[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6760066B2 - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film Download PDF

Info

Publication number
JP6760066B2
JP6760066B2 JP2016543101A JP2016543101A JP6760066B2 JP 6760066 B2 JP6760066 B2 JP 6760066B2 JP 2016543101 A JP2016543101 A JP 2016543101A JP 2016543101 A JP2016543101 A JP 2016543101A JP 6760066 B2 JP6760066 B2 JP 6760066B2
Authority
JP
Japan
Prior art keywords
film
polyester film
biaxially oriented
layers
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016543101A
Other languages
Japanese (ja)
Other versions
JPWO2016199675A1 (en
Inventor
維允 鈴木
維允 鈴木
東大路 卓司
卓司 東大路
功 真鍋
功 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2016199675A1 publication Critical patent/JPWO2016199675A1/en
Application granted granted Critical
Publication of JP6760066B2 publication Critical patent/JP6760066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、機械特性、加工性に優れた二軸配向ポリエステルフィルムに関する。 The present invention relates to a biaxially oriented polyester film having excellent mechanical properties and workability.

ポリエステル樹脂、特にポリエチレンテレフタレート(以下PETと略すことがある)や、ポリエチレン2,6−ナフタレンジカルボキシレート(以下PENを略すことがある)などは機械特性、熱特性、耐薬品性、電気特性、成形性に優れ、様々な用途に用いられている。そのポリエステルをフィルム化したポリエステルフィルム、中でも二軸配向ポリエステルフィルムは、その優れた機械的特性、加工性から、透明電極基板を加工工程中に傷つきなどから保護する工程フィルムとして使用されている。 Polyester resins, especially polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polyethylene 2,6-naphthalene carboxylate (hereinafter sometimes abbreviated as PEN) have mechanical properties, thermal properties, chemical resistance, electrical properties, etc. It has excellent moldability and is used for various purposes. A polyester film obtained by converting the polyester into a film, particularly a biaxially oriented polyester film, is used as a process film for protecting a transparent electrode substrate from scratches during the processing process due to its excellent mechanical properties and workability.

一般的に、ディスプレイなどで用いられる透明導電膜の製膜基板(ITO(Indium Tin Oxide)蒸着基板など)においては、ITO膜の導電性を上げるために一定温度での基板のキュア工程が必要となる。この工程では、該基板を保護フィルムにも同時に熱がかかる。そのため、透明導電膜の製膜基板と保護フィルムの熱特性、とくに150℃から50℃の降温時の寸法変化率(線膨張係数(CTE))に差があると、透明導電膜の製膜基板の平面性が悪化したり、保護フィルムが剥がれて保護機能が低下する場合があるため、透明導電膜の製膜基板と保護フィルムの寸法変化率は近しい値をとることが好ましい。そのため、従来、透明導電膜の製膜基板には二軸配向したPETフィルムが用いられていたため(特許文献1)、保護フィルムもPETフィルムが用いられていることが多かった。 In general, a transparent conductive film-forming substrate (such as an ITO (Indium Tin Oxide) vapor-deposited substrate) used in a display or the like requires a substrate curing process at a constant temperature in order to increase the conductivity of the ITO film. Become. In this step, heat is applied to the protective film on the substrate at the same time. Therefore, if there is a difference in the thermal characteristics between the transparent conductive film-forming substrate and the protective film, particularly the dimensional change rate (linear expansion coefficient (CTE)) when the temperature drops from 150 ° C. to 50 ° C., the transparent conductive film-forming substrate It is preferable that the dimensional change rates of the transparent conductive film-forming substrate and the protective film are close to each other because the flatness of the film may be deteriorated or the protective film may be peeled off to deteriorate the protective function. Therefore, conventionally, a PET film oriented biaxially has been used for the film-forming substrate of the transparent conductive film (Patent Document 1), so that the PET film is often used as the protective film.

しかしながら、近年では、ディスプレイの性能向上、薄膜化の観点から、透明導電膜の製膜基板にシクロオレフィンポリマー(COP)などの非晶性樹脂からなるフィルムが用いられる検討がなされている(特許文献2、3)。 However, in recent years, from the viewpoint of improving the performance of the display and thinning the film, it has been studied to use a film made of an amorphous resin such as a cycloolefin polymer (COP) as a film-forming substrate of a transparent conductive film (Patent Documents). 2, 3).

特開2013−093310号公報Japanese Unexamined Patent Publication No. 2013-093310 特開2013−114344号公報Japanese Unexamined Patent Publication No. 2013-114344 特開2014−112510号公報JP-A-2014-112510

透明導電膜の製膜基板に二軸配向したPETフィルムが用いられる場合、該基板の保護フィルムには二軸配向したPETを好適に使用することができる。しかしながら、透明導電膜の製膜基板にCOPからなるシートが用いられる場合、COPは一般的に非晶性樹脂であり、寸法変化率が二軸配向PETに比べて2〜3倍程度大きいため、二軸配向PETフィルムを保護フィルムとして用いると、透明導電膜の製膜基板の平面性が悪化したり、保護フィルムに剥がれが発生するという問題が発生する。 When a biaxially oriented PET film is used for the film-forming substrate of the transparent conductive film, biaxially oriented PET can be preferably used as the protective film of the substrate. However, when a sheet made of COP is used for the film-forming substrate of the transparent conductive film, the COP is generally an amorphous resin, and the dimensional change rate is about 2 to 3 times larger than that of the biaxially oriented PET. When a biaxially oriented PET film is used as a protective film, there arises a problem that the flatness of the film-forming substrate of the transparent conductive film is deteriorated and the protective film is peeled off.

一方、透明導電膜の製膜基板と保護フィルムの寸法変化率の差を小さくすることを考慮すると、COPからなるフィルムを保護フィルムとして用いることが考えられる。しかしながら、COPからなるフィルムを保護フィルムとして用いた場合、COPは非晶性樹脂であるため、二軸配向PETフィルムに比べて、靱性が低く可撓性に劣るため、加工工程中に割れが発生するという問題がある。 On the other hand, considering reducing the difference in the dimensional change rate between the transparent conductive film-forming substrate and the protective film, it is conceivable to use a film made of COP as the protective film. However, when a film made of COP is used as a protective film, since COP is an amorphous resin, it has lower toughness and inferior flexibility as compared with a biaxially oriented PET film, so that cracks occur during the processing process. There is a problem of doing.

本発明の課題は、かかる従来技術の背景に鑑み、透明導電膜の製膜基板などの用途に用いられるCOPの保護フィルムとして好適に用いられる二軸配向ポリエステルフィルムを提供することにある。 An object of the present invention is to provide a biaxially oriented polyester film that is suitably used as a protective film for COP used in applications such as a film-forming substrate for a transparent conductive film, in view of the background of the prior art.

上記課題を解決するために、本発明は以下の構成をとる。すなわち、
[I]フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける、150℃から50℃の降温時の寸法変化率が、それぞれ50ppm/℃以上130ppm/℃以下であり、かつ面配向係数(fn)が0.111以上0.145以下である二軸配向ポリエステルフィルム。
[II]フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける、150℃から50℃の降温時の寸法変化率が、それぞれ50ppm/℃以上130ppm/℃以下であり、かつ、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける130℃30分間での熱収縮率がそれぞれ1.0%以下である二軸配向ポリエステルフィルム。
[III]面配向係数(fn)が0.120以上0.140以下である[I]または[II]に記載の二軸配向ポリエステルフィルム。
[IV]フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)と、およびフィルム幅方向から45°をなす方向の130℃30分間での熱収縮率をそれぞれの方向で比較したとき、それらの差の絶対値がいずれも0%以上0.5%以下であり、かつそれらの平均値が0.5%以下であり、
かつ、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)と、およびフィルム幅方向から45°をなす方向の150℃から50℃の降温時の寸法変化率をそれぞれの方向で比較したとき、それらの差の絶対値がいずれも0ppm/℃以上10ppm/℃以下である、[I]〜[III]のいずれかに記載の二軸配向ポリエステルフィルム。[V]前記ポリエステルフィルムを構成するポリエステル樹脂の結晶融解熱量が30J/g以下である[I]〜[IV]のいずれかに記載の二軸配向ポリエステルフィルム。
[VI]前記ポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムであって、フィルムの両側の表層を構成するポリエステル樹脂の結晶融解熱量(ΔHmA)がいずれも30J/g以上であり、フィルムの両側の表層以外の層を構成するポリエステル樹脂の結晶融解熱量(ΔHmB)が30J/g以下であることを特徴とする[I]〜[V]のいずれかに記載の二軸配向ポリエステルフィルム。
[VII]フィルムの両側の表層以外の層を構成するポリエステル樹脂が、テレフタル酸とエチレングリコールを主たる構成成分とする樹脂であって、それ以外の構成単位としてイソフタル酸、シクロヘキシレンジメタノールのうちいずれか1種類のみ、または2種類のみを含有する[VI]に記載の二軸配向ポリエステルフィルム。
[VIII]前記ポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムであって、フィルムの両側の表層を構成するポリエステル樹脂の融点TmAがいずれも250℃以上280℃以下であることを特徴とする[I]〜[V]のいずれかに記載の二軸配向ポリエステルフィルム。
[IX]ポリエステルフィルムの両側の表層の厚みの和と、表層以外の層の厚みの和の比(両側の表層の厚みの和/表層以外の層の厚みの和)が、1/9〜1/2である[IV]〜[VIII]に記載の二軸配向ポリエステルフィルム。
[X]非晶性樹脂からなるフィルムに貼り合わせる用途に用いられる[I]〜[IX]のいずれかに記載の二軸配向ポリエステルフィルム。
[XI]シクロオレフィンポリマー(COP)からなるフィルムに貼り合わせる用途に用いられる[I]〜[IX]のいずれかに記載の二軸配向ポリエステルフィルム。
[XII]シクロオレフィンポリマー(COP)からなるフィルムを保護する用途に用いられる[I]〜[XI]のいずれかに記載の二軸配向ポリエステルフィルム。
In order to solve the above problems, the present invention has the following configuration. That is,
[I] The dimensional change rate when the temperature is lowered from 150 ° C. to 50 ° C. in the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction) is 50 ppm / ° C. or higher and 130 ppm / ° C. or lower, respectively. A biaxially oriented polyester film having a plane orientation coefficient (fn) of 0.111 or more and 0.145 or less.
[II] The dimensional change rate when the temperature drops from 150 ° C. to 50 ° C. in the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction) is 50 ppm / ° C. or higher and 130 ppm / ° C. or lower, respectively. A biaxially oriented polyester film having a heat shrinkage rate of 1.0% or less at 130 ° C. for 30 minutes in each of the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction).
[III] The biaxially oriented polyester film according to [I] or [II], wherein the plane orientation coefficient (fn) is 0.120 or more and 0.140 or less.
[IV] The heat shrinkage at 130 ° C. for 30 minutes in the film width direction (TD direction), the direction perpendicular to it (MD direction), and the direction 45 ° from the film width direction was compared in each direction. When, the absolute value of their difference is 0% or more and 0.5% or less, and their average value is 0.5% or less.
In addition, the dimensional change rate during temperature reduction from 150 ° C. to 50 ° C. in the film width direction (TD direction), the direction perpendicular to it (MD direction), and the direction 45 ° from the film width direction is measured in each direction. The biaxially oriented polyester film according to any one of [I] to [III], wherein the absolute values of the differences are 0 ppm / ° C. or higher and 10 ppm / ° C. or lower when compared. [V] The biaxially oriented polyester film according to any one of [I] to [IV], wherein the heat of crystal melting of the polyester resin constituting the polyester film is 30 J / g or less.
[VI] The polyester film is a laminated polyester film composed of at least three layers, and the amount of heat of crystal fusion (ΔHmA) of the polyester resin constituting the surface layers on both sides of the film is 30 J / g or more, and both sides of the film. The biaxially oriented polyester film according to any one of [I] to [V], wherein the heat of crystal fusion (ΔHmB) of the polyester resin constituting a layer other than the surface layer of the above is 30 J / g or less.
[VII] The polyester resin constituting the layers other than the surface layer on both sides of the film is a resin containing terephthalic acid and ethylene glycol as main constituents, and any of isophthalic acid and cyclohexylene dimethane as the other constituent units. The biaxially oriented polyester film according to [VI], which contains only one type or only two types.
[VIII] The polyester film is a laminated polyester film composed of at least three layers, and the melting point TmA of the polyester resin constituting the surface layers on both sides of the film is 250 ° C. or higher and 280 ° C. or lower. The biaxially oriented polyester film according to any one of I] to [V].
[IX] The ratio of the sum of the thicknesses of the surface layers on both sides of the polyester film to the sum of the thicknesses of the layers other than the surface layer (sum of the thicknesses of the surface layers on both sides / sum of the thicknesses of the layers other than the surface layer) is 1/9 to 1. The biaxially oriented polyester film according to [IV] to [VIII], which is / 2.
[X] The biaxially oriented polyester film according to any one of [I] to [IX] used for bonding to a film made of an amorphous resin.
[XI] The biaxially oriented polyester film according to any one of [I] to [IX] used for bonding to a film made of a cycloolefin polymer (COP).
[XII] The biaxially oriented polyester film according to any one of [I] to [XI] used for protecting a film made of a cycloolefin polymer (COP).

