 1 in which the content of the polyethylene resin (a1) was high did not have sufficient wear resistance. On the other hand, in Comparative Example 2 in which the content of the polyethylene resin (a1) was low, the MFR was too small, the extrudability was not sufficient, and both the extrudability and the shape-retaining property could not be achieved. Comparative Example 3 in which the density of the polyethylene resin (a1) was too small did not have sufficient wear resistance. On the other hand, in Comparative Example 4 in which the density of the polyethylene resin (a1) was too high, the extrudability was not sufficient, and both the extrudability and the shape retention property could not be achieved. In Comparative Example 5 in which the MFR of the polyethylene resin (a1) was too large, the shape-retaining property was not sufficient, and both the extrudability and the shape-retaining property could not be achieved.
Further, in Comparative Example 6 in which the density of the resin (a2) was too large and Comparative Example 7 in which the MFR of the resin (a2) was too small, the extrudability was not sufficient, and both the extrudability and the shape retention property could not be achieved. In Comparative Example 8 in which the MFR of the resin (a2) was too large, the shape-retaining property was not sufficient, and both the extrudability and the shape-retaining property could not be achieved.
Further, Comparative Example 10 containing no polypropylene-based resin (a3) did not have sufficient appearance and abrasion resistance. On the other hand, Comparative Example 11 having a high content of the polypropylene-based resin (a3) did not have sufficient extrudability, and could not achieve both extrudability and shape retention. In Comparative Example 9 in which the MFR of the polyolefin resin composition for coating electric wires and cables was too small, the extrudability was not sufficient, and both the extrudability and the shape retention property could not be achieved.

1 スロット型光ケーブル
2 漏洩同軸ケーブル
11、21 ケーブル部
12、22 支持線部
12a、22a 支持線
12b、22b 被覆(シース)
13、23 首部
14 テンションメンバー
15 スロット
15a 収納溝
16 光ファイバ心線
17 引き裂き紐
18 押さえ巻きテープ
19、28 被覆(シース)
24 内部導体
25 絶縁体ポリエチレン紐
26 絶縁体ポリエチレンパイプ
27 外部導体
1 Slot type optical cable 2 Leakage coaxial cable 11, 21 Cable part 12, 22 Support wire part 12a, 22a Support wire 12b, 22b Coating (sheath)
13, 23 Neck 14 Tension member 15 Slot 15a Storage groove 16 Optical fiber core wire 17 Tear string 18 Press winding tape 19, 28 Coating (sheath)
24 Inner conductor 25 Insulator polyethylene string 26 Insulator polyethylene pipe 27 Outer conductor

Claims (7)

密度が0.900〜0.935g/cmであり、メルトフローレート(190℃、21.18N)が10g/10分以下であるポリエチレン樹脂(a1)40〜67質量%と、
エチレン−αオレフィン共重合体およびエチレン単独重合体からなる群より選択される少なくとも1種の重合体の樹脂であって、密度が0.940〜0.965g/cmであり、メルトフローレート(190℃、21.18N)が0.2〜10g/10分である樹脂(a2)30〜57質量%と、
メルトフローレート(230℃、21.18N)が0.8〜50g/10分であるポリプロピレン系樹脂(a3)3〜25質量%とを含有し、
メルトフローレート(190℃、21.18N)が0.61〜5.0g/10分である電線・ケーブル被覆用ポリオレフィン樹脂組成物。
Polyethylene resin (a1) having a density of 0.9000 to 0.935 g / cm 3 and a melt flow rate (190 ° C., 21.18 N) of 10 g / 10 minutes or less, 40 to 67 % by mass.
A resin of at least one polymer selected from the group consisting of an ethylene-α-olefin copolymer and an ethylene homopolymer, having a density of 0.940 to 0.965 g / cm 3 and a melt flow rate (melt flow rate). 190 ° C., 21.18N) is 0.2 to 10 g / 10 minutes, and the resin (a2) is 30 to 57 % by mass.
It contains 3 to 25% by mass of a polypropylene resin (a3) having a melt flow rate (230 ° C., 21.18N) of 0.8 to 50 g / 10 minutes .
A polyolefin resin composition for coating electric wires and cables having a melt flow rate (190 ° C., 21.18N) of 0.61 to 5.0 g / 10 minutes.
カーボンブラック(b)を含有する請求項1に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。 The polyolefin resin composition for coating an electric wire / cable according to claim 1, which contains carbon black (b) . 前記ポリエチレン樹脂(a1)が、メタロセン触媒を用いて合成されたポリエチレン樹脂である請求項1または2に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。 The polyolefin resin composition for electric wire / cable coating according to claim 1 or 2, wherein the polyethylene resin (a1) is a polyethylene resin synthesized by using a metallocene catalyst . 前記ポリプロピレン系樹脂(a3)が、プロピレンの単独重合体、プロピレンとエチレンとの共重合体、プロピレンと1−ブテンとの共重合体、プロピレンとエチレンと1−ブテンとの3元共重合体からなる群より選択される少なくとも1種の重合体からなるポリプロピレン系樹脂を含有する請求項1〜3のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。 The polypropylene-based resin (a3) is made from a homopolymer of propylene, a copolymer of propylene and ethylene, a copolymer of propylene and 1-butene, and a ternary copolymer of propylene, ethylene and 1-butene. The polyolefin resin composition for coating an electric wire / cable according to any one of claims 1 to 3, which contains a polypropylene resin composed of at least one polymer selected from the above group . 前記カーボンブラック(b)の含有量が、前記ポリエチレン樹脂(a1)、前記樹脂(a2)および前記ポリプロピレン系樹脂(a3)の合計100質量部に対して1.5〜5.0質量部である請求項2〜4のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。 The content of the carbon black (b) is 1.5 to 5.0 parts by mass with respect to 100 parts by mass of the total of the polyethylene resin (a1), the resin (a2) and the polypropylene-based resin (a3). The polyolefin resin composition for coating an electric wire / cable according to any one of claims 2 to 4 . 前記ポリエチレン樹脂(a1)の前記メルトフローレート(190℃、21.18N)が1.0g/10分以上である請求項1〜5のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物。 The polyolefin resin composition for electric wire / cable coating according to any one of claims 1 to 5, wherein the melt flow rate (190 ° C., 21.18N) of the polyethylene resin (a1) is 1.0 g / 10 minutes or more. Stuff. 請求項1〜6のいずれか1項に記載の電線・ケーブル被覆用ポリオレフィン樹脂組成物を押出成形してなる被覆を有する電線・ケーブル An electric wire / cable having a coating obtained by extruding the polyolefin resin composition for coating the electric wire / cable according to any one of claims 1 to 6 .
JP2015041473A 2015-03-03 2015-03-03 Polyolefin resin composition for coating electric wires and cables and electric wires and cables Active JP6774735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041473A JP6774735B2 (en) 2015-03-03 2015-03-03 Polyolefin resin composition for coating electric wires and cables and electric wires and cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041473A JP6774735B2 (en) 2015-03-03 2015-03-03 Polyolefin resin composition for coating electric wires and cables and electric wires and cables

