[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6773193B2 - Soft magnetic alloy powder, powder magnetic core and magnetic parts - Google Patents

Soft magnetic alloy powder, powder magnetic core and magnetic parts Download PDF

Info

Publication number
JP6773193B2
JP6773193B2 JP2019192096A JP2019192096A JP6773193B2 JP 6773193 B2 JP6773193 B2 JP 6773193B2 JP 2019192096 A JP2019192096 A JP 2019192096A JP 2019192096 A JP2019192096 A JP 2019192096A JP 6773193 B2 JP6773193 B2 JP 6773193B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
powder
alloy powder
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192096A
Other languages
Japanese (ja)
Other versions
JP2020045569A5 (en
JP2020045569A (en
Inventor
雅和 細野
雅和 細野
賢治 堀野
賢治 堀野
裕之 松元
裕之 松元
和宏 吉留
和宏 吉留
暁斗 長谷川
暁斗 長谷川
一 天野
一 天野
功 中畑
功 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019192096A priority Critical patent/JP6773193B2/en
Publication of JP2020045569A publication Critical patent/JP2020045569A/en
Publication of JP2020045569A5 publication Critical patent/JP2020045569A5/ja
Application granted granted Critical
Publication of JP6773193B2 publication Critical patent/JP6773193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は軟磁性合金粉末、圧粉磁心および磁性部品に関する。 The present invention relates to soft magnetic alloy powders, powder magnetic cores and magnetic parts.

各種電子機器の電源回路に用いられる磁性部品として、トランス、チョークコイル、インダクタ等が知られている。 Transformers, choke coils, inductors, and the like are known as magnetic components used in power supply circuits of various electronic devices.

このような磁性部品は、所定の磁気特性を発揮する磁心(コア)の周囲あるいは内部に、電気伝導体であるコイル(巻線)が配置されている構成を有している。 Such a magnetic component has a configuration in which a coil (winding wire), which is an electric conductor, is arranged around or inside a magnetic core (core) that exhibits a predetermined magnetic characteristic.

インダクタ等の磁性部品が備える磁心には小型化、高性能化が求められている。このような磁心に用いられる磁気特性が良好な軟磁性材料としては、鉄(Fe)をベースとするナノ結晶合金が例示される。ナノ結晶合金は、アモルファス合金を熱処理することにより、非晶質中にナノメートルオーダーの微結晶が析出した合金である。たとえば、特許文献1には、Fe−B−M(M=Ti,Zr,Hf,V,Nb,Ta,Mo,W)系の軟磁性非晶質合金の薄帯が記載されている。特許文献1によれば、この軟磁性非晶質合金は市販のFeアモルファスと比べて高い飽和磁束密度を有している。 The magnetic cores of magnetic components such as inductors are required to be smaller and have higher performance. An example of a soft magnetic material having good magnetic properties used for such a magnetic core is an iron (Fe) -based nanocrystalline alloy. The nanocrystal alloy is an alloy in which nanometer-order microcrystals are precipitated in the amorphous by heat-treating the amorphous alloy. For example, Patent Document 1 describes a thin band of a Fe-BM (M = Ti, Zr, Hf, V, Nb, Ta, Mo, W) -based soft magnetic amorphous alloy. According to Patent Document 1, this soft magnetic amorphous alloy has a higher saturation magnetic flux density than a commercially available Fe amorphous alloy.

ところで、磁心を圧粉磁心として得る場合には、このような軟磁性合金を粉末状にして、圧縮成形する必要がある。このような圧粉磁心においては、磁気特性を向上させるために、磁性成分の割合(充填率)が高められている。しかしながら、軟磁性合金は絶縁性が低いため、軟磁性合金から構成される粒子同士が接触していると、磁性部品への電圧印加時に、接触している粒子間を流れる電流(粒子間渦電流)に起因する損失が大きく、その結果、圧粉磁心のコアロスが大きくなってしまうという問題があった。 By the way, in order to obtain a magnetic core as a powder magnetic core, it is necessary to make such a soft magnetic alloy into a powder and perform compression molding. In such a dust core, the ratio (filling rate) of the magnetic component is increased in order to improve the magnetic characteristics. However, since soft magnetic alloys have low insulating properties, if particles composed of soft magnetic alloys are in contact with each other, a current flowing between the contacting particles (interparticle eddy current) when a voltage is applied to a magnetic component. ), And as a result, there is a problem that the core loss of the dust core becomes large.

そこで、このような渦電流を抑制するために、軟磁性合金粒子の表面には絶縁被膜が形成されている。たとえば、特許文献2は、リン(P)の酸化物を含む粉末ガラスを機械的摩擦により軟化させて、Fe系非晶質合金粉末の表面に絶縁コーティング層を形成することを開示している。 Therefore, in order to suppress such eddy currents, an insulating film is formed on the surface of the soft magnetic alloy particles. For example, Patent Document 2 discloses that powdered glass containing an oxide of phosphorus (P) is softened by mechanical friction to form an insulating coating layer on the surface of Fe-based amorphous alloy powder.

特許3342767号公報Japanese Patent No. 3342767 特開2015−132010号公報JP-A-2015-1332010

特許文献2において、絶縁コーティング層が形成されたFe系非晶質合金粉末は樹脂と混合され圧縮成形により圧粉磁心とされる。絶縁コーティング層の厚みを大きくすれば、圧粉磁心の耐電圧性は向上するものの、磁性成分の充填率が低くなるため、磁気特性が劣化してしまう。したがって、良好な磁気特性を得るには、絶縁コーティング層が形成された軟磁性合金粉末全体として、耐電圧性を向上させる必要がある。 In Patent Document 2, the Fe-based amorphous alloy powder on which the insulating coating layer is formed is mixed with a resin and compression-molded to form a powder magnetic core. If the thickness of the insulating coating layer is increased, the withstand voltage resistance of the dust core is improved, but the filling rate of the magnetic component is lowered, so that the magnetic characteristics are deteriorated. Therefore, in order to obtain good magnetic properties, it is necessary to improve the withstand voltage of the soft magnetic alloy powder on which the insulating coating layer is formed as a whole.

本発明は、このような実状に鑑みてなされ、その目的は、耐電圧性が良好な圧粉磁心、これを備える磁性部品および当該圧粉磁心に好適な軟磁性合金粉末を提供することである。 The present invention has been made in view of such an actual situation, and an object of the present invention is to provide a powder magnetic core having good withstand voltage resistance, a magnetic component provided with the powder magnetic core, and a soft magnetic alloy powder suitable for the powder magnetic core. ..

本発明者らは、特定の組成を有する軟磁性合金からなる軟磁性合金粒子に、被覆部を設けることにより、当該軟磁性合金粒子を含む粉末全体の耐電圧性が向上することを見出し、本発明を完成させるに至った。 The present inventors have found that by providing a coating portion on soft magnetic alloy particles made of a soft magnetic alloy having a specific composition, the withstand voltage resistance of the entire powder containing the soft magnetic alloy particles is improved. The invention has been completed.

すなわち、本発明の態様は、
[1]組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e))Siで表される軟磁性合金からなる軟磁性合金粒子を複数含む軟磁性合金粉末であって、
X1は、CoおよびNiからなる群から選択される1種以上であり、
X2は、Al,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1種以上であり、
Mは、Nb,Hf,Zr,Ta,Mo,WおよびVからなる群から選択される1種以上であり、
a、b、c、d、e、αおよびβが、
0.020≦a≦0.14、
0.020<b≦0.20、
0<c≦0.15、
0≦d≦0.060、
0≦e≦0.040、
α≧0、
β≧0、
0≦α+β≦0.50である関係を満足し、
軟磁性合金は、初期微結晶が非晶質中に存在するナノヘテロ構造を有し、
軟磁性合金粒子の表面は被覆部により覆われており、
被覆部は、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の化合物を含むことを特徴とする軟磁性合金粉末である。
That is, the aspect of the present invention is
[1] Composition formula (Fe (1- (α + β )) X1 α X2 β) (1- (a + b + c + d + e)) M a B b P c Si d C e made of a soft magnetic alloy represented by the soft magnetic alloy grains A soft magnetic alloy powder containing a plurality of
X1 is one or more selected from the group consisting of Co and Ni.
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W and V.
a, b, c, d, e, α and β
0.020 ≤ a ≤ 0.14,
0.020 <b ≤ 0.20,
0 <c ≦ 0.15,
0 ≦ d ≦ 0.060,
0 ≦ e ≦ 0.040,
α ≧ 0,
β ≧ 0,
Satisfying the relationship of 0≤α + β≤0.50,
The soft magnetic alloy has a nanoheterostructure in which the initial microcrystals are present in the amorphous state.
The surface of the soft magnetic alloy particles is covered with a coating,
The coating portion is a soft magnetic alloy powder characterized by containing a compound of one or more elements selected from the group consisting of P, Si, Bi and Zn.

[2]初期微結晶の平均粒径が、0.3nm以上10nm以下であることを特徴とする[1]に記載の軟磁性合金粉末である。 [2] The soft magnetic alloy powder according to [1], wherein the average particle size of the initial microcrystals is 0.3 nm or more and 10 nm or less.