本発明によれば、COPやPC(ポリカーボネート)など非晶性樹脂からなるフィルムに近しい寸法変化率をもち、機械特性に優れ、加工性が良好な二軸配向ポリエステルフィルムが得られる。 According to the present invention, a biaxially oriented polyester film having a dimensional change rate close to that of a film made of an amorphous resin such as COP or PC (polycarbonate), excellent mechanical properties, and good workability can be obtained.

以下に具体例を挙げつつ、本発明について詳細に説明する。
本発明のポリエステルフィルムは、機械特性の観点から、二軸配向ポリエステルフィルムであることが必要である。ここでいうポリエステルは、ジカルボン酸構成成分とジオール構成成分を有してなるものである。なお、本明細書内において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。本発明のポリエステルフィルムは、機械特性の観点から、ポリエチレンテレフタレートまたはポリエチレンテレフタレートの共重合体からなることが好ましい。
The present invention will be described in detail below with reference to specific examples.
The polyester film of the present invention needs to be a biaxially oriented polyester film from the viewpoint of mechanical properties. The polyester referred to here has a dicarboxylic acid component and a diol component. In addition, in this specification, a constituent component means the smallest unit which can be obtained by hydrolyzing polyester. From the viewpoint of mechanical properties, the polyester film of the present invention is preferably made of polyethylene terephthalate or a copolymer of polyethylene terephthalate.

本発明の1つの態様は、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける、150℃から50℃の降温時の寸法変化率が、それぞれ50ppm/℃以上130ppm/℃以下であり、かつ面配向係数(fn)が0.111以上0.145以下である二軸配向ポリエステルフィルムである。 In one aspect of the present invention, the dimensional change rate when the temperature is lowered from 150 ° C. to 50 ° C. in each of the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction) is 50 ppm / ° C. or more and 130 ppm / A biaxially oriented polyester film having a surface orientation coefficient (fn) of 0.111 or more and 0.145 or less at ° C. or lower.

一般的に、透明導電膜は、室温よりも温度が高い状態で基板上に製膜され、その後室温よりも温度が高い状態でキュアする工程を経て、室温まで冷却される降温過程を経る。つまり、透明導電膜の製膜後に、該基板の平面性を保つことが、透明導電膜が欠損して導電性が損なわれることを防ぐために重要である。該基板の保護用フィルムも、該工程を経ることになる。つまり、該基板の平面性を良好に保つためには、該基板の保護用フィルムの降温時の寸法変化率を、該基板に近しい値とすることが重要となる。 In general, the transparent conductive film is formed on a substrate at a temperature higher than room temperature, then cured at a temperature higher than room temperature, and then cooled to room temperature. That is, it is important to maintain the flatness of the substrate after the transparent conductive film is formed in order to prevent the transparent conductive film from being lost and the conductivity being impaired. The protective film on the substrate also goes through the process. That is, in order to maintain good flatness of the substrate, it is important to set the dimensional change rate of the protective film of the substrate when the temperature is lowered to a value close to that of the substrate.

近年、透明導電膜の製膜基板として、非晶性樹脂であるCOPからなるフィルムが広く用いられている。このCOPからなるフィルムの150℃から50℃の降温時の寸法変化率は、COPの分子骨格にもよるが、50ppm/℃以上150ppm/℃以下である。本発明のポリエステルフィルムの150℃から50℃の降温時の寸法変化率を上記COPからなるフィルムの寸法変化率と近しい範囲とすることによって、導電膜の製膜加工後に透明導電膜の製膜基板の平面性を損なうことなく、導電性を良好に保つことができる。特に好ましくは60ppm/℃以上110ppm/℃以下、さらに好ましくは80ppm/℃以上100ppm/℃以下である。 In recent years, a film made of COP, which is an amorphous resin, has been widely used as a film-forming substrate for a transparent conductive film. The dimensional change rate of the film made of COP when the temperature is lowered from 150 ° C. to 50 ° C. is 50 ppm / ° C. or higher and 150 ppm / ° C. or lower, although it depends on the molecular skeleton of COP. By setting the dimensional change rate of the polyester film of the present invention when the temperature is lowered from 150 ° C. to 50 ° C. to a range close to the dimensional change rate of the film made of COP, the film-forming substrate of the transparent conductive film is formed after the film-forming process of the conductive film. The conductivity can be kept good without impairing the flatness of the film. It is particularly preferably 60 ppm / ° C. or higher and 110 ppm / ° C. or lower, and more preferably 80 ppm / ° C. or higher and 100 ppm / ° C. or lower.

なお、二軸配向ポリエステルフィルムの寸法変化率は、フィルムを構成するポリエステルの分子鎖の配向によって決まる。すなわち、分子鎖が配向している場合には、分子鎖が熱によって自由に動くことができない結果、寸法変化率の値は低くなる。すなわち、一般的な二軸配向ポリエステルフィルムである場合、fnが0.145を超えるような分子鎖の配向度が高い場合には、寸法変化率の値は低く(50ppm/℃未満)なる。一方、fnが0.111未満であるようなフィルムの配向が十分でない場合は、機械特性、とくに破断伸度に劣る結果、加工性に劣る。また、フィルムの配向が十分でなく、分子鎖が非晶状態に近いため、フィルムに熱がかかった場合にランダムな粗大結晶が生じることでフィルムの透明性が損なわれるだけでなく、ランダムな粗大結晶によってその周囲に存在する分子鎖が固定される結果、寸法変化率の値も低くなる。したがって、本発明の二軸配向ポリエステルフィルムは、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける、150℃から50℃の降温時の寸法変化率が、それぞれ50ppm/℃以上130ppm/℃以下であり、かつ面配向係数(fn)が0.111以上0.145以下である二軸配向ポリエステルフィルムとすることで、機械特性、加工性に優れ、かつ、加熱時においても高い透明性を維持したフィルムとすることができる。fnは、より好ましくは0.120以上0.140以下である。 The dimensional change rate of the biaxially oriented polyester film is determined by the orientation of the molecular chains of the polyester constituting the film. That is, when the molecular chains are oriented, the molecular chains cannot move freely due to heat, and as a result, the value of the dimensional change rate becomes low. That is, in the case of a general biaxially oriented polyester film, when the degree of orientation of the molecular chains having an fn of more than 0.145 is high, the value of the dimensional change rate is low (less than 50 ppm / ° C.). On the other hand, if the orientation of the film such that fn is less than 0.111 is not sufficient, the mechanical properties, particularly the elongation at break, are inferior, resulting in inferior workability. In addition, since the orientation of the film is not sufficient and the molecular chains are close to an amorphous state, random coarse crystals are generated when the film is heated, which not only impairs the transparency of the film but also randomly coarses the film. As a result of the crystal fixing the molecular chains around it, the value of the dimensional change rate is also low. Therefore, the biaxially oriented polyester film of the present invention has a dimensional change rate of 50 ppm / 50 ° C. when the temperature is lowered from 150 ° C. to 50 ° C. in each of the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction). By using a biaxially oriented polyester film having a temperature of ° C. or higher and 130 ppm / ° C. or lower and a plane orientation coefficient (fn) of 0.111 or higher and 0.145 or lower, the mechanical properties and workability are excellent, and the film is heated. Can be a film that maintains high transparency. The fn is more preferably 0.120 or more and 0.140 or less.

本発明のもう1つの態様は、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける、150℃から50℃の降温時の寸法変化率が、それぞれ50ppm/℃以上130ppm/℃以下であり、かつ、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける130℃30分間での熱収縮率がそれぞれ1.0%以下である二軸配向ポリエステルフィルムである。上述のように、透明導電膜の製膜工程には、室温よりも温度が高い状態で透明導電膜を基板上に製膜する工程が含まれる。そのため、基板の保護フィルムの熱収縮率が大きい場合、基板の平面性が損なわれる場合がある。150℃から50℃の降温時の寸法変化率が上述の範囲にあり、かつ、130℃30分間での熱収縮率が上述の範囲にあるポリエステルフィルムをCOPフィルムの保護フィルムとして用いた場合、COPフィルムの平滑性が良好となり、またCOPとの貼り合わせが良好となる。はMD方向、TD方向の130℃30分間での熱収縮率がそれぞれ0.5%以下であるとより好ましい。熱収縮率の下限は、−0.2%であることが好ましい。−とは、膨張することを意味する。−0.2%を超えて膨張する場合には、基材と保護フィルムが剥がれる場合がある。 In another aspect of the present invention, the dimensional change rate when the temperature is lowered from 150 ° C. to 50 ° C. in the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction) is 50 ppm / ° C. or more and 130 ppm, respectively. Biaxially oriented polyester having a temperature of / ° C or less and a heat shrinkage rate of 1.0% or less at 130 ° C. for 30 minutes in each of the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction). It is a film. As described above, the film forming step of the transparent conductive film includes a step of forming the transparent conductive film on the substrate at a temperature higher than room temperature. Therefore, when the heat shrinkage rate of the protective film of the substrate is large, the flatness of the substrate may be impaired. When a polyester film having a dimensional change rate at a temperature drop of 150 ° C. to 50 ° C. in the above range and a heat shrinkage rate at 130 ° C. for 30 minutes in the above range is used as a protective film for the COP film, COP The smoothness of the film becomes good, and the bonding with the COP becomes good. More preferably, the heat shrinkage rate in the MD direction and the TD direction at 130 ° C. for 30 minutes is 0.5% or less, respectively. The lower limit of the heat shrinkage rate is preferably −0.2%. -Means to expand. If it expands by more than -0.2%, the base material and the protective film may peel off.

本発明のポリエステルフィルムの寸法変化率および熱収縮率は、以下の要件を満たすことが好ましい。即ち、フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)と、およびフィルム幅方向から45°をなす方向の130℃30分間での熱収縮率をそれぞれの方向で比較したとき、それらの差の絶対値がいずれも(TD方向とMD方向の熱収縮率の差の絶対値、TD方向とTD方向から45°をなす方向の熱収縮率の差の絶対値、MD方向とTD方向から45°をなす方向の熱収縮率の差の絶対値)0%以上0.5%以下であり、かつそれらの平均値が0.5%以下であり、かつ150℃から50℃の降温時の寸法変化率をそれぞれの方向で比較したとき、それらの差の絶対値がいずれも(TD方向とMD方向の寸法変化率の差の絶対値、TD方向とTD方向から45°をなす方向の寸法変化率の差の絶対値、MD方向とTD方向から45°をなす方向の寸法変化率の差の絶対値)0ppm/℃以上10ppm/℃以下であることが好ましい。 The dimensional change rate and heat shrinkage rate of the polyester film of the present invention preferably satisfy the following requirements. That is, when the heat shrinkage rate at 130 ° C. for 30 minutes in the film width direction (TD direction), the direction perpendicular to it (MD direction), and the direction 45 ° from the film width direction is compared in each direction. , The absolute value of the difference is (the absolute value of the difference in heat shrinkage between the TD direction and the MD direction, the absolute value of the difference in heat shrinkage between the TD direction and the direction 45 ° from the TD direction, and the MD direction. Absolute value of the difference in heat shrinkage in the direction 45 ° from the TD direction) 0% or more and 0.5% or less, and their average value is 0.5% or less, and 150 ° C to 50 ° C When the dimensional change rates during temperature decrease are compared in each direction, the absolute values of the differences are all (absolute value of the difference between the dimensional change rates in the TD direction and the MD direction, 45 ° from the TD direction and the TD direction. The absolute value of the difference in the dimensional change rate in the direction, the absolute value of the difference in the dimensional change rate in the direction 45 ° from the MD direction and the TD direction) is preferably 0 ppm / ° C. or higher and 10 ppm / ° C. or lower.

