JP6773020B2 - Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method - Google Patents
Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method Download PDFInfo
- Publication number
- JP6773020B2 JP6773020B2 JP2017250538A JP2017250538A JP6773020B2 JP 6773020 B2 JP6773020 B2 JP 6773020B2 JP 2017250538 A JP2017250538 A JP 2017250538A JP 2017250538 A JP2017250538 A JP 2017250538A JP 6773020 B2 JP6773020 B2 JP 6773020B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- stress
- pipe
- steel pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 150
- 239000010959 steel Substances 0.000 claims description 150
- 238000000034 method Methods 0.000 claims description 39
- 230000003068 static effect Effects 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 28
- 229910000859 α-Fe Inorganic materials 0.000 claims description 22
- 238000005496 tempering Methods 0.000 claims description 21
- 229910001562 pearlite Inorganic materials 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 14
- 150000001247 metal acetylides Chemical class 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 238000009864 tensile test Methods 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 5
- 238000009958 sewing Methods 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000003252 repetitive effect Effects 0.000 description 20
- 229910052748 manganese Inorganic materials 0.000 description 18
- 238000009661 fatigue test Methods 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 229910000734 martensite Inorganic materials 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 229910001563 bainite Inorganic materials 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000009863 impact test Methods 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 230000001458 anti-acid effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、油井管、ラインパイプ用として好適な厚肉大径電縫鋼管に係り、とくに繰返し荷重を受ける使途に好適な、疲労強度に優れた厚肉大径電縫鋼管およびその製造方法に関する。 The present invention relates to a thick-walled large-diameter electric-sewn steel pipe suitable for oil country tubular goods and line pipes, and relates to a thick-walled large-diameter electric-sewn steel pipe having excellent fatigue strength, which is particularly suitable for use under repeated load, and a method for manufacturing the same. ..
電縫鋼管は、継目無鋼管(シームレス鋼管)やUOE鋼管に比較して、安価であるという大きなメリットを有している。しかも、近年、電縫鋼管は、その製造技術や素材特性の向上により、性能が著しく向上し、油井管、ラインパイプ等向け素材として適用されるようになっている。油井管、ラインパイプ等向けとしては、まず、所定の強度を有し、さらに低温靭性、溶接性等に優れた電縫鋼管であることが、要求される。 The electro-sewn steel pipe has a great advantage that it is cheaper than the seamless steel pipe (seamless steel pipe) and the UOE steel pipe. Moreover, in recent years, electric resistance steel pipes have been remarkably improved in performance due to improvements in their manufacturing techniques and material characteristics, and have come to be applied as materials for oil country tubular goods, line pipes and the like. For oil country tubular goods, line pipes, etc., first, it is required to be an electrosewn steel pipe having a predetermined strength and further excellent in low temperature toughness, weldability and the like.
例えば、特許文献1には、「低温靭性、溶接性に優れた高強度電縫管用熱延鋼帯」が記載されている。特許文献1に記載された技術は、質量%で、C:0.005〜0.04%、Si:0.05〜0.3%、Mn:0.5〜2.0%、Al:0.001〜0.1%、Nb:0.001〜0.1%、V:0.001〜0.1%、Ti:0.001〜0.1%、P:0.03%以下、S:0.005%以下、N:0.006%以下を含み、かつCu:0.5%以下、Ni:0.5%以下、Mo:0.5%以下のうちから選んだ一種又は二種以上を含有する組成で、Pcmが0.17以下を満足し、かつ全組織中、主相であるベイニティックフェライトの占める割合が95vol%以上である高強度電縫管用熱延鋼帯である。特許文献1に記載された技術によれば、降伏強さ:560MPa以上の高強度で、試験温度:−10℃でのCTOD値が0.25mm以上となる母材および溶接部靭性を有し、ラインパイプ用鋼管や、油井管等向け素材として好適な電縫鋼管用熱延鋼帯となるとしている。
For example,
また、特許文献2には、「低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板」が記載されている。特許文献2に記載された技術は、質量%で、C:0.04〜0.09%、Si:0.4%以下、Mn:1.2〜2.0%、P:0.1%以下、S:0.02%以下、Al:1.0%以下、Nb:0.02〜0.09%、Ti:0.02〜0.07%、N:0.005%以下、を含有し、Mn+8Ti+12Nb:2.0〜2.6であり、残部がFeおよび不可避的不純物からなる成分組成を有し、パーライトの面積分率が5%以下、マルテンサイトおよび残留オーステナイトの合計面積分率が0.5%以下を含有し、残部がフェライトおよびベイナイトの1種または2種である金属組織からなり、フェライトおよびベイナイトの平均結晶粒径が10μm以下であり、TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径が20nm以下であり、降伏比が0.85以上、最大引張強度が600MPa以上であり、−40℃におけるシャルピー衝撃エネルギー吸収が70J/cm2以上で、耐HAZ軟化特性に優れた高降伏比熱延鋼板である。 Further, Patent Document 2 describes "a high yield specific hot-rolled steel sheet having excellent low-temperature impact energy absorption characteristics and HAZ softening resistance". The techniques described in Patent Document 2 are by mass%, C: 0.04 to 0.09%, Si: 0.4% or less, Mn: 1.2 to 2.0%, P: 0.1% or less, S: 0.02% or less, Al: 1.0%. Below, Nb: 0.02 to 0.09%, Ti: 0.02 to 0.07%, N: 0.005% or less, Mn + 8Ti + 12Nb: 2.0 to 2.6, the balance has a component composition consisting of Fe and unavoidable impurities, and pearlite. The area fraction of pearlite is 5% or less, the total area fraction of martensite and retained austenite is 0.5% or less, and the balance consists of a metal structure of one or two types of ferrite and bainite, and the average of ferrite and bainite. The crystal grain size is 10 μm or less, the average particle size of unmatched precipitated alloy martensite containing Ti and Nb is 20 nm or less, the yield ratio is 0.85 or more, the maximum tensile strength is 600 MPa or more, and -40. A high yield specific heat-rolled steel sheet with excellent HAZ softening resistance and a charpy impact energy absorption of 70 J / cm 2 or more at ° C.
また、特許文献3には、「電縫溶接部の耐HIC性および低温靱性に優れた電縫鋼管」が記載されている。特許文献3に記載された技術は、質量%で、C:0.03〜0.59%、Si:0.10〜0.50%、Mn:0.40〜2.10%、Al:0.01〜0.35%を含有し、Si、MnをMn/Siが6.0〜9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する電縫鋼管であり、電縫溶接部に存在する円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計量が、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で、16ppm以下であり、該電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備する電縫鋼管である。 Further, Patent Document 3 describes "an electro-sewn steel pipe having excellent HIC resistance and low-temperature toughness of an electro-sewn welded portion". The technique described in Patent Document 3 contains C: 0.03 to 0.59%, Si: 0.10 to 0.50%, Mn: 0.40 to 2.10%, Al: 0.01 to 0.35% in mass%, and Si and Mn are Mn. It is an electrosewn steel pipe that contains / Si adjusted to be in the range of 6.0 to 9.0, has a composition consisting of the balance Fe and unavoidable impurities, and has a tensile strength of TS: 434 MPa or more. The total amount of Si, Mn, Al, Ca, and Cr contained in the inclusions with a circle equivalent diameter of 8 μm or more existing in the part is 16 ppm or less, which is the mass% of the total amount of the electric resistance welded part having a width of 2 mm including the base iron. , The electric resistance welded portion is an electric resistance steel pipe having excellent HIC resistance and excellent low temperature toughness.
また、特許文献4には、「溶接部品質の優れた電縫鋼管」が記載されている。特許文献4に記載された技術は、電縫鋼管の母材を構成する鋼板の成分組成が、質量%で、C:0.03〜0.15%、Si:0.1〜0.3%、Mn:0.5〜2.0%、Al:0.01〜0.06%、Ti:0.011〜0.023%、Ca:0.001〜0.005%、Ce及びLaの1種または2種の合計:0.001〜0.005%、P:0.03%以下、S:0.0015%以下、O:0.002%以下、N:0.005%以下を含有し、さらにNb:0.1%以下、V:0.1%以下、Mo:0.2%以下、及びB:0.002%以下の1種または2種以上を含有し、残部が鉄及び不可避的不純物であり、Ca、O、S、Ce、La、及びAlの含有量が、式
XCASO={Ca/O+Ca/S+0.285(Ce+La)/O+0.285(Ce+La)/S}×{Al/Ca}>78
を満し、電縫鋼管の溶接部における酸化物系介在物が、Ce及びLaの1種または2種を含有し、上記酸化物系介在物の長径/短径が2.5以下である、溶接部品質の優れた電縫鋼管である。特許文献4に記載された技術によれば、電縫溶接部の靭性低下が回避でき、油井管およびラインパイプに適した耐SSC性と低温靭性とを兼備した電縫鋼管を得ることができるとしている。
Further, Patent Document 4 describes "an electro-sewn steel pipe having excellent welded portion quality". In the technique described in Patent Document 4, the composition of the steel sheet constituting the base material of the electrosewn steel pipe is mass%, C: 0.03 to 0.15%, Si: 0.1 to 0.3%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.06%, Ti: 0.011 to 0.023%, Ca: 0.001 to 0.005%, the total of one or two types of Ce and La: 0.001 to 0.005%, P: 0.03% or less, S: 0.0015% or less, Contains O: 0.002% or less, N: 0.005% or less, and further contains one or more of Nb: 0.1% or less, V: 0.1% or less, Mo: 0.2% or less, and B: 0.002% or less. , The balance is iron and unavoidable impurities, and the content of Ca, O, S, Ce, La, and Al is
XCASO = {Ca / O + Ca / S + 0.285 (Ce + La) / O + 0.285 (Ce + La) / S} x {Al / Ca}> 78
The welded portion in which the oxide-based inclusions in the welded portion of the electrosewn steel pipe contain one or two types of Ce and La, and the major axis / minor axis of the oxide-based inclusions is 2.5 or less. It is an electric resistance welded steel pipe with excellent quality. According to the technique described in Patent Document 4, it is possible to avoid a decrease in toughness of the electrosewn welded portion, and to obtain an electrosewn steel pipe having both SSC resistance and low temperature toughness suitable for oil country tubular goods and line pipes. There is.
また、特許文献5には、「低降伏比高強度電縫鋼管」が記載されている。特許文献5に記載された技術は、質量%で、C:0.05〜0.25%、Mn:0.2〜2.0%、Mo:0.05〜2.0%、V:0.1%超〜1.0%、Ti:0.002〜0.05%を含有し、Si:0.5%以下、Al:0.10%以下、P:0.025%以下、S:0.010%以下、N:0.01%以下に制限し、残部がFeおよび不可避的不純物からなり、次(式1)
Ceq=C+Mn/6+Ni/15+(Mo+V)/5 ……(式1)
によって求められるCeqが0.45以上であり、金属組織が焼戻しマルテンサイトからなる低降伏比高強度電縫鋼管である。特許文献5に記載された電縫鋼管は、造管後、焼入れ焼戻し処理を施されて、降伏強さ:800MPa以上の高強度と、90%以下の低降伏比と、を有し、低温靭性に優れた電縫鋼管である。特許文献5に記載された技術では、高い焼入れ性を有し、厚肉管でもマルテンサイト組織とすることができ、高強度、高靭性で、降伏比も低く、大径かつ厚肉の電縫鋼管とすることができるとしている。
Further, Patent Document 5 describes "low yield ratio high strength electric resistance welded steel pipe". The techniques described in Patent Document 5 are by mass%, C: 0.05 to 0.25%, Mn: 0.2 to 2.0%, Mo: 0.05 to 2.0%, V: more than 0.1% to 1.0%, Ti: 0.002 to 0.05%. Si: 0.5% or less, Al: 0.10% or less, P: 0.025% or less, S: 0.010% or less, N: 0.01% or less, and the balance consists of Fe and unavoidable impurities. 1)
Ceq = C + Mn / 6 + Ni / 15 + (Mo + V) / 5 …… (Equation 1)
It is a high-strength electro-sewn steel pipe with a low yield ratio and a metal structure composed of tempered martensite with a Ceq of 0.45 or more. The electrosewn steel pipe described in Patent Document 5 is subjected to quenching and tempering treatment after pipe formation, and has a yield strength of high strength of 800 MPa or more and a low yield ratio of 90% or less, and has low temperature toughness. It is an excellent electro-sewn steel pipe. The technique described in Patent Document 5 has high hardenability, can form a martensite structure even in a thick pipe, has high strength and high toughness, has a low yield ratio, and has a large diameter and a thick wall. It is said that it can be a steel pipe.