[3]組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e))Siで表される軟磁性合金からなる軟磁性合金粒子を複数含む軟磁性合金粉末であって、
X1は、CoおよびNiからなる群から選択される1種以上であり、
X2は、Al,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1種以上であり、
Mは、Nb,Hf,Zr,Ta,Mo,WおよびVからなる群から選択される1種以上であり、
a、b、c、d、e、αおよびβが、
0.020≦a≦0.14、
0.020<b≦0.20、
0<c≦0.15、
0≦d≦0.060、
0≦e≦0.040、
α≧0、
β≧0、
0≦α+β≦0.50である関係を満足し、
軟磁性合金は、Fe基ナノ結晶を有し、
軟磁性合金粒子の表面は被覆部により覆われており、
被覆部は、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の化合物を含むことを特徴とする軟磁性合金粉末である。
[3] the composition formula (Fe (1- (α + β )) X1 α X2 β) (1- (a + b + c + d + e)) M a B b P c Si d C made of a soft magnetic alloy represented by e soft magnetic alloy grains A soft magnetic alloy powder containing a plurality of
X1 is one or more selected from the group consisting of Co and Ni.
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W and V.
a, b, c, d, e, α and β
0.020 ≤ a ≤ 0.14,
0.020 <b ≤ 0.20,
0 <c ≦ 0.15,
0 ≦ d ≦ 0.060,
0 ≦ e ≦ 0.040,
α ≧ 0,
β ≧ 0,
Satisfying the relationship of 0≤α + β≤0.50,
The soft magnetic alloy has Fe-based nanocrystals and has
The surface of the soft magnetic alloy particles is covered with a coating,
The coating portion is a soft magnetic alloy powder characterized by containing a compound of one or more elements selected from the group consisting of P, Si, Bi and Zn.

[4]Fe基ナノ結晶の平均粒径が、5nm以上30nm以下であることを特徴とする[3]に記載の軟磁性合金粉末である。 [4] The soft magnetic alloy powder according to [3], wherein the average particle size of Fe-based nanocrystals is 5 nm or more and 30 nm or less.

[5][1]から[4]のいずれかに記載の軟磁性合金粉末から構成される圧粉磁心である。 [5] A powder magnetic core composed of the soft magnetic alloy powder according to any one of [1] to [4].

[6][5]に記載の圧粉磁心を備える磁性部品である。 [6] A magnetic component having the dust core according to [5].

本発明によれば、耐電圧性が良好な圧粉磁心、これを備える磁性部品および当該圧粉磁心に好適な軟磁性合金粉末を提供することができる。 According to the present invention, it is possible to provide a powder magnetic core having good withstand voltage resistance, a magnetic component provided with the powder magnetic core, and a soft magnetic alloy powder suitable for the powder magnetic core.

図1は、本実施形態に係る軟磁性合金粉末を構成する被覆粒子の断面模式図である。FIG. 1 is a schematic cross-sectional view of the coated particles constituting the soft magnetic alloy powder according to the present embodiment. 図2は、被覆部を形成するために用いる粉末被覆装置の構成を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing the configuration of a powder coating device used for forming a coating portion.

以下、本発明を、図面に示す具体的な実施形態に基づき、以下の順序で詳細に説明する。
1.軟磁性合金粉末
1.1.軟磁性合金
1.1.1.第1の観点
1.1.2.第2の観点
1.2.被覆部
2.圧粉磁心
3.磁性部品
4.圧粉磁心の製造方法
4.1.軟磁性合金粉末の製造方法
4.2.圧粉磁心の製造方法
Hereinafter, the present invention will be described in detail in the following order based on the specific embodiments shown in the drawings.
1. 1. Soft magnetic alloy powder 1.1. Soft magnetic alloy 1.1.1. First viewpoint 11.2. Second viewpoint 1.2. Cover 2. Powder magnetic core 3. Magnetic parts 4. Manufacturing method of dust core 4.1. Method for manufacturing soft magnetic alloy powder 4.2. Manufacturing method of dust core

(1.軟磁性合金粉末)
本実施形態に係る軟磁性合金粉末は、図1に示すように、軟磁性合金粒子2の表面に被覆部10が形成された被覆粒子1を複数含む。軟磁性合金粉末に含まれる粒子の個数割合を100%とした場合、被覆粒子の個数割合が90%以上であることが好ましく、95%以上であることが好ましい。なお、軟磁性合金粒子2の形状は特に制限されないが、通常、球形である。
(1. Soft magnetic alloy powder)
As shown in FIG. 1, the soft magnetic alloy powder according to the present embodiment contains a plurality of coated particles 1 having a coated portion 10 formed on the surface of the soft magnetic alloy particles 2. When the number ratio of the particles contained in the soft magnetic alloy powder is 100%, the number ratio of the coated particles is preferably 90% or more, and preferably 95% or more. The shape of the soft magnetic alloy particles 2 is not particularly limited, but is usually spherical.

また、本実施形態に係る軟磁性合金粉末の平均粒子径(D50)は、用途および材質に応じて選択すればよい。本実施形態では、平均粒子径(D50)は、0.3〜100μmの範囲内であることが好ましい。軟磁性合金粉末の平均粒子径を上記の範囲内とすることにより、十分な成形性あるいは所定の磁気特性を維持することが容易となる。平均粒子径の測定方法としては、特に制限されないが、レーザー回折散乱法を用いることが好ましい。 Further, the average particle size (D50) of the soft magnetic alloy powder according to the present embodiment may be selected according to the application and the material. In the present embodiment, the average particle size (D50) is preferably in the range of 0.3 to 100 μm. By setting the average particle size of the soft magnetic alloy powder within the above range, it becomes easy to maintain sufficient moldability or predetermined magnetic properties. The method for measuring the average particle size is not particularly limited, but it is preferable to use the laser diffraction / scattering method.

本実施形態では、軟磁性合金粉末は、材質が同じ軟磁性合金粒子のみを含んでいてもよいし、材質が異なる軟磁性合金粒子が混在していてもよい。なお、異なる材質とは、軟磁性合金を構成する元素が異なる場合、構成する元素が同じであってもその組成が異なる場合等が例示される。 In the present embodiment, the soft magnetic alloy powder may contain only soft magnetic alloy particles of the same material, or may contain soft magnetic alloy particles of different materials. Examples of different materials include cases where the elements constituting the soft magnetic alloy are different, cases where the constituent elements are the same but the composition is different, and the like.

(1.1.軟磁性合金)
軟磁性合金粒子は、所定の構造および組成を有する軟磁性合金からなる。本実施形態では、当該軟磁性合金を、第1の観点に係る軟磁性合金と、第2の観点に係る軟磁性合金と、に分けて説明する。第1の観点に係る軟磁性合金と、第2の観点に係る軟磁性合金と、の違いは、軟磁性合金の構造の違いであり、組成は共通する。
(1.1. Soft magnetic alloy)
The soft magnetic alloy particles are made of a soft magnetic alloy having a predetermined structure and composition. In the present embodiment, the soft magnetic alloy will be described separately as a soft magnetic alloy according to the first aspect and a soft magnetic alloy according to the second aspect. The difference between the soft magnetic alloy according to the first aspect and the soft magnetic alloy according to the second aspect is the difference in the structure of the soft magnetic alloy, and the composition is common.

(1.1.1.第1の観点)
第1の観点に係る軟磁性合金は、初期微結晶が非晶質中に存在するナノへテロ構造を有している。このような構造は、軟磁性合金の原料が溶解した溶湯を急冷することにより得られる非晶質合金中に、多数の微結晶が析出し分散している構造である。したがって、初期微結晶の平均粒径は非常に小さい。本実施形態では、初期微結晶の平均粒径は0.3nm以上10nm以下であることが好ましい。
(1.1.1. First viewpoint)
The soft magnetic alloy according to the first aspect has a nanoheterostructure in which initial microcrystals are present in amorphous material. Such a structure is a structure in which a large number of microcrystals are precipitated and dispersed in an amorphous alloy obtained by quenching a molten metal in which a raw material of a soft magnetic alloy is dissolved. Therefore, the average particle size of the initial crystallites is very small. In the present embodiment, the average particle size of the initial microcrystals is preferably 0.3 nm or more and 10 nm or less.

このようなナノへテロ構造を有する軟磁性合金を所定の条件で熱処理することにより、初期微結晶を成長させて、後述する第2の観点に係る軟磁性合金(Fe基ナノ結晶を有する軟磁性合金)を得ることが容易となる。 By heat-treating a soft magnetic alloy having such a nanoheterostructure under predetermined conditions, initial microcrystals are grown, and the soft magnetic alloy according to the second aspect described later (soft magnetic having Fe-based nanocrystals). It becomes easy to obtain an alloy).

続いて、第1の観点に係る軟磁性合金の組成について詳細に説明する。 Subsequently, the composition of the soft magnetic alloy according to the first aspect will be described in detail.

第1の観点に係る軟磁性合金は、組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e))Siで表され、Feが比較的高濃度で存在する軟磁性合金である。 Soft magnetic alloy according to the first aspect, a composition formula (Fe (1- (α + β )) X1 α X2 β) represented by (1- (a + b + c + d + e)) M a B b P c Si d C e, Fe is It is a soft magnetic alloy that exists in a relatively high concentration.

上記の組成式において、Mは、Nb,Hf,Zr,Ta,Mo,WおよびVからなる群から選択される1種以上の元素である。 In the above composition formula, M is one or more elements selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W and V.

また、aはMの含有量を示しており、aは0.020≦a≦0.14を満たす。Mの含有量(a)は、0.040以上であることが好ましく、0.050以上であることがより好ましい。また、Mの含有量(a)は、0.10以下であることが好ましく、0.080以下であることがより好ましい。 Further, a indicates the content of M, and a satisfies 0.020 ≦ a ≦ 0.14. The content (a) of M is preferably 0.040 or more, and more preferably 0.050 or more. The M content (a) is preferably 0.10 or less, more preferably 0.080 or less.

aが小さすぎる場合には、軟磁性合金中に、粒径が30nmよりも大きい結晶から構成される結晶相が生じやすい。このような結晶相が生じると、熱処理によってFe基ナノ結晶を析出させることができない。その結果、軟磁性合金の比抵抗が低くなりやすく、しかも保磁力が高くなりやすくなる傾向にある。一方、aが大きすぎる場合には、粉末の飽和磁化が低下しやすくなる傾向にある。 When a is too small, a crystal phase composed of crystals having a particle size larger than 30 nm is likely to be formed in the soft magnetic alloy. When such a crystal phase is generated, Fe-based nanocrystals cannot be precipitated by heat treatment. As a result, the specific resistance of the soft magnetic alloy tends to be low, and the coercive force tends to be high. On the other hand, when a is too large, the saturation magnetization of the powder tends to decrease.