非晶性樹脂からなるシートを透明導電膜の製膜基板に用いる場合、通常は延伸しない状態で用いるため、非晶性樹脂からなるシートの熱に対する応答性(寸法変化率、熱収縮率)は等方的である。一方、二軸配向ポリエステルフィルムは、延伸方向であるフィルム幅方向(TD方向)、それと直角をなす方向(MD方向)と、その中間であるフィルム幅方向から45°をなす方向との間に、熱に対する応答性(寸法変化率、熱収縮率)に差が生じる。この差が大きいポリエステルフィルムを非晶性樹脂からなるシートとフィルムを貼り合わせて積層体として用いると、積層体にカールが生じる場合がある。上述の範囲を満たす二軸配向ポリエステルフィルムとすることで、非晶性樹脂からなるシートと貼りあわせて積層体としても、熱に対する応答性が近しいため、積層体のカールが抑制されるため、好ましい。 When a sheet made of an amorphous resin is used for a film-forming substrate of a transparent conductive film, it is usually used in a non-stretched state, so that the heat responsiveness (dimension change rate, heat shrinkage rate) of the sheet made of an amorphous resin is high. It is isotropic. On the other hand, in the biaxially oriented polyester film, between the film width direction (TD direction), which is the stretching direction, the direction perpendicular to it (MD direction), and the direction forming 45 ° from the film width direction in between. There is a difference in the responsiveness to heat (dimensional change rate, heat shrinkage rate). When a polyester film having a large difference is used as a laminated body by laminating a sheet made of an amorphous resin and a film, the laminated body may be curled. By using a biaxially oriented polyester film that satisfies the above range, even if the laminated body is laminated with a sheet made of an amorphous resin, the response to heat is close and curl of the laminated body is suppressed, which is preferable. ..

また、本発明の二軸配向ポリエステルフィルムの150℃30分間の熱収縮率は、MD、TD方向とも1.5%以下であることが好ましい。さらに好ましくは、150℃30分間の熱収縮率は、MD、TD方向とも−0.2%以上0.5%以下である。 Further, the heat shrinkage rate of the biaxially oriented polyester film of the present invention at 150 ° C. for 30 minutes is preferably 1.5% or less in both the MD and TD directions. More preferably, the heat shrinkage rate at 150 ° C. for 30 minutes is −0.2% or more and 0.5% or less in both the MD and TD directions.

二軸配向ポリエステルフィルムの寸法変化率、面配向係数(fn)、熱収縮率を上述の範囲とするためには、例えば、以下(イ)の方法をとることができる。 In order to keep the dimensional change rate, the plane orientation coefficient (fn), and the heat shrinkage rate of the biaxially oriented polyester film within the above ranges, for example, the following method (a) can be taken.

(イ)本発明の二軸配向ポリエステルフィルムを構成するポリエステル樹脂の結晶融解熱量を30J/g以下とし、後述の方法で二軸延伸する方法。 (A) A method in which the amount of heat of crystal melting of the polyester resin constituting the biaxially oriented polyester film of the present invention is set to 30 J / g or less, and biaxial stretching is performed by the method described later.

二軸延伸する方法は、以下の方法をとることができる。 The biaxial stretching method can be as follows.

まず、ポリエステル樹脂を押出機内で加熱溶融した後口金から吐出し、未延伸シートを得る。
(1)溶融したポリエステルを口金から吐出して未延伸シートを作製する際に、表面温度10℃以上40℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。
(2)(1)で得られた未延伸シートを、下記(i)式を満たす温度T1n(℃)にて、フィルムの長手方向(MD)とフィルムの幅方向(TD)に面積倍率8.5倍以上16.0倍以下に二軸延伸する。
(i)Tg(℃)≦T1n(℃)≦Tg+40(℃)
Tg:ポリエステルフィルムを構成する樹脂のガラス転移温度(℃)
(3)(2)で得られた二軸延伸フィルムを、下記(ii)式を満足する温度(Th0(℃))で、1秒間以上30秒間以下の熱固定処理を行ない、均一に徐冷後、室温まで冷却することによって、ポリエステルフィルムを得る。
(ii)Tm−60(℃)≦Th0(℃)≦Tm−20(℃)
Tm:フィルムを構成する樹脂の融点(℃)
(1)を満たす条件によって未延伸シートを得ることにより実質的に非晶のポリエステルフィルムを得ることができ、(2)以降の工程においてフィルムに配向を付与せしめ易くし、機械特性に良好なフィルムを得やすくすることができる。
(2)を満たす条件によって二軸延伸フィルムを得ることにより、フィルムに適度な配向を付与せしめ、機械特性の良好なフィルムとすることができる。
(3)を満たす条件によって結晶配向を完了させることにより、配向が形成されたポリエステル分子鎖の構造が安定し、機械特性、熱収縮率が良好なフィルムとすることができる。
First, the polyester resin is heated and melted in an extruder and then discharged from a mouthpiece to obtain an unstretched sheet.
(1) When the molten polyester is discharged from the mouthpiece to produce an unstretched sheet, the unstretched sheet is produced by closely cooling and solidifying by static electricity on a drum cooled to a surface temperature of 10 ° C. or higher and 40 ° C. or lower.
(2) Area magnification of the unstretched sheet obtained in (1) in the longitudinal direction (MD) of the film and the width direction (TD) of the film at a temperature T1n (° C.) satisfying the following equation (i). Biaxial stretching is performed 5 times or more and 16.0 times or less.
(I) Tg (° C.) ≤ T1n (° C.) ≤ Tg + 40 (° C.)
Tg: Glass transition temperature (° C) of the resin constituting the polyester film
(3) The biaxially stretched film obtained in (2) is heat-fixed for 1 second to 30 seconds at a temperature (Th0 (° C.)) satisfying the following formula (ii), and then slowly cooled uniformly. Then, by cooling to room temperature, a polyester film is obtained.
(Ii) Tm-60 (° C.) ≤ Th0 (° C.) ≤ Tm-20 (° C.)
Tm: Melting point (° C) of the resin constituting the film
By obtaining an unstretched sheet under the conditions satisfying (1), a substantially amorphous polyester film can be obtained, and it is easy to give orientation to the film in the steps after (2), and the film has good mechanical properties. Can be easily obtained.
By obtaining a biaxially stretched film under the conditions satisfying (2), it is possible to impart an appropriate orientation to the film and obtain a film having good mechanical properties.
By completing the crystal orientation under the conditions satisfying (3), the structure of the oriented polyester molecular chain is stable, and a film having good mechanical properties and heat shrinkage can be obtained.

なお、(2)において、二軸延伸する方法としては、フィルムの長手方向(MD)とフィルムの幅方向(フィルムの長手方向に垂直な方向、TD)の延伸とを分離して行う逐次二軸延伸方法、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法のどちらを用いて行っても良い。また、延伸温度(T1n)(℃)がTg(℃)未満である場合、延伸することが困難である。T1n(℃)がTg+40(℃)を超える場合には、フィルム破れが頻発し、延伸によりフィルムを得ることができない場合がある。より好ましくは、Tg+10(℃)≦T1n(℃)≦Tg+30(℃)である。 In (2), as a method of biaxial stretching, the longitudinal direction (MD) of the film and the width direction of the film (direction perpendicular to the longitudinal direction of the film, TD) are separated and sequentially biaxially stretched. Either the stretching method or the simultaneous biaxial stretching method in which stretching in the longitudinal direction and the width direction is performed at the same time may be used. Further, when the stretching temperature (T1n) (° C.) is less than Tg (° C.), it is difficult to stretch. When T1n (° C.) exceeds Tg + 40 (° C.), film tearing occurs frequently, and a film may not be obtained by stretching. More preferably, Tg + 10 (° C.) ≤ T1n (° C.) ≤ Tg + 30 (° C.).

(3)の工程において、Th0が、Tm−20℃を超える場合、延伸によって付与したフィルムの配向が崩れ、熱収縮率が大きくなる場合がある。Th0がTm−60℃を下回る場合、分子鎖の構造が安定せず、平面性が悪化したり製膜性が悪化する。さらに、Th0の値を、Tm−30(℃)≦Th0(℃)≦Tm−20(℃)とすることにより、フィルム延伸時の分子鎖の緊張が緩和され、熱収縮率を好ましい範囲とすることができる。(3)の工程において、フィルム幅方向の距離を2%から10%縮めるリラックス処理を施すこともできる。 In the step (3), when Th0 exceeds Tm-20 ° C., the orientation of the film applied by stretching may be lost and the heat shrinkage rate may increase. When Th0 is lower than Tm-60 ° C., the structure of the molecular chain is not stable, and the flatness is deteriorated or the film forming property is deteriorated. Further, by setting the value of Th0 to Tm-30 (° C.) ≤ Th0 (° C.) ≤ Tm-20 (° C.), the tension of the molecular chain during film stretching is relaxed, and the heat shrinkage rate is set within a preferable range. be able to. In the step (3), a relaxing process for reducing the distance in the film width direction by 2% to 10% can also be performed.

本発明の二軸配向ポリエステルフィルムを構成するポリエステル樹脂の結晶融解熱量は、30J/g以下であることが好ましい。結晶融解熱量が30J/gを超える場合には、樹脂の結晶性が高く、上述の方法で二軸延伸した場合であっても分子鎖の配向が強くなり、fnが大きく、寸法変化率は低くなる傾向となる。結晶融解熱量の下限は、好ましくは2J/g以上である。2J/gに満たない場合、製膜性に劣ったり、fnが好ましい範囲の下限値を下回る場合がある。ポリエステル樹脂の結晶融解熱量を30J/g以下にする方法としては、ポリエステル樹脂がPETである場合、ジカルボン酸成分としてイソフタル酸を共重合する方法、ジオール成分としてシクロヘキサンジメタノールを共重合する方法などが挙げられる。これらは単独で共重合しても良いし、複数種類共重合しても構わない。単独で共重合する方が、結晶性の制御が容易であるため好ましい。特にイソフタル酸を共重合成分として用いる場合、テレフタル酸と構造が近しいため、延伸によって配向を付与してfnを好ましい範囲とすることが容易であるため、特に好ましい。共重合量としては、共重合成分の合計が、ポリエステルの構成成分の全量に対して7mol%以上20mol%以下であることが好ましい。 The amount of heat of crystal melting of the polyester resin constituting the biaxially oriented polyester film of the present invention is preferably 30 J / g or less. When the amount of heat of crystal fusion exceeds 30 J / g, the crystallinity of the resin is high, the orientation of the molecular chains is strong even when biaxially stretched by the above method, the fn is large, and the dimensional change rate is low. It becomes a tendency to become. The lower limit of the amount of heat of crystal melting is preferably 2 J / g or more. If it is less than 2 J / g, the film-forming property may be poor or fn may be below the lower limit of the preferable range. As a method for reducing the heat of crystal melting of the polyester resin to 30 J / g or less, when the polyester resin is PET, a method of copolymerizing isophthalic acid as a dicarboxylic acid component, a method of copolymerizing cyclohexanedimethanol as a diol component, etc. Can be mentioned. These may be copolymerized alone or a plurality of types may be copolymerized. It is preferable to copolymerize alone because it is easy to control the crystallinity. In particular, when isophthalic acid is used as a copolymerization component, it is particularly preferable because it has a structure similar to that of terephthalic acid and it is easy to impart orientation by stretching to bring fn into a preferable range. As for the amount of copolymerization, it is preferable that the total amount of the copolymerization components is 7 mol% or more and 20 mol% or less with respect to the total amount of the constituent components of the polyester.

さらに好ましい実施形態の方法として、フィルムを以下(ロ)の構成とする方法が挙げられる。 As a method of a more preferable embodiment, there is a method in which the film has the following constitution (b).