Publications (2)

Publication Number Publication Date
JP2016162634A JP2016162634A (en) 2016-09-05
JP6774735B2 true JP6774735B2 (en) 2020-10-28

Family

ID=56845279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041473A Active JP6774735B2 (en) 2015-03-03 2015-03-03 Polyolefin resin composition for coating electric wires and cables and electric wires and cables

Country Status (1)

Country Link
JP (1) JP6774735B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656696A (en) * 1993-03-02 1997-08-12 Mitsubishi Chemical Corporation Resin composition for injection molding
US6124770A (en) * 1999-10-22 2000-09-26 Nippon Unicar Company Limited Expandable resin composition
JP4505087B2 (en) * 1999-11-04 2010-07-14 日本ユニカー株式会社 Foamable resin composition for producing highly foamed polyethylene-coated wires by inert gas foaming method and highly foamed insulated polyethylene-coated wires made by coating this
US6455602B1 (en) * 2000-10-24 2002-09-24 Union Carbide Chemicals & Plastics Technology Corporation High-speed processable cellular insulation material with enhanced foamability
JP2004512409A (en) * 2001-10-24 2004-04-22 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Bubble insulation material with improved foaming properties and capable of high-speed processing
JP2004259579A (en) * 2003-02-26 2004-09-16 Yazaki Corp Recyclable cable
JP5163237B2 (en) * 2008-04-01 2013-03-13 住友化学株式会社 Resin composition for electric wire coating or sheath, electric wire and cable
JP6182315B2 (en) * 2013-01-10 2017-08-16 古河電気工業株式会社 Resin composition with excellent surface smoothness
JP5769321B2 (en) * 2013-02-18 2015-08-26 古河電気工業株式会社 Process for producing silane-crosslinked resin molded body and molded body using the method
JP6012508B2 (en) * 2013-02-27 2016-10-25 古河電気工業株式会社 Resin composition with excellent surface smoothness

Also Published As

Publication number Publication date
JP2016162634A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5673704B2 (en) Phosphorus-free non-halogen flame retardant insulated wires and phosphorus-free non-halogen flame retardant cables
CN104870549A (en) Polyolefin-based compound for cable jacket with reduced shrinkage and enhanced processability
CA2880292A1 (en) Modified ethylene-based polymer compositions and methods of their production
WO2012074006A1 (en) Insulated wire and cable
KR102397779B1 (en) Conductor jacket and manufacturing method thereof
JP5950948B2 (en) Resin composition for covering electric wires and cables and electric wires and cables using the same
JP6012508B2 (en) Resin composition with excellent surface smoothness
JP5590177B1 (en) Phosphorus-free non-halogen flame-retardant insulated wires and phosphorus-free non-halogen flame-retardant insulated cables
JP6774735B2 (en) Polyolefin resin composition for coating electric wires and cables and electric wires and cables
JP5051360B2 (en) Insulated wires and cables
CN100580820C (en) Non-halogen flame resistant wire and cable
JP3586670B2 (en) Method for producing coated electric wire using flame-retardant ethylene-based resin composition
JP6182315B2 (en) Resin composition with excellent surface smoothness
WO2021200742A1 (en) Wiring material and production method therefor
WO2012005357A1 (en) Photovoltaic power collection cable
JP2014227447A (en) Flame-retardant resin composition and flame-retardant object including flame-retardant resin molding obtained by molding the same
JP5692619B2 (en) Phosphorus-free non-halogen flame-retardant insulated wires and phosphorus-free non-halogen flame-retardant insulated cables
JP6182328B2 (en) Resin composition with excellent surface smoothness
JP7526206B2 (en) Coated Conductor
JP5533693B2 (en) Flame retardant resin composition, and optical fiber cable and electric wire using the same
JP7410889B2 (en) Polymer compounds for cable sheathing and their manufacturing process
JP3978346B2 (en) Electric wires and cables with an adhesive olefin-based resin composition as a coating layer
JP2017082078A (en) Non-phosphorous non-halogen flame retardant resin composition, and wire and cable using the same
JP6359281B2 (en) Flame-retardant resin composition and cable using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R151 Written notification of patent or utility model registration

Ref document number: 6774735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350