上記の組成式において、bはB(ホウ素)の含有量を示しており、bは0.020<b≦0.20を満たす。Bの含有量(b)は、0.025以上であることが好ましく、0.060以上であることがより好ましく、0.080以上であることがさらに好ましい。また、Bの含有量(b)は、0.15以下であることが好ましく、0.12以下であることがより好ましい。 In the above composition formula, b indicates the content of B (boron), and b satisfies 0.020 <b ≦ 0.20. The content (b) of B is preferably 0.025 or more, more preferably 0.060 or more, and further preferably 0.080 or more. The B content (b) is preferably 0.15 or less, and more preferably 0.12 or less.

bが小さすぎる場合には、軟磁性合金中に、粒径が30nmよりも大きい結晶から構成される結晶相が生じやすい。このような結晶相が生じると、熱処理によってFe基ナノ結晶を析出させることができない。その結果、軟磁性合金の比抵抗が低くなりやすく、しかも保磁力が高くなりやすくなる傾向にある。一方、bが大きすぎる場合には、粉末の飽和磁化が低下しやすくなる傾向にある。 If b is too small, a crystal phase composed of crystals having a particle size larger than 30 nm is likely to be formed in the soft magnetic alloy. When such a crystal phase is generated, Fe-based nanocrystals cannot be precipitated by heat treatment. As a result, the specific resistance of the soft magnetic alloy tends to be low, and the coercive force tends to be high. On the other hand, when b is too large, the saturation magnetization of the powder tends to decrease.

上記の組成式において、cはP(リン)の含有量を示しており、cは0<c≦0.15を満たす。Pの含有量(c)は、0.005以上であることが好ましく、0.010以上であることがより好ましい。また、Pの含有量(c)は、0.100以下であることが好ましい。 In the above composition formula, c indicates the content of P (phosphorus), and c satisfies 0 <c ≦ 0.15. The content (c) of P is preferably 0.005 or more, and more preferably 0.010 or more. The P content (c) is preferably 0.100 or less.

cが上記の範囲内である場合には、軟磁性合金の比抵抗が向上し、保磁力が低下する傾向にある。cが小さすぎる場合には上記の効果が得られにくい傾向にある。一方、cが大きすぎる場合には、粉末の飽和磁化が低下しやすくなる傾向にある。 When c is within the above range, the specific resistance of the soft magnetic alloy tends to increase and the coercive force tends to decrease. If c is too small, it tends to be difficult to obtain the above effect. On the other hand, when c is too large, the saturation magnetization of the powder tends to decrease.

上記の組成式において、dはSi(シリコン)の含有量を示しており、dは0≦d≦0.060を満たす。すなわち、軟磁性合金は、Siを含有しなくてもよい。Siの含有量(d)は、0.001以上であることが好ましく、0.005以上であることがより好ましい。また、Siの含有量(d)は、0.040以下であることが好ましい。 In the above composition formula, d indicates the content of Si (silicon), and d satisfies 0 ≦ d ≦ 0.060. That is, the soft magnetic alloy does not have to contain Si. The Si content (d) is preferably 0.001 or more, and more preferably 0.005 or more. The Si content (d) is preferably 0.040 or less.

dが上記の範囲内である場合には、軟磁性合金の比抵抗が特に向上しやすくなり、保磁力が低下しやすくなる傾向にある。一方、dが大きすぎる場合には、軟磁性合金の保磁力が逆に上昇してしまう傾向にある。 When d is within the above range, the specific resistance of the soft magnetic alloy tends to be particularly improved, and the coercive force tends to be lowered. On the other hand, if d is too large, the coercive force of the soft magnetic alloy tends to increase.

上記の組成式において、eはC(炭素)の含有量を示しており、eは0≦e≦0.040を満たす。すなわち、軟磁性合金は、Cを含有しなくてもよい。Cの含有量(e)は、0.001以上であることが好ましい。また、Cの含有量(e)は、0.035以下であることが好ましく、0.030以下であることがより好ましい。 In the above composition formula, e indicates the content of C (carbon), and e satisfies 0 ≦ e ≦ 0.040. That is, the soft magnetic alloy does not have to contain C. The C content (e) is preferably 0.001 or more. The C content (e) is preferably 0.035 or less, more preferably 0.030 or less.

eが上記の範囲内である場合には、軟磁性合金の保磁力が特に低下しやすくなる傾向にある。eが大きすぎる場合には、軟磁性合金の比抵抗が低下し、保磁力が逆に上昇してしまう傾向にある。 When e is within the above range, the coercive force of the soft magnetic alloy tends to decrease particularly easily. If e is too large, the specific resistance of the soft magnetic alloy tends to decrease, and the coercive force tends to increase.

上記の組成式において、1−(a+b+c+d+e)は、Fe(鉄)の含有量を示している。Feの含有量については、特に制限されないが、本実施形態では、Feの含有量(1−(a+b+c+d+e))は、0.73以上0.95以下であることが好ましい。Feの含有量を上記の範囲内とすることで、粒径が30nmよりも大きい結晶から構成される結晶相が生じにくくなる。その結果、熱処理によりFe基ナノ結晶が析出した軟磁性合金が得られやすくなる傾向にある。 In the above composition formula, 1- (a + b + c + d + e) indicates the content of Fe (iron). The Fe content is not particularly limited, but in the present embodiment, the Fe content (1- (a + b + c + d + e)) is preferably 0.73 or more and 0.95 or less. By setting the Fe content within the above range, it becomes difficult to form a crystal phase composed of crystals having a particle size larger than 30 nm. As a result, it tends to be easy to obtain a soft magnetic alloy in which Fe-based nanocrystals are precipitated by heat treatment.

また、第1の観点に係る軟磁性合金においては、上記の組成式に示すように、Feの一部をX1および/またはX2で組成的に置換してもよい。 Further, in the soft magnetic alloy according to the first aspect, as shown in the above composition formula, a part of Fe may be compositionally replaced with X1 and / or X2.

X1は、CoおよびNiからなる群から選択される1種以上の元素である。上記の組成式において、αはX1の含有量を示しており、本実施形態では、αは0以上である。すなわち、軟磁性合金は、X1を含有しなくてもよい。 X1 is one or more elements selected from the group consisting of Co and Ni. In the above composition formula, α indicates the content of X1, and in this embodiment, α is 0 or more. That is, the soft magnetic alloy does not have to contain X1.

また、組成全体の原子数を100at%とした場合に、X1の原子数は40at%以下であることが好ましい。すなわち、0≦α{1−(a+b+c+d+e)}≦0.40を満たすことが好ましい。 Further, when the number of atoms in the entire composition is 100 at%, the number of atoms in X1 is preferably 40 at% or less. That is, it is preferable to satisfy 0 ≦ α {1- (a + b + c + d + e)} ≦ 0.40.

X2は、Al,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1種以上の元素である。上記の組成式において、βはX2の含有量を示しており、本実施形態では、βは0以上である。すなわち、軟磁性合金は、X2を含有しなくてもよい。 X2 is one or more elements selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements. In the above composition formula, β indicates the content of X2, and in this embodiment, β is 0 or more. That is, the soft magnetic alloy does not have to contain X2.

また、組成全体の原子数を100at%とした場合に、X2の原子数は3.0at%以下であることが好ましい。すなわち、0≦β{1−(a+b+c+d+e)}≦0.030を満たすことが好ましい。 Further, when the number of atoms in the entire composition is 100 at%, the number of atoms in X2 is preferably 3.0 at% or less. That is, it is preferable to satisfy 0 ≦ β {1- (a + b + c + d + e)} ≦ 0.030.

さらに、X1および/またはX2がFeを置換する範囲(置換量)としては、原子数換算でFeの総原子数の半分以下とする。すなわち、0≦α+β≦0.50とする。α+βが大きすぎる場合には、熱処理によりFe基ナノ結晶が析出した軟磁性合金を得ることが困難となる傾向にある。 Further, the range (substitution amount) in which X1 and / or X2 substitutes Fe is set to half or less of the total number of atoms of Fe in terms of atomic number. That is, 0 ≦ α + β ≦ 0.50. If α + β is too large, it tends to be difficult to obtain a soft magnetic alloy in which Fe-based nanocrystals are precipitated by heat treatment.

なお、第1の観点に係る軟磁性合金は、上記以外の元素を不可避的不純物として含んでいてもよい。たとえば、軟磁性合金100重量%に対して、上記以外の元素を合計で0.1重量%以下含んでいてもよい。 The soft magnetic alloy according to the first aspect may contain elements other than the above as unavoidable impurities. For example, elements other than the above may be contained in an amount of 0.1% by weight or less in total with respect to 100% by weight of the soft magnetic alloy.

(1.1.2.第2の観点)
第2の観点に係る軟磁性合金は、その構造が異なる以外は、第1の観点に係る軟磁性合金の構成と同一であり、重複する説明は省略する。すなわち、第1の観点に係る軟磁性合金の組成に関する説明は、第2の観点に係る軟磁性合金にも適用される。
(1.1.2. Second viewpoint)
The soft magnetic alloy according to the second aspect has the same structure as the soft magnetic alloy according to the first aspect except that its structure is different, and redundant description will be omitted. That is, the description of the composition of the soft magnetic alloy according to the first aspect also applies to the soft magnetic alloy according to the second aspect.

第2の観点に係る軟磁性合金は、Fe基ナノ結晶を有している。Fe基ナノ結晶とは、粒径がナノメートルオーダーであり、結晶構造がbcc(体心立方格子構造)であるFeの結晶のことである。当該軟磁性合金においては、多数のFe基ナノ結晶が非晶質中に析出し分散している。本実施形態では、Fe基ナノ結晶は、第1の観点に係る軟磁性合金を含む粉末を熱処理して、初期微結晶を成長させることにより好適に得られる。 The soft magnetic alloy according to the second aspect has Fe-based nanocrystals. Fe-based nanocrystals are Fe crystals having a particle size on the order of nanometers and a crystal structure of bcc (body-centered cubic lattice structure). In the soft magnetic alloy, a large number of Fe-based nanocrystals are precipitated and dispersed in the amorphous material. In the present embodiment, Fe-based nanocrystals are suitably obtained by heat-treating the powder containing the soft magnetic alloy according to the first aspect to grow initial microcrystals.