(ロ)ポリエステルフィルムを、少なくとも3層からなる積層ポリエステルフィルムとし、フィルムの両側の表層を構成するポリエステル樹脂の結晶融解熱量(ΔHmA)をいずれも30J/g以上、かつフィルムの両側の表層以外の層を構成するポリエステル樹脂の結晶融解熱量(ΔHmB)を30J/g以下とすること。 (B) The polyester film is a laminated polyester film composed of at least three layers, and the amount of heat of crystal fusion (ΔHmA) of the polyester resin constituting the surface layers on both sides of the film is 30 J / g or more, and other than the surface layers on both sides of the film. The amount of heat of crystal fusion (ΔHmB) of the polyester resin constituting the layer shall be 30 J / g or less.

該構成とした場合、フィルムの両側の表層は、それ以外の層に比べて結晶性が高く、より配向がつきやすい。そのため、該層に追随してそれ以外の層の配向性も高くなり、フィルム全体の配向性が向上する結果、機械特性が向上して加工性が向上するため好ましい。また、配向性が向上する結果、フィルムに熱がかかった場合の白化が抑えられるため好ましい。ΔHmAは、31J/g以上60J/g以下であることが好ましく、ΔHmBは、2J/g以上30J/g未満であることが好ましい。
この構成をとる場合、両側の表層を構成する樹脂の配向性を高めるため、延伸温度は以下(iii)式を満たすことが好ましい。
(iii)TgA(℃)≦T1n(℃)≦TgA+40(℃)
TgAは、フィルムの両側の表層を構成するポリエステル樹脂のガラス転移温度をあらわす。なお、本発明のポリエステルフィルムの両側の表層が異なる組成のポリエステル樹脂からなるフィルムである場合(例えば、A/B/C)、両側の表層を構成するポリエステル樹脂のTgのうち、高い方の温度が(iii)式を満たすことが好ましい。
さらに、本発明のポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムである場合、フィルムの両側の表層を構成するポリエステル樹脂の融点TmAがいずれも250℃以上280℃以下とすることも好ましい実施形態である。
With this configuration, the surface layers on both sides of the film have higher crystallinity than the other layers and are more easily oriented. Therefore, the orientation of the other layers is increased following the layer, and as a result of improving the orientation of the entire film, the mechanical properties are improved and the workability is improved, which is preferable. Further, as a result of improving the orientation, whitening when the film is heated is suppressed, which is preferable. ΔHmA is preferably 31 J / g or more and 60 J / g or less, and ΔHmB is preferably 2 J / g or more and less than 30 J / g.
When this configuration is adopted, the stretching temperature preferably satisfies the following formula (iii) in order to enhance the orientation of the resins constituting the surface layers on both sides.
(Iii) TgA (° C.) ≤ T1n (° C.) ≤ TgA + 40 (° C.)
TgA represents the glass transition temperature of the polyester resin constituting the surface layers on both sides of the film. When the surface layers on both sides of the polyester film of the present invention are made of polyester resins having different compositions (for example, A / B / C), the higher temperature of the Tg of the polyester resins constituting the surface layers on both sides. Satisfies the equation (iii).
Further, when the polyester film of the present invention is a laminated polyester film composed of at least three layers, it is also preferable that the melting point TmA of the polyester resin constituting the surface layers on both sides of the film is 250 ° C. or higher and 280 ° C. or lower. Is.

TmAの値が250℃以下である場合、製膜中の熱処理などで熱を受けた場合、平面性が悪化したり、製膜性が悪化することがある。フィルムの両側の表層を構成するポリエステル樹脂の融点TmAがいずれも250℃以上280℃以下である3層積層ポリエステルフィルムとすると、平面性、製膜性が良好となるため、特に好ましい。 When the value of TmA is 250 ° C. or lower, the flatness may be deteriorated or the film forming property may be deteriorated when heat is received by heat treatment during film forming. A three-layer laminated polyester film having a melting point TmA of 250 ° C. or higher and 280 ° C. or lower, which is a polyester resin constituting the surface layers on both sides of the film, is particularly preferable because it has good flatness and film-forming property.

本発明のフィルムが3層以上の積層ポリエステルフィルムである場合、ポリエステルフィルムの両側の表層の厚みの和と、表層以外の層の厚みの和の比(両側の表層の厚みの和/表層以外の層の厚みの和)が、1/9〜1/2であることが好ましい。 When the film of the present invention is a laminated polyester film having three or more layers, the ratio of the sum of the thicknesses of the surface layers on both sides of the polyester film to the sum of the thicknesses of the layers other than the surface layer (sum of the thicknesses of the surface layers on both sides / other than the surface layer). The sum of the thicknesses of the layers) is preferably 1/9 to 1/2.

表層の厚みが薄く、両側の表層の厚みの和と表層以外の層の厚みの和の比が1/9を下回る場合、積層による製膜性向上、機械特性向上の効果が得られない場合がある。一方、表層の厚みが厚く、両側の表層の厚みの和と表層以外の層の厚みの和の比が1/2を超える場合、表層の配向性の影響を強く受け、内層が無理に延伸される結果、フィルム製膜性が悪くなる場合がある。 If the thickness of the surface layer is thin and the ratio of the sum of the thicknesses of the surface layers on both sides to the sum of the thicknesses of the layers other than the surface layer is less than 1/9, the effect of improving the film forming property and the mechanical properties by laminating may not be obtained. is there. On the other hand, when the surface layer is thick and the ratio of the sum of the thicknesses of the surface layers on both sides to the sum of the thicknesses of the layers other than the surface layer exceeds 1/2, the inner layer is forcibly stretched due to the strong influence of the orientation of the surface layer. As a result, the film-forming property of the film may deteriorate.

熱収縮率をより好ましい範囲とするため、以下(ハ)の工程を経ることも好ましい実施形態である。 In order to set the heat shrinkage ratio in a more preferable range, it is also a preferable embodiment to go through the following steps (c).

(ハ)(イ)または(ロ)の方法によって得られたフィルムを、下記(iv)式を満たす熱処理温度Th1(℃)にて、70秒以上600秒以下の時間で、アニールする。当該アニール処理を行う方法としては、フィルム巻きだしロールとフィルム巻き取りロールの間に設置されたオーブンでフィルムを熱処理する(オフアニール)方法が挙げられる。
(iv)120℃≦Th1(℃)≦Th0(熱固定温度)(℃)
Th1(℃)がTh0(熱固定温度)(℃)を超える場合、(4)の工程において、(3)の工程で固定化されたフィルム内の分子鎖の構造が破壊される結果、フィルムが大きく収縮することとなり、平面性が悪化する場合がある。一方、Th1(℃)が120℃を下回る場合、130℃での熱収縮率を好ましい範囲とすることができない場合がある。
(C) The film obtained by the method (a) or (b) is annealed at a heat treatment temperature Th1 (° C.) satisfying the following formula (iv) for a time of 70 seconds or more and 600 seconds or less. Examples of the method for performing the annealing treatment include a method of heat-treating the film (off-annealing) in an oven installed between the film winding roll and the film winding roll.
(Iv) 120 ° C. ≤ Th1 (° C.) ≤ Th0 (heat fixing temperature) (° C.)
When Th1 (° C.) exceeds Th0 (heat fixation temperature) (° C.), in the step (4), the structure of the molecular chain in the film immobilized in the step (3) is destroyed, and as a result, the film becomes It will shrink significantly, and the flatness may deteriorate. On the other hand, when Th1 (° C.) is lower than 120 ° C., the heat shrinkage rate at 130 ° C. may not be within a preferable range.

(ハ)の工程を経ることで、(イ)、(ロ)の工程にてフィルムを構成する分子鎖に残存する応力を取り除くことができ、熱収縮率の低減と等方性、および寸法変化率の等方性が得られるため、本発明の好ましい実施形態である。特に、(ロ)の方法で得られたフィルムである場合、TmAが250℃以上280℃以下となる樹脂を両表層に配されているため、(ハ)の工程で熱を加えた場合において、フィルムの配向が崩れることなく、熱収縮率のみ低減できるため好ましい。 By going through the steps (c), the stress remaining in the molecular chains constituting the film can be removed in the steps (a) and (b), and the heat shrinkage rate is reduced, the isotropic property, and the dimensional change. It is a preferred embodiment of the present invention because the isotropic rate is obtained. In particular, in the case of the film obtained by the method (b), since the resin having a TmA of 250 ° C. or higher and 280 ° C. or lower is arranged on both surface layers, when heat is applied in the step (c), the film is subjected to. This is preferable because only the heat shrinkage rate can be reduced without breaking the orientation of the film.

本発明の二軸配向ポリエステルフィルムの厚みは、30μm以上150μm以下であることが好ましい。30μmに満たないと、保護フィルムとして用いた場合に破れが発生しやすくなる場合があり、150μmを超えると、ハンドリング性に劣る場合がある。より好ましくは、50μm以上125μm以下である。 The thickness of the biaxially oriented polyester film of the present invention is preferably 30 μm or more and 150 μm or less. If it is less than 30 μm, tearing may easily occur when used as a protective film, and if it exceeds 150 μm, the handleability may be inferior. More preferably, it is 50 μm or more and 125 μm or less.

本発明の二軸配向ポリエステルフィルムは、100℃12hr処理前後でのヘイズ変化量(Δヘイズ)が2%以下であることが好ましい。Δヘイズを上記の範囲とすることで、本発明のフィルムと非晶性樹脂からなるシートとを貼り合わせた場合でも、非晶樹脂からなるシートを本発明のフィルムを通しても視認することができるため好ましい。Δヘイズが大きくなる要因としては、加熱によってフィルム非晶部が粗大結晶となることや、加熱によってフィルム表面へオリゴマーが析出することが考えられる。前者では、フィルムに配向を付与し、fn0.111以上とする方法や、後者ではフィルムを積層構成とし、最表層を構成する樹脂を、固相重合することでオリゴマー含有量を低減した樹脂を用いることでオリゴマー析出を低減することによって、Δヘイズを小さくすることができる。 The biaxially oriented polyester film of the present invention preferably has a haze change amount (Δ haze) of 2% or less before and after the treatment at 100 ° C. for 12 hr. By setting Δhaze within the above range, even when the film of the present invention and the sheet made of the amorphous resin are bonded together, the sheet made of the amorphous resin can be visually recognized through the film of the present invention. preferable. It is considered that the cause of the increase in Δhaze is that the amorphous part of the film becomes coarse crystals by heating and the oligomer is precipitated on the film surface by heating. In the former, a method of imparting orientation to the film to have fn 0.111 or more is used, and in the latter, a resin having a laminated structure and a resin constituting the outermost layer is solid-phase polymerized to reduce the oligomer content. As a result, the Δ haze can be reduced by reducing the oligomer precipitation.

以上のようにして得られる本発明の二軸配向ポリエステルフィルムは、機械特性、加工性にすぐれ、150℃から50℃の降温時の寸法変化率の値が非晶性樹脂からなるフィルムに近いことから、非晶性樹脂からなるフィルムに貼りあわせる用途に好ましく用いられる。特にCOPからなるフィルムの保護フィルム用途として好適に用いることができる。また、加熱時においても透明性に優れることから、透明導電膜製膜に用いられるCOPフィルムの保護フィルムの用途として好適に用いることができる。 The biaxially oriented polyester film of the present invention obtained as described above is excellent in mechanical properties and workability, and the value of the dimensional change rate when the temperature is lowered from 150 ° C. to 50 ° C. is close to that of the film made of amorphous resin. Therefore, it is preferably used for bonding to a film made of an amorphous resin. In particular, it can be suitably used as a protective film for a film made of COP. Further, since it is excellent in transparency even when heated, it can be suitably used as a protective film for a COP film used for forming a transparent conductive film.