また、特許文献6には、「高強度中空スタビライザー用電縫鋼管」が記載されている。特許文献6に記載された技術は、質量%で、C:0.20〜0.38%、Si:0.10〜0.50%、Mn:0.30〜2.00%、Al:0.01〜0.10%、W:0.01〜1.50%、B:0.0005〜0.0050%を含みさらにTi、Nを、Ti:0.001〜0.04%、N:0.0010〜0.0100%の範囲で、かつ(1)式
N/14<Ti/47.9 ……(1)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、焼入れ処理後あるいは焼入れ焼戻処理後の強度−靭性バランスに優れる高強度中空スタビライザー用電縫鋼管であり、上記組成に加えてさらに、Cr、Moのうちから選ばれた1種または2種、Nb、Vのうちから選ばれた1種または2種、Cu、Niのうちから選ばれた1種または2種を含有してもよいとしている。特許文献6に記載された技術によれば、焼入れ焼戻し後の、肉厚方向の平均硬さが400HV以上の高強度で、シャルピー衝撃試験の破面遷移温度vTrsが−110℃以下の高靭性を有し、さらに機械的特性のばらつきが少ない自動車用スタビライザーを製造できるとしている。
Further, Patent Document 6 describes "electric pipe for high-strength hollow stabilizer". The techniques described in Patent Document 6 are by mass%, C: 0.20 to 0.38%, Si: 0.10 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, W: 0.01 to 1.50%, B. : Includes 0.0005 to 0.0050%, and further Ti and N in the range of Ti: 0.001 to 0.04% and N: 0.0010 to 0.0100%, and equation (1).
N / 14 <Ti / 47.9 …… (1)
A high-strength hollow stabilizer electrosewn steel tube having a composition of the balance Fe and unavoidable impurities, which is contained in a satisfactory manner and has an excellent strength-toughness balance after quenching or tempering and tempering. In addition to, one or two selected from Cr and Mo, one or two selected from Nb and V, and one or two selected from Cu and Ni. It is said that it may be contained. According to the technique described in Patent Document 6, after quenching and tempering, the average hardness in the wall thickness direction is 400 HV or more, and the fracture surface transition temperature vTrs of the Charpy impact test is -110 ° C or less. It is said that it is possible to manufacture a stabilizer for automobiles, which has less variation in mechanical characteristics.
また、特許文献7には、「低温衝撃特性に優れた自動車用高強度電縫鋼管」が記載されている。特許文献7に記載された技術は、質量%で、C:0.2〜0.4%、Si:0.05〜0.5%、Mn:0.5〜2.5%、P:0.025%以下、S:0.01%以下、Al:0.15%以下、Cu:2%以下、Cr:2%以下、Ti:0.2%以下、B:0.005%以下を含み、残部が鉄および不可避的不純物からなる組成を有し、引張強さが1750N/mm2以上、0.1%耐力が1320N/mm2以上、−40℃におけるシャルピー衝撃値が50J/cm2以上である鋼板により構成される自動車用高強度電縫鋼管である。特許文献7に記載された技術によれば、所定の化学成分を有する電縫鋼管を高周波焼入れし、ミクロ組織をマルテンサイト単相としたのち、低温焼戻し処理を施すことにより、上記した高強度を有し、さらに高荷重域まで局部座屈が起こらず、衝撃吸収特性に優れた高強度電縫鋼管が得られるとしている。 Further, Patent Document 7 describes "high-strength electric resistance welded steel pipe for automobiles having excellent low-temperature impact characteristics". The techniques described in Patent Document 7 are by mass%, C: 0.2 to 0.4%, Si: 0.05 to 0.5%, Mn: 0.5 to 2.5%, P: 0.025% or less, S: 0.01% or less, Al: 0.15. % Or less, Cu: 2% or less, Cr: 2% or less, Ti: 0.2% or less, B: 0.005% or less, the balance is composed of iron and unavoidable impurities, and the tensile strength is 1750 N / mm. It is a high-strength electric resistance steel pipe for automobiles composed of steel plates with a proof stress of 2 or more, 0.1% proof stress of 1320 N / mm 2 or more, and a Charpy impact value of 50 J / cm 2 or more at -40 ° C. According to the technique described in Patent Document 7, an induction-hardened steel pipe having a predetermined chemical component is induction-hardened to obtain a martensite single-phase microstructure, and then low-temperature tempering is performed to obtain the above-mentioned high strength. It is said that a high-strength electric resistance welded steel pipe with excellent shock absorption characteristics can be obtained without local buckling occurring even in a high load range.
また、特許文献8には、「高強度電縫鋼管」が記載されている。特許文献8に記載された技術は、質量%で、C:0.05〜0.20%、Si:0.5〜2.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.01〜0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さが1180MPa以上、管軸方向の伸びが10%以上、降伏比が90%未満である優れた加工性と、塗装焼付け処理後の強度増加量が100MPa以上で、かつ降伏比が90%以上となる衝撃吸収特性とを有し、電縫溶接部の内面ビード高さが-0.1〜0.1mmである高強度電縫鋼管である。特許文献8に記載された技術により製造された高強度電縫鋼管は、自動車衝撃吸収用部材、自動車骨格部材等に有効に適用できるとしている。 Further, Patent Document 8 describes "high-strength electric resistance welded steel pipe". The techniques described in Patent Document 8 are by mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01. A structure containing ~ 0.1%, N: 0.005% or less, a composition consisting of the balance Fe and unavoidable impurities, and a two-phase structure consisting of a ferrite phase and a martensite phase, in which the martensite phase is 20 to 60% by volume. Excellent workability with tensile strength of 1180 MPa or more, elongation in the pipe axis direction of 10% or more, yield ratio of less than 90%, and strength increase after coating baking treatment of 100 MPa or more. It is a high-strength electro-sewn steel pipe having a shock absorbing property with a yield ratio of 90% or more and an inner bead height of -0.1 to 0.1 mm of the electrosewn welded portion. It is said that the high-strength electric resistance welded steel pipe manufactured by the technique described in Patent Document 8 can be effectively applied to automobile shock absorbing members, automobile skeleton members and the like.
また、特許文献9には、「疲労特性に優れた電縫鋼管」が記載されている。特許文献9に記載された技術は、質量%で、C:0.35〜0.55%、Si:0.01〜1.0%、Mn:1.0〜3.0%、P:0.02%以下、S:0.01%以下、Al:0.005%以下、N:0.0050%以下、Cr:0.1〜0.5%以下含有し、残部Feおよび不可避的不純部物からなる組成を有し、パーライト、フェライトおよびベイナイトからなり、パーライトの面積率が85%以上、フェライトおよびベイナイトの面積率の合計を15%以下、旧オーステナイト粒径が25μm以下である電縫鋼管である。特許文献9に記載された技術では、主たる組織をパーライトとすることにより、疲労き裂がジグザグに伝播することで疲労き裂伝播抵抗が高くなり、疲労強度が向上するとしている。 Further, Patent Document 9 describes "an electro-sewn steel pipe having excellent fatigue characteristics". The techniques described in Patent Document 9 are by mass%, C: 0.35 to 0.55%, Si: 0.01 to 1.0%, Mn: 1.0 to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.005. % Or less, N: 0.0050% or less, Cr: 0.1 to 0.5% or less, has a composition consisting of the balance Fe and unavoidable impure parts, is composed of pearlite, ferrite and bainite, and has an area ratio of pearlite of 85% or more. , Ferrite and bainite total area ratio of 15% or less, and old austenite particle size of 25 μm or less. In the technique described in Patent Document 9, by using pearlite as the main structure, fatigue cracks propagate in a zigzag manner, which increases fatigue crack propagation resistance and improves fatigue strength.
海底油田・ガス田から石油・天然ガス等を採取する際に用いられる油井管やラインパイプでは、繰り返し荷重により疲労を受ける場合があり、特に例えば、海洋掘削リグにおけるライザーパイプにおけるように、潮流による管軸方向の応力変動による疲労破壊が懸念されるなど、油井管、ラインパイプ等の使途に適用される電縫鋼管では、優れた耐疲労特性を有することが要望されている。 Oil well pipes and line pipes used to extract oil, natural gas, etc. from offshore oil and gas fields may be subject to fatigue due to repeated loads, especially due to tidal currents, such as in riser pipes in offshore drilling rigs. Electric sewn steel pipes applied to oil country tubular goods, line pipes, etc. are required to have excellent fatigue resistance characteristics, such as fear of fatigue failure due to stress fluctuations in the pipe axis direction.
しかしながら、特許文献1、特許文献2、特許文献3、特許文献4に記載された各技術では、耐疲労特性についてまでの言及はなく、疲労強度に優れた電縫鋼管であるかどうかについては、不明のままである。
However, in each of the techniques described in
また、特許文献5に記載された技術では、高い焼入れ性を有し、厚肉管でもマルテンサイト組織とすることができ、高強度、高靭性で、降伏比も低く、大径かつ厚肉の電縫鋼管とすることができるとしているが、しかし、特許文献5には、耐疲労特性についてまでの言及はない。また、特許文献6に記載された技術で製造される電縫鋼管は、自動車用スタビライザー向けであり、たかだか肉厚5mm程度で、外径:25.4mmφ程度の小径電縫鋼管であり、しかも、特許文献6には、強度、靭性についての記載があるだけで、耐疲労特性についてまでの言及はない。また、特許文献7に記載された技術で製造される電縫鋼管は、マルテンサイト単相組織で、引張強さが1750N/mm2以上で、0.1%耐力が1320N/mm2以上となる高強度を有しているが、自動車向けであり、肉厚:2mm程度、外径:31.8mmφと、薄肉小径電縫鋼管が例示されているにすぎず、しかも、特許文献7には、強度、靭性についての記載があるだけで、耐疲労特性についての言及はない。 Further, the technique described in Patent Document 5 has high hardenability, can form a martensite structure even in a thick pipe, has high strength and high toughness, has a low yield ratio, and has a large diameter and a thick wall. Although it is said that it can be an electrosewn steel pipe, Patent Document 5 does not mention the fatigue resistance property. Further, the electric resistance welded steel pipe manufactured by the technique described in Patent Document 6 is for a stabilizer for automobiles, and is a small diameter electric resistance welded steel pipe having a wall thickness of about 5 mm and an outer diameter of about 25.4 mmφ. Document 6 only describes strength and toughness, and does not mention fatigue resistance. Also, high-strength electric resistance welded steel pipe produced by the technique described in Patent Document 7, which in martensite single phase structure, a tensile strength of 1750 N / mm 2 or more, the 0.1% proof stress of 1320N / mm 2 or more However, it is for automobiles, and the wall thickness is about 2 mm and the outer diameter is 31.8 mmφ, which is only an example of a thin-walled small-diameter electric resistance pipe. Moreover, Patent Document 7 describes the strength and toughness. There is no mention of fatigue resistance characteristics.