したがって、Fe基ナノ結晶の平均粒径は、初期微結晶の平均粒径よりも若干大きい傾向にある。本実施形態では、Fe基ナノ結晶の平均粒径は5nm以上30nm以下であることが好ましい。Fe基ナノ結晶が非晶質中に分散して存在している軟磁性合金は、高い飽和磁化が得られやすく、かつ低い保磁力が得られやすい。 Therefore, the average particle size of Fe-based nanocrystals tends to be slightly larger than the average particle size of initial microcrystals. In the present embodiment, the average particle size of Fe-based nanocrystals is preferably 5 nm or more and 30 nm or less. A soft magnetic alloy in which Fe-based nanocrystals are dispersed in amorphous material tends to obtain high saturation magnetization and low coercive force.

(1.2.被覆部)
被覆部10は、図1に示すように、軟磁性金属粒子2の表面を覆うように形成されている。また、本実施形態では、表面が物質により被覆されているとは、当該物質が表面に接触して接触した部分を覆うように固定されている形態をいう。また、軟磁性合金粒子を被覆する被覆部は、粒子の表面の少なくとも一部を覆っていればよいが、表面の全部を覆っていることが好ましい。さらに、被覆部は粒子の表面を連続的に覆っていてもよいし、断続的に覆っていてもよい。
(1.2. Cover)
As shown in FIG. 1, the covering portion 10 is formed so as to cover the surface of the soft magnetic metal particles 2. Further, in the present embodiment, the fact that the surface is covered with a substance means a form in which the substance is in contact with the surface and is fixed so as to cover the contacted portion. Further, the coating portion that covers the soft magnetic alloy particles may cover at least a part of the surface of the particles, but it is preferable that the coating portion covers the entire surface. Further, the covering portion may continuously cover the surface of the particles or may intermittently cover the surface of the particles.

被覆部10は、軟磁性合金粉末を構成する軟磁性合金粒子同士を絶縁できるような構成であれば、特に制限されない。本実施形態では、被覆部10は、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の化合物を含んでいることが好ましく、Pを含む化合物を含んでいることが特に好ましい。また、当該化合物は酸化物であることがより好ましく、酸化物ガラスであることが特に好ましい。被覆部を上記の構成とすることにより、軟磁性合金の非晶質中に偏析している元素との密着性が向上し、軟磁性合金粉末の絶縁性が向上する。 The covering portion 10 is not particularly limited as long as it has a structure capable of insulating the soft magnetic alloy particles constituting the soft magnetic alloy powder. In the present embodiment, the covering portion 10 preferably contains a compound of one or more elements selected from the group consisting of P, Si, Bi and Zn, and particularly preferably contains a compound containing P. .. Further, the compound is more preferably an oxide, and particularly preferably an oxide glass. By adopting the above-mentioned structure of the covering portion, the adhesion to the elements segregated in the amorphous of the soft magnetic alloy is improved, and the insulating property of the soft magnetic alloy powder is improved.

また、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の化合物は、被覆部10において、主成分として含まれていることが好ましい。「P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の酸化物を主成分として含む」とは、被覆部10に含まれる元素のうち、酸素を除いた元素の合計量を100質量%とした場合に、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の合計量が最も多いことを意味する。また、本実施形態では、これらの元素の合計量は50質量%以上であることが好ましく、60質量%以上であることがより好ましい。 Further, it is preferable that a compound of one or more elements selected from the group consisting of P, Si, Bi and Zn is contained as a main component in the coating portion 10. "Contains an oxide of one or more elements selected from the group consisting of P, Si, Bi and Zn as a main component" means the total amount of the elements contained in the covering portion 10 excluding oxygen. When it is set to 100% by mass, it means that the total amount of one or more elements selected from the group consisting of P, Si, Bi and Zn is the largest. Further, in the present embodiment, the total amount of these elements is preferably 50% by mass or more, and more preferably 60% by mass or more.

酸化物ガラスとしては特に限定されず、たとえば、リン酸塩(P)系ガラス、ビスマス酸塩(Bi)系ガラス、ホウケイ酸塩(B−SiO)系ガラス等が例示される。 The oxide glass is not particularly limited, and for example, a phosphate (P 2 O 5 ) -based glass, a bismuth acid salt (Bi 2 O 3 ) -based glass, and a borosilicate (B 2 O 3- SiO 2 ) -based glass. Etc. are exemplified.

系ガラスとしては、Pが50wt%以上含まれるガラスが好ましく、P−ZnO−RO−Al系ガラス等が例示される。なお、「R」はアルカリ金属を示す。 The P 2 O 5 based glass, glass is preferably P 2 O 5 is contained more than 50wt%, P 2 O 5 -ZnO -R 2 O-Al 2 O 3 based glass and the like. In addition, "R" represents an alkali metal.

Bi系ガラスとしては、Biが50wt%以上含まれるガラスが好ましく、Bi−ZnO−B−SiO系ガラス等が例示される。 The Bi 2 O 3 based glass, glass is preferable that Bi 2 O 3 is contained more than 50wt%, Bi 2 O 3 -ZnO -B 2 O 3 -SiO 2 based glass and the like.

−SiO系ガラスとしては、Bが10wt%以上含まれ、SiOが10wt%以上含まれるガラスが好ましく、BaO−ZnO−B−SiO−Al系ガラス等が例示される。 The B 2 O 3 -SiO 2 -based glass, B 2 O 3 is contained more than 10 wt%, the glass is preferably SiO 2 is contained more than 10wt%, BaO-ZnO-B 2 O 3 -SiO 2 -Al 2 O 3 series glass and the like are exemplified.

このような絶縁性の被覆部を有していることにより、粒子の絶縁性がより高くなるので、被覆粒子を含む軟磁性合金粉末から構成される圧粉磁心の耐電圧が向上する。 By having such an insulating coating portion, the insulating property of the particles becomes higher, so that the withstand voltage of the powder magnetic core composed of the soft magnetic alloy powder containing the coating particles is improved.

被覆部に含まれる成分は、STEM等のTEMを用いたEDSによる元素分析、EELSによる元素分析、TEM画像のFFT解析等により得られる格子定数等の情報から同定することができる。 The components contained in the covering portion can be identified from information such as the lattice constant obtained by elemental analysis by EDS using TEM such as STEM, elemental analysis by EELS, and FFT analysis of TEM images.

被覆部10の厚みは、上記の効果が得られる限りにおいて特に制限されない。本実施形態では、5nm以上200nm以下であることが好ましい。また、150nm以下であることが好ましく、50nm以下であることがより好ましい。 The thickness of the covering portion 10 is not particularly limited as long as the above effects can be obtained. In this embodiment, it is preferably 5 nm or more and 200 nm or less. Further, it is preferably 150 nm or less, and more preferably 50 nm or less.

(2.圧粉磁心)
本実施形態に係る圧粉磁心は、上述した軟磁性合金粉末から構成され、所定の形状を有するように形成されていれば特に制限されない。本実施形態では、軟磁性合金粉末と結合剤としての樹脂とを含み、当該軟磁性合金粉末を構成する軟磁性合金粒子同士が樹脂を介して結合することにより所定の形状に固定されている。また、当該圧粉磁心は、上述した軟磁性合金粉末と他の磁性粉末との混合粉末から構成され、所定の形状に形成されていてもよい。
(2. Powder magnetic core)
The powder magnetic core according to the present embodiment is not particularly limited as long as it is composed of the above-mentioned soft magnetic alloy powder and is formed so as to have a predetermined shape. In the present embodiment, the soft magnetic alloy powder and the resin as a binder are contained, and the soft magnetic alloy particles constituting the soft magnetic alloy powder are fixed to a predetermined shape by being bonded to each other via the resin. Further, the powder magnetic core may be composed of a mixed powder of the above-mentioned soft magnetic alloy powder and another magnetic powder, and may be formed in a predetermined shape.

(3.磁性部品)
本実施形態に係る磁性部品は、上記の圧粉磁心を備えるものであれば特に制限されない。たとえば、所定形状の圧粉磁心内部に、ワイヤが巻回された空芯コイルが埋設された磁性部品であってもよいし、所定形状の圧粉磁心の表面にワイヤが所定の巻き数だけ巻回されてなる磁性部品であってもよい。本実施形態に係る磁性部品は、耐電圧性が良好であるため、電源回路に用いられるパワーインダクタに好適である。
(3. Magnetic parts)
The magnetic component according to the present embodiment is not particularly limited as long as it has the above-mentioned dust core. For example, it may be a magnetic component in which an air-core coil around which a wire is wound is embedded inside a dust core having a predetermined shape, or a wire is wound by a predetermined number of turns on the surface of a dust core having a predetermined shape. It may be a magnetic component that is turned. Since the magnetic component according to the present embodiment has good withstand voltage resistance, it is suitable for a power inductor used in a power supply circuit.

(4.圧粉磁心の製造方法)
続いて、上記の磁性部品が備える圧粉磁心を製造する方法について説明する。まず、圧粉磁心を構成する軟磁性合金粉末を製造する方法について説明する。
(4. Manufacturing method of dust core)
Subsequently, a method for manufacturing the dust core provided in the above magnetic component will be described. First, a method for producing a soft magnetic alloy powder constituting a powder magnetic core will be described.