[特性の評価方法]
A.フィルム、各層を構成する樹脂の融点(Tm、TmA、TmB)(℃)
試料を、JIS K 7121(1999)に基づいた方法により、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC−RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mgずつ秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートにおいて、吸熱ピークである結晶融解ピークにおけるピークトップの温度を求め、これを融点(℃)とする。2以上の結晶融解ピークが観測される場合は、最もピーク面積の大きいピークトップの温度を融点とする。
積層ポリエステルフィルムの各層を構成する樹脂の融点を測定する場合は、積層ポリエステルフィルムからミクロトームを用いて各層を構成する樹脂のみ削りだし、測定に供する。
[Characteristic evaluation method]
A. Melting point (Tm, TmA, TmB) (° C) of the film and the resin constituting each layer
The sample was prepared by a method based on JIS K 7121 (1999), using a differential scanning calorimetry device "Robot DSC-RDC220" manufactured by Seiko Electronics Co., Ltd., and a disk session "SSC / 5200" for data analysis. Perform the measurement as follows.
Weigh 5 mg of the sample into a sample pan, heat the sample from 25 ° C to 300 ° C at a heating rate of 20 ° C / min (1st RUN), hold it in that state for 5 minutes, and then quench it to 25 ° C or lower. .. Immediately thereafter, the temperature is raised again from 25 ° C. to 20 ° C./min to 300 ° C., and the measurement is performed. The differential scanning calorimetry chart of 2nd RUN (vertical axis is thermal energy, horizontal axis is temperature). To get. In the differential scanning calorimetry chart of the 2nd RUN, the temperature of the peak top at the crystal melting peak, which is the endothermic peak, is determined and used as the melting point (° C.). When two or more crystal melting peaks are observed, the temperature of the peak top having the largest peak area is taken as the melting point.
When measuring the melting point of the resin constituting each layer of the laminated polyester film, only the resin constituting each layer is scraped from the laminated polyester film using a microtome and used for the measurement.

B.フィルム、各層を構成する樹脂の結晶融解熱量(ΔHm、ΔHmA、ΔHmB)(J/g)
試料を、JIS K 7121(1999)に基づいた方法により、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC−RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mgずつ秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートにおいて、吸熱ピークのピーク面積を求め、結晶融解熱量とする。2以上の結晶融解ピークが観測される場合は、最も温度が高いピークの面積を結晶融解熱量とし、2以上のピークを分離できない場合は2つのピークを合わせてピーク面積を求める。
積層ポリエステルフィルムの各層を構成する樹脂の結晶融解熱量を測定する場合は、積層ポリエステルフィルムからミクロトームを用いて各層を構成する樹脂のみ削りだし、測定に供する。
B. The amount of heat of crystal fusion (ΔHm, ΔHmA, ΔHmB) (J / g) of the film and the resin constituting each layer
The sample was prepared by a method based on JIS K 7121 (1999), using a differential scanning calorimetry device "Robot DSC-RDC220" manufactured by Seiko Electronics Co., Ltd., and a disk session "SSC / 5200" for data analysis. Perform the measurement as follows.
Weigh 5 mg of the sample into a sample pan, heat the sample from 25 ° C to 300 ° C at a heating rate of 20 ° C / min (1st RUN), hold it in that state for 5 minutes, and then quench it to 25 ° C or lower. .. Immediately thereafter, the temperature is raised again from 25 ° C. to 20 ° C./min to 300 ° C., and the measurement is performed. The differential scanning calorimetry chart of 2nd RUN (vertical axis is thermal energy, horizontal axis is temperature). To get. In the differential scanning calorimetry chart of the 2nd RUN, the peak area of the endothermic peak is obtained and used as the heat of crystal melting. When two or more crystal melting peaks are observed, the area of the peak with the highest temperature is defined as the amount of heat of crystal melting, and when two or more peaks cannot be separated, the two peaks are combined to obtain the peak area.
When measuring the amount of heat of crystal melting of the resin constituting each layer of the laminated polyester film, only the resin constituting each layer is scraped from the laminated polyester film using a microtome and used for the measurement.

C.フィルム、最表層を構成する樹脂のガラス転移温度(Tg、TgA)((℃)
JIS K 7121(1999)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC−RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、下記の要領にて、測定を実施する。
C. Glass transition temperature (Tg, TgA) ((° C.)) of the resin constituting the film and the outermost layer
According to JIS K 7121 (1999), use the differential scanning calorimetry device "Robot DSC-RDC220" manufactured by Seiko Electronics Co., Ltd., and use the disk session "SSC / 5200" for data analysis, as described below. , Carry out the measurement.

サンプルパンに試料を5mg秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートにおいて、ガラス転移の階段状の変化部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求める。2以上のガラス転移の階段状の変化部分が観測される場合は、それぞれについて、ガラス転移温度を求め、それらの温度を平均した値を試料のガラス転移温度(Tg)(℃)とする。
積層ポリエステルフィルムの最表層を構成する樹脂のガラス転移温度を測定する場合は、積層ポリエステルフィルムからミクロトームを用いて最表層を構成する樹脂のみ削りだし、測定に供する。
5 mg of the sample is weighed in a sample pan, the sample is heated from 25 ° C. to 300 ° C. at a heating rate of 20 ° C./min (1stRUN), held in that state for 5 minutes, and then rapidly cooled to 25 ° C. or lower. Immediately thereafter, the temperature is raised again from 25 ° C. to 20 ° C./min to 300 ° C., and the measurement is performed. The differential scanning calorimetry chart of 2nd RUN (vertical axis is thermal energy, horizontal axis is temperature). To get. In the differential scanning calorimetry chart of the 2nd RUN, in the stepwise change portion of the glass transition, the straight line equidistant from the extended straight line of each baseline in the vertical direction and the curve of the stepwise change portion of the glass transition are Find from the point of intersection. When two or more stepwise changes in the glass transition are observed, the glass transition temperature is obtained for each, and the average value of these temperatures is taken as the glass transition temperature (Tg) (° C.) of the sample.
When measuring the glass transition temperature of the resin constituting the outermost surface layer of the laminated polyester film, only the resin constituting the outermost surface layer is scraped from the laminated polyester film using a microtome and used for the measurement.

D.フィルムの面配向係数(fn)
JIS K 7105(1999)に準じて、アタゴ(株)製アッベ式屈折率計を用いて20℃での屈折率を求める。フィルムの表面の長手方向屈折率(Nmd),幅方向屈折率(Nd),厚み方向屈折率(Nz)を測定し、面配向係数(fn)を算出する。測定は、n=5で実施し、その平均値として算出する。
(v)fn=(Nmd+Ntd)/2−Nz
E.フィルムの熱収縮率(%)
JIS C 2318(1997)に準じて、フィルムの熱収縮率を測定する。フィルムを幅10mm、長さ150mmの短冊状に切り出す。測長部分がおおよそ100mmになるようにフィルムに標線をつけて標線の長さを23℃の条件下にて測定し、L0とする。その後、所定の温度(200℃または220℃)に熱した熱風オーブン内に2gのおもりをつけてフィルムを吊し、30分間放置する。フィルムをオーブンから取りだして23℃まで冷却した後、標線の長さを測定し、L1とする。下記(vi)式によりフィルムの収縮率を求める。測定は、フィルム長手方向またはフィルム幅方向が150mmの長さになるようにランダムに5箇所切り出して測定する。長手方向、幅方向それぞれに平均値を算出し、フィルムの熱収縮率とする。
(vi)(フィルム熱収縮率)=(L0−L1)/L0×100
F.フィルムの厚み(μm)
フィルム厚みは、ダイヤルゲージを用い、JIS K7130(1992年)A−2法に準じて、フィルムを10枚重ねた状態で任意の5ヶ所について厚さを測定した。その平均値を10で除してフィルム厚みとした。
D. Film plane orientation coefficient (fn)
According to JIS K 7105 (1999), the refractive index at 20 ° C. is determined using an Abbe type refractive index meter manufactured by Atago Co., Ltd. The refractive index in the longitudinal direction (Nmd), the refractive index in the width direction (Nd), and the refractive index in the thickness direction (Nz) of the surface of the film are measured, and the plane orientation coefficient (fn) is calculated. The measurement is carried out at n = 5 and calculated as the average value thereof.
(V) fn = (Nmd + Ntd) /2-Nz
E. Film shrinkage (%)
The heat shrinkage of the film is measured according to JIS C 2318 (1997). Cut the film into strips with a width of 10 mm and a length of 150 mm. A marked line is attached to the film so that the length-measured portion is approximately 100 mm, and the length of the marked line is measured under the condition of 23 ° C., and the value is L0. Then, the film is hung with a weight of 2 g in a hot air oven heated to a predetermined temperature (200 ° C. or 220 ° C.), and left for 30 minutes. After removing the film from the oven and cooling it to 23 ° C., the length of the marked line is measured and used as L1. The shrinkage rate of the film is calculated by the following formula (vi). The measurement is performed by randomly cutting out five points so that the length in the film longitudinal direction or the film width direction is 150 mm. Calculate the average value in each of the longitudinal direction and the width direction, and use this as the heat shrinkage rate of the film.
(Vi) (Film heat shrinkage rate) = (L0-L1) / L0 × 100
F. Film thickness (μm)
The film thickness was measured at any five locations with 10 films stacked in accordance with the JIS K7130 (1992) A-2 method using a dial gauge. The average value was divided by 10 to obtain the film thickness.

G.積層ポリエステルフィルムの各層の厚み(μm)
フィルムが積層フィルムである場合、下記の方法にて、各層の厚みを求めた。フィルム断面を、フィルム幅方向に平行な方向にミクロトームで切り出す。該断面を走査型電子顕微鏡で5000倍の倍率で観察し、積層各層の厚み比率を求める。求めた積層比率と上記したフィルム厚みから、各層の厚みを算出する。
G. Thickness of each layer of laminated polyester film (μm)
When the film was a laminated film, the thickness of each layer was determined by the following method. A cross section of the film is cut out with a microtome in a direction parallel to the film width direction. The cross section is observed with a scanning electron microscope at a magnification of 5000 times, and the thickness ratio of each laminated layer is determined. The thickness of each layer is calculated from the obtained lamination ratio and the above-mentioned film thickness.

H.製膜性
製膜中にフィルムが1時間に破れる回数を数え、1回未満であるものをA、1回以上5回未満であるものをB、5回以上であるものをCとして評価する。Aが最も製膜性がよく、Cが最も劣る。
H. Film-forming property The number of times the film is torn in one hour during film-forming is counted, and the film is evaluated as A if it is less than 1 time, B if it is 1 time or more and less than 5 times, and C if it is 5 times or more. A has the best film-forming property, and C has the worst film-forming property.

I.150℃から50℃までの降温時の寸法変化率(ppm/℃)
JIS K7197(1991)に準じて、熱機械測定装置TMA/SS6000(セイコーインスツルメンツ社製)を用い、試料幅4mmとして、試料長さ(チャック間距離)20mmのサンプルに対し、荷重3gを負荷する。室温から160℃まで昇温速度10℃/分で昇温させ、10分間保持し、その後、20℃まで10℃/分で降温させ、各温度(℃)における試料の寸法の値を得る。150℃における試料の寸法L(150℃)(mm)と、50℃における試料の寸法L(50℃)(mm)から、下記(vii)式から算出する。なお、寸法変化率は、フィルム幅方向(TD)およびそれに直交する方向(MD)それぞれについて、n=5で実施し、その平均値として算出する。
(vii)寸法変化率(ppm/℃)=10×(L(150℃)−L(50℃)))/{20×(150−50)}
J.Δヘイズ(100℃12hr処理前後でのヘイズ変化量)(%)
フィルムを1辺10cmの正方形状に切り出し、日本電色(株)製ヘイズメーターNDH−5000を用い、ランダムに3カ所のヘイズを測定して平均値を算出し、試験前のヘイズH0(%)とする。該サンプルを23℃65%RHに保たれた部屋に静置したタバイエスペック(株)製オーブンにて、試料の4辺を固定して100℃10%RH以下の乾熱条件下12時間熱処理する。熱処理した後のフィルムのヘイズを同様に測定し、H1(%)を求める。Δヘイズ(ΔH)を下記式(viii)により求める。
(viii)Δヘイズ(%)=H1−H0
Δヘイズの値で、以下のように判定する。
A;Δヘイズ1.5%以下
B;Δヘイズ1.5%を超えて2.0%以下
C;Δヘイズ2.0%を超える
Aが最も優れ、Cが最も劣る。
I. Dimensional change rate (ppm / ° C) when the temperature drops from 150 ° C to 50 ° C
According to JIS K7197 (1991), a thermomechanical measuring device TMA / SS6000 (manufactured by Seiko Instruments) is used to load a sample with a sample width of 4 mm and a sample length (distance between chucks) of 20 mm with a load of 3 g. The temperature is raised from room temperature to 160 ° C. at a heating rate of 10 ° C./min, held for 10 minutes, and then lowered to 20 ° C. at 10 ° C./min to obtain sample size values at each temperature (° C.). It is calculated from the following formula (vii) from the sample size L (150 ° C.) (mm) at 150 ° C. and the sample size L (50 ° C.) (mm) at 50 ° C. The dimensional change rate is calculated at n = 5 in each of the film width direction (TD) and the direction orthogonal to the film width direction (TD), and is calculated as an average value thereof.
(Vii) the dimensional change (ppm / ℃) = 10 6 × (L (150 ℃) -L (50 ℃))) / {20 × (150-50)}
J. Δ Haze (amount of change in haze before and after treatment at 100 ° C. for 12 hr) (%)
The film was cut into a square shape with a side of 10 cm, and the haze meter NDH-5000 manufactured by Nippon Denshoku Co., Ltd. was used to randomly measure the haze at three locations to calculate the average value, and the haze H0 (%) before the test. And. The sample is heat-treated for 12 hours under dry heat conditions of 100 ° C. and 10% RH or less by fixing the four sides of the sample in an oven manufactured by Tabie Spec Co., Ltd., which is left in a room maintained at 23 ° C. and 65% RH. .. The haze of the film after the heat treatment is measured in the same manner to determine H1 (%). The Δ haze (ΔH) is calculated by the following formula (viii).
(Viii) Δ Haze (%) = H1-H0
The value of Δhaze is judged as follows.
A; Δ haze 1.5% or less B; Δ haze more than 1.5% and 2.0% or less C; Δ haze more than 2.0% A is the best and C is the worst.