また、特許文献8に記載された技術で製造された電縫鋼管は、マルテンサイト相が体積率で20〜60%となるフェライト相とマルテンサイト相からなる二相組織で、引張強さが1180MPa以上を有する高強度電縫鋼管であるが、主として自動車部材用のため、外径がたかだか48.6mmφ、肉厚が1.8mm程度の薄肉小径電縫鋼管が例示されているにすぎない。特許文献8には、耐疲労特性についての記載もない。また、特許文献9に記載された技術では、主たる組織をパーライトとすることにより、疲労強度を向上させている。しかし、特許文献9に記載された技術では、自動車の中空ドライブシャフト用を目的としているため、たかだか、外径89mm、肉厚4.7mm程度の薄肉小径電縫鋼管についての記載があるだけで、特許文献9には、厚肉大径の電縫鋼管についてまでの記載はない。 Further, the electrosewn steel pipe manufactured by the technique described in Patent Document 8 has a two-phase structure composed of a ferrite phase and a martensite phase in which the martensite phase has a volume ratio of 20 to 60%, and the tensile strength is 1180 MPa. Although it is a high-strength electric-sewn steel pipe having the above, it is mainly for automobile members, and only a thin-walled small-diameter electric-sewn steel pipe having an outer diameter of at most 48.6 mmφ and a wall thickness of about 1.8 mm is exemplified. Patent Document 8 does not describe the fatigue resistance characteristics. Further, in the technique described in Patent Document 9, the fatigue strength is improved by using pearlite as the main structure. However, since the technology described in Patent Document 9 is intended for hollow drive shafts of automobiles, there is only a description of a thin-walled small-diameter electric resistance pipe having an outer diameter of 89 mm and a wall thickness of about 4.7 mm. Document 9 does not describe a thick-walled large-diameter electric resistance pipe.
本発明は、かかる従来技術の問題に鑑み、油井管、ラインパイプ用として、とくに繰り返し荷重を受ける用途向けとして好適な、厚肉大径で、疲労強度に優れた電縫鋼管を提供することを目的とする。なお、ここでいう「疲労強度に優れた」とは、応力比:0.1での繰返し応力負荷試験(疲労試験)を実施して求めた繰返し応力歪曲線から求めた繰返し降伏強さが、245MPa以上である場合をいうものとする。 In view of the problems of the prior art, the present invention provides an electro-sewn steel pipe having a thick wall and a large diameter and excellent fatigue strength, which is suitable for oil country tubular goods and line pipes, particularly for applications subject to repeated loads. The purpose. In addition, "excellent in fatigue strength" here means that the repeated yield strength obtained from the repeated stress strain curve obtained by performing a repeated stress load test (fatigue test) with a stress ratio of 0.1 is 245 MPa or more. It is assumed that the case is.
なお、ここでいう「厚肉大径」電縫鋼管とは、肉厚(板厚):11.9mm以上好ましくは25.4mm以下、管外径:219.1mm以上である電縫鋼管をいうものとする。 The "thick-walled large-diameter" power-sewn steel pipe here means a power-sewn steel pipe with a wall thickness (plate thickness) of 11.9 mm or more, preferably 25.4 mm or less, and a pipe outer diameter of 219.1 mm or more. ..
また、本発明が目的とする厚肉大径電縫鋼管は、上記した範囲の肉厚、管径を有し、かつ管軸方向で、静的降伏強さYS:245MPa以上好ましくは525MPa以下で、静的引張強さTS:415MPa以上好ましくは760MPa以下の強度と、JIS Z 2242に規定されるシャルピー衝撃試験で、試験温度:0℃における吸収エネルギーが27J以上である靭性と、を有する鋼管とする。 Further, the thick-walled large-diameter electric resistance steel pipe for which the present invention is intended has a wall thickness and pipe diameter in the above range, and has a static yield strength of YS: 245 MPa or more, preferably 525 MPa or less in the pipe axial direction. , Static tensile strength TS: 415MPa or more, preferably 760MPa or less, and a steel pipe having toughness with a test temperature of 0 ° C and an absorption energy of 27J or more in the Charpy impact test specified in JIS Z 2242. To do.
本発明者らは、上記した目的を達成するために、電縫鋼管の疲労強度に及ぼす各種要因について、鋭意検討した。その結果、まず、応力比:0.1での繰返し応力負荷試験(疲労試験)を実施して繰返し応力歪曲線を求め、その繰返し応力歪曲線から求めた繰返し降伏強さが、通常、鋼材の疲労強度として用いられる、JIS Z 2273 に規定される200万回疲労強度σmaxと、非常によい相関を示すことを新規に見出した。 In order to achieve the above-mentioned object, the present inventors have diligently studied various factors affecting the fatigue strength of the electrosewn steel pipe. As a result, first, a repeated stress load test (fatigue test) with a stress ratio of 0.1 was performed to obtain a repeated stress strain curve, and the repeated yield strength obtained from the repeated stress strain curve is usually the fatigue strength of steel materials. It was newly found that it shows a very good correlation with the 2 million times fatigue strength σmax specified in JIS Z 2273.
まず、本発明者らが行った実験結果について説明する。
種々の組成を有し、フェライト+パーライト、ベイナイトおよびそれらを混合した各種組織を有する熱延鋼板(鋼帯)(板厚:11.9〜25.4mm)を素材として、該素材に、冷間加工を施し、略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせて、押圧し、大電流の高周波抵抗溶接により電縫溶接して、外径:219.1〜508mmφの各種厚肉大径の電縫鋼管とした。
First, the results of experiments conducted by the present inventors will be described.
A hot-welded steel sheet (steel strip) (plate thickness: 11.9 to 25.4 mm) having various compositions and having various structures of ferrite + pearlite, bainite and a mixture thereof is used as a material, and the material is cold-processed. After making a substantially cylindrical open pipe, the widthwise ends of the open pipe are butted against each other, pressed, and electrosewn by high-current high-frequency resistance welding to obtain various thick walls with an outer diameter of 219.1 to 508 mmφ. A large-diameter electric resistance welded steel pipe was used.
得られた電縫鋼管から、図3に示す断面で、電縫部(シーム部)から時計周りに90°の位置の板厚中央位置で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、中央部に塑性歪ゲージを貼付した疲労試験片に、図6に示す、応力比:0.1の正弦波の応力を負荷し、試験片に発生する歪を測定する、繰返し応力負荷試験(疲労試験)を実施した。なお、ここでいう応力比は、図6に示すように、σmin/σmaxである。なお、負荷する応力を、応力比:0.1の正弦波の応力としたのは、油井管やラインパイプに負荷される繰り返し荷重は、平均応力がプラス側にある場合が多いという理由からである。 From the obtained electro-sewn steel pipe, in the cross section shown in FIG. 3, at the center position of the plate thickness at a position 90 ° clockwise from the electro-sewn portion (seam portion), the longitudinal direction of the test piece is the pipe axis direction. The fatigue test piece shown in FIG. 5 was collected. Then, a stress of a sine wave with a stress ratio of 0.1 as shown in FIG. 6 is applied to a fatigue test piece to which a plastic strain gauge is attached at the center, and the strain generated in the test piece is measured. Repeated stress load test (fatigue) Test) was carried out. The stress ratio referred to here is σmin / σmax, as shown in FIG. The stress to be applied is a sinusoidal stress with a stress ratio of 0.1 because the average stress of the repeated load applied to the oil well pipe or line pipe is often on the positive side.
図2に示す繰返し応力負荷試験では、応力比:0.1の正弦波の応力を負荷し、応力負荷に伴い試験片に発生する歪を測定し、応力と歪との関係を求める。同一条件(同じ応力負荷)で複数サイクル(10サイクル)行い、応力と歪との関係の頂点を求めたのち、応力比:0.1を一定としたままで、応力レベルを漸増(263〜418MPa)し、同様に、複数サイクル(10サイクル)応力負荷して、応力と歪との関係の頂点を求める。このような応力レベルの漸増を繰り返して、それぞれ頂点をもとめ、得られた各頂点を結び、繰返し応力と歪との関係曲線を得る。その概要を図2に示す。図2では、各サイクルでの頂点を黒丸(●)で示す。黒丸を結んで得られた曲線を、繰返し応力歪曲線と称する。図2に示す繰返し応力歪曲線は、ラウンドハウス型曲線である。 In the repeated stress load test shown in FIG. 2, a sine wave stress with a stress ratio of 0.1 is applied, the strain generated in the test piece due to the stress load is measured, and the relationship between the stress and the strain is obtained. After performing multiple cycles (10 cycles) under the same conditions (same stress load) to find the peak of the relationship between stress and strain, the stress level is gradually increased (263 to 418 MPa) while keeping the stress ratio: 0.1 constant. , Similarly, stress is applied for multiple cycles (10 cycles) to find the peak of the relationship between stress and strain. By repeating such gradual increase of the stress level, the vertices are obtained, and the obtained vertices are connected to obtain the relational curve between the repeated stress and the strain. The outline is shown in FIG. In FIG. 2, the vertices in each cycle are indicated by black circles (●). The curve obtained by connecting the black circles is called a repetitive stress strain curve. The cyclic stress strain curve shown in FIG. 2 is a round house type curve.
このようにして得られた繰返し応力歪曲線から、繰返し降伏強さを求めた。繰返し応力歪曲線が降伏点型曲線を呈する場合には、繰返し降伏強さは上降伏点とし、繰返し応力歪曲線がラウンドハウス型曲線を呈する場合には、繰返し降伏強さはオフセット0.5%耐力σ0.5とした。 From the repeated stress strain curve thus obtained, the repeated yield strength was obtained. When the repetitive stress strain curve exhibits a yield point type curve, the repetitive yield strength is the upper yield point, and when the repetitive stress strain curve exhibits a round house type curve, the repetitive yield strength is offset 0.5% proof stress σ. It was set to 0.5 .
さらに、得られた電縫鋼管について同様に、電縫部(シーム部)から時計周りに90°の位置の板厚中央部で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取し、JIS Z 2273 の規定に準拠して、応力比:0.1の繰返し応力負荷の条件で、負荷応力を変化させて、疲労試験を実施し、破断までの繰返し負荷回数を求め、S−N曲線として、疲労強度σmax(2×106回)を得た。 Further, with respect to the obtained electric resistance sewn steel pipe, similarly, in FIG. 5, the longitudinal direction of the test piece is the pipe axis direction at the center of the plate thickness at a position 90 ° clockwise from the electric sewn portion (seam portion). The fatigue test piece shown is collected, and the fatigue test is performed by changing the load stress under the condition of repeated stress load with a stress ratio of 0.1 in accordance with the provisions of JIS Z 2273, and the number of repeated loads until fracture is calculated. The fatigue strength σmax (2 × 10 6 times) was obtained as an SN curve.
得られた疲労強度σmax(2×106回)と繰返し降伏強さとの関係を図1に示す。
図1から、繰返し降伏強さは、電縫鋼管の疲労強度σmax(2×106回)と、鋼管組織に影響されることなく、非常によい相関関係を有していることを、新規に知見した。
The relationship between the obtained fatigue strength σmax (2 × 10 6 times) and the repeated yield strength is shown in FIG.