(4.1.軟磁性合金粉末の製造方法)
本実施形態に係る軟磁性合金粉末は、公知の軟磁性合金粉末の製造方法と同様の方法を用いて得ることができる。具体的には、ガスアトマイズ法、水アトマイズ法、回転ディスク法等を用いて製造することができる。また、単ロール法等により得られる薄帯を機械的に粉砕して製造してもよい。これらの中では、所望の磁気特性を有する軟磁性合金粉末が得られやすいという観点から、ガスアトマイズ法を用いることが好ましい。
(4.1. Method for producing soft magnetic alloy powder)
The soft magnetic alloy powder according to the present embodiment can be obtained by using the same method as the known method for producing the soft magnetic alloy powder. Specifically, it can be produced by using a gas atomizing method, a water atomizing method, a rotating disc method, or the like. Further, the thin band obtained by the single roll method or the like may be mechanically pulverized for production. Among these, it is preferable to use the gas atomizing method from the viewpoint that a soft magnetic alloy powder having desired magnetic properties can be easily obtained.

ガスアトマイズ法では、まず、軟磁性合金粉末を構成する軟磁性合金の原料が溶解した溶湯を得る。軟磁性合金に含まれる各金属元素の原料(純金属等)を準備し、最終的に得られる軟磁性合金の組成となるように秤量し、当該原料を溶解する。なお、金属元素の原料を溶解する方法は特に制限されないが、たとえば、アトマイズ装置のチャンバー内で真空引きした後に高周波加熱にて溶解させる方法が例示される。溶解時の温度は、各金属元素の融点を考慮して決定すればよいが、たとえば1200〜1500℃とすることができる。 In the gas atomization method, first, a molten metal in which the raw material of the soft magnetic alloy constituting the soft magnetic alloy powder is dissolved is obtained. Raw materials (pure metal, etc.) for each metal element contained in the soft magnetic alloy are prepared, weighed so as to have the final composition of the soft magnetic alloy, and the raw materials are dissolved. The method for dissolving the raw material of the metal element is not particularly limited, and for example, a method of evacuating in the chamber of the atomizing apparatus and then dissolving by high frequency heating is exemplified. The temperature at the time of melting may be determined in consideration of the melting point of each metal element, and may be, for example, 1200 to 1500 ° C.

得られた溶湯をルツボ底部に設けられたノズルを通じて線状の連続的な流体としてチャンバー内に供給し、供給された溶湯に高圧のガスを吹き付けて、溶湯を液滴化するとともに、急冷して微細な粉末を得る。ガス噴射温度、チャンバー内の圧力等は、後述する熱処理において、非晶質中にFe基ナノ結晶が析出しやすい条件に応じて決定すればよい。また、粒子径については篩分級や気流分級等をすることにより粒度調整が可能である。 The obtained molten metal is supplied into the chamber as a linear continuous fluid through a nozzle provided at the bottom of the crucible, and a high-pressure gas is blown onto the supplied molten metal to atomize the molten metal and quench it. Obtain a fine powder. The gas injection temperature, the pressure in the chamber, and the like may be determined according to the conditions under which Fe-based nanocrystals are likely to precipitate in the amorphous substance in the heat treatment described later. Further, the particle size can be adjusted by performing sieve classification, air flow classification, or the like.

得られる粉末は、後述する熱処理によりFe基ナノ結晶を容易に析出させるために、非晶質中に初期微結晶が存在するナノヘテロ構造を有する軟磁性合金、すなわち、第1の観点に係る軟磁性合金から構成されていることが好ましい。ただし、後述する熱処理により、Fe基ナノ結晶が析出するのであれば、得られる粉末は、各金属元素が非晶質中に均一に分散している非晶質合金から構成されていてもよい。 The obtained powder is a soft magnetic alloy having a nanoheterostructure in which initial microcrystals are present in amorphous in order to easily precipitate Fe-based nanocrystals by a heat treatment described later, that is, soft magnetism according to the first aspect. It is preferably composed of an alloy. However, if Fe-based nanocrystals are precipitated by the heat treatment described later, the obtained powder may be composed of an amorphous alloy in which each metal element is uniformly dispersed in amorphous material.

本実施形態では、熱処理前の軟磁性合金中に粒径が30nmよりも大きい結晶が存在している場合には、結晶相が存在すると判断し、粒径が30nmよりも大きい結晶が存在していない場合には、非晶質であると判断する。なお、軟磁性合金中に粒径が30nmよりも大きい結晶が存在しているか否かは、公知の方法により評価すればよい。たとえば、X線回折測定、透過型電子顕微鏡による観察等が例示される。透過電子顕微鏡(TEM)を用いる場合、制限視野回折像、ナノビーム回折像を得ることで確認できる。制限視野回折像またはナノビーム回折像を用いる場合、回折パターンにおいて非晶質の場合にはリング状の回折が形成されるのに対し、非晶質ではない場合には結晶構造に起因した回折斑点が形成される。 In the present embodiment, when crystals having a particle size larger than 30 nm are present in the soft magnetic alloy before the heat treatment, it is determined that a crystal phase is present, and crystals having a particle size larger than 30 nm are present. If not, it is judged to be amorphous. Whether or not crystals having a particle size larger than 30 nm are present in the soft magnetic alloy may be evaluated by a known method. For example, X-ray diffraction measurement, observation with a transmission electron microscope, and the like are exemplified. When a transmission electron microscope (TEM) is used, it can be confirmed by obtaining a selected area diffraction image and a nanobeam diffraction image. When a selected area diffraction image or a nanobeam diffraction image is used, ring-shaped diffraction is formed when the diffraction pattern is amorphous, whereas when it is not amorphous, diffraction spots due to the crystal structure are formed. It is formed.

また、上記の初期微結晶の有無および平均粒径の観察方法については、特に制限されず、公知の方法により評価すればよい。たとえば、イオンミリングにより薄片化した試料に対して、透過電子顕微鏡(TEM)を用いて、明視野像または高分解能像を得ることで確認できる。具体的には、倍率1.00×10〜3.00×10倍で得られる明視野像または高分解能像を目視にて観察することで初期微結晶の有無および平均粒径を評価できる。 The presence or absence of the above-mentioned initial microcrystals and the method of observing the average particle size are not particularly limited and may be evaluated by a known method. For example, it can be confirmed by obtaining a bright-field image or a high-resolution image of a sample sliced by ion milling using a transmission electron microscope (TEM). Specifically, the presence or absence of initial microcrystals and the average particle size can be evaluated by visually observing a bright-field image or a high-resolution image obtained at a magnification of 1.00 × 10 5 to 3.00 × 10 5 times. ..

次に、得られる粉末を熱処理する。熱処理を行うことにより、各粒子同士が焼結し粉体が粗大化することを防ぎつつ、軟磁性合金を構成する元素の拡散を促し、熱力学的平衡状態に短時間で到達させ、軟磁性合金中に存在する歪や応力を除去することができる。その結果、Fe基ナノ結晶が析出した軟磁性合金、すなわち、第2の観点に係る軟磁性合金から構成される粉末を得ることが容易となる。 Next, the obtained powder is heat-treated. By performing the heat treatment, while preventing the particles from sintering each other and coarsening the powder, the diffusion of the elements constituting the soft magnetic alloy is promoted, the thermodynamic equilibrium state is reached in a short time, and the soft magnetic The strain and stress existing in the alloy can be removed. As a result, it becomes easy to obtain a soft magnetic alloy in which Fe-based nanocrystals are precipitated, that is, a powder composed of the soft magnetic alloy according to the second aspect.

本実施形態では、熱処理条件は、Fe基ナノ結晶が析出しやすい条件であれば特に制限されない。たとえば、熱処理温度を400〜700℃、保持時間を0.5〜10時間とすることができる。 In the present embodiment, the heat treatment conditions are not particularly limited as long as the Fe-based nanocrystals are likely to precipitate. For example, the heat treatment temperature can be 400 to 700 ° C. and the holding time can be 0.5 to 10 hours.

熱処理後には、Fe基ナノ結晶が析出した軟磁性合金、すなわち、第2の観点に係る軟磁性合金からなる軟磁性合金粒子を含む粉末が得られる。 After the heat treatment, a soft magnetic alloy in which Fe-based nanocrystals are precipitated, that is, a powder containing soft magnetic alloy particles made of the soft magnetic alloy according to the second aspect is obtained.

続いて、熱処理後の粉末に含まれる軟磁性合金粒子に対して被覆部を形成する。被覆部を形成する方法としては、特に制限されず、公知の方法を採用することができる。軟磁性合金粒子に対して湿式処理を行って被覆部を形成してもよいし、乾式処理を行って被覆部を形成してもよい。 Subsequently, a coating portion is formed on the soft magnetic alloy particles contained in the powder after the heat treatment. The method for forming the covering portion is not particularly limited, and a known method can be adopted. The soft magnetic alloy particles may be wet-treated to form a coating, or may be dry-treated to form a coating.

また、熱処理を行う前の軟磁性合金粉末に対して、被覆部を形成してもよい。すなわち、第1の観点に係る軟磁性合金からなる軟磁性合金粒子に対して被覆部を形成してもよい。 Further, a coating portion may be formed on the soft magnetic alloy powder before the heat treatment. That is, a coating portion may be formed on the soft magnetic alloy particles made of the soft magnetic alloy according to the first aspect.

本実施形態では、メカノケミカルを利用したコーティング方法、リン酸塩処理法、ゾルゲル法等により形成することができる。メカノケミカルを利用したコーティング方法では、たとえば、図2に示す粉末被覆装置100を用いる。軟磁性合金粉末と、被覆部を構成する材質(P、Si、Bi、Znの化合物等)の粉末状コーティング材との混合粉末を、粉末被覆装置の容器101内に投入する。投入後、容器101を回転させることにより、軟磁性合金粉末と混合粉末との混合物50が、グラインダー102と容器101の内壁との間で圧縮され摩擦が生じて熱が発生する。この発生した摩擦熱により、粉末状コーティング材が軟化し、圧縮作用により軟磁性合金粒子の表面に固着して、被覆部を形成することができる。 In the present embodiment, it can be formed by a coating method using mechanochemicals, a phosphate treatment method, a sol-gel method, or the like. In the coating method using mechanochemicals, for example, the powder coating apparatus 100 shown in FIG. 2 is used. A mixed powder of the soft magnetic alloy powder and the powder coating material of the material (compound of P, Si, Bi, Zn, etc.) constituting the coating portion is put into the container 101 of the powder coating apparatus. By rotating the container 101 after charging, the mixture 50 of the soft magnetic alloy powder and the mixed powder is compressed between the grinder 102 and the inner wall of the container 101, friction is generated, and heat is generated. The generated frictional heat softens the powdery coating material and causes it to adhere to the surface of the soft magnetic alloy particles by a compressive action to form a coating portion.