K.加工性
加工性は、フィルムの幅方向(TD)およびそれに直角をなす方向(MD)それぞれの方向の破断伸度(%)をn5にて求め、それらの平均値で以下のように判定する。
A;破断伸度120%以上
B;破断伸度105%以上120%未満
C;破断伸度90%以上105%未満
D;破断伸度75%以上90%未満
E;破断伸度75%未満
Aが最も優れ、Eが最も劣る。
K. Workability The workability is determined by determining the breaking elongation (%) in each of the width direction (TD) of the film and the direction (MD) perpendicular to the width direction (MD) in n5, and determining the average value thereof as follows.
A; Breaking elongation 120% or more B; Breaking elongation 105% or more and less than 120% C; Breaking elongation 90% or more and less than 105% D; Breaking elongation 75% or more and less than 90% E; Breaking elongation less than 75% A Is the best and E is the worst.

破断伸度保持率は以下のように測定する。フィルムを1cm×15cmの大きさに、長辺がフィルムのMD・TDに平行となるようにそれぞれ切り出し、ASTM−D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/分にて引っ張ったときの破断伸度を測定する。なお、サンプル数はn=5とし、また、フィルムの長手方向、幅方向のそれぞれについて測定した後、それらの平均値を求め、これをフィルムの破断伸度とする。
L.COPフィルムとの貼り合わせ評価
本発明のフィルムを20cm×20cmの大きさに切り出し、COPフィルムと貼り合わせて積層体を作成した後、120℃のオーブン内に入れ、1時間静置した。その後、オーブンの温度を20℃/分の速度で室温まで冷却した。その後、本発明のフィルムとCOPフィルムを貼り合わせた積層体の、3cm以上の長さを持つシワの数を計測し、以下のように判定する。評価はn=5で実施し、それらの平均値で評価を行った。
The elongation at break retention rate is measured as follows. The film was cut out to a size of 1 cm × 15 cm so that the long sides were parallel to the MD and TD of the film, and pulled at a chuck distance of 5 cm and a pulling speed of 300 mm / min based on ASTM-D882 (1997). Measure the breaking elongation at the time. The number of samples is set to n = 5, and after measuring in each of the longitudinal direction and the width direction of the film, the average value thereof is calculated and used as the breaking elongation of the film.
L. Evaluation of bonding with COP film The film of the present invention was cut into a size of 20 cm × 20 cm, bonded with COP film to prepare a laminate, and then placed in an oven at 120 ° C. and allowed to stand for 1 hour. The oven was then cooled to room temperature at a rate of 20 ° C./min. Then, the number of wrinkles having a length of 3 cm or more in the laminated body obtained by laminating the film of the present invention and the COP film is measured, and the determination is made as follows. The evaluation was carried out at n = 5, and the evaluation was performed using the average value thereof.

4本未満;S
4本以上10本未満;A
10本以上16本未満;B
16本以上;C
Sが最も優れ、Cが最も劣る。
COPフィルムとして、日本ゼオン社製“ゼオノアZF14”、厚み40μmのフィルムを用いる。貼り合わせには、粘着剤として東レコーテックス社製“レオコート”R5000を、粘着剤含有量が15%となるように調整したトルエン溶液に、該トルエン溶液100質量部に対して、東レコーテックス社製架橋剤“コロネートL”を3質量部添加したものを、乾燥後の塗布厚みが10μmとなるように塗布したものを用いる。
Less than 4; S
4 or more and less than 10; A
10 or more and less than 16; B
16 or more; C
S is the best and C is the worst.
As the COP film, a film of "Zeonor ZF14" manufactured by Zeon Corporation and a thickness of 40 μm is used. For bonding, "Leocoat" R5000 manufactured by Toray Coatex Co., Ltd. was added as an adhesive to a toluene solution adjusted so that the adhesive content was 15%, and Toluene Coatex Co., Ltd. was applied to 100 parts by mass of the toluene solution. A cross-linking agent "Coronate L" added in an amount of 3 parts by mass is applied so that the coating thickness after drying is 10 μm.

M.COPフィルムとの積層体のカール性
L.項で作製した積層体を、120℃のオーブン内に入れ、1時間静置した。その後、オーブンの温度を20℃/分の速度で室温まで冷却し、1時間放置した。その後、フィルムを水平な面の上に、COPフィルムが上側となるように置き、積層体の4隅の水平な面からの浮きの量を測定し、平均値を求め、カール量(mm)として以下のように判定する。上述の方法で水平な面から積層体の4隅が浮かない場合、カール量は0mmとする。
M. Curling property of the laminate with the COP film L. The laminate prepared in the above section was placed in an oven at 120 ° C. and allowed to stand for 1 hour. Then, the oven was cooled to room temperature at a rate of 20 ° C./min and left for 1 hour. After that, the film is placed on a horizontal surface so that the COP film is on the upper side, the amount of floating from the horizontal surface at the four corners of the laminate is measured, the average value is calculated, and the curl amount (mm) is obtained. Judgment is made as follows. If the four corners of the laminate do not float from the horizontal surface by the above method, the curl amount is set to 0 mm.

0mm以上10mm未満;A
10mm以上25mm未満;B
25mm以上40mm未満;C
40mm以上55mm未満;D
55mm以上;E。
0 mm or more and less than 10 mm; A
10 mm or more and less than 25 mm; B
25 mm or more and less than 40 mm; C
40 mm or more and less than 55 mm; D
55 mm or more; E.

なお、上記の測定において、測定するフィルムの長手方向や幅方向が分からない場合は、フィルムにおいて最大の屈折率を有する方向を長手方向、長手方向に直行する方向を幅方向とみなす。また、フィルムにおける最大の屈折率の方向は、フィルムの全ての方向の屈折率を屈折率計で測定して求めてもよく、位相差測定装置(複屈折測定装置)などにより遅相軸方向を決定することで求めてもよい。 In the above measurement, when the longitudinal direction and the width direction of the film to be measured are not known, the direction having the maximum refractive index in the film is regarded as the longitudinal direction, and the direction orthogonal to the longitudinal direction is regarded as the width direction. Further, the direction of the maximum refractive index in the film may be obtained by measuring the refractive index in all directions of the film with a refractive index meter, and the slow axis direction is determined by a phase difference measuring device (birefringence measuring device) or the like. It may be obtained by deciding.

以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。
[PET−1の製造]テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は80℃、融点は255℃、固有粘度は0.62であった。
[PET−2の製造]PET−1を常法により固相重合せしめ、PET−Aを得た。得られたPET−Aのガラス転移温度は82℃、融点は255℃、固有粘度は0.85であった。
[PET−Aの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して7mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は77℃、融点は243℃、固有粘度は0.62であった。
[PET−Bの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して10mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は76℃、融点は235℃、固有粘度は0.62であった。
[PET−Cの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して15mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は74℃、融点は230℃、固有粘度は0.62であった。
[PET−Dの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して20mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は73℃、融点は220℃、固有粘度は0.62であった。
[PET−Eの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して25mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は70℃、融点は観察されなかった。固有粘度は0.62であった。[PET−Fの製造]テレフタル酸、シクロヘキサンジメタノール(CHDM)およびエチレングリコールから、三酸化アンチモンを触媒として、シクロヘキサンジメタノール共重合量がジオール成分全量に対して10mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は72℃、融点は235℃、固有粘度は0.62であった。
[PET−Gの製造]テレフタル酸、シクロヘキサンジメタノール(CHDM)およびエチレングリコールから、三酸化アンチモンを触媒として、シクロヘキサンジメタノール共重合量がジオール成分全量に対して20mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は70℃、融点は221℃、固有粘度は0.62であった。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
[Production of PET-1] Polymerization of terephthalic acid and ethylene glycol was carried out by a conventional method using antimony trioxide as a catalyst to obtain melt-polymerized PET. The obtained melt-polymerized PET had a glass transition temperature of 80 ° C., a melting point of 255 ° C., and an intrinsic viscosity of 0.62.
[Production of PET-2] PET-1 was subjected to solid phase polymerization by a conventional method to obtain PET-A. The obtained PET-A had a glass transition temperature of 82 ° C., a melting point of 255 ° C., and an intrinsic viscosity of 0.85.
[Production of PET-A] Polymerization of terephthalic acid, isophthalic acid and ethylene glycol was carried out by a conventional method using antimony trioxide as a catalyst so that the amount of isophthalic acid copolymerization was 7 mol% with respect to the total amount of digalbonic acid components. Copolymerized PET was obtained. The obtained copolymerized PET had a glass transition temperature of 77 ° C., a melting point of 243 ° C., and an intrinsic viscosity of 0.62.
[Production of PET-B] Polymerization of terephthalic acid, isophthalic acid and ethylene glycol was carried out by a conventional method using an antimony trioxide as a catalyst so that the amount of isophthalic acid copolymerization was 10 mol% with respect to the total amount of digalbonic acid components. Copolymerized PET was obtained. The obtained copolymerized PET had a glass transition temperature of 76 ° C., a melting point of 235 ° C., and an intrinsic viscosity of 0.62.
[Production of PET-C] Polymerization of terephthalic acid, isophthalic acid and ethylene glycol was carried out by a conventional method using antimony trioxide as a catalyst so that the amount of isophthalic acid copolymerization was 15 mol% with respect to the total amount of digalbonic acid components. Copolymerized PET was obtained. The obtained copolymerized PET had a glass transition temperature of 74 ° C., a melting point of 230 ° C., and an intrinsic viscosity of 0.62.
[Production of PET-D] Polymerization of terephthalic acid, isophthalic acid and ethylene glycol was carried out by a conventional method using antimony trioxide as a catalyst so that the amount of isophthalic acid copolymerization was 20 mol% with respect to the total amount of digalbonic acid components. Copolymerized PET was obtained. The obtained copolymerized PET had a glass transition temperature of 73 ° C., a melting point of 220 ° C., and an intrinsic viscosity of 0.62.
[Production of PET-E] Polymerization of terephthalic acid, isophthalic acid and ethylene glycol was carried out by a conventional method using antimony trioxide as a catalyst so that the amount of isophthalic acid copolymerization was 25 mol% with respect to the total amount of digalbonic acid components. Copolymerized PET was obtained. The glass transition temperature of the obtained copolymerized PET was 70 ° C., and no melting point was observed. The intrinsic viscosity was 0.62. [Production of PET-F] From terephthalic acid, cyclohexanedimethanol (CHDM) and ethylene glycol, using antimony trioxide as a catalyst, the amount of cyclohexanedimethanol copolymerization is 10 mol% with respect to the total amount of the diol component by a conventional method. Polymerization was carried out to obtain copolymerized PET. The obtained copolymerized PET had a glass transition temperature of 72 ° C., a melting point of 235 ° C., and an intrinsic viscosity of 0.62.
[Production of PET-G] From terephthalic acid, cyclohexanedimethanol (CHDM) and ethylene glycol, using antimony trioxide as a catalyst, the amount of cyclohexanedimethanol copolymerization is 20 mol% with respect to the total amount of the diol component by a conventional method. Polymerization was carried out to obtain copolymerized PET. The obtained copolymerized PET had a glass transition temperature of 70 ° C., a melting point of 221 ° C., and an intrinsic viscosity of 0.62.