From FIG. 1, it is newly found that the repeated yield strength has a very good correlation with the fatigue strength σmax (2 × 10 6 times) of the electrosewn steel pipe without being affected by the steel pipe structure. I found out.
このようなことから、本発明者らは、上記した「繰返し降伏強さ」により、当該電縫鋼管の耐疲労特性を評価することが、多数の試験片を用いることなく、簡便に、当該電縫鋼管の疲労強度を精度高く推定できることに想到した。 For this reason, the present inventors can easily evaluate the fatigue resistance characteristics of the electric resistance welded steel pipe by the above-mentioned "repeated yield strength" without using a large number of test pieces. I came up with the idea that the fatigue strength of sewn steel pipes can be estimated with high accuracy.
さらに、本発明者らは、疲労強度の評価手段として上記した繰返し降伏強さを用いて、各種電縫鋼管の疲労強度を推定し、造管ままの電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施すと、管軸方向の疲労強度が著しく向上することを見出した。 Furthermore, the present inventors estimated the fatigue strength of various electric sewn steel pipes by using the above-mentioned repeated yield strength as a means for evaluating the fatigue strength, and tempered the electric sewn steel pipes as they were made with a tempering temperature of 150 to 150 to It was found that the fatigue strength in the axial direction of the tube was significantly improved by performing the low temperature tempering treatment at 350 ° C.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成と、
フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有し、さらに前記組織中には粒径500nm未満の微細炭化物が分散してなり、JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である、ことを特徴とする疲労強度に優れた厚肉大径電縫鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする厚肉大径電縫鋼管。
(3)熱延鋼帯を素材として、該素材の幅方向に冷間曲げ加工を施して、略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電縫溶接して、電縫鋼管とするに当り、前記熱延鋼帯を、質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成と、フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有する鋼帯とし、前記電縫鋼管にさらに、焼戻温度:150〜350℃の低温焼戻処理を施し、JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である電縫鋼管とすることを特徴とする疲労強度に優れた厚肉大径電縫鋼管の製造方法。
(4)(3)において、前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有する組成であることを特徴とする厚肉大径電縫鋼管の製造方法。
(5)厚肉大径電縫鋼管の疲労強度推定方法であって、前記厚肉大径電縫鋼管から管軸方向が試験片長手方向となるように疲労試験片を採取し、該疲労試験片に一定の応力比となるように繰返し応力を複数サイクル負荷し、同時に発生する歪を求め、該複数サイクルにおける応力と歪との関係の頂点を求める第一の工程と、ついで前記一定の応力比のもとで、負荷する繰返し応力を漸増し、該漸増した繰返し応力を複数サイクル負荷し、同時に発生する歪を求め、該複数サイクルにおける応力と歪との関係の頂点を求める第二の工程と、を、負荷する繰返し応力を漸増させながら複数回行ったのち、得られた複数の前記応力と歪との関係の頂点を繋ぎ合わせて繰返し応力歪曲線を作成し、得られた前記繰返し応力歪曲線から繰返し降伏強さを算出し、該算出した繰返し降伏強さを、前記厚肉大径電縫鋼管の疲労強度とすることを特徴とする厚肉大径電縫鋼管の疲労強度推定方法。
The present invention has been completed with further studies based on such findings. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060%, and the balance Composition consisting of Fe and unavoidable impurities,
It has a structure consisting of a mixed phase of ferrite and pearlite as the main phase, and a structure consisting of the main phase and the second phase having an area ratio of 30% or less (including 0%), and grains in the structure. Fine carbides with a diameter of less than 500 nm are dispersed, and the static yield strength in the pipe axis direction at the center position of the wall thickness is 245 MPa or more and the static tensile strength obtained by a tensile test in accordance with JIS Z 2241. Is 415 MPa or more, and the repeated yield strength obtained from the repeated stress strain curve obtained by applying a repeated stress load with a stress ratio of 0.1 is 245 MPa or more, which is a thick wall with excellent fatigue strength. Large diameter electric sewing steel pipe.
(2) In (1), in addition to the above composition, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 in mass%. ~ 0.5%, V: 0.0001 ~ 0.5%, Ti: 0.0001 ~ 0.5%, B: 0.00001 ~ 0.1%, Ca: 0.00001 ~ 0.1%, REM: 0.00001 ~ 0.1% One or more selected from A thick-walled, large-diameter electric resistance pipe characterized by containing.
(3) Using a hot-rolled steel strip as a material, cold bending is performed in the width direction of the material to form a substantially cylindrical open pipe, and then the widthwise ends of the open pipe are abutted and pressed. When tempered to obtain an electrosewn steel pipe, the hot-rolled steel strip is subjected to C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% in mass%. Hereinafter, S: 0.05% or less, Al: 0.010 to 0.060%, the composition of the balance Fe and unavoidable impurities, and the mixed phase of ferrite and pearlite are the main phases, and the main phase and area ratio are 30%. A steel strip having a structure consisting of the second phase (including 0%) below is formed, and the electrosewn steel pipe is further subjected to a low-temperature tempering treatment at a tempering temperature of 150 to 350 ° C., and JIS Z 2241 A repeated stress load with a static yield strength of 245 MPa or more in the tube axis direction, a static tensile strength of 415 MPa or more, and a stress ratio of 0.1, obtained by a tensile test in accordance with the regulations, at the center position of the wall thickness. A method for manufacturing a thick-walled large-diameter electric-sewn steel pipe having excellent fatigue strength, which comprises an electric-sewn steel pipe having a repeated yield strength of 245 MPa or more obtained from the repeated stress-strain curve obtained by the application.
(4) In (3), in addition to the above composition, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 in mass%. ~ 0.5%, V: 0.0001 ~ 0.5%, Ti: 0.0001 ~ 0.5%, B: 0.00001 ~ 0.1%, Ca: 0.00001 ~ 0.1%, REM: 0.00001 ~ 0.1% One or more selected from A method for producing a thick-walled large-diameter electric resistance pipe, which is characterized by having a composition containing.
(5) This is a method for estimating the stress strength of a thick-walled large-diameter electric-sewn steel pipe. The first step of applying repeated stresses to a piece for a plurality of cycles so as to have a constant stress ratio, obtaining the strains generated at the same time, and finding the peak of the relationship between the stresses and the strains in the plurality of cycles, and then the constant stress. The second step is to gradually increase the repetitive stress to be applied under the ratio, load the gradually increased repetitive stress for multiple cycles, obtain the strain generated at the same time, and obtain the peak of the relationship between the stress and the strain in the multiple cycles. After performing multiple times while gradually increasing the repeated stress to be applied, the repeated stresses obtained by connecting the apexes of the relationship between the obtained stress and the strain to create a repeated stress strain curve are created. A method for estimating the fatigue strength of a thick-walled large-diameter electric-sewn steel pipe, which comprises calculating the repeated yield strength from a strain curve and using the calculated repeated yielding strength as the stress strength of the thick-walled large-diameter electric-sewn steel pipe. ..
本発明によれば、特殊な工程を必要とせずに、また多量の合金元素を含有することなく、油井管、ラインパイプ等の使途に好適な、疲労強度に優れた厚肉大径電縫鋼管を製造でき、産業上格段の効果を奏する。本発明になる電縫鋼管は、高い疲労強度を有することから、油井管、ラインパイプ等の構造物の疲労破壊に対する安全裕度を拡大できるという効果もある。 According to the present invention, a thick-walled large-diameter electric pipe with excellent fatigue strength, which is suitable for use in oil pipes, line pipes, etc., without requiring a special process and containing a large amount of alloying elements. Can be manufactured and has a remarkable effect on the industry. Since the electrosewn steel pipe according to the present invention has high fatigue strength, it also has an effect that the safety margin against fatigue failure of structures such as oil country tubular goods and line pipes can be expanded.
本発明電縫鋼管は、疲労強度に優れた厚肉大径電縫鋼管である。
本発明電縫鋼管は、質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成(基本組成)を有する。
まず、本発明電縫鋼管の組成限定理由について、説明する。以下、組成における質量%は、単に%で記す。
The electrosewn steel pipe of the present invention is a thick-walled large-diameter electrosewn steel pipe having excellent fatigue strength.
The electrosewn steel pipe of the present invention has C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060% in mass%. It has a composition (basic composition) consisting of the balance Fe and unavoidable impurities.
First, the reason for limiting the composition of the electrosewn steel pipe of the present invention will be described. Hereinafter, the mass% in the composition is simply described as%.
C:0.001〜0.50%
Cは、電縫鋼管の強度増加に寄与する元素であり、所望の強度を確保するために、0.001%以上の含有を必要とする。一方、0.50%を超える含有は、延性、靭性や、溶接性を劣化させる。このため、Cは0.001〜0.50%の範囲に限定した。なお、好ましくは0.01〜0.30%である。
C: 0.001 to 0.50%
C is an element that contributes to the increase in the strength of the electrosewn steel pipe, and the content of C is required to be 0.001% or more in order to secure the desired strength. On the other hand, a content exceeding 0.50% deteriorates ductility, toughness and weldability. Therefore, C was limited to the range of 0.001 to 0.50%. It is preferably 0.01 to 0.30%.
Si:0.001〜2.0%
Siは、脱酸剤として作用するとともに、固溶して電縫鋼管の強度増加に寄与する元素であり、所望の強度を確保するためには、0.001%以上の含有を必要とする。一方、2.0%を超えて多量に含有すると、溶接性、靭性を劣化させる。このため、Siは0.001〜2.0%の範囲に限定した。なお、好ましくは0.01〜1.0%である。
Si: 0.001 to 2.0%
Si is an element that acts as an antacid and dissolves in a solid solution to contribute to an increase in the strength of electrosewn steel pipes, and requires a content of 0.001% or more in order to secure the desired strength. On the other hand, if it is contained in a large amount exceeding 2.0%, the weldability and toughness are deteriorated. Therefore, Si was limited to the range of 0.001 to 2.0%. It is preferably 0.01 to 1.0%.
Mn:0.001〜3.0%
Mnは、焼入れ性増加を介して、電縫鋼管の強度増加および靭性向上に寄与する元素であり、所望の強度、靭性を確保するために、0.001%以上の含有を必要とする。一方、3.0%を超える多量の含有は、溶接性、靭性の低下を招く。このため、Mnは0.001〜3.0%の範囲に限定した。なお、好ましくは0.01〜2.5%の範囲である。
Mn: 0.001 to 3.0%
Mn is an element that contributes to the increase in strength and toughness of electrosewn steel pipes through the increase in hardenability, and its content is required to be 0.001% or more in order to secure the desired strength and toughness. On the other hand, a large amount of content exceeding 3.0% causes deterioration of weldability and toughness. Therefore, Mn was limited to the range of 0.001 to 3.0%. It is preferably in the range of 0.01 to 2.5%.
P:0.05%以下
Pは、電縫鋼管の靭性を劣化させる元素であり、できるだけ低減することが望ましいが、0.05%以下であれば、許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下である。
P: 0.05% or less
P is an element that deteriorates the toughness of electrosewn steel pipes, and it is desirable to reduce it as much as possible, but if it is 0.05% or less, it is acceptable. Therefore, P was limited to 0.05% or less. It is preferably 0.03% or less.