メカノケミカルを利用したコーティング方法では、容器の回転速度、グラインダーと容器の内壁との間の距離等を調整することにより、発生する摩擦熱を制御して、軟磁性合金粉末と混合粉末との混合物の温度を制御することができる。本実施形態では、当該温度は、50℃以上150℃以下であることが好ましい。このような温度範囲とすることにより、被覆部が軟磁性合金粒子の表面を覆うように形成しやすくなる。 In the coating method using mechanochemicals, the frictional heat generated is controlled by adjusting the rotation speed of the container, the distance between the grinder and the inner wall of the container, etc., and the mixture of the soft magnetic alloy powder and the mixed powder is controlled. The temperature can be controlled. In the present embodiment, the temperature is preferably 50 ° C. or higher and 150 ° C. or lower. By setting the temperature in such a range, it becomes easy to form the coating portion so as to cover the surface of the soft magnetic alloy particles.

(4.2.圧粉磁心の製造方法)
圧粉磁心は、上記の軟磁性合金粉末を用いて製造する。具体的な製造方法としては、特に制限されず、公知の方法を採用することができる。まず、被覆部を形成した軟磁性合金粒子を含む軟磁性合金粉末と、結合剤としての公知の樹脂とを混合し、混合物を得る。また、必要に応じて、得られた混合物を造粒粉としてもよい。そして、混合物または造粒粉を金型内に充填して圧縮成形し、作製すべき圧粉磁心の形状を有する成形体を得る。得られた成形体に対して、たとえば50〜200℃で熱処理を行うことにより、樹脂が硬化し軟磁性合金粒子が樹脂を介して固定された所定形状の圧粉磁心が得られる。得られた圧粉磁心に、ワイヤを所定回数だけ巻回することにより、インダクタ等の磁性部品が得られる。
(4.2. Manufacturing method of dust core)
The powder magnetic core is manufactured by using the above-mentioned soft magnetic alloy powder. The specific production method is not particularly limited, and a known method can be adopted. First, the soft magnetic alloy powder containing the soft magnetic alloy particles forming the coating portion and a known resin as a binder are mixed to obtain a mixture. Further, if necessary, the obtained mixture may be used as a granulated powder. Then, the mixture or granulated powder is filled in a mold and compression molded to obtain a molded product having the shape of a dust core to be produced. By heat-treating the obtained molded product at, for example, 50 to 200 ° C., a dust core having a predetermined shape in which the resin is cured and the soft magnetic alloy particles are fixed via the resin can be obtained. A magnetic component such as an inductor can be obtained by winding a wire around the obtained dust core a predetermined number of times.

また、上記の混合物または造粒粉と、ワイヤを所定回数だけ巻回して形成された空心コイルとを、金型内に充填して圧縮成形しコイルが内部に埋設された成形体を得てもよい。得られた成形体に対して、熱処理を行うことにより、コイルが埋設された所定形状の圧粉磁心が得られる。このような圧粉磁心は、その内部にコイルが埋設されているので、インダクタ等の磁性部品として機能する。 Further, even if the above mixture or granulated powder and an air-core coil formed by winding a wire a predetermined number of times are filled in a mold and compression-molded to obtain a molded body in which the coil is embedded inside. Good. By heat-treating the obtained molded product, a dust core having a predetermined shape in which a coil is embedded can be obtained. Since a coil is embedded in such a dust core, it functions as a magnetic component such as an inductor.

以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変しても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and may be modified in various ways within the scope of the present invention.

以下、実施例を用いて、発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実験例1〜45)
まず、軟磁性合金の原料金属を準備した。準備した原料金属を、表1に示す組成となるように秤量し、アトマイズ装置内に配置されたルツボに収容した。続いて、チャンバー内を真空引きした後、ルツボ外部に設けたワークコイルを用いて、ルツボを高周波誘導により加熱し、ルツボ中の原料金属を溶融、混合して1250℃の溶湯(溶融金属)を得た。
(Experimental Examples 1-45)
First, a raw material metal for a soft magnetic alloy was prepared. The prepared raw material metal was weighed so as to have the composition shown in Table 1 and housed in a crucible arranged in the atomizing apparatus. Subsequently, after vacuuming the inside of the chamber, the crucible is heated by high-frequency induction using a work coil provided outside the crucible, and the raw metal in the crucible is melted and mixed to form a molten metal (molten metal) at 1250 ° C. Obtained.

得られた溶湯をルツボ底部に設けられたノズルを通じて線状の連続的な流体としてチャンバー内に供給し、供給された溶湯にガスを吹き付けて粉末を得た。ガスの噴射温度は1250℃とし、チャンバー内の圧力は1hPaとした。なお、得られた粉末の平均粒子径(D50)は、20μmであった。 The obtained molten metal was supplied into the chamber as a linear continuous fluid through a nozzle provided at the bottom of the crucible, and gas was blown onto the supplied molten metal to obtain a powder. The gas injection temperature was 1250 ° C., and the pressure in the chamber was 1 hPa. The average particle size (D50) of the obtained powder was 20 μm.

得られた粉末に対してX線回折測定を行い、粒径が30nmよりも大きい結晶の有無を確認した。そして、粒径が30nmよりも大きい結晶が存在しない場合には、粉末を構成する軟磁性合金が非晶質相からなると判断し、粒径が30nmよりも大きい結晶が存在する場合には、軟磁性合金が結晶相からなると判断した。結果を表1に示す。 X-ray diffraction measurement was performed on the obtained powder, and the presence or absence of crystals having a particle size larger than 30 nm was confirmed. Then, when there is no crystal having a particle size larger than 30 nm, it is determined that the soft magnetic alloy constituting the powder is composed of an amorphous phase, and when a crystal having a particle size larger than 30 nm exists, it is soft. It was determined that the magnetic alloy consisted of a crystalline phase. The results are shown in Table 1.

続いて、得られた粉末を熱処理した。熱処理条件は、熱処理温度を600℃、保持時間を1時間とした。熱処理後の粉末に対してX線回折測定およびTEMによる観察を行い、Fe基ナノ結晶の存在の有無を評価した。結果を表1に示す。なお、Fe基ナノ結晶が存在する実施例の全ての試料において、Fe基ナノ結晶の結晶構造がbcc構造であり、平均粒径が5〜30nmであることが確認された。 Subsequently, the obtained powder was heat-treated. The heat treatment conditions were a heat treatment temperature of 600 ° C. and a holding time of 1 hour. The powder after the heat treatment was subjected to X-ray diffraction measurement and observation by TEM to evaluate the presence or absence of Fe-based nanocrystals. The results are shown in Table 1. It was confirmed that the crystal structure of the Fe-based nanocrystals was a bcc structure and the average particle size was 5 to 30 nm in all the samples of the examples in which the Fe-based nanocrystals were present.

また、熱処理後の粉末について保磁力(Hc)および飽和磁化(σs)を測定した。保磁力は、φ6mm×5mmのプラスチックケースに20mgの粉末を入れ、パラフィンを融解、凝固させて固定したものを、東北特殊鋼製保磁力計(K-HC1000型)を用いて測定した。測定磁界は150kA/mとした。本実施例では、保磁力は350A/m以下である試料を良好とした。結果を表1に示す。飽和磁化は、玉川製作所製VSM(振動試料型磁力計)を用いて測定した。本実施例では、飽和磁化は150A・m/kg以上である試料を良好とした。結果を表1に示す。 In addition, the coercive force (Hc) and saturation magnetization (σs) of the heat-treated powder were measured. The coercive force was measured by putting 20 mg of powder in a plastic case of φ6 mm × 5 mm, melting paraffin, solidifying and fixing it, and using a Tohoku Steel coercive force magnetometer (K-HC1000 type). The measurement magnetic field was 150 kA / m. In this example, a sample having a coercive force of 350 A / m or less was considered good. The results are shown in Table 1. Saturation magnetization was measured using a VSM (vibrating sample magnetometer) manufactured by Tamagawa Seisakusho. In this example, a sample having a saturation magnetization of 150 A · m 2 / kg or more was considered good. The results are shown in Table 1.

続いて、熱処理後の粉末を、粉末ガラス(コーティング材)とともに、粉体被覆装置の容器内に投入し、粉末ガラスを粒子の表面にコーティングして、被覆部を形成することにより、軟磁性合金粉末が得られた。粉末ガラスの添加量は、熱処理後の粉末100wt%に対して0.5wt%に設定した。被覆部の厚みは50nmであった。 Subsequently, the powder after the heat treatment is put into the container of the powder coating device together with the powder glass (coating material), and the powder glass is coated on the surface of the particles to form a coating portion, thereby forming a soft magnetic alloy. A powder was obtained. The amount of powdered glass added was set to 0.5 wt% with respect to 100 wt% of the powder after the heat treatment. The thickness of the covering portion was 50 nm.

粉末ガラスは、組成がP−ZnO−RO−Alであるリン酸塩系ガラスとした。具体的な組成は、Pが50wt%、ZnOが12wt%、ROが20wt%、Alが6wt%であり、残部が副成分であった。 The powdered glass was a phosphate-based glass having a composition of P 2 O 5- ZnO-R 2 O-Al 2 O 3 . The specific composition was 50 wt% for P 2 O 5 , 12 wt% for Zn O, 20 wt% for R 2 O, 6 wt% for Al 2 O 3 , and the balance was a subcomponent.