(実施例1)
PET−Aを、160℃で2時間真空乾燥した後押出機に投入し、押出機内で溶融させ、表面温度25℃のキャスティングドラム上に押し出し、未延伸シートを作製した。続いて該シートを加熱したロール群で予熱した後、90℃の温度で幅方向に直角な方向(MD方向)に3.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の温度の加熱ゾーンでフィルム幅方向(TD方向)に3.6倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで210℃の温度で10秒間の熱固定を施した。熱固定の工程において、フィルム幅方向に2%のリラックス処理を施した。次いで、冷却ゾーンで均一に徐冷後、巻き取って、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性を表に示す。寸法変化率はMD方向、TD方向いずれも50ppm/℃以上130ppm/℃以下であり、COPとの貼り合わせに優れるフィルムであった。また、加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。
(Example 1)
PET-A was vacuum dried at 160 ° C. for 2 hours, then put into an extruder, melted in the extruder, and extruded onto a casting drum having a surface temperature of 25 ° C. to prepare an unstretched sheet. Subsequently, the sheet was preheated with a heated roll group, stretched 3.1 times in a direction perpendicular to the width direction (MD direction) at a temperature of 90 ° C., and then cooled with a roll group having a temperature of 25 ° C. A uniaxially stretched film was obtained. While gripping both ends of the obtained uniaxially stretched film with clips, the film was stretched 3.6 times in the film width direction (TD direction) in a heating zone at a temperature of 100 ° C. in the tenter. Subsequently, heat fixation was performed in the heat treatment zone in the tenter at a temperature of 210 ° C. for 10 seconds. In the heat fixing step, a 2% relaxation treatment was applied in the film width direction. Then, after slowly cooling uniformly in the cooling zone, the film was wound to obtain a biaxially oriented polyester film. The characteristics of the obtained biaxially oriented polyester film are shown in the table. The dimensional change rate was 50 ppm / ° C. or higher and 130 ppm / ° C. or lower in both the MD direction and the TD direction, and the film was excellent in bonding with COP. In addition, the film was excellent in processability and had a small change in haze due to heating.

(実施例2−5、比較例1、2)
フィルムを構成する樹脂を表の通りに変えた以外は、実施例1と同様にして二軸配向ポリエステルフィルムを得た。二軸配向ポリエステルフィルムの特性を表に示す。実施例2から5では、fn、寸法変化率が好適な範囲にあり、加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。比較例1では、樹脂の結晶性が高くΔHmが大きい結果、フィルムのfnが大きくなり、寸法変化率が小さいフィルムであった。比較例2では、ΔHmが観察されないほど樹脂の結晶性が低いため、fnが小さくなり、寸法変化率が小さいフィルムであり、COPとの貼り合わせに劣るフィルムであった。さらに、fnが小さいため加工性に劣り、加熱によるヘイズ変化も大きいフィルムであった。
(Examples 2-5, Comparative Examples 1 and 2)
A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the resins constituting the film were changed as shown in the table. The characteristics of the biaxially oriented polyester film are shown in the table. In Examples 2 to 5, the films had fn and a dimensional change rate in a preferable range, were excellent in workability, and had a small haze change due to heating. In Comparative Example 1, as a result of the high crystallinity of the resin and the large ΔHm, the fn of the film was large and the dimensional change rate was small. In Comparative Example 2, since the crystallinity of the resin was so low that ΔHm was not observed, the fn was small and the dimensional change rate was small, and the film was inferior in bonding with COP. Further, since the fn is small, the film is inferior in processability and has a large haze change due to heating.

(実施例6)
A/B/Aの3層構成とし、表層を構成する樹脂として、PET−2を100質量部とし、160℃で2時間真空乾燥した後押出機1に投入した。また、内層を構成する樹脂としてPET−A100質量部を160℃で2時間真空乾燥した後、押出機2に投入した。押出機内でそれぞれの原料を溶融させ、合流装置で押出機1に投入した樹脂がフィルムの両表層となるように合流させ、表面温度25℃のキャスティングドラム上に押し出し、3層構造をもつ積層シートを作製した。続いて該シートを加熱したロール群で予熱した後、90℃の温度で長手方向(MD方向)に3.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.6倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで210℃の温度で10秒間の熱固定を施した。次いで、冷却ゾーンで均一に徐冷後、巻き取って、積層ポリエステルフィルムを得た。フィルムの各特性を表に示す。寸法変化率はMD方向、TD方向いずれも50ppm/℃以上130ppm/℃以下であり、COPとの貼り合わせに優れるフィルムであった。また、加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。表層にPET−2を用いることで、より加工性に優れ、加熱によるヘイズ変化も小さいフィルムとすることができることがわかった。
(Example 6)
It had a three-layer structure of A / B / A, and PET-2 was 100 parts by mass as a resin constituting the surface layer, vacuum-dried at 160 ° C. for 2 hours, and then charged into the extruder 1. Further, 100 parts by mass of PET-A as a resin constituting the inner layer was vacuum-dried at 160 ° C. for 2 hours, and then charged into the extruder 2. Each raw material is melted in the extruder, the resin put into the extruder 1 by the merging device is merged so as to be both surface layers of the film, and extruded onto a casting drum having a surface temperature of 25 ° C., a laminated sheet having a three-layer structure. Was produced. Subsequently, the sheet was preheated by a heated roll group, then stretched 3.1 times in the longitudinal direction (MD direction) at a temperature of 90 ° C., and then cooled by a roll group at a temperature of 25 ° C. to form a uniaxially stretched film. Got While gripping both ends of the obtained uniaxially stretched film with clips, the film was stretched 3.6 times in the width direction (TD direction) perpendicular to the longitudinal direction in a heating zone at a temperature of 100 ° C. in the tenter. Subsequently, heat fixation was performed in the heat treatment zone in the tenter at a temperature of 210 ° C. for 10 seconds. Then, after slowly cooling uniformly in the cooling zone, it was wound up to obtain a laminated polyester film. Each characteristic of the film is shown in the table. The dimensional change rate was 50 ppm / ° C. or higher and 130 ppm / ° C. or lower in both the MD direction and the TD direction, and the film was excellent in bonding with COP. In addition, the film was excellent in processability and had a small change in haze due to heating. It was found that by using PET-2 for the surface layer, it is possible to obtain a film having more excellent workability and a small change in haze due to heating.

(実施例7−21)
樹脂の組成、製膜条件を表の通りに変えた以外は、実施例6と同様に製膜を行った。フィルムの特性を表に示す。寸法変化率はMD方向、TD方向いずれも50ppm/℃以上130ppm/℃以下であり、COPとの貼り合わせに優れるフィルムであった。また、加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。
(Example 7-21)
The film was formed in the same manner as in Example 6 except that the composition of the resin and the film forming conditions were changed as shown in the table. The characteristics of the film are shown in the table. The dimensional change rate was 50 ppm / ° C. or higher and 130 ppm / ° C. or lower in both the MD direction and the TD direction, and the film was excellent in bonding with COP. In addition, the film was excellent in processability and had a small change in haze due to heating.

(実施例22−24)
実施例22では実施例6で得られたフィルム、実施例23では実施例7で得られたフィルム、実施例24では実施例8で得られたフィルムをそれぞれ用い、それぞれ得られたフィルムをフィルム巻きだしロールとフィルム巻き取りロールの間に設置された熱風オーブンにて、140℃の温度にて、フィルムが熱処理される時間が5分となるようにアニール処理を施し、厚み125μmのフィルムを得た。フィルムの各特性を表に示す。寸法変化率はMD方向、TD方向いずれも50ppm/℃以上130ppm/℃以下であり、130℃30分間の熱収縮率も小さいフィルムであり、COPとの貼り合わせに特に優れるフィルムであった。また、加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。また、MD方向、TD方向、45°方向の熱収縮率平均値が0.5%以下、それぞれの熱収縮率の差の絶対値も0.5%以下、それぞれの方向の寸法変化率の差の絶対値も10以下であり、COPとの積層体のカール性も良好であった。
(Example 22-24)
In Example 22, the film obtained in Example 6, the film obtained in Example 7 in Example 23, and the film obtained in Example 8 were used in Example 24, and the obtained films were wound into a film. In a hot air oven installed between the dashi roll and the film take-up roll, the film was annealed at a temperature of 140 ° C. so that the film was heat-treated for 5 minutes to obtain a film having a thickness of 125 μm. .. Each characteristic of the film is shown in the table. The dimensional change rate was 50 ppm / ° C. or higher and 130 ppm / ° C. or lower in both the MD direction and the TD direction, and the heat shrinkage rate at 130 ° C. for 30 minutes was small, and the film was particularly excellent for bonding with COP. In addition, the film was excellent in processability and had a small change in haze due to heating. Further, the average value of the heat shrinkage rate in the MD direction, the TD direction, and the 45 ° direction is 0.5% or less, the absolute value of the difference in the heat shrinkage rate is 0.5% or less, and the difference in the dimensional change rate in each direction. The absolute value of was 10 or less, and the curl property of the laminate with COP was also good.

(比較例3−7)
樹脂の組成、製膜条件を表の通りに変えた以外は、実施例6と同様に製膜を行った。フィルムの特性を表に示す。比較例3、7では、樹脂の結晶性が高くΔHmBが大きい結果、フィルムのfnが高くなり、寸法変化率も小さいフィルムであった。比較例4では、ΔHmが観察されないほど結晶性が低くいため、fnが小さくなり、寸法変化率が小さいフィルムであった。さらに、fnが小さいため加工性に劣り、加熱によるヘイズ変化も大きいフィルムであった。比較例5、6では、製膜中の熱処理温度が高く、フィルムの配向が乱される結果fnが極端に低くなり、破断伸度が低下して加工性に劣るだけでなく、加熱によるΔヘイズの大きいフィルムであった。
(Comparative Example 3-7)
The film was formed in the same manner as in Example 6 except that the composition of the resin and the film forming conditions were changed as shown in the table. The characteristics of the film are shown in the table. In Comparative Examples 3 and 7, as a result of the high crystallinity of the resin and the large ΔHmB, the fn of the film was high and the dimensional change rate was also small. In Comparative Example 4, since the crystallinity was so low that ΔHm was not observed, the fn was small and the dimensional change rate was small. Further, since the fn is small, the film is inferior in processability and has a large haze change due to heating. In Comparative Examples 5 and 6, the heat treatment temperature during film formation was high, and as a result of the orientation of the film being disturbed, fn became extremely low, the elongation at break was lowered, and not only was the workability inferior, but also Δ haze due to heating. It was a large film.

(実施例26)
樹脂の組成、製膜条件を表の通りに変えた以外は、実施例6と同様に製膜を行った。フィルム特性を表に示す。寸法変化率はMD方向、TD方向いずれも50ppm/℃以上130ppm/℃以下であり、COPとの貼り合わせに優れるフィルムであった。また、加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。
(Example 26)
The film was formed in the same manner as in Example 6 except that the composition of the resin and the film forming conditions were changed as shown in the table. The film characteristics are shown in the table. The dimensional change rate was 50 ppm / ° C. or higher and 130 ppm / ° C. or lower in both the MD direction and the TD direction, and the film was excellent in bonding with COP. In addition, the film was excellent in processability and had a small change in haze due to heating.