S:0.05%以下
Sは、鋼中では主として硫化物系介在物として存在し、多量の含有は鋼管の延性、靭性を低下させる元素であり、極力低減することが望ましいが、0.05%以下であれば許容できる。このようなことから、Sは0.05%以下に限定した。なお、好ましくは0.01%以下である。
S: 0.05% or less
S is mainly present as a sulfide-based inclusion in steel, and a large amount of S is an element that lowers the ductility and toughness of steel pipes, and it is desirable to reduce it as much as possible, but 0.05% or less is acceptable. For this reason, S was limited to 0.05% or less. It is preferably 0.01% or less.
Al:0.010〜0.060%
Alは、脱酸剤として作用するとともに、窒化物AlNを形成して、結晶粒の微細化に寄与する元素である。このような効果を得るためには、Alは0.010%以上含有する必要があるが、0.060%を超えて多量に含有すると、延性、靭性の低下を招く。このため、Alは0.010〜0.060%に限定した。なお、好ましくは0.030〜0.060%である。
Al: 0.010 to 0.060%
Al is an element that acts as an antacid and forms nitride AlN, which contributes to the refinement of crystal grains. In order to obtain such an effect, Al needs to be contained in an amount of 0.010% or more, but if it is contained in a large amount exceeding 0.060%, the ductility and toughness are lowered. Therefore, Al was limited to 0.010 to 0.060%. It is preferably 0.030 to 0.060%.
上記した成分が基本の成分であるが、本発明電縫鋼管では、この基本の組成に加えてさらに、強度、靭性や溶接性等の調整、耐候性の付与などを目的として、選択元素として、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有しても良い。 The above-mentioned components are the basic components, but in the electrosewn steel pipe of the present invention, in addition to this basic composition, as a selection element for the purpose of adjusting strength, toughness, weldability, etc., and imparting weather resistance. Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to 0.5%, Ti: 0.0001 to 0.5%, B It may contain one or more selected from: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, and REM: 0.00001 to 0.1%.
Cu、Ni、Cr、Mo、Nb、V、Ti、Bはいずれも、電縫鋼管の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。
Cu:0.001〜5.0%
Cuは、固溶してあるいは析出して、電縫鋼管の強度増加に寄与するとともに、耐候性をも向上させる元素であり、これらの効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性、靱性の低下を招くとともに、熱間圧延時の疵発生を招く。このようなことから、含有する場合は、Cuは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Cu, Ni, Cr, Mo, Nb, V, Ti, and B are all elements that contribute to the increase in strength of the electrosewn steel pipe, and can be selected and contained one or more as necessary.
Cu: 0.001 to 5.0%
Cu is an element that dissolves or precipitates to contribute to increasing the strength of electrosewn steel pipes and also to improve weather resistance, and in order to obtain these effects, a content of 0.001% or more is required. To do. On the other hand, a large amount of content exceeding 5.0% causes deterioration of weldability and toughness, and also causes defects during hot rolling. For this reason, when it is contained, Cu is preferably limited to the range of 0.001 to 5.0%. More preferably, it is 0.01 to 2.5%.
Ni:0.001〜5.0%
Niは、電縫鋼管の強度増加に寄与するとともに、とくに低温靭性の向上、耐候性の付与、Cu起因の熱間脆性の改善に有効に寄与する元素である。このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性を低下させるうえ、製造コストの高騰を招く。このため、含有する場合には、Niは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは0.01〜5.0%である。
Ni: 0.001 to 5.0%
Ni is an element that contributes to increasing the strength of electrosewn steel pipes, and in particular, effectively improving low-temperature toughness, imparting weather resistance, and improving hot brittleness caused by Cu. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if it is contained in a large amount exceeding 5.0%, the weldability is lowered and the manufacturing cost is increased. Therefore, when it is contained, it is preferable to limit Ni to the range of 0.001 to 5.0%. It is more preferably 0.01 to 5.0%.
Cr:0.001〜5.0%
Crは、電縫鋼管の強度増加、耐候性の付与に有効に寄与する元素であり、このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Crは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは0.01〜2.5%である。
Cr: 0.001 to 5.0%
Cr is an element that effectively contributes to increasing the strength of electrosewn steel pipes and imparting weather resistance, and in order to obtain such effects, a content of 0.001% or more is required. On the other hand, a large amount of content exceeding 5.0% causes deterioration of weldability and toughness. Therefore, when it is contained, it is preferable to limit Cr to the range of 0.001 to 5.0%. It is more preferably 0.01 to 2.5%.
Mo:0.001〜5.0%
Moは、電縫鋼管の強度増加に有効に寄与する元素であり、このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える多量の含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Moは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Mo: 0.001 to 5.0%
Mo is an element that effectively contributes to increasing the strength of electrosewn steel pipes, and in order to obtain such an effect, a content of 0.001% or more is required. On the other hand, a large amount of content exceeding 5.0% causes deterioration of weldability and toughness. Therefore, when it is contained, Mo is preferably limited to the range of 0.001 to 5.0%. More preferably, it is 0.01 to 2.5%.
Nb:0.0001〜0.5%
Nbは、固溶しあるいは炭化物、窒化物等として析出して、電縫鋼管の強度増加に寄与するとともに、オーステナイト粒の再結晶を抑制し、熱間圧延を介して結晶粒の細粒化を図る作用を有する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、靭性の低下を招く。このため、含有する場合には、Nbは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
Nb: 0.0001-0.5%
Nb dissolves as a solid solution or precipitates as carbides, nitrides, etc., which contributes to an increase in the strength of electrosewn steel pipes, suppresses recrystallization of austenite grains, and refines the crystal grains through hot rolling. It is an element that has the effect of rolling. In order to obtain such an effect, a content of 0.0001% or more is required. On the other hand, a large amount of content exceeding 0.5% causes a decrease in toughness. Therefore, when it is contained, Nb is preferably limited to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.
V:0.0001〜0.5%
Vは、Nbと同様に、炭化物等として析出して、電縫鋼管の強度増加に有効に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Vは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
V: 0.0001-0.5%
Like Nb, V is an element that precipitates as carbides and the like and effectively contributes to increasing the strength of electrosewn steel pipes. In order to obtain such an effect, a content of 0.0001% or more is required. On the other hand, a large amount of content exceeding 0.5% causes deterioration of weldability and toughness. Therefore, when it is contained, V is preferably limited to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.
Ti:0.0001〜0.5%
Tiは、炭化物、窒化物等の析出物を介して電縫鋼管の強度増加に寄与するとともに、溶接部靭性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、製造コストの上昇を招く傾向にある。このため、含有する場合には、Tiは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは0.001〜0.25%である。
Ti: 0.0001-0.5%
Ti is an element that contributes to an increase in the strength of an electrosewn steel pipe and an improvement in the toughness of a welded portion through precipitates such as carbides and nitrides. In order to obtain such an effect, a content of 0.0001% or more is required. On the other hand, a large amount of content exceeding 0.5% tends to increase the manufacturing cost. Therefore, when contained, Ti is preferably limited to the range of 0.0001 to 0.5%. It is more preferably 0.001 to 0.25%.
B:0.00001〜0.1%
Bは、焼入れ性向上を介して電縫鋼管の強度増加に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、溶接性の低下を招く。このため、含有する場合には、Bは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは、0.0001〜0.05%である。
B: 0.00001 to 0.1%
B is an element that contributes to increasing the strength of electrosewn steel pipes through improving hardenability. In order to obtain such an effect, a content of 0.00001% or more is required. On the other hand, a large amount of content exceeding 0.1% causes a decrease in weldability. Therefore, when it is contained, B is preferably limited to the range of 0.00001 to 0.1%. More preferably, it is 0.0001 to 0.05%.
また、Ca、REMはいずれも、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。
Ca:0.00001〜0.1%
Caは、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、靱性の低下を招く。このため、含有する場合は、Caは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.05%である。
Further, both Ca and REM are elements that contribute to the improvement of ductility and toughness of the electrosewn steel pipe through the morphological control of inclusions, and one or two kinds can be selected and contained as necessary.
Ca: 0.00001-0.1%
Ca is an element that contributes to the improvement of ductility and toughness of electrosewn steel pipes through the morphological control of inclusions. In order to obtain such an effect, a content of 0.00001% or more is required. On the other hand, a large amount of content exceeding 0.1% causes a decrease in toughness. Therefore, when it is contained, Ca is preferably limited to the range of 0.00001 to 0.1%. It should be noted that it is more preferably 0.0001 to 0.05%.
REM:0.00001〜0.1%
REMは、Caと同様に、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、靱性の低下を招く。このため、含有する場合は、REMは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.05%である。
REM: 0.00001 to 0.1%
Like Ca, REM is an element that contributes to the improvement of ductility and toughness of electrosewn steel pipes through the morphological control of inclusions. In order to obtain such an effect, a content of 0.00001% or more is required. On the other hand, a large amount of content exceeding 0.1% causes a decrease in toughness. Therefore, when it is contained, REM is preferably limited to the range of 0.00001 to 0.1%. It should be noted that it is more preferably 0.0001 to 0.05%.
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.006%以下、O:0.006%以下が許容できる。 The rest other than the above components are Fe and unavoidable impurities. As unavoidable impurities, N: 0.006% or less and O: 0.006% or less are acceptable.
本発明電縫鋼管は、上記した組成を有し、さらにフェライトとパーライトとからなる混合相を主相とし、該主相と、面積率で30%以下(0%を含む)の第二相とからなる組織を有する。なお、この組織は、電縫鋼管の管軸方向に垂直な断面でシーム部から時計回りに90°の位置で、板厚中央位置で観察するものとする。 The electrosewn steel pipe of the present invention has the above-mentioned composition, and further has a mixed phase of ferrite and pearlite as the main phase, and the main phase and the second phase having an area ratio of 30% or less (including 0%). It has an organization consisting of. It should be noted that this structure shall be observed at a position 90 ° clockwise from the seam portion in a cross section perpendicular to the pipe axis direction of the electrosewn steel pipe and at the center position of the plate thickness.
主相:フェライトとパーライト
本発明電縫鋼管の主相は、フェライトとパーライトとが混合した混合相とする。ここでいう「主相」とは、組織全体に対する面積率で、70%以上を占める相をいう。主相が、70%未満では、静的降伏強さが525MPaを超える。なお、フェライトとパーライトの比率は、主としてC含有量に依存し、C量が少ない場合にはフェライトの比率が高くなり、C含有量が増加するにしたがいパーライトの比率が増加することは、言うまでもない。本発明の組成範囲では、フェライトは面積率で50〜99%、パーライトは1〜20%との範囲となる。
Main phase: Ferrite and pearlite The main phase of the electrosewn steel pipe of the present invention is a mixed phase in which ferrite and pearlite are mixed. The "main phase" here means a phase that occupies 70% or more of the area ratio to the entire organization. When the prime minister is less than 70%, the static yield strength exceeds 525MPa. It goes without saying that the ratio of ferrite to pearlite mainly depends on the C content, and when the C content is small, the ratio of ferrite increases, and as the C content increases, the ratio of pearlite increases. .. In the composition range of the present invention, ferrite has an area ratio of 50 to 99%, and pearlite has an area ratio of 1 to 20%.