なお、本発明者らは、Pが60wt%、ZnOが20wt%、ROが10wt%、Alが5wt%であり、残部が副成分である組成を有するガラス、Pが60wt%、ZnOが20wt%、ROが10wt%、Alが5wt%であり、残部が副成分である組成を有するガラス等についても同様の実験を行い、後述する結果と同様の結果が得られることを確認している。 In addition, the present inventors have a glass having a composition in which P 2 O 5 is 60 wt%, Zn O is 20 wt%, R 2 O is 10 wt%, Al 2 O 3 is 5 wt%, and the balance is a subcomponent. The same experiment was performed on glass having a composition in which 2 O 5 is 60 wt%, Zn O is 20 wt%, R 2 O is 10 wt%, Al 2 O 3 is 5 wt%, and the balance is a subcomponent, which will be described later. We have confirmed that the same results as the results can be obtained.

次に、被覆部を形成した軟磁性合金粉末を固化して、当該粉末の抵抗率を評価した。粉末の抵抗率は、粉末抵抗測定装置を用いて、0.6t/cmの圧力を印加した状態での抵抗率を測定した。本実施例では、抵抗率が10Ωcm以上である試料を「◎」とし、10Ωcm以上である試料を「○」とし、10Ωcm以上である試料を「△」とし、10Ωcm未満である試料を「×」とした。結果を表1に示す。 Next, the soft magnetic alloy powder on which the coating portion was formed was solidified, and the resistivity of the powder was evaluated. The resistivity of the powder was measured using a powder resistance measuring device in a state where a pressure of 0.6 t / cm 2 was applied. In this embodiment, the sample resistivity is 10 6 [Omega] cm or more and "◎", the sample is 10 5 [Omega] cm or more as "○", and the sample is 10 4 [Omega] cm or more as "△", 10 4 [Omega] cm Samples less than or equal to were marked with "x". The results are shown in Table 1.

続いて、圧粉磁心を作製した。熱硬化樹脂であるエポキシ樹脂および硬化剤であるイミド樹脂の総量が、得られた軟磁性合金粉末100wt%に対して、3wt%となるように秤量し、アセトンに加えて溶液化し、その溶液と軟磁性合金粉末とを混合した。混合後、アセトンを揮発させて得られた顆粒を、355μmのメッシュで整粒した。これを外径11mm、内径6.5mmのトロイダル形状の金型に充填し、成形圧3.0t/cmで加圧し圧粉磁心の成形体を得た。得られた圧粉磁心の成形体を180℃で1時間樹脂を硬化させ圧粉磁心を得た。 Subsequently, a dust core was produced. The total amount of the epoxy resin which is a thermosetting resin and the imide resin which is a curing agent is weighed so as to be 3 wt% with respect to 100 wt% of the obtained soft magnetic alloy powder, and the solution is added to acetone to form a solution. It was mixed with a soft magnetic alloy powder. After mixing, the granules obtained by volatilizing acetone were sized with a mesh of 355 μm. This was filled in a toroidal mold having an outer diameter of 11 mm and an inner diameter of 6.5 mm, and pressed at a molding pressure of 3.0 t / cm 2 to obtain a compact magnetic core molded body. The obtained compact magnetic core was cured with a resin at 180 ° C. for 1 hour to obtain a dust core.

得られた圧粉磁心の試料の上下にソースメーターを用いて電圧を印加し、1mAの電流が流れた電圧値を耐電圧とした。本実施例では、耐電圧が100V/mm以上である試料を良好とした。結果を表1に示す。 A voltage was applied above and below the obtained powder magnetic core sample using a source meter, and the voltage value at which a current of 1 mA flowed was taken as the withstand voltage. In this example, a sample having a withstand voltage of 100 V / mm or more was considered good. The results are shown in Table 1.

表1より、各成分の含有量が上述した範囲内であり、ナノへテロ構造またはFe基ナノ結晶を有する場合には、粉末および圧粉磁心の特性が良好であることが確認できた。 From Table 1, it was confirmed that when the content of each component was within the above-mentioned range and the nanoheterostructure or Fe-based nanocrystals were present, the characteristics of the powder and the dust core were good.

これに対し、各成分の含有量が上述した範囲外、あるいは、ナノへテロ構造またはFe基ナノ結晶を有していない場合には、粉末の磁気特性に劣ることが確認できた。 On the other hand, it was confirmed that the magnetic properties of the powder were inferior when the content of each component was out of the above range, or when it did not have a nanoheterostructure or Fe-based nanocrystals.

(実験例46〜72)
実験例1、4および8の試料において、組成式中の「M」を表2に示す元素とした以外は、実験例4、8および10と同様にして軟磁性合金粉末を作製し、実験例1、4および8と同様の評価を行った。また、得られた粉末を用いて、実験例1、4および8と同様にして圧粉磁心を作製し、実験例1、4および8と同様の評価を行った。結果を表2に示す。
(Experimental Examples 46 to 72)
In the samples of Experimental Examples 1, 4 and 8, soft magnetic alloy powders were prepared in the same manner as in Experimental Examples 4, 8 and 10 except that "M" in the composition formula was used as the element shown in Table 2. The same evaluation as in 1, 4 and 8 was performed. Further, using the obtained powder, a dust core was prepared in the same manner as in Experimental Examples 1, 4 and 8, and the same evaluation as in Experimental Examples 1, 4 and 8 was performed. The results are shown in Table 2.

表2より、M元素の組成および含有量に依らず、粉末および圧粉磁心の特性が良好であることが確認できた。 From Table 2, it was confirmed that the characteristics of the powder and the dust core were good regardless of the composition and content of the M element.

(実験例73〜126)
実験例1の試料において、組成式中の「X1」および「X2」元素および含有量を表3に示す元素および含有量とした以外は、実験例1と同様にして軟磁性合金粉末を作製し、実験例1と同様の評価を行った。また、得られた粉末を用いて、実験例1と同様にして圧粉磁心を作製し、実験例1と同様の評価を行った。結果を表3に示す。
(Experimental Examples 73-126)
In the sample of Experimental Example 1, a soft magnetic alloy powder was prepared in the same manner as in Experimental Example 1 except that the elements and contents of "X1" and "X2" in the composition formula were the elements and contents shown in Table 3. , The same evaluation as in Experimental Example 1 was performed. Further, using the obtained powder, a dust core was prepared in the same manner as in Experimental Example 1, and the same evaluation as in Experimental Example 1 was performed. The results are shown in Table 3.

表3より、X1元素およびX2元素の組成および含有量に依らず、粉末および圧粉磁心の特性が良好であることが確認できた。 From Table 3, it was confirmed that the characteristics of the powder and the dust core were good regardless of the composition and content of the X1 element and the X2 element.

(実験例127〜147)
実験例1の試料において、コーティング材の組成を表4に示す組成とし、コーティング材を用いて形成される被覆部の厚みを表4に示す値とした以外は、実験例1と同様にして軟磁性合金粉末を作製し、実験例1と同様の評価を行った。また、得られた粉末を用いて、実験例1と同様にして圧粉磁心を作製し、実験例1と同様の評価を行った。結果を表4に示す。なお、実験例127の試料に対しては、被覆部を形成しなかった。
(Experimental Examples 127-147)
In the sample of Experimental Example 1, the composition of the coating material was set to the composition shown in Table 4, and the thickness of the coating portion formed by using the coating material was set to the value shown in Table 4, but the softness was the same as that of Experimental Example 1. A magnetic alloy powder was prepared and evaluated in the same manner as in Experimental Example 1. Further, using the obtained powder, a dust core was prepared in the same manner as in Experimental Example 1, and the same evaluation as in Experimental Example 1 was performed. The results are shown in Table 4. No covering portion was formed on the sample of Experimental Example 127.

また、本実施例では、ビスマス酸塩系ガラスとしてのBi−ZnO−B−SiO系粉末ガラスにおいて、Biが80wt%、ZnOが10wt%、Bが5wt%、SiOが5wt%であった。ビスマス酸塩系ガラスとして他の組成を有するガラスについても同様の実験を行い、後述する結果と同様の結果が得られることを確認している。 Further, in this embodiment, in the Bi 2 O 3- ZnO-B 2 O 3- SiO 2 powder glass as the bismuthate-based glass, Bi 2 O 3 is 80 wt%, Zn O is 10 wt%, and B 2 O 3 is used. Was 5 wt% and SiO 2 was 5 wt%. Similar experiments have been conducted on glasses having other compositions as bismuthate-based glasses, and it has been confirmed that the same results as those described later can be obtained.

また、本実施例では、ホウケイ酸塩系ガラスとしてのBaO−ZnO−B−SiO−Al系粉末ガラスにおいて、BaOが8wt%、ZnOが23wt%、Bが19wt%、SiOが16wt%、Alが6wt%であり、残部が副成分であった。ホウケイ酸塩系ガラスとして他の組成を有するガラスについても同様の実験を行い、後述する結果と同様の結果が得られることを確認している。 Further, in this embodiment, in the BaO-ZnO-B 2 O 3- SiO 2- Al 2 O 3 powder glass as the borosilicate glass, BaO is 8 wt%, ZnO is 23 wt%, and B 2 O 3 is. 19 wt%, SiO 2 was 16 wt%, Al 2 O 3 was 6 wt%, and the balance was a subcomponent. Similar experiments have been conducted on glasses having other compositions as borosilicate-based glasses, and it has been confirmed that the same results as those described later can be obtained.

表4より、被覆部の厚みが大きくなるほど、粉末の抵抗率および圧粉磁心の耐電圧が向上することが確認できた。また、コーティング材の組成に依らず、粉末の抵抗率および圧粉磁心の耐電圧が良好であることが確認できた。 From Table 4, it was confirmed that the resistivity of the powder and the withstand voltage of the dust core improved as the thickness of the coating portion increased. Further, it was confirmed that the resistivity of the powder and the withstand voltage of the dust core were good regardless of the composition of the coating material.

(実験例148〜161)
実験例1の試料において、アトマイズ時の溶湯の温度およびアトマイズにより得られた粉末の熱処理条件を表5に示す条件とした以外は、実験例1と同様にして軟磁性合金粉末を作製し、実験例1と同様の評価を行った。また、得られた粉末を用いて、実験例1と同様にして圧粉磁心を作製し、実験例1と同様の評価を行った。結果を表5に示す。
(Experimental Examples 148 to 161)
In the sample of Experimental Example 1, a soft magnetic alloy powder was prepared in the same manner as in Experimental Example 1 except that the temperature of the molten metal at the time of atomization and the heat treatment conditions of the powder obtained by atomization were set as the conditions shown in Table 5, and the experiment was conducted. The same evaluation as in Example 1 was performed. Further, using the obtained powder, a dust core was prepared in the same manner as in Experimental Example 1, and the same evaluation as in Experimental Example 1 was performed. The results are shown in Table 5.

表5より、初期微結晶を有するナノヘテロ構造を有する粉末や熱処理後にFe基ナノ結晶を有する粉末については、初期微結晶の平均粒径およびFe基ナノ結晶の平均粒径に依らず、粉末の抵抗率および圧粉磁心の耐電圧が良好であることが確認できた。 From Table 5, for the powder having a nanoheterostructure having initial microcrystals and the powder having Fe group nanocrystals after heat treatment, the resistance of the powder does not depend on the average particle size of the initial microcrystals and the average particle size of Fe group nanocrystals. It was confirmed that the rate and the withstand voltage of the dust core were good.

1…被覆粒子
10…被覆部
2…軟磁性合金粒子
1 ... Covered particles 10 ... Covered part 2 ... Soft magnetic alloy particles

Claims (6)

組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e))Siで表される軟磁性合金からなる軟磁性合金粒子を複数含む軟磁性合金粉末であって、
前記軟磁性合金粉末の平均粒子径(D50)は0.3〜100μmであり、
X1は、CoおよびNiからなる群から選択される1種以上であり、
X2は、Al,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1種以上であり、
Mは、Nb,Hf,Zr,Ta,Mo,WおよびVからなる群から選択される1種以上であり、
a、b、c、d、e、αおよびβが、
0.020≦a≦0.14、
0.020<b≦0.20、
0<c≦0.15、
0.001≦d≦0.060
0≦e≦0.040、
α≧0、
β≧0、
0≦α+β≦0.50である関係を満足し、
前記軟磁性合金は、初期微結晶が非晶質中に存在するナノヘテロ構造を有し、
前記軟磁性合金粒子の表面は被覆部により覆われており、
前記被覆部は、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の化合物を含み、
0.6t/cmの圧力を印加した状態での抵抗率が10Ωcm以上であることを特徴とする軟磁性合金粉末。
Composition formula (Fe (1- (α + β )) X1 α X2 β) (1- (a + b + c + d + e)) M a B b P c Si d C e in soft including a plurality of soft magnetic alloy particles made of a soft magnetic alloy represented by It is a magnetic alloy powder
The average particle size (D50) of the soft magnetic alloy powder is 0.3 to 100 μm.
X1 is one or more selected from the group consisting of Co and Ni.
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W and V.
a, b, c, d, e, α and β
0.020 ≤ a ≤ 0.14,
0.020 <b ≤ 0.20,
0 <c ≦ 0.15,
0.001 ≤ d ≤ 0.060 ,
0 ≦ e ≦ 0.040,
α ≧ 0,
β ≧ 0,
Satisfying the relationship of 0≤α + β≤0.50,
The soft magnetic alloy has a nanoheterostructure in which initial microcrystals are present in amorphous material.
The surface of the soft magnetic alloy particles is covered with a coating portion, and the surface thereof is covered with a coating portion.
The coating contains a compound of one or more elements selected from the group consisting of P, Si, Bi and Zn.
Soft magnetic alloy powder, characterized in that 0.6 t / cm 2 resistivity while applying a pressure of at 10 4 [Omega] cm or more.
前記初期微結晶の平均粒径が、0.3nm以上10nm以下であることを特徴とする請求項1に記載の軟磁性合金粉末。 The soft magnetic alloy powder according to claim 1, wherein the average particle size of the initial microcrystals is 0.3 nm or more and 10 nm or less. 組成式(Fe(1−(α+β))X1αX2β(1−(a+b+c+d+e))Siで表される軟磁性合金からなる軟磁性合金粒子を複数含む軟磁性合金粉末であって、
前記軟磁性合金粉末の平均粒子径(D50)は0.3〜100μmであり、
X1は、CoおよびNiからなる群から選択される1種以上であり、
X2は、Al,Mn,Ag,Zn,Sn,As,Sb,Cu,Cr,Bi,N,Oおよび希土類元素からなる群より選択される1種以上であり、
Mは、Nb,Hf,Zr,Ta,Mo,WおよびVからなる群から選択される1種以上であり、
a、b、c、d、e、αおよびβが、
0.020≦a≦0.14、
0.020<b≦0.20、
0<c≦0.15、
0.001≦d≦0.060
0≦e≦0.040、
α≧0、
β≧0、
0≦α+β≦0.50である関係を満足し、
前記軟磁性合金は、Fe基ナノ結晶を有し、
前記軟磁性合金粒子の表面は被覆部により覆われており、
前記被覆部は、P、Si、BiおよびZnからなる群から選ばれる1つ以上の元素の化合物を含み、
0.6t/cmの圧力を印加した状態での抵抗率が10Ωcm以上であることを特徴とする軟磁性合金粉末。
Composition formula (Fe (1- (α + β )) X1 α X2 β) (1- (a + b + c + d + e)) M a B b P c Si d C e in soft including a plurality of soft magnetic alloy particles made of a soft magnetic alloy represented by It is a magnetic alloy powder
The average particle size (D50) of the soft magnetic alloy powder is 0.3 to 100 μm.
X1 is one or more selected from the group consisting of Co and Ni.
X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O and rare earth elements.
M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W and V.
a, b, c, d, e, α and β
0.020 ≤ a ≤ 0.14,
0.020 <b ≤ 0.20,
0 <c ≦ 0.15,
0.001 ≤ d ≤ 0.060 ,
0 ≦ e ≦ 0.040,
α ≧ 0,
β ≧ 0,
Satisfying the relationship of 0≤α + β≤0.50,
The soft magnetic alloy has Fe-based nanocrystals and has
The surface of the soft magnetic alloy particles is covered with a coating portion, and the surface thereof is covered with a coating portion.
The coating contains a compound of one or more elements selected from the group consisting of P, Si, Bi and Zn.
Soft magnetic alloy powder, characterized in that 0.6 t / cm 2 resistivity while applying a pressure of at 10 4 [Omega] cm or more.
前記Fe基ナノ結晶の平均粒径が、5nm以上30nm以下であることを特徴とする請
求項3に記載の軟磁性合金粉末。
The soft magnetic alloy powder according to claim 3, wherein the average particle size of the Fe-based nanocrystals is 5 nm or more and 30 nm or less.
請求項1から4のいずれかに記載の軟磁性合金粉末から構成される圧粉磁心。 A powder magnetic core composed of the soft magnetic alloy powder according to any one of claims 1 to 4. 請求項5に記載の圧粉磁心を備える磁性部品。 The magnetic component having the dust core according to claim 5.
JP2019192096A 2019-10-21 2019-10-21 Soft magnetic alloy powder, powder magnetic core and magnetic parts Active JP6773193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192096A JP6773193B2 (en) 2019-10-21 2019-10-21 Soft magnetic alloy powder, powder magnetic core and magnetic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192096A JP6773193B2 (en) 2019-10-21 2019-10-21 Soft magnetic alloy powder, powder magnetic core and magnetic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018043651A Division JP6867965B2 (en) 2018-03-09 2018-03-09 Soft magnetic alloy powder, powder magnetic core and magnetic parts

Publications (3)

Publication Number Publication Date
JP2020045569A JP2020045569A (en) 2020-03-26
JP2020045569A5 JP2020045569A5 (en) 2020-05-07
JP6773193B2 true JP6773193B2 (en) 2020-10-21

Family

ID=69899360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192096A Active JP6773193B2 (en) 2019-10-21 2019-10-21 Soft magnetic alloy powder, powder magnetic core and magnetic parts

Country Status (1)

Country Link
JP (1) JP6773193B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200600A1 (en) * 2020-03-31 2021-10-07 株式会社村田製作所 Soft magnetic alloy powder, magnetic core, magnetism application component, and noise suppression sheet
CN112908603B (en) * 2021-01-21 2023-09-26 广东省科学院材料与加工研究所 Iron-based amorphous magnetic powder core and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632608B2 (en) * 2007-03-20 2014-11-26 Necトーキン株式会社 Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
JP5912349B2 (en) * 2011-09-02 2016-04-27 Necトーキン株式会社 Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
KR20150083352A (en) * 2014-01-09 2015-07-17 삼성전기주식회사 Amorphous powder for power inductor having insulation layer and method for manufacturing the same
JP6443269B2 (en) * 2015-09-01 2018-12-26 株式会社村田製作所 Magnetic core and manufacturing method thereof
JP6160760B1 (en) * 2016-10-31 2017-07-12 Tdk株式会社 Soft magnetic alloys and magnetic parts

Also Published As

Publication number Publication date
JP2020045569A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6867965B2 (en) Soft magnetic alloy powder, powder magnetic core and magnetic parts
JP6867966B2 (en) Soft magnetic alloy powder, powder magnetic core and magnetic parts
JP6504288B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP6504287B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP6536860B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP6504289B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP6773193B2 (en) Soft magnetic alloy powder, powder magnetic core and magnetic parts
KR102185145B1 (en) Soft magnetic metal powder, dust core, and magnetic component
JP2021158343A (en) Magnetic core and coil component
JP6773194B2 (en) Soft magnetic alloy powder, powder magnetic core and magnetic parts
JP2021057577A (en) Soft magnetic metal powder, powder magnetic core, and magnetic component
JP2023079827A (en) Soft-magnetic metal powder, magnetic powder core, magnetic component and electronic appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250