(実施例25、27−36)
実施例25は実施例2のフィルムを、実施例27は実施例26のフィルムを、実施例28は実施例9のフィルムを、実施例29は実施例11のフィルムを、実施例30は実施例12のフィルムを、実施例31は実施例14のフィルムを、実施例32は実施例15のフィルムを、実施例33は実施例16のフィルムを、実施例34は実施例18のフィルムを、実施例35は実施例19のフィルムを、実施例36のフィルムは実施例20のフィルムを用い、それぞれ得られたフィルムをフィルム巻きだしロールとフィルム巻き取りロールの間に設置された熱風オーブンにて、140℃の温度にて、フィルムが熱処理される時間が5分となるようにアニール処理を施した。
(Examples 25, 27-36)
Example 25 is a film of Example 2, Example 27 is a film of Example 26, Example 28 is a film of Example 9, Example 29 is a film of Example 11, and Example 30 is an example. Twelve films, Example 31 was a film of Example 14, Example 32 was a film of Example 15, Example 33 was a film of Example 16, and Example 34 was a film of Example 18. Example 35 uses the film of Example 19, and the film of Example 36 uses the film of Example 20, and the obtained films are used in a hot air oven installed between the film winding roll and the film winding roll. The film was annealed at a temperature of 140 ° C. so that the heat treatment time was 5 minutes.

実施例29、30、31、34から36では、MD方向、TD方向、45°方向の熱収縮率平均値が0.5%以下、それぞれの熱収縮率の差の絶対値も0.5%以下、それぞれの方向の寸法変化率の差の絶対値も10以下であり、COPとの積層体のカール性も良好であった。 In Examples 29, 30, 31, 34 to 36, the average value of the heat shrinkage rate in the MD direction, the TD direction, and the 45 ° direction is 0.5% or less, and the absolute value of the difference between the heat shrinkage rates is also 0.5%. Hereinafter, the absolute value of the difference in the dimensional change rate in each direction was also 10 or less, and the curl property of the laminated body with COP was also good.

実施例25では、単膜であるため熱収縮率が低減できず、カール性にやや劣ったが実使用上問題の無いレベルであった。実施例27では、共重合成分が複数種類あるため熱収縮率が低減できず、カール性はやや劣ったが実使用上問題の無いレベルであった。実施例28では、fnが小さく非晶性が強いため熱収縮率が低減できず、カール性はやや劣ったが実使用上問題の無いレベルであった。実施例32、33では、各方向における寸法変化率の差が大きく、カール性にやや劣ったが実使用上問題の無いレベルであった。 In Example 25, since it was a single film, the heat shrinkage rate could not be reduced, and the curl property was slightly inferior, but there was no problem in actual use. In Example 27, since there were a plurality of types of copolymerization components, the heat shrinkage rate could not be reduced, and the curl property was slightly inferior, but there was no problem in actual use. In Example 28, since the fn was small and the amorphous property was strong, the heat shrinkage rate could not be reduced, and the curl property was slightly inferior, but there was no problem in actual use. In Examples 32 and 33, the difference in the dimensional change rate in each direction was large, and the curl property was slightly inferior, but there was no problem in actual use.

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

Figure 0006760066
Figure 0006760066

本発明のポリエステルフィルムは、機械特性、加工性に優れており、150℃から50℃の降温時の寸法変化率が非晶性樹脂からなるフィルムに近いことから、非晶性樹脂からなるフィルムに貼りあわせる用途に好適に用いることができる。また、加熱時においても透明性に優れることから、特に透明導電膜製膜に用いられるCOPフィルムの保護フィルムの用途として好適に用いることができる。The polyester film of the present invention has excellent mechanical properties and workability, and the dimensional change rate when the temperature is lowered from 150 ° C. to 50 ° C. is close to that of a film made of an amorphous resin. Therefore, the polyester film is made of an amorphous resin. It can be suitably used for bonding applications. Further, since it is excellent in transparency even when heated, it can be suitably used as a protective film for a COP film used for forming a transparent conductive film.

Claims (8)

フィルム幅方向(TD方向)と、それと直角をなす方向(MD方向)それぞれにおける、150℃から50℃の降温時の寸法変化率が、それぞれ50ppm/℃以上130ppm/℃以下であり、かつ面配向係数(fn)が0.111以上0.145以下であり、非晶性樹脂からなるフィルムに貼り合わせる用途に用いられる二軸配向ポリエステルフィルム。 The dimensional change rate when the temperature drops from 150 ° C. to 50 ° C. in the film width direction (TD direction) and the direction perpendicular to the film width direction (MD direction) is 50 ppm / ° C. or higher and 130 ppm / ° C. or lower, respectively, and the plane orientation. A biaxially oriented polyester film having a coefficient (fn) of 0.111 or more and 0.145 or less and used for bonding to a film made of an amorphous resin. 配向係数(fn)が0.120以上0.140以下である請求項に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1 , wherein the plane orientation coefficient (fn) is 0.120 or more and 0.140 or less. 記ポリエステルフィルムを構成するポリエステル樹脂の結晶融解熱量が30J/g以下である請求項1または2に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1 or 2 crystal melting heat quantity of the polyester resin constituting the front Symbol polyester film is not more than 30 J / g. 前記ポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムであって、フィルムの両側の表層を構成するポリエステル樹脂の結晶融解熱量(ΔHmA)がいずれも30J/g以上であり、フィルムの両側の表層以外の層を構成するポリエステル樹脂の結晶融解熱量(ΔHmB)が30J/g以下であることを特徴とする請求項1から3のいずれかに記載の二軸配向ポリエステルフィルム。 The polyester film is a laminated polyester film composed of at least three layers, and the amount of heat of crystal fusion (ΔHmA) of the polyester resin constituting the surface layers on both sides of the film is 30 J / g or more, and other than the surface layers on both sides of the film. The biaxially oriented polyester film according to any one of claims 1 to 3 , wherein the heat of crystal fusion (ΔHmB) of the polyester resin constituting the layer is 30 J / g or less. フィルムの両側の表層以外の層を構成するポリエステル樹脂が、テレフタル酸とエチレングリコールを主たる構成成分とする樹脂であって、それ以外の構成単位としてイソフタル酸、シクロヘキシレンジメタノールのうちいずれか1種類のみ、または2種類のみを含有する請求項に記載の二軸配向ポリエステルフィルム。 The polyester resin that constitutes the layers other than the surface layer on both sides of the film is a resin whose main constituents are terephthalic acid and ethylene glycol, and one of isophthalic acid and cyclohexylene dimethane is used as the other constituent unit. The biaxially oriented polyester film according to claim 4 , which contains only or only two types. 前記ポリエステルフィルムが、少なくとも3層からなる積層ポリエステルフィルムであって、フィルムの両側の表層を構成するポリエステル樹脂の融点TmAがいずれも250℃以上280℃以下であることを特徴とする請求項1から3のいずれかに記載の二軸配向ポリエステルフィルム。 Wherein the polyester film is a laminated polyester film comprising at least three layers, from claim 1, the melting point TmA of the polyester resin constituting the surface layer on both sides of the film, characterized in that both at 250 ° C. or higher 280 ° C. or less The biaxially oriented polyester film according to any one of 3 . ポリエステルフィルムの両側の表層の厚みの和と、表層以外の層の厚みの和の比(両側の表層の厚みの和/表層以外の層の厚みの和)が、1/9〜1/2である請求項4から6のいずれかに記載の二軸配向ポリエステルフィルム。 The ratio of the sum of the thicknesses of the surface layers on both sides of the polyester film to the sum of the thicknesses of the layers other than the surface layer (sum of the thicknesses of the surface layers on both sides / sum of the thicknesses of the layers other than the surface layer) is 1/9 to 1/2. The biaxially oriented polyester film according to any one of claims 4 to 6 . シクロオレフィンポリマー(COP)からなるフィルムに貼り合わせる用途に用いられる請求項1から7のいずれかに記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to any one of claims 1 to 7 , which is used for bonding to a film made of a cycloolefin polymer (COP).
JP2016543101A 2015-06-11 2016-06-02 Biaxially oriented polyester film Active JP6760066B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015118215 2015-06-11
JP2015118215 2015-06-11
PCT/JP2016/066461 WO2016199675A1 (en) 2015-06-11 2016-06-02 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPWO2016199675A1 JPWO2016199675A1 (en) 2018-04-05
JP6760066B2 true JP6760066B2 (en) 2020-09-23

Family

ID=57503718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016543101A Active JP6760066B2 (en) 2015-06-11 2016-06-02 Biaxially oriented polyester film

Country Status (4)

Country Link
JP (1) JP6760066B2 (en)
KR (1) KR102528867B1 (en)
TW (1) TWI700307B (en)
WO (1) WO2016199675A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672819B2 (en) * 2016-01-18 2020-03-25 東レ株式会社 Polyester film
KR102618094B1 (en) * 2017-12-28 2023-12-27 닛토덴코 가부시키가이샤 Light-transmissive conductive film, manufacturing method thereof, dimming film, and dimming member
JP7302687B2 (en) * 2018-02-28 2023-07-04 三菱ケミカル株式会社 laminated polyester film
JP7280014B2 (en) * 2018-02-28 2023-05-23 三菱ケミカル株式会社 laminated polyester film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106526A (en) * 1997-09-30 1999-04-20 Unitika Ltd Metal plate-laminating polyester film and preparation thereof
EP1346815B1 (en) * 2000-12-11 2007-10-03 Teijin Limited Biaxially oriented polyester film and method for production thereof
US7147927B2 (en) * 2002-06-26 2006-12-12 Eastman Chemical Company Biaxially oriented polyester film and laminates thereof with copper
JP2004035720A (en) * 2002-07-03 2004-02-05 Toray Ind Inc Biaxially oriented polyester film
JP5564875B2 (en) * 2009-09-29 2014-08-06 東レ株式会社 Biaxially oriented polyester film for molding
JP4780242B2 (en) * 2009-11-20 2011-09-28 東洋紡績株式会社 Light diffusing polyester film
JP2011175021A (en) * 2010-02-23 2011-09-08 Jx Nippon Oil & Energy Corp Method for producing optical film, and optical film and optical element obtained by using the same,
JP5190554B1 (en) 2011-10-05 2013-04-24 日東電工株式会社 Transparent conductive film
JP5264979B2 (en) 2011-11-25 2013-08-14 日東電工株式会社 Touch panel sensor
CN104053535B (en) * 2012-01-24 2016-08-24 东丽株式会社 Polyester film and manufacture method thereof
JP2014112510A (en) 2012-11-02 2014-06-19 Nitto Denko Corp Transparent conductive film
JP6627218B2 (en) * 2013-06-28 2020-01-08 東レ株式会社 Biaxially oriented polyester film

Also Published As

Publication number Publication date
TWI700307B (en) 2020-08-01
JPWO2016199675A1 (en) 2018-04-05
TW201706329A (en) 2017-02-16
KR20180018481A (en) 2018-02-21
KR102528867B1 (en) 2023-05-04
WO2016199675A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6973584B2 (en) Laminated film
JP6672819B2 (en) Polyester film
JP6884997B2 (en) Polyester film and polarizing plate protective film
JP6760066B2 (en) Biaxially oriented polyester film
KR102402833B1 (en) Polyester film
JP7211368B2 (en) Copolyester film
KR102207438B1 (en) Laminated film and polarizing plate
JP6907519B2 (en) Biaxially oriented polyester film
JP2016141058A (en) Biaxially oriented polyester film and method for producing the same
KR20090062882A (en) A heat shrinkable stacked film and a heat shrinkable label using the same as substrate
JP2023052241A (en) multilayer laminated film
JP2020063399A (en) Biaxially oriented polyester film
KR101920098B1 (en) Laminated body for manufacturing flexible electronic device, biaxially-oriented polyester film used for same, flexible electronic device using same, and manufacturing method therefor
JP7151444B2 (en) Polyester film and curved glass composite using it
JP7067027B2 (en) Multilayer laminated film, brightness improving member and polarizing plate using it
JP6787080B2 (en) Laminate
JP6992259B2 (en) Laminated film and its manufacturing method
JP7238946B2 (en) Multilayer laminated film, luminance enhancing member and polarizing plate using the same
JP7248092B2 (en) polyester film.
JP2010046898A (en) Heat-resistant composite film, and substrate film for flexible electronics device composed of the same
JP2006192829A (en) Laminate film and touch panel
JPH11254621A (en) Film composite

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6760066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151