そして、本発明電縫鋼管では、面積率で30%以下(0%を含む)の第二相を含んでもよい。第二相としては、ベイナイト、マルテンサイトが例示できる。第二相が、面積率で30%を超えて多量に含有される場合には、静的降伏強さが525MPaを超える。また、本発明電縫鋼管の上記した組織では、微細な炭化物(析出物)が分散した状態を呈する。析出した炭化物(析出物)は、粒径500nm未満(10〜400nm程度)の大きさを有している。このような微細な炭化物(析出物)が分散した状態となることにより、疲労強度、静的降伏強さが向上する。このような微細な炭化物(析出物)の存在が認められない場合には、顕著な疲労強度の増加や、静的降伏強さの増加は望めない。なお、このような微細な炭化物(析出物)が分散した状態は、熱延鋼帯を素材として、素材の幅方向に冷間加工し、略円筒状のオープン管に造管した際に導入された転位上に、低温焼戻処理により、炭化物等の析出物が析出したことによるものである。 The electric resistance welded steel pipe of the present invention may contain a second phase having an area ratio of 30% or less (including 0%). Examples of the second phase include bainite and martensite. When the second phase is contained in a large amount exceeding 30% in area ratio, the static yield strength exceeds 525 MPa. Further, in the above-mentioned structure of the electrosewn steel pipe of the present invention, fine carbides (precipitates) are dispersed. The precipitated carbide (precipitate) has a particle size of less than 500 nm (about 10 to 400 nm). Fatigue strength and static yield strength are improved by the state in which such fine carbides (precipitates) are dispersed. In the absence of the presence of such fine carbides (precipitates), a significant increase in fatigue strength and static yield strength cannot be expected. It should be noted that such a state in which fine carbides (precipitates) are dispersed is introduced when a hot-rolled steel strip is used as a material, cold-worked in the width direction of the material, and formed into a substantially cylindrical open pipe. This is because precipitates such as carbides were precipitated on the dislocations by low-temperature tempering treatment.
上記した組成および組織を有する本発明電縫鋼管は、静的降伏強さ:245MPa以上好ましくは525MPa以下、静的引張強さ:415MPa以上好ましくは760MPa以下の静的引張特性を有し、さらに、繰返し降伏強さ:245MPa以上である優れた疲労強度を有する厚肉大径電縫鋼管である。なお、引張特性は、管軸方向に垂直な断面でシーム部から時計回りに90°の位置で、肉厚中央で試験片長手方向が管軸方向となるように、JIS Z 2241の規定に準拠して試験片を採取し、引張試験を行って得られた値を用いるものとする。 The electrosewn steel pipe of the present invention having the above-mentioned composition and structure has static tensile properties of static yield strength: 245 MPa or more, preferably 525 MPa or less, static tensile strength: 415 MPa or more, preferably 760 MPa or less, and further. Repeated yield strength: A thick-walled large-diameter electric resistance pipe having excellent fatigue strength of 245 MPa or more. The tensile characteristics comply with JIS Z 2241 so that the cross section perpendicular to the pipe axis direction is 90 ° clockwise from the seam and the longitudinal direction of the test piece is the pipe axis direction at the center of the wall thickness. Then, the test piece shall be collected and the value obtained by conducting the tensile test shall be used.
また、本発明では、「疲労強度」を評価するための指標として、繰返し降伏強さを用いる。「繰返し降伏強さ」は、繰返し応力負荷試験を行って得られる繰返し応力歪曲線から、算出する。繰返し応力歪曲線は、次に示す手順で求めるものとする。 Further, in the present invention, the repeated yield strength is used as an index for evaluating the "fatigue strength". The "repeated yield strength" is calculated from the repetitive stress strain curve obtained by performing the repetitive stress load test. The repetitive stress strain curve shall be obtained by the following procedure.
まず、厚肉大径電縫鋼管の所定の位置(例えば、管軸方向に垂直な断面でシーム部から時計回りに90°の位置)から所定形状の疲労試験片(例えば、図5)を採取する。採取した疲労試験片の中央部に塑性歪ゲージを貼付する。そして、該疲労試験片に、応力比(=σmin/σmax):0.1の正弦波の応力を負荷し、試験片に発生する歪を測定する繰返し応力負荷試験(疲労試験)を実施する。 First, a fatigue test piece having a predetermined shape (for example, FIG. 5) is collected from a predetermined position of a thick-walled large-diameter electric resistance pipe (for example, a position 90 ° clockwise from the seam in a cross section perpendicular to the pipe axis direction). To do. A plastic strain gauge is attached to the center of the collected fatigue test piece. Then, a sine wave stress with a stress ratio (= σmin / σmax): 0.1 is applied to the fatigue test piece, and a repeated stress load test (fatigue test) is performed to measure the strain generated in the test piece.
繰返し応力負荷試験では、繰返し応力を、一定の応力比となるように、負荷する。油井管やラインパイプに負荷される繰り返し荷重は、平均応力がプラス側にある場合が多いため、本発明では、応力比:0.1の正弦波の応力を負荷することとした。 In the repetitive stress load test, the repetitive stress is loaded so as to have a constant stress ratio. Since the average stress is often on the positive side of the repetitive load applied to the oil country tubular goods and line pipes, in the present invention, a sinusoidal stress with a stress ratio of 0.1 is applied.
応力比:0.1(一定)の繰返し応力を1サイクル以上(例えば10サイクル)負荷し、同時に発生する歪を求め、該サイクルにおける繰返し応力と歪との関係の頂点を求める。ついで、繰返し応力を漸次増加し、応力比:0.1(一定)の条件のもとで、増加した繰返し応力を10サイクル負荷し、同時に発生する歪を求め、該サイクルにおける応力と歪との関係の頂点を求める。このような繰返し応力と歪との関係の頂点を求める工程を、所定の複数回、繰返し行い、得られた複数の繰返し応力と歪との関係の頂点を繋ぎ合せて、繰返し応力歪曲線とする。 Stress ratio: A repetitive stress of 0.1 (constant) is applied for one cycle or more (for example, 10 cycles), strains generated at the same time are obtained, and the apex of the relationship between the repetitive stress and the strain in the cycle is obtained. Then, the cyclic stress is gradually increased, and under the condition of stress ratio: 0.1 (constant), the increased cyclic stress is applied for 10 cycles, and the strain generated at the same time is obtained, and the relationship between the stress and the strain in the cycle is obtained. Find the apex. The process of finding the vertices of the relationship between the cyclic stress and the strain is repeated a predetermined number of times, and the vertices of the relationship between the obtained multiple cyclic stress and the strain are joined to form a cyclic stress strain curve. ..
ついで、得られた繰返し応力歪曲線から繰返し降伏強さを求める。
得られた「繰返し応力歪曲線」が降伏点型曲線を呈する場合には、「繰返し降伏強さ」は上降伏点とし、「繰返し応力歪曲線」がラウンドハウス型曲線を呈する場合には、「繰返し降伏強さ」はオフセット0.5%耐力σ0.5とする。
Then, the repeated yield strength is obtained from the obtained repeated stress strain curve.
When the obtained "repetitive stress strain curve" exhibits a yield point type curve, the "repeated yield strength" is set as the upper yield point, and when the "repetitive stress strain curve" exhibits a round house type curve, " The "repeated yield strength" is an offset of 0.5% and a proof stress of σ 0.5 .
図1に示すように、繰返し降伏強さと疲労強度σmax(2×106回)とは、非常によい相関関係を示している。本発明では、ラインパイプの健全性確保の観点から、繰返し降伏強さが245MPa以上あれば、疲労強度に優れた厚肉大径電縫鋼管であると言える。 As shown in FIG. 1, the repeated yield strength and the fatigue strength σmax (2 × 10 6 times) show a very good correlation. In the present invention, from the viewpoint of ensuring the soundness of the line pipe, if the repeated yield strength is 245 MPa or more, it can be said that the thick-walled large-diameter electric resistance steel pipe has excellent fatigue strength.
次に、本発明電縫鋼管の好ましい製造方法について説明する。
まず、上記した組成の溶鋼を、転炉等の、常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で鋳片とする。ついで、鋳片を、加熱炉に装入し、好ましくは加熱温度:1100〜1300℃に加熱する。加熱温度が1100℃未満では、加熱温度が低すぎて、熱間圧延荷重が高くなりすぎる。一方、1300℃を超えて高温となると、結晶粒が粗大化し、所望の微細な結晶粒を得ることができにくくなる。このため、鋳片の加熱温度は1100〜1300℃の範囲に限定することが好ましい。なお、鋳片の温度が高く所定量以上の熱量を保持している場合には、加熱することなく、熱間圧延を施すことが好ましい。なお、鋳片の加熱方法はこれに限定されないことは言うまでもない。鋳片を一旦冷却したのち、あるいは鋳片に熱間圧延を施して鋼片としたのち、該鋼片を再加熱する方法でもよいことは言うまでもない。
Next, a preferable manufacturing method of the electric resistance welded steel pipe of the present invention will be described.
First, the molten steel having the above composition is melted by a common melting method such as a converter, and slabs are obtained by a common casting method such as a continuous casting method. Then, the slab is placed in a heating furnace and preferably heated to a heating temperature of 1100-1300 ° C. If the heating temperature is less than 1100 ° C, the heating temperature is too low and the hot rolling load becomes too high. On the other hand, when the temperature is higher than 1300 ° C., the crystal grains become coarse and it becomes difficult to obtain desired fine crystal grains. Therefore, the heating temperature of the slab is preferably limited to the range of 1100 to 1300 ° C. When the temperature of the slab is high and the amount of heat is maintained at a predetermined amount or more, it is preferable to perform hot rolling without heating. Needless to say, the method for heating the slab is not limited to this. Needless to say, a method may be used in which the slab is once cooled, or the slab is hot-rolled to form a steel piece, and then the steel piece is reheated.
ついで、加熱された鋳片(または鋼片)に、熱間圧延を施し、所定板厚の熱延鋼帯とし、コイル状に巻き取ることが好ましい。熱間圧延は、圧延仕上温度:Ar3変態点以上、巻取温度:500℃以上とすることが好ましい。圧延仕上温度がAr3変態点未満では、フェライト+オーステナイト域での加工となり、加工フェライト粒が残存し、靱性が著しく低下する。なお、Ar3変態点は、次式
Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
ここで、C、Mn、Cu、Cr、Ni、Mo:各元素の含有量(質量%)
で表わされる関係式を用いて、算出することができる。また、巻取温度が500℃未満となると、組織にベイナイトやマルテンサイトが混入しやすくなり、所望の熱延鋼帯組織を得ることができない。なお、仕上圧延終了から巻取りまでの冷却は、700℃以下までの放冷、あるいは冷却速度:50℃/s以下の緩冷とすることが好ましい。仕上圧延終了から巻取りまでの冷却速度が速すぎると、所望の熱延鋼帯組織を得ることができない。
Then, it is preferable that the heated slab (or steel slab) is hot-rolled to form a hot-rolled steel strip having a predetermined plate thickness and wound into a coil. For hot rolling, it is preferable that the rolling finish temperature: Ar3 transformation point or higher and the winding temperature: 500 ° C. or higher. If the rolling finish temperature is less than the Ar3 transformation point, processing is performed in the ferrite + austenite region, processed ferrite grains remain, and the toughness is significantly reduced. The Ar3 transformation point is calculated by the following equation.
Ar3 (℃) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
Here, C, Mn, Cu, Cr, Ni, Mo: content of each element (mass%)
It can be calculated using the relational expression represented by. Further, when the winding temperature is less than 500 ° C., bainite and martensite are likely to be mixed in the structure, and a desired hot-rolled steel strip structure cannot be obtained. The cooling from the end of finish rolling to winding is preferably allowed to cool down to 700 ° C. or lower, or slowly cooled to a cooling rate of 50 ° C./s or lower. If the cooling rate from the end of finish rolling to winding is too fast, the desired hot-rolled steel strip structure cannot be obtained.
なお、ここでいう「所望の熱延鋼帯組織」とは、フェライトとパーライトとからなる混合相を主相とし、該主相と、面積率で30%以下(0%を含む)の第二相とからなる組織をいう。 The "desired hot-rolled steel strip structure" referred to here is a second phase in which a mixed phase composed of ferrite and pearlite is the main phase, and the area ratio is 30% or less (including 0%). An organization consisting of phases.
ついで、熱延鋼帯を素材とし、ロール等で幅方向に曲げ加工(冷間)を施し、略円筒状のオープン管に成形したのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電気抵抗溶接等で電縫溶接して、所定外径の電縫鋼管とする。なお、このような造管方法によれば、成形時に管軸方向に歪が導入される。このように歪が導入された電縫鋼管に低温焼戻処理(150〜350℃)を施すと、導入された歪と低温焼戻処理の組合せにより、転位上に微細な(大きさ(直径):500nm未満)炭化物が析出し、組織中に分散する。そして、この成形時に導入された歪に起因した時効硬化により、管軸方向の疲労強度が著しく向上する。 Then, using a hot-rolled steel strip as a material, it is bent (cold) in the width direction with a roll or the like to form a substantially cylindrical open pipe, and then the widthwise ends of the open pipe are abutted and pressed. , Electric resistance welding, etc., to obtain an electric resistance welded steel pipe with a predetermined outer diameter. According to such a pipe making method, strain is introduced in the pipe axial direction at the time of molding. When a low-temperature tempering treatment (150 to 350 ° C.) is applied to an electro-sewn steel tube into which strain has been introduced in this way, the combination of the introduced strain and low-temperature tempering treatment causes fineness (size (diameter)) on the dislocations. : Less than 500 nm) Carbides precipitate and disperse in the structure. Then, the fatigue strength in the tube axial direction is remarkably improved by the age hardening caused by the strain introduced at the time of molding.
焼戻温度が、150℃未満では、微細な炭化物の析出が不十分であり、一方、350℃を超えて高温となると、析出した炭化物が粗大となり、所望の歪時効硬化が確保できなくなり、所望の疲労強度の向上が達成できなくなる。また、静的降伏強さも低下する。なお、低温焼戻処理の保持時間は1s以上とすることが好ましい。なお、電縫鋼管の低温焼戻処理は、常用の大型炉や誘導加熱設備などを用いて行うか、あるいは、海底敷設時のコーティング熱処理などで代用してもよい。 If the tempering temperature is less than 150 ° C, the precipitation of fine carbides is insufficient, while if the temperature is higher than 350 ° C, the precipitated carbides become coarse and the desired strain age hardening cannot be secured, which is desired. The improvement of fatigue strength cannot be achieved. Also, the static yield strength is reduced. The holding time of the low temperature tempering treatment is preferably 1 s or more. The low-temperature tempering treatment of the electrosewn steel pipe may be carried out by using a large-sized ordinary furnace, an induction heating facility, or the like, or may be substituted by a coating heat treatment at the time of laying on the seabed.
以下、実施例に基づき、さらに本発明について説明する。 Hereinafter, the present invention will be further described based on Examples.
表1に示す組成の溶鋼を、常用の電気炉で溶製し、連続鋳造法で鋳片(肉厚:250mm)とした。ついで、これら鋳片を、表2に示す加熱温度の加熱炉に装入し、表2に示す条件で熱間圧延を施し、ついで、表2に示す条件で冷却を施して、表2に示す板厚の各種熱延鋼帯を得た。 The molten steel having the composition shown in Table 1 was melted in a regular electric furnace and made into a slab (wall thickness: 250 mm) by a continuous casting method. Then, these slabs are charged into a heating furnace having a heating temperature shown in Table 2, hot-rolled under the conditions shown in Table 2, and then cooled under the conditions shown in Table 2, and shown in Table 2. Various hot-rolled steel strips of various plate thicknesses were obtained.
得られた熱延鋼帯を素材とし、該素材の幅方向に曲げ加工を施し、略円筒状のオープン管に造管したのち、該オープン管の端部同士を突き合わせ、押圧して、突合せ部に高周波大電流を負荷し電縫溶接して、表3に示す寸法の電縫鋼管とした。 The obtained hot-rolled steel strip is used as a material, bent in the width direction of the material, formed into a substantially cylindrical open pipe, and then the ends of the open pipe are abutted and pressed to form a butt portion. A high-frequency large current was applied to the pipe and welded by electric stitching to obtain an electric resistance steel pipe having the dimensions shown in Table 3.
ついで、得られた電縫鋼管に、表3に示す焼戻温度で、焼戻処理(低温焼戻処理)を施した。なお、一部の電縫鋼管では焼戻処理を行わなかった。 Then, the obtained electrosewn steel pipe was tempered (low temperature tempering) at the tempering temperature shown in Table 3. Some electric pipes were not tempered.
焼戻処理済みの電縫鋼管から試験片を採取し、組織観察、引張試験、衝撃試験、疲労試験を実施した。試験方法は、次のとおりとした。
(1)組織観察
焼戻処理済みの電縫鋼管から、図3に示す90°の位置から、肉厚1/2位置が組織観察面となるように、試験片を採取し、研磨、腐蝕(ナイタール液腐蝕)して組織を現出し、光学顕微鏡(倍率:400倍)または透過型電子顕微鏡(倍率:30000倍)を用いて、組織を観察し、撮像して、組織の同定および各相の面積率の測定、微細炭化物(粒径:500nm未満)の有無の観察を行った。
(2)引張試験
焼戻処理済みの電縫鋼管から、図3に示す90°の位置で肉厚1/2位置から、試験片長手方向が管軸方向となるように、 図4に示す引張試験片(平行部:6mmφ×30mm)を採取した。採取した引張試験片を用いて、JIS Z 2241の規定に準拠して、引張試験を実施し、静的降伏強さ、静的引張強さを求めた。なお、応力―歪曲線が、降伏点型を呈する場合には上降伏点を、ラウンドハウス型を呈する場合には歪が0.5%であるときのオフセット耐力σ0.5を、静的降伏強さとした。
(3)衝撃試験
焼戻処理済みの電縫鋼管から、図3に示す90°の位置で肉厚1/2位置から、試験片長手方向が管軸方向となるように、2mmVノッチシャルピー衝撃試験片3本を採取した。JIS Z 2242の規定に準拠して、採取した衝撃試験片3本について、試験温度:0℃で、シャルピー衝撃試験を実施し、それぞれの吸収エネルギーを求め、3本の平均値を算出した。
(4)疲労試験
焼戻処理済みの電縫鋼管から、図3に示す、90°の位置で肉厚1/2位置から、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、採取した疲労試験片の中央部に塑性歪ゲージを貼付し、試験片に、図6に示す、応力比:0.1の正弦波の繰返し応力を複数サイクル(ここでは10サイクル)負荷し、同時に試験片に発生する歪を測定する繰返し応力負荷試験(疲労試験)を実施し、得られた応力と歪との関係の頂点を求めた。このような繰返し応力負荷試験を、負荷応力を増加させて、繰返し応力を複数サイクル(10サイクル)負荷し、応力と歪との関係の頂点を求めた。得られた各頂点を結び、応力と歪との関係曲線(繰返し応力歪曲線)を得た。そして、得られた繰返し応力歪曲線から、繰返し降伏強さを求めた。なお、繰返し応力歪曲線が、降伏点型曲線を呈する場合には、繰返し降伏強さは上降伏点とし、繰返し応力歪曲線がラウンドハウス型曲線を呈する場合には、繰返し降伏強さは歪0.5%のときのオフセット耐力σ0.5とした。
Specimens were collected from tempered steel pipes and subjected to microstructure observation, tensile test, impact test, and fatigue test. The test method was as follows.
(1) Structure observation From the tempered electric-sewn steel pipe, a test piece was collected from the 90 ° position shown in Fig. 3 so that the structure observation surface was at the 1/2 wall thickness position, and was polished and corroded ( The tissue is exposed by Nital liquid corrosion), and the tissue is observed and imaged using an optical microscope (magnification: 400 times) or a transmission electron microscope (magnification: 30000 times) to identify the tissue and identify each phase. The area ratio was measured and the presence or absence of fine carbide (particle size: less than 500 nm) was observed.
(2) Tensile test From the tempered steel pipe, the tension shown in FIG. 4 is set so that the longitudinal direction of the test piece is the pipe axis direction from the
(3) Impact test From the tempered steel pipe, a 2 mm V notch Charpy impact test is performed so that the longitudinal direction of the test piece is the pipe axis direction from the
(4) Fatigue test From the tempered steel pipe, from the position of 1/2 wall thickness at the 90 ° position shown in Fig. 3, the longitudinal direction of the test piece is in the pipe axis direction, as shown in Fig. 5. The fatigue test piece shown was collected. Then, a plastic strain gauge is attached to the central part of the collected fatigue test piece, and the test piece is loaded with the repeating stress of a sinusoidal wave having a stress ratio of 0.1 as shown in FIG. 6 for a plurality of cycles (10 cycles in this case) at the same time. A repeated stress loading test (fatigue test) was carried out to measure the strain generated in the test piece, and the peak of the relationship between the obtained stress and strain was determined. In such a repetitive stress load test, the load stress was increased, the repetitive stress was applied for a plurality of cycles (10 cycles), and the apex of the relationship between the stress and the strain was obtained. The obtained vertices were connected to obtain a relational curve between stress and strain (repetitive stress-strain curve). Then, the repeated yield strength was obtained from the obtained repeated stress strain curve. When the repeated stress strain curve exhibits a yield point type curve, the repeated yield strength is set as the upper yield point, and when the repeated stress strain curve exhibits a round house type curve, the repeated yield strength is strain 0.5. The offset proof stress when% was σ 0.5 .
また、焼戻処理済みの電縫鋼管から同様に、図3に示す90°の位置で肉厚1/2位置から、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、JIS Z 2273 の規定に準拠して、応力比:0.1の繰返し応力負荷の条件で、負荷応力(σmax)を変化して疲労試験を実施し、破断までの繰返し負荷回数を求め、S-N曲線として、疲労強度σmax(2×106回)を得た。
Similarly, from the tempered steel pipe, the fatigue shown in FIG. 5 is set so that the longitudinal direction of the test piece is the pipe axis direction from the
得られた結果を表3に示す。 The results obtained are shown in Table 3.
本発明例はいずれも、静的降伏強さが245MPa以上、525MPa以下の範囲にあり、静的引張強さも415MPa以上を示し、さらに吸収エネルギーvE0が27J以上と靭性に優れ、さらに繰返し降伏強さが245MPa以上と、疲労強度に優れた電縫鋼管となっている。なお、繰返し降伏強さは、疲労強度σmax(2×106回)に略等しい値となっており、繰返し降伏強さが、簡便に、当該電縫鋼管の疲労強度を精度高く推定できることがわかる。 In each of the examples of the present invention, the static yield strength is in the range of 245 MPa or more and 525 MPa or less, the static tensile strength is 415 MPa or more, the absorbed energy vE0 is 27 J or more, which is excellent in toughness, and the repeated yield strength. It is an electrosewn steel pipe with excellent fatigue strength of 245MPa or more. The repeated yield strength is a value substantially equal to the fatigue strength σmax (2 × 10 6 times), and it can be seen that the repeated yield strength can easily estimate the fatigue strength of the electric resistance welded steel pipe with high accuracy. ..
一方、本発明範囲を外れる比較例は、繰返し降伏強さが245MPa未満で疲労強度が低下しているか、静的引張特性が本発明範囲を外れているか、靭性が低下しているか、しており、所望の各特性をすべて満足できていない。 On the other hand, in the comparative example outside the range of the present invention, the fatigue strength is reduced when the repeated yield strength is less than 245 MPa, the static tensile property is outside the range of the present invention, or the toughness is reduced. , Not all desired properties are satisfied.
比較例である電縫鋼管No.S13は、C、Si、Mnの含有量が本発明範囲の下限を下回り、組織がフェライト単相となり、静的降伏強さ、繰返し降伏強さがともに245MPa未満、静的引張強さも415MPa未満となり、所望の引張特性、疲労強度を満足できていない。 In the electric resistance welded steel pipe No. S13, which is a comparative example, the contents of C, Si, and Mn are below the lower limit of the range of the present invention, the structure becomes a ferrite single phase, and both the static yield strength and the repeated yield strength are less than 245 MPa. The static tensile strength is also less than 415 MPa, and the desired tensile characteristics and fatigue strength are not satisfied.
また、電縫鋼管No.S14は、C、Si、Mnの含有量が本発明範囲の上限を超え、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S15は、P、Sの含有量が本発明範囲の上限を超え、そのため、シャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S16は、Cu、Niの含有量が本発明範囲の上限を超え、そのため、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S17は、Cr、Mo、Nb、Vの含有量が本発明範囲の上限を超え、そのため、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S18は、Ti、B、Ca、REMの含有量が本発明範囲の上限を超え、そのため、ベイナイト単相組織となり、静的降伏強度が本発明の好適範囲の上限525MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。また、電縫鋼管No.S19は、低温焼戻処理を実施しておらず、そのため、静的降伏強さ、繰返し降伏強さがともに245MPaを下回り、所望の引張特性、疲労強度を確保できていない。また、電縫鋼管No.S20は、低温焼戻温度が本発明範囲を高く外れており、そのため、静的引張強さが415MPaを下回り、所望の引張特性を確保できていない。 Further, in the electrosewn steel pipe No. S14, the content of C, Si and Mn exceeds the upper limit of the range of the present invention, the structure becomes bainite single phase, and the static yield strength exceeds the upper limit of 525 MPa of the preferable range of the present invention. In addition, the Charpy absorbed energy vE 0 is less than 27J, and the toughness is reduced. In addition, the content of P and S of the electrosewn steel pipe No. S15 exceeds the upper limit of the range of the present invention, and therefore the Charpy absorption energy vE 0 is less than 27J and the toughness is lowered. In addition, the content of Cu and Ni in the electrosewn steel pipe No. S16 exceeds the upper limit of the range of the present invention, so that the structure becomes bainite single phase and the static yield strength exceeds the upper limit of 525 MPa of the preferable range of the present invention. In addition, the charpy absorbed energy vE 0 is less than 27J, and the toughness is reduced. In addition, the content of Cr, Mo, Nb, and V in the electrosewn steel pipe No. S17 exceeds the upper limit of the range of the present invention, so that the structure becomes bainite single phase and the static yield strength is within the preferable range of the present invention. The upper limit of 525MPa is exceeded, and the Charpy absorbed energy vE 0 is less than 27J, resulting in decreased toughness. In addition, the content of Ti, B, Ca, and REM of the electrosewn steel pipe No. S18 exceeds the upper limit of the range of the present invention. The charpy absorbed energy vE 0 is less than 27J, and the toughness is reduced. In addition, the electro-sewn steel pipe No. S19 has not been subjected to low-temperature tempering treatment, so that both the static yield strength and the repeated yield strength are less than 245 MPa, and the desired tensile characteristics and fatigue strength can be secured. Absent. Further, in the electrosewn steel pipe No. S20, the low temperature tempering temperature is high outside the range of the present invention, and therefore the static tensile strength is less than 415 MPa, and the desired tensile characteristics cannot be secured.
Claims (4)
C :0.001〜0.50%、 Si:0.001〜2.0%、
Mn:0.001〜3.0%、 P :0.05%以下、
S :0.05%以下、 Al:0.010〜0.060%
を含み、残部Fe及び不可避的不純物からなる組成と、
フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有し、さらに前記組織中には粒径500nm未満の微細炭化物が分散してなり、
JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、
応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である
ことを特徴とする疲労強度に優れた厚肉大径電縫鋼管。 By mass%
C: 0.001 to 0.50%, Si: 0.001 to 2.0%,
Mn: 0.001 to 3.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.010 to 0.060%
Containing the balance Fe and unavoidable impurities,
The main phase is a mixed phase consisting of ferrite and pearlite, and the structure is composed of the main phase and the second phase having an area ratio of 30% or less (including 0%), and grains are further contained in the structure. Fine carbides with a diameter of less than 500 nm are dispersed,
The static yield strength in the pipe axis direction is 245MPa or more, the static tensile strength is 415MPa or more, and the static tensile strength is 415MPa or more at the center position of the wall thickness, which is obtained by the tensile test in accordance with JIS Z 2241.
A thick-walled large-diameter electric resistance pipe having excellent fatigue strength, characterized in that the repeated yield strength obtained from the repeated stress strain curve obtained by applying a repeated stress load of a stress ratio of 0.1 is 245 MPa or more.
前記熱延鋼帯を、質量%で、
C :0.001〜0.50%、 Si:0.001〜2.0%、
Mn:0.001〜3.0%、 P :0.05%以下、
S :0.05%以下、 Al:0.010〜0.060%
を含み、残部Fe及び不可避的不純物からなる組成と、フェライトとパーライトとからなる混合相を主相とし、該主相と面積率で30%以下(0%を含む)の第二相とからなる組織と、を有する鋼帯とし、
前記電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施し、
前記組織中に粒径500nm未満の微細炭化物が分散してなり、
JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが245MPa以上、静的引張強さが415MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが245MPa以上である電縫鋼管とすること
を特徴とする疲労強度に優れた厚肉大径電縫鋼管の製造方法。 The hot-rolled steel strip is cold-bent in the width direction of the material to form a substantially cylindrical open pipe, and then the widthwise ends of the open pipe are abutted against each other, pressed, and welded by electric sewing. Then, when making an electric resistance steel pipe,
The hot-rolled steel strip by mass%
C: 0.001 to 0.50%, Si: 0.001 to 2.0%,
Mn: 0.001 to 3.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.010 to 0.060%
The main phase is a composition consisting of the balance Fe and unavoidable impurities, and a mixed phase consisting of ferrite and pearlite, and the main phase and the second phase having an area ratio of 30% or less (including 0%). With the structure, as a steel strip with
The electrosewn steel pipe is subjected to a low temperature tempering treatment at a tempering temperature of 150 to 350 ° C.
Fine carbides with a particle size of less than 500 nm are dispersed in the structure.
The static yield strength in the pipe axis direction at the center position of the wall thickness is 245MPa or more, the static tensile strength is 415MPa or more, and the stress ratio is 0.1, which was obtained by the tensile test in accordance with the JIS Z 2241 regulations. A method for manufacturing a thick-walled large-diameter electric-sewn steel pipe having excellent fatigue strength, which comprises an electric-sewn steel pipe having a repeated yield strength of 245 MPa or more obtained from a repeated-stress strain curve obtained by applying a repeated stress load. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250538A JP6773020B2 (en) | 2017-12-27 | 2017-12-27 | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250538A JP6773020B2 (en) | 2017-12-27 | 2017-12-27 | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019116657A JP2019116657A (en) | 2019-07-18 |
JP6773020B2 true JP6773020B2 (en) | 2020-10-21 |
Family
ID=67305182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017250538A Active JP6773020B2 (en) | 2017-12-27 | 2017-12-27 | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6773020B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111553035B (en) * | 2020-04-30 | 2023-08-08 | 日照钢铁控股集团有限公司 | Design method for blanking opening degree of hot-base galvanized square pipe manufacturing |
KR102443927B1 (en) * | 2020-08-26 | 2022-09-19 | 주식회사 포스코 | Hot-rolled steel plate having excellent impact toughness of welded zone and method for manufacturing thereof |
CN113846267B (en) * | 2021-09-24 | 2023-03-10 | 新余钢铁股份有限公司 | 30CrMnB hot-rolled alloy structural steel plate and production method thereof |
CN114737120B (en) * | 2022-04-02 | 2022-11-18 | 鞍钢股份有限公司 | Steel for large-diameter tube bundle outer bearing tube and preparation method thereof |
CN114921718A (en) * | 2022-04-12 | 2022-08-19 | 首钢京唐钢铁联合有限责任公司 | Container steel for multi-mode sheet billet continuous casting and rolling production line and preparation method thereof |
CN115110010A (en) * | 2022-05-31 | 2022-09-27 | 天津钢管制造有限公司 | Seamless steel tube for 140Ksi steel grade trenchless drill rod and preparation method thereof |
CN115679205A (en) * | 2022-09-28 | 2023-02-03 | 南京钢铁股份有限公司 | 290Mpa grade low yield strength steel used in low-temperature severe environment and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225722A (en) * | 1988-03-05 | 1989-09-08 | Sumitomo Metal Ind Ltd | Production of resistance welded steel pipe for high strength oil well use |
JP4853075B2 (en) * | 2006-03-28 | 2012-01-11 | 住友金属工業株式会社 | Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming |
JP6123734B2 (en) * | 2014-05-29 | 2017-05-10 | Jfeスチール株式会社 | Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same |
WO2016063513A1 (en) * | 2014-10-23 | 2016-04-28 | Jfeスチール株式会社 | High-strength welded steel pipe for airbag inflator, and method for manufacturing same |
CN106480375B (en) * | 2015-08-31 | 2018-08-03 | 鞍钢股份有限公司 | High-strength resistance welding sleeve and manufacturing method thereof |
JP6179692B1 (en) * | 2015-12-21 | 2017-08-16 | 新日鐵住金株式会社 | ASROLL type K55 electric well pipe and hot rolled steel sheet |
-
2017
- 2017-12-27 JP JP2017250538A patent/JP6773020B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019116657A (en) | 2019-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6773020B2 (en) | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method | |
KR101231270B1 (en) | High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same | |
US7879287B2 (en) | Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same | |
KR101511615B1 (en) | Method for manufacturing welded steel pipe for linepipe having high compressive strength and high fracture toughness | |
CA2844718C (en) | Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof | |
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
KR101410588B1 (en) | Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe | |
JP4833835B2 (en) | Steel pipe with small expression of bauschinger effect and manufacturing method thereof | |
JP6760254B2 (en) | Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method | |
CA2980424C (en) | Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes | |
JP6773021B2 (en) | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method | |
KR102119561B1 (en) | Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes | |
RU2458996C1 (en) | Method for obtaining plate steel and steel pipes for ultrahigh-strong pipeline | |
JP5141073B2 (en) | X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same | |
JP2004315957A (en) | High strength hot rolled steel strip with excellent low-temperature toughness and weldability for resistance welded pipe, and its manufacturing method | |
WO2015151469A1 (en) | Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
WO2015151468A1 (en) | Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe | |
JP6241434B2 (en) | Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof | |
WO2016157857A1 (en) | High-strength steel, production method therefor, steel pipe, and production method for steel pipe | |
JP4276480B2 (en) | Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance | |
JP6558252B2 (en) | High strength ERW steel pipe for oil well | |
JP4336294B2 (en) | Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging | |
CN114846163A (en) | Steel plate and steel pipe | |
JP4523908B2 (en) | Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6773020 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |