[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6759892B2 - Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program - Google Patents

Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program Download PDF

Info

Publication number
JP6759892B2
JP6759892B2 JP2016174713A JP2016174713A JP6759892B2 JP 6759892 B2 JP6759892 B2 JP 6759892B2 JP 2016174713 A JP2016174713 A JP 2016174713A JP 2016174713 A JP2016174713 A JP 2016174713A JP 6759892 B2 JP6759892 B2 JP 6759892B2
Authority
JP
Japan
Prior art keywords
power storage
storage device
current
state
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016174713A
Other languages
Japanese (ja)
Other versions
JP2018040677A (en
Inventor
前田 謙一
謙一 前田
孟光 大沼
孟光 大沼
近藤 隆文
隆文 近藤
井上 健士
健士 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61625839&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6759892(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2016174713A priority Critical patent/JP6759892B2/en
Publication of JP2018040677A publication Critical patent/JP2018040677A/en
Application granted granted Critical
Publication of JP6759892B2 publication Critical patent/JP6759892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、蓄電デバイス特性測定装置、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムに関するものである。 The present invention relates to a power storage device characteristic measurement device, a power storage device characteristic measurement method, and a power storage device characteristic measurement program.

特許文献1には、電池モデル同定方法が記載されている。この方法では、電池に入力される電流波形を電流センサを用いて測定し、電池の端子電圧の電圧波形を電圧センサを用いて測定する。そして、システム同定演算部が、これらの電流波形及び電圧波形に基づいて、電池モデルのパラメータ同定を行う。電流波形は方形波であり、電流の振幅は一定値である。 Patent Document 1 describes a battery model identification method. In this method, the current waveform input to the battery is measured using a current sensor, and the voltage waveform of the terminal voltage of the battery is measured using the voltage sensor. Then, the system identification calculation unit identifies the parameters of the battery model based on these current waveforms and voltage waveforms. The current waveform is a square wave, and the amplitude of the current is a constant value.

特開2016−3963号公報Japanese Unexamined Patent Publication No. 2016-3963

現在、車載用蓄電デバイスとして、鉛蓄電池、リチウムイオン電池、リチウムイオンキャパシタといった様々な蓄電デバイスが用いられている。そして、これらの電池を組み合わせて、様々な種類のハイブリッド方式が実用化されている。例えば、メイン蓄電池とは別に、減速の際のエネルギー回生及びアイドリングストップ後のセルモータの駆動のためのサブ蓄電池を設ける、いわゆるμHEV方式が近年特に有用とされている。 Currently, various power storage devices such as lead storage batteries, lithium ion batteries, and lithium ion capacitors are used as vehicle power storage devices. Then, by combining these batteries, various types of hybrid systems have been put into practical use. For example, in recent years, the so-called μHEV method, in which a sub storage battery for energy regeneration during deceleration and driving of a starter motor after idling stop is provided separately from the main storage battery, has been particularly useful.

一方、従来より、車両の燃費シュミレーションにおいては、エンジン及び蓄電デバイスといった様々な動力源並びに負荷をモデル化し、規定の走行パターンを該モデルに入力して燃費を算出することが行われている。そのようなモデルにおいて、ハイブリッド方式における複雑化した蓄電デバイス構成を正確にモデル化することは、燃費を精度よく算出するために極めて重要である。蓄電デバイスをモデル化する際には、所定の電流波形を実際の蓄電デバイスに入力し、その端子間電圧及び入力電流を測定して蓄電デバイスの電流−電圧特性を得、その後、得られた実際の蓄電デバイスの特性と蓄電デバイスモデルによる推定特性とを比較することにより、蓄電デバイスモデルのパラメータを同定する。従って、正確な蓄電デバイスモデルを得るためには、実際の蓄電デバイスの特性を精度よく測定することが重要である。 On the other hand, conventionally, in the fuel consumption simulation of a vehicle, various power sources such as an engine and a power storage device and a load are modeled, and a predetermined driving pattern is input to the model to calculate the fuel consumption. In such a model, it is extremely important to accurately model the complicated power storage device configuration in the hybrid system in order to accurately calculate the fuel consumption. When modeling a power storage device, a predetermined current waveform is input to the actual power storage device, the terminal voltage and input current are measured to obtain the current-voltage characteristics of the power storage device, and then the actual power storage device is obtained. The parameters of the power storage device model are identified by comparing the characteristics of the power storage device with the characteristics estimated by the power storage device model. Therefore, in order to obtain an accurate power storage device model, it is important to accurately measure the characteristics of the actual power storage device.

例えば特許文献1に記載されたような従来のパラメータ同定方法では、ある一定のピーク値を有する方形波状の電流を蓄電デバイスに繰り返し入力し、蓄電デバイスの端子間電圧の変化を測定する。しかしながらこのような方法では、蓄電デバイスの電流−電圧特性を正確に測定することは難しい。なぜなら、蓄電デバイスの電流−電圧特性は厳密には非線形であり、入力電流の大きさによって特性が変化するからである。 For example, in the conventional parameter identification method as described in Patent Document 1, a square wavy current having a certain peak value is repeatedly input to the power storage device, and a change in voltage between terminals of the power storage device is measured. However, with such a method, it is difficult to accurately measure the current-voltage characteristics of the power storage device. This is because the current-voltage characteristics of the power storage device are strictly non-linear, and the characteristics change depending on the magnitude of the input current.

本発明は、このような問題点に鑑みてなされたものであり、蓄電デバイスの特性を精度よく測定することができる蓄電デバイス特性測定装置、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムを提供することを目的とする。 The present invention has been made in view of such problems, and provides a power storage device characteristic measuring device, a power storage device characteristic measurement method, and a storage device characteristic measurement program capable of accurately measuring the characteristics of the power storage device. The purpose is to provide.

上述した課題を解決するために、本発明の蓄電デバイス特性測定装置は、車載用の蓄電デバイスの特性を測定する装置であって、蓄電デバイスに電流を入力する電流源と、電流源から出力される電流量を制御する制御部と、蓄電デバイスの端子間電圧を測定する電圧センサと、蓄電デバイスに入力される電流の大きさを測定する電流センサと、を備え、制御部が、定電流放電状態、定電流放電状態後の休止状態、定電圧充電状態、及び定電圧充電状態後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む電流波形を電流源から出力させることを特徴とする。 In order to solve the above-mentioned problems, the power storage device characteristic measuring device of the present invention is a device for measuring the characteristics of an in-vehicle power storage device, and is a current source that inputs a current to the power storage device and a current source that outputs a current. A control unit that controls the amount of current, a voltage sensor that measures the voltage between terminals of the power storage device, and a current sensor that measures the magnitude of the current input to the power storage device are provided, and the control unit discharges constant current. A current waveform including a state, a hibernation state after a constant current discharge state, a constant voltage charge state, and a hibernation state after a constant voltage charge state is output at least once within a predetermined measurement time from the current source. It is characterized by that.

また、本発明の蓄電デバイス特性測定方法は、車載用の蓄電デバイスの特性を測定する方法であって、電流源からの電流を蓄電デバイスへ入力しながら、蓄電デバイスの端子間電圧、及び蓄電デバイスに入力される電流の大きさを測定するステップを含み、ステップにおいして、定電流放電状態、定電流放電後の休止状態、定電圧充電状態、及び定電圧充電後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む電流波形を電流源から出力することを特徴とする。 Further, the method for measuring the characteristics of a power storage device of the present invention is a method for measuring the characteristics of a power storage device for a vehicle, and while inputting a current from a current source to the power storage device, the voltage between terminals of the power storage device and the power storage device Including the step of measuring the magnitude of the current input to, in the step, the constant current discharge state, the hibernation state after the constant current discharge, the constant voltage charge state, and the hibernation state after the constant voltage charge are simulated respectively. It is characterized in that a current waveform including a period at least once within a predetermined measurement time is output from a current source.

また、本発明の蓄電デバイス特性測定用プログラムは、車載用の蓄電デバイスの特性を測定する装置において、蓄電デバイスに電流を入力する電流源から出力される電流量を制御する制御部を動作させるプログラムであって、定電流放電状態、定電流放電状態後の休止状態、定電圧充電状態、及び定電圧充電状態後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む電流波形を電流源から出力させるように制御部を動作させることを特徴とする。 Further, the power storage device characteristic measurement program of the present invention is a program for operating a control unit that controls the amount of current output from a current source that inputs a current to the power storage device in a device that measures the characteristics of the power storage device for a vehicle. A current that includes at least one period within a predetermined measurement time for simulating a constant current discharge state, a hibernation state after a constant current discharge state, a constant voltage charging state, and a hibernation state after a constant voltage charging state. It is characterized in that the control unit is operated so that the waveform is output from the current source.

上記の蓄電デバイス特性測定装置、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムでは、電流源から出力される電流波形が、定電流放電状態、定電流放電状態後の休止状態、定電圧充電状態、及び定電圧充電状態後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む。すなわち、現実の車両の走行パターンにおける蓄電デバイスへの入力電流の変化、具体的には定電流放電状態、定電流放電状態後の休止状態、定電圧充電状態、及び定電圧充電状態後の休止状態を全て包含した電流波形を蓄電デバイスに入力する。これにより、非線形である蓄電デバイスの特性を精度よく測定することができる。 In the above-mentioned power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program, the current waveform output from the current source is a constant current discharge state, a hibernation state after a constant current discharge state, and a constant voltage charge. A period for simulating the state and the hibernation state after the constant voltage charging state is included at least once within a predetermined measurement time. That is, changes in the input current to the power storage device in the actual vehicle driving pattern, specifically, a constant current discharge state, a dormant state after the constant current discharge state, a constant voltage charging state, and a hibernation state after the constant voltage charging state. The current waveform including all of the above is input to the power storage device. This makes it possible to accurately measure the characteristics of the non-linear power storage device.

また、上記の蓄電デバイス特性測定装置は、電流波形が、定電流放電状態後のクランキング状態を模擬する期間を少なくとも1回、更に含むことを特徴としてもよい。これにより、アイドリングストップ後の再始動における蓄電デバイスへの入力電流の変化を更に含めて、蓄電デバイスの特性をより精度よく測定できる。 Further, the above-mentioned power storage device characteristic measuring device may be characterized in that the current waveform further includes a period of simulating a cranking state after a constant current discharge state at least once. As a result, the characteristics of the power storage device can be measured more accurately, including the change in the input current to the power storage device when restarting after the idling stop.

また、上記の蓄電デバイス特性測定装置は、制御部が、定電流放電状態を模擬する期間及び定電圧充電状態を模擬する期間のうち少なくとも一方における電流量を充電率に応じて変化させることを特徴としてもよい。蓄電デバイスの特性は充電率によって異なるので、制御部がこのような動作を行うことにより、充電率に応じたより正確な蓄電デバイス特性を測定することができる。 Further, the above-mentioned power storage device characteristic measuring device is characterized in that the control unit changes the amount of current in at least one of the period for simulating the constant current discharge state and the period for simulating the constant voltage charge state according to the charge rate. May be. Since the characteristics of the power storage device differ depending on the charge rate, the control unit performs such an operation, so that more accurate power storage device characteristics can be measured according to the charge rate.

また、上記の蓄電デバイス特性測定装置は、電流波形が、定電流放電状態を模擬する期間を複数回含み、該複数回の期間のうち少なくとも2回の期間の電流量が互いに異なることを特徴としてもよい。これにより、様々な電流量に対する蓄電デバイスの特性に関するデータを収集し、蓄電デバイスの特性をより精度よく測定することができる。 Further, the above-mentioned power storage device characteristic measuring device is characterized in that the current waveform includes a period of simulating a constant current discharge state a plurality of times, and the amount of current in at least two of the plurality of periods is different from each other. May be good. As a result, it is possible to collect data on the characteristics of the power storage device for various current amounts and measure the characteristics of the power storage device with higher accuracy.

また、上記の蓄電デバイス特性測定装置は、電流波形が、定電圧充電後の休止状態を模擬する期間を複数回含み、該複数回の期間のうち少なくとも2回の期間の長さが互いに異なることを特徴としてもよい。これにより、様々な休止時間後の蓄電デバイスの特性に関するデータを収集し、蓄電デバイスの特性をより精度よく測定することができる。 Further, in the above-mentioned power storage device characteristic measuring device, the current waveform includes a plurality of periods for simulating a hibernation state after constant voltage charging, and the lengths of at least two of the plurality of periods are different from each other. May be a feature. As a result, it is possible to collect data on the characteristics of the power storage device after various pauses and measure the characteristics of the power storage device more accurately.

本発明による蓄電デバイス特性測定装置、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムによれば、蓄電デバイスの特性を精度よく測定することができる。 According to the power storage device characteristic measurement device, the power storage device characteristic measurement method, and the power storage device characteristic measurement program according to the present invention, the characteristics of the power storage device can be measured with high accuracy.

本発明の一実施形態による蓄電デバイス特性測定装置の構成を示す図である。It is a figure which shows the structure of the power storage device characteristic measuring apparatus by one Embodiment of this invention. 電流源から出力される電流波形の一例を示すグラフである。It is a graph which shows an example of the current waveform output from a current source. (a)図2のA部を拡大して示すグラフである。(b)図2のB部を拡大して示すグラフである。(A) It is a graph which shows the part A of FIG. 2 enlarged. (B) It is a graph which shows enlarged part B of FIG. 本発明の一実施形態による蓄電デバイス特性測定方法を示すフローチャートである。It is a flowchart which shows the power storage device characteristic measurement method by one Embodiment of this invention.

以下、添付図面を参照しながら本発明による蓄電デバイス特性測定装置、蓄電デバイス特性測定方法、蓄電デバイス特性測定用プログラムの実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。なお、以下の説明において、蓄電デバイスへの入力電流とは、蓄電デバイスに入力される充電電流および蓄電デバイスから出力される放電電流の双方を指し、入力電流の符号が正である場合は充電を表し、入力電流の符号が負である場合は放電を表す。 Hereinafter, embodiments of the power storage device characteristic measurement device, the power storage device characteristic measurement method, and the power storage device characteristic measurement program according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. In the following description, the input current to the power storage device refers to both the charge current input to the power storage device and the discharge current output from the power storage device, and when the sign of the input current is positive, charging is performed. When the sign of the input current is negative, it represents a discharge.

図1は、本発明の一実施形態による蓄電デバイス特性測定装置1Aの構成を示す図である。本実施形態の蓄電デバイス特性測定装置1Aは、車載用の蓄電デバイス10の特性を測定する装置である。ここで、車載用の蓄電デバイス10とは、例えば鉛蓄電池、リチウムイオン電池、リチウムイオンキャパシタ、等を指す。特に、μHEV方式の車両においては、メイン電池として鉛蓄電池が用いられ、サブ電池として鉛蓄電池、リチウムイオン電池、リチウムイオンキャパシタなどが用いられる。図1に示されるように、この蓄電デバイス特性測定装置1Aは、電流源20と、電流源20を制御する制御部30と、電圧センサ40と、電流センサ50とを備えている。 FIG. 1 is a diagram showing a configuration of a power storage device characteristic measuring device 1A according to an embodiment of the present invention. The power storage device characteristic measuring device 1A of the present embodiment is a device that measures the characteristics of the power storage device 10 for a vehicle. Here, the vehicle-mounted power storage device 10 refers to, for example, a lead storage battery, a lithium ion battery, a lithium ion capacitor, and the like. In particular, in a μHEV system vehicle, a lead storage battery is used as a main battery, and a lead storage battery, a lithium ion battery, a lithium ion capacitor, or the like is used as a sub battery. As shown in FIG. 1, the power storage device characteristic measuring device 1A includes a current source 20, a control unit 30 for controlling the current source 20, a voltage sensor 40, and a current sensor 50.

電流源20は、蓄電デバイス10に電流を入力する電気回路である。通常、車両の電流源はエンジンの回転を動力源として発電する三相交流発電機であり、オルタネータと呼ばれる。オルタネータの両端は全波整流回路に接続されており、オルタネータからの出力電流は全波整流回路によって直流電流に変換される。ここでは、オルタネータ及び全波整流回路を模擬する直流電流源が電流源20として用いられる。電流源20の正極22は蓄電デバイス10の一方の端子11と電気的に接続され、電流源20の負極23は蓄電デバイス10の他方の端子12と電気的に接続される。 The current source 20 is an electric circuit that inputs a current to the power storage device 10. Usually, the current source of a vehicle is a three-phase alternator that generates electricity by using the rotation of an engine as a power source, and is called an alternator. Both ends of the alternator are connected to a full-wave rectifier circuit, and the output current from the alternator is converted into a direct current by the full-wave rectifier circuit. Here, a DC current source simulating an alternator and a full-wave rectifier circuit is used as the current source 20. The positive electrode 22 of the current source 20 is electrically connected to one terminal 11 of the power storage device 10, and the negative electrode 23 of the current source 20 is electrically connected to the other terminal 12 of the power storage device 10.

制御部30は、電流源20が有する制御端子21と電気的に接続されており、該制御端子21に電気信号を送ることによって、電流源20から出力される電流量を制御する。制御部30は、例えばCPU及びメモリを有するコンピュータによって構成され、予め記録されたプログラムに従って動作する。なお、制御部30の詳細な動作については後述する。 The control unit 30 is electrically connected to the control terminal 21 of the current source 20, and controls the amount of current output from the current source 20 by sending an electric signal to the control terminal 21. The control unit 30 is composed of, for example, a computer having a CPU and a memory, and operates according to a pre-recorded program. The detailed operation of the control unit 30 will be described later.

電圧センサ40は、蓄電デバイス10の端子間電圧を測定する。電圧センサ40の一端41は蓄電デバイス10の一方の端子11に電気的に接続され、電圧センサ40の他端42は蓄電デバイス10の他方の端子12に電気的に接続される。電圧センサ40によって測定された蓄電デバイス10の端子間電圧は、蓄電デバイス10の特性の一部を示す時系列データとして記録装置60に記録される。 The voltage sensor 40 measures the voltage between terminals of the power storage device 10. One end 41 of the voltage sensor 40 is electrically connected to one terminal 11 of the power storage device 10, and the other end 42 of the voltage sensor 40 is electrically connected to the other terminal 12 of the power storage device 10. The voltage between terminals of the power storage device 10 measured by the voltage sensor 40 is recorded in the recording device 60 as time-series data indicating a part of the characteristics of the power storage device 10.

電流センサ50は、蓄電デバイス10に入力される電流の大きさを測定する。電流センサ50の一端51は蓄電デバイス10の他方の端子12(または一方の端子11)に電気的に接続され、電流センサ50の他端52は電流源20の負極23(または正極22)に電気的に接続される。電流源20から出力される電流量は制御部30によって制御されるが、電流源20と蓄電デバイス10との間に存在する電気抵抗等により、蓄電デバイス10に入力される電流量はわずかに変動する。電流センサ50は、蓄電デバイス10に入力される電流量を正確に測定する。電流センサ50によって測定された蓄電デバイス10への入力電流量は、蓄電デバイス10の特性の一部を示す時系列データとして記録装置60に記録される。なお、電流センサ50により測定された電流量は、制御部30にフィードバックされてもよい。 The current sensor 50 measures the magnitude of the current input to the power storage device 10. One end 51 of the current sensor 50 is electrically connected to the other terminal 12 (or one terminal 11) of the power storage device 10, and the other end 52 of the current sensor 50 is electrically connected to the negative electrode 23 (or positive electrode 22) of the current source 20. Is connected. The amount of current output from the current source 20 is controlled by the control unit 30, but the amount of current input to the power storage device 10 slightly fluctuates due to the electric resistance existing between the current source 20 and the power storage device 10. To do. The current sensor 50 accurately measures the amount of current input to the power storage device 10. The amount of input current to the power storage device 10 measured by the current sensor 50 is recorded in the recording device 60 as time-series data indicating a part of the characteristics of the power storage device 10. The amount of current measured by the current sensor 50 may be fed back to the control unit 30.

ここで、制御部30の動作について詳細に説明する。図2は、本実施形態の電流源20から出力される電流波形の一例を示すグラフである。図3(a)は、図2のA部を拡大して示すグラフである。図3(b)は、図2のB部を拡大して示すグラフである。これらの図において、縦軸は蓄電デバイス10に入力される電流量を示し、横軸は経過時間を示す。電流量は、蓄電デバイス10への充電の場合は正の数値、放電の場合は負の数値として表される。制御部30は、例えば図2に示される電流波形を電流源20から出力させる。 Here, the operation of the control unit 30 will be described in detail. FIG. 2 is a graph showing an example of a current waveform output from the current source 20 of the present embodiment. FIG. 3A is an enlarged graph showing part A in FIG. FIG. 3B is an enlarged graph showing part B of FIG. In these figures, the vertical axis represents the amount of current input to the power storage device 10, and the horizontal axis represents the elapsed time. The amount of current is represented as a positive value when charging the power storage device 10 and as a negative value when discharging. The control unit 30 outputs, for example, the current waveform shown in FIG. 2 from the current source 20.

図3(a)及び図3(b)に示されるように、この電流波形は、第1期間D1、第2期間D2、第3期間D3、第4期間D4、及び第5期間D5を、所定の測定時間内に少なくとも1回ずつ含む。所定の測定時間は、例えば1200秒である。基本的には、図3(a)に示されるように、第1期間D1、第2期間D2、第3期間D3、及び第4期間D4が連続して一つの単位波形を構成する。また、図3(b)に示されるように、第1期間D1及び第5期間D5が連続して一つの単位波形を構成することもある。そして、この電流波形においては、これらの単位波形が、時間方向に任意の順序で配置される。前者の単位波形の出現頻度は、後者の単位波形の出現頻度よりも多い。なお、期間D1〜D5の並び順はこれらの図に示されたものに限られず、期間D1〜D5がランダムに配置されてもよい。 As shown in FIGS. 3 (a) and 3 (b), this current waveform defines the first period D1, the second period D2, the third period D3, the fourth period D4, and the fifth period D5. Include at least once within the measurement time of. The predetermined measurement time is, for example, 1200 seconds. Basically, as shown in FIG. 3A, the first period D1, the second period D2, the third period D3, and the fourth period D4 continuously form one unit waveform. Further, as shown in FIG. 3B, the first period D1 and the fifth period D5 may continuously form one unit waveform. Then, in this current waveform, these unit waveforms are arranged in an arbitrary order in the time direction. The frequency of appearance of the former unit waveform is higher than the frequency of appearance of the latter unit waveform. The order of the periods D1 to D5 is not limited to those shown in these figures, and the periods D1 to D5 may be randomly arranged.

第1期間D1は、定電流放電状態を模擬する期間である。この第1期間D1は、アイドリングストップによりエンジンが停止してオルタネータの発電が不足し、居室内外の電気設備のための電力を蓄電デバイス10から放電する状態を模擬する。このときの放電電流量は時間に対して一定とされる。この第1期間D1において制御部30により制御される要素は、期間の長さ及び電流量である。第1期間D1の長さは、例えば10秒以上であることが望ましい。 The first period D1 is a period for simulating a constant current discharge state. The first period D1 simulates a state in which the engine is stopped due to the idling stop, the alternator's power generation is insufficient, and the electric power for the electric equipment inside and outside the living room is discharged from the power storage device 10. The amount of discharge current at this time is constant with respect to time. The elements controlled by the control unit 30 in the first period D1 are the length of the period and the amount of current. The length of the first period D1 is preferably, for example, 10 seconds or more.

図2に示される電流波形は、第1期間D1を複数回含んでいる。この場合、複数回の第1期間D1のうち少なくとも2回の期間の電流量が互いに異なっていることが望ましい。例えば、初回の第1期間D1では10(A)、2回目の第1期間D1では20(A)、3回目の第1期間D1では30(A)、4回目の第1期間D1では40(A)といったように、第1期間D1の電流量を次第に上げていき、n回目(nは3以上の整数)の第1期間D1で最初の10(A)に戻してもよい。このように、放電電流を変化させることにより、複数の第1期間D1毎に時定数を定めることができる。その場合、複数回の第1期間D1のうち少なくとも1回は、電流量を蓄電デバイス10若しくはオルタネータの最大定格電流とすることが好ましい。なお、第1期間D1の電流量が複数の第1期間D1ごとに変化する場合、その後に続く第3期間D3での電流量も複数の第3期間D3ごとに変化する。 The current waveform shown in FIG. 2 includes the first period D1 a plurality of times. In this case, it is desirable that the current amounts of at least two periods out of the plurality of first period D1 are different from each other. For example, 10 (A) in the first first period D1, 20 (A) in the second first period D1, 30 (A) in the third first period D1, and 40 (A) in the fourth first period D1. As in A), the amount of current in the first period D1 may be gradually increased and returned to the first 10 (A) in the first period D1 of the nth time (n is an integer of 3 or more). By changing the discharge current in this way, the time constant can be determined for each of the plurality of first periods D1. In that case, it is preferable that the amount of current is the maximum rated current of the power storage device 10 or the alternator for at least one of the plurality of first periods D1. When the amount of current in the first period D1 changes for each of the plurality of first periods D1, the amount of current in the subsequent third period D3 also changes for each of the plurality of third periods D3.

第2期間D2は、定電流放電状態後のクランキング状態を模擬する期間である。すなわち、この第2期間D2は、エンジンが再始動する際にセルモータを駆動させるための電力を蓄電デバイス10から放電する状態を模擬する。このときの放電電流量も時間に対して略一定であるが、第1期間D1と比べてその時間は極めて短く、電流量の絶対値は大きい。この第2期間D2において制御部30により制御される要素は、期間の長さ及び電流量である。 The second period D2 is a period for simulating the cranking state after the constant current discharge state. That is, this second period D2 simulates a state in which the electric power for driving the starter motor is discharged from the power storage device 10 when the engine is restarted. The amount of discharge current at this time is also substantially constant with respect to time, but the time is extremely short as compared with the first period D1, and the absolute value of the amount of current is large. The elements controlled by the control unit 30 in the second period D2 are the length of the period and the amount of current.

第3期間D3は、定電圧充電状態を模擬する期間である。この第3期間D3は、エンジンが再始動した後、エンジンの回転を動力源としてオルタネータが発電し、蓄電デバイス10を充電する状態を模擬する。このとき、オルタネータからの出力電流が急激に上昇し、それに伴って電圧も上昇するが、蓄電デバイス10及び他の電気装備の保護のため電圧の上限が一定値に制限される。従って、この第3期間D3は定電圧充電となり、蓄電デバイス10に入力される電流量は時間の経過とともに次第に低下する。この第3期間D3において制御部30により制御される要素は、ピーク電流量及び時定数である。第3期間D3の長さは、第3期間D3における総充電量が第1期間D1及び第2期間D2における総放電量と等しくなるように定められる。但し、そのように定めた場合に10秒未満となってしまう場合には、当該長さを10秒に設定することが望ましい。 The third period D3 is a period for simulating a constant voltage charging state. The third period D3 simulates a state in which the alternator generates electricity using the rotation of the engine as a power source and charges the power storage device 10 after the engine is restarted. At this time, the output current from the alternator rises sharply, and the voltage also rises accordingly, but the upper limit of the voltage is limited to a constant value for the protection of the power storage device 10 and other electrical equipment. Therefore, the third period D3 is a constant voltage charge, and the amount of current input to the power storage device 10 gradually decreases with the passage of time. The elements controlled by the control unit 30 in the third period D3 are the peak current amount and the time constant. The length of the third period D3 is determined so that the total charge amount in the third period D3 is equal to the total discharge amount in the first period D1 and the second period D2. However, if it is less than 10 seconds in such a case, it is desirable to set the length to 10 seconds.

第4期間D4は、定電圧充電状態後の休止状態を模擬する期間である。この第4期間D4は、蓄電デバイス10が充電されたのち、オルタネータの電力が電気設備によって全て消費され、蓄電デバイス10が充電も放電も行わない状態を模擬する。この第4期間D4において電流量はゼロであり、制御部30により制御される要素は期間の長さのみである。 The fourth period D4 is a period for simulating the hibernation state after the constant voltage charging state. In the fourth period D4, after the power storage device 10 is charged, all the electric power of the alternator is consumed by the electric equipment, and the power storage device 10 is not charged or discharged. In the fourth period D4, the amount of current is zero, and the only element controlled by the control unit 30 is the length of the period.

図2に示される電流波形は、第4期間D4を複数回含んでいる。この場合、複数回の第4期間D4のうち少なくとも2回の期間の長さが互いに異なってもよい。例えば、第4期間D4の長さを次第に長くし、n回目(nは3以上の整数)の第4期間D4で最初の長さに戻してもよい。 The current waveform shown in FIG. 2 includes the fourth period D4 a plurality of times. In this case, the lengths of at least two of the plurality of fourth periods D4 may be different from each other. For example, the length of the fourth period D4 may be gradually increased and returned to the initial length in the nth time (n is an integer of 3 or more) in the fourth period D4.

第5期間D5は、定電流放電状態後の休止状態を模擬する期間である。この第5期間D5は、アイドリングストップによりエンジンが停止して電気設備のための電力を蓄電デバイス10から供給した後、電気設備が全て停止され、蓄電デバイス10が充電も放電も行わない状態を模擬する。この第4期間D4において電流量はゼロであり、制御部30により制御される要素は期間の長さのみである。 The fifth period D5 is a period for simulating the hibernation state after the constant current discharge state. In this fifth period D5, after the engine is stopped by idling stop and power for the electric equipment is supplied from the power storage device 10, all the electric equipment is stopped and the power storage device 10 is not charged or discharged. To do. In the fourth period D4, the amount of current is zero, and the only element controlled by the control unit 30 is the length of the period.

電流波形は、第5期間D5を複数回含んでもよい。この場合、複数回の第5期間D5のうち少なくとも2回の期間の長さが互いに異なってもよい。例えば、第5期間D5の長さを次第に長くし、n回目(nは3以上の整数)の第5期間D5で最初の長さに戻してもよい。 The current waveform may include the fifth period D5 multiple times. In this case, the lengths of at least two of the plurality of fifth periods D5 may be different from each other. For example, the length of the fifth period D5 may be gradually increased and returned to the initial length in the nth time (n is an integer of 3 or more) in the fifth period D5.

制御部30は、第1期間D1、第2期間D2、及び第3期間D3の各電流量を充電率(State Of Charge;SOC)に応じて変化させてもよい。例えば、充電率が大きい場合には、小さい場合に比べて充電電流値を小さくすることが望ましい。なお、一回の測定における充電率の変化量が所定の閾値(例えば3%)以下となるように、第1期間D1、第2期間D2及び第3期間D3における放電量及び充電量が設定される。 The control unit 30 may change the current amounts of the first period D1, the second period D2, and the third period D3 according to the charge rate (State Of Charge; SOC). For example, when the charging rate is large, it is desirable that the charging current value is smaller than when the charging rate is small. The discharge amount and charge amount in the first period D1, the second period D2, and the third period D3 are set so that the amount of change in the charge rate in one measurement is equal to or less than a predetermined threshold value (for example, 3%). To.

図4は、本実施形態の蓄電デバイス特性測定方法を示すフローチャートである。制御部30を動作させるプログラムは、図4に示されるフローチャートに従って制御部30を動作させる。 FIG. 4 is a flowchart showing a method for measuring the characteristics of the power storage device according to the present embodiment. The program that operates the control unit 30 operates the control unit 30 according to the flowchart shown in FIG.

まず、第1ステップS11として、測定対象の蓄電デバイス10に電流源20、電圧センサ40及び電流センサ50を接続し、電圧センサ40及び電流センサ50からの出力の記録を開始する。次に、第2ステップS12として、制御部30によって波形が制御された電流の供給を開始する。ここで供給される電流の波形は、図2に示された波形、すなわち上述した第1期間D1ないし第5期間D5を含むものである。その後、電流源20からの電流を蓄電デバイス10へ入力しながら、蓄電デバイス10の端子間電圧、及び蓄電デバイス10に入力される電流の大きさを測定する(第3ステップS13)。 First, as the first step S11, the current source 20, the voltage sensor 40, and the current sensor 50 are connected to the power storage device 10 to be measured, and recording of the output from the voltage sensor 40 and the current sensor 50 is started. Next, as the second step S12, the supply of the current whose waveform is controlled by the control unit 30 is started. The waveform of the current supplied here includes the waveform shown in FIG. 2, that is, the above-mentioned first period D1 to fifth period D5. After that, while inputting the current from the current source 20 to the power storage device 10, the voltage between the terminals of the power storage device 10 and the magnitude of the current input to the power storage device 10 are measured (third step S13).

以上に説明した本実施形態の蓄電デバイス特性測定装置1A、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムによって得られる効果について説明する。例えば特許文献1に記載されたような従来のパラメータ同定方法では、ピーク値が一定である方形波状の電流を蓄電デバイスに繰り返し入力し、蓄電デバイスの端子間電圧の変化を測定する。しかしながらこのような方法では、蓄電デバイスの特性を正確に測定することは難しい。蓄電デバイスの特性が線形であれば問題ないが、実際には蓄電デバイスの特性(特に分極特性)は非線形であり、充放電の電流の大きさによって特性が変化するからである。これに対し、本実施形態の蓄電デバイス特性測定装置1A、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムでは、電流源20から出力される電流波形が、定電流放電状態を模擬する第1期間D1、定電圧充電状態を模擬する第3期間D3、定電圧充電後の休止状態を模擬する第4期間D4、及び定電流放電後の休止状態を模擬する第5期間D5を所定の測定時間内に少なくとも1回ずつ含む。すなわち、現実の車両の走行パターンにおける蓄電デバイス10への入力電流の変化、具体的には定電流放電状態、定電流放電後の休止状態、定電圧充電状態、及び定電圧充電後の休止状態を全て包含した電流波形を蓄電デバイス10に入力する。これにより、走行パターンにおける様々な電流入力状況を網羅し、非線形である蓄電デバイス10の特性を精度よく測定することができる。また、休止状態を含むので、休止時の電圧戻り(戻り分極)を再現することができ、蓄電デバイス10の特性を更に精度よく測定することができる。 The effects obtained by the power storage device characteristic measurement device 1A, the power storage device characteristic measurement method, and the power storage device characteristic measurement program of the present embodiment described above will be described. For example, in the conventional parameter identification method as described in Patent Document 1, a square wavy current having a constant peak value is repeatedly input to the power storage device, and a change in voltage between terminals of the power storage device is measured. However, with such a method, it is difficult to accurately measure the characteristics of the power storage device. There is no problem if the characteristics of the power storage device are linear, but in reality, the characteristics of the power storage device (particularly the polarization characteristics) are non-linear, and the characteristics change depending on the magnitude of the charging / discharging current. On the other hand, in the power storage device characteristic measurement device 1A, the power storage device characteristic measurement method, and the power storage device characteristic measurement program of the present embodiment, the current waveform output from the current source 20 simulates a constant current discharge state. A predetermined measurement time is a period D1, a third period D3 that simulates a constant voltage charging state, a fourth period D4 that simulates a hibernation state after constant voltage charging, and a fifth period D5 that simulates a hibernation state after constant current discharge. Include at least once in. That is, changes in the input current to the power storage device 10 in the actual vehicle running pattern, specifically, a constant current discharge state, a dormant state after constant current discharge, a constant voltage charging state, and a hibernation state after constant voltage charging. The current waveform including all of them is input to the power storage device 10. This makes it possible to cover various current input situations in the traveling pattern and accurately measure the characteristics of the non-linear power storage device 10. Further, since the hibernation state is included, the voltage return (return polarization) during the hibernation state can be reproduced, and the characteristics of the power storage device 10 can be measured more accurately.

また、本実施形態のように、電流源20から出力される電流波形は、定電流放電後のクランキング状態を模擬する第2期間D2を少なくとも1回含んでもよい。これにより、特に鉛蓄電池の特性測定の際に、アイドリングストップ後の再始動(セルスタート)における蓄電デバイス10への入力電流の変化を電流波形に更に含め、蓄電デバイス10の特性をより精度よく測定できる。 Further, as in the present embodiment, the current waveform output from the current source 20 may include the second period D2 that simulates the cranking state after constant current discharge at least once. As a result, especially when measuring the characteristics of the lead-acid battery, the change in the input current to the power storage device 10 at the restart (cell start) after idling stop is further included in the current waveform, and the characteristics of the power storage device 10 are measured more accurately. it can.

また、前述したように、制御部30は、定電流放電状態を模擬する第1期間D1及び定電圧充電状態を模擬する第3期間D3のうち少なくとも一方の電流量を充電率(SOC)に応じて変化させてもよい。蓄電デバイス10の特性は充電率によって異なるので、制御部30がこのような動作を行うことにより、充電率に応じたより正確な蓄電デバイス特性を測定することができる。 Further, as described above, the control unit 30 sets the current amount of at least one of the first period D1 simulating the constant current discharge state and the third period D3 simulating the constant voltage charging state according to the charge rate (SOC). May be changed. Since the characteristics of the power storage device 10 differ depending on the charge rate, the control unit 30 can perform such an operation to measure more accurate power storage device characteristics according to the charge rate.

また、前述したように、電流源20から出力される電流波形が、定電流放電状態を模擬する第1期間D1を複数回含み、該複数回の第1期間D1のうち少なくとも2回の期間の電流量が互いに異なってもよい。これにより、様々な電流量に対する蓄電デバイス10の特性に関するデータを収集し、蓄電デバイス10の特性をより精度よく測定することができる。 Further, as described above, the current waveform output from the current source 20 includes the first period D1 simulating the constant current discharge state a plurality of times, and is at least two times out of the plurality of first period D1s. The amounts of current may differ from each other. As a result, it is possible to collect data on the characteristics of the power storage device 10 with respect to various current amounts and measure the characteristics of the power storage device 10 with higher accuracy.

また、前述したように、電流源20から出力される電流波形が、定電圧充電後の休止状態を模擬する第4期間D4を複数回含み、該複数回の第4期間D4のうち少なくとも2回の期間の長さが互いに異なってもよい。これにより、様々な休止時間後の蓄電デバイス10の特性に関するデータを収集し、蓄電デバイス10の特性をより精度よく測定することができる。 Further, as described above, the current waveform output from the current source 20 includes the fourth period D4 simulating the hibernation state after constant voltage charging a plurality of times, and at least two times out of the plurality of fourth period D4s. The lengths of the periods may differ from each other. As a result, it is possible to collect data on the characteristics of the power storage device 10 after various pauses and measure the characteristics of the power storage device 10 with higher accuracy.

本発明による蓄電デバイス特性測定装置、蓄電デバイス特性測定方法、及び蓄電デバイス特性測定用プログラムは、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では定電流放電状態、クランキング状態、定電流放電状態後の休止状態、定電圧充電状態、及び定電圧充電状態後の休止状態をそれぞれ模擬する期間を電流波形に含めているが、これら以外の期間を更に含めてもよい。また、上記実施形態ではクランキング状態を模擬する期間を電流波形に含めているが、例えばリチウムイオン電池またはリチウムイオンキャパシタといった鉛蓄電池以外の蓄電デバイスの特性を測定する際には、クランキング状態を模擬する期間を省いてもよい。 The power storage device characteristic measurement device, the power storage device characteristic measurement method, and the power storage device characteristic measurement program according to the present invention are not limited to the above-described embodiments, and various other modifications are possible. For example, in the above embodiment, the current waveform includes a period for simulating a constant current discharge state, a cranking state, a hibernation state after a constant current discharge state, a constant voltage charging state, and a hibernation state after a constant voltage charging state. However, periods other than these may be further included. Further, in the above embodiment, the period for simulating the cranking state is included in the current waveform, but when measuring the characteristics of a power storage device other than the lead storage battery such as a lithium ion battery or a lithium ion capacitor, the cranking state is included. The period of simulation may be omitted.

1A…蓄電デバイス特性測定装置、10…蓄電デバイス、11,12…端子、20…電流源、21…制御端子、22…正極、23…負極、30…制御部、40…電圧センサ、50…電流センサ、60…記録装置、D1…第1期間、D2…第2期間、D3…第3期間、D4…第4期間、D5…第5期間。 1A ... Power storage device characteristic measuring device, 10 ... Power storage device, 11, 12 ... Terminal, 20 ... Current source, 21 ... Control terminal, 22 ... Positive electrode, 23 ... Negative electrode, 30 ... Control unit, 40 ... Voltage sensor, 50 ... Current Sensor, 60 ... Recording device, D1 ... 1st period, D2 ... 2nd period, D3 ... 3rd period, D4 ... 4th period, D5 ... 5th period.

Claims (7)

車載用の蓄電デバイスの特性を測定する装置であって、
前記蓄電デバイスに電流を入力する電流源と、
前記電流源から出力される電流量を制御する制御部と、
前記蓄電デバイスの端子間電圧を測定する電圧センサと、
前記蓄電デバイスに入力される電流の大きさを測定する電流センサと、
を備え、
前記制御部が、定電流放電状態、前記定電流放電状態後の休止状態、定電圧充電状態、及び前記定電圧充電状態後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む電流波形を電流源から出力させることを特徴とする、蓄電デバイス特性測定装置。
A device that measures the characteristics of in-vehicle power storage devices.
A current source that inputs a current to the power storage device and
A control unit that controls the amount of current output from the current source,
A voltage sensor that measures the voltage between the terminals of the power storage device and
A current sensor that measures the magnitude of the current input to the power storage device,
With
The control unit simulates each of the constant current discharge state, the hibernation state after the constant current discharge state, the constant voltage charging state, and the hibernation state after the constant voltage charging state at least once within a predetermined measurement time. A power storage device characteristic measuring device characterized in that a current waveform including each is output from a current source.
前記電流波形が、前記定電流放電状態後のクランキング状態を模擬する期間を少なくとも1回、更に含むことを特徴とする請求項1に記載の蓄電デバイス特性測定装置。 The power storage device characteristic measuring device according to claim 1, wherein the current waveform further includes a period for simulating a cranking state after the constant current discharge state at least once. 前記制御部が、前記定電流放電状態を模擬する期間及び前記定電圧充電状態を模擬する期間のうち少なくとも一方における電流量を充電率に応じて変化させることを特徴とする請求項1又は2に記載の蓄電デバイス特性測定装置。 The first or second claim is characterized in that the control unit changes the amount of current in at least one of the period for simulating the constant current discharge state and the period for simulating the constant voltage charge state according to the charge rate. The power storage device characteristic measuring device described. 前記電流波形が、前記定電流放電状態を模擬する期間を複数回含み、該複数回の期間のうち少なくとも2回の期間の電流量が互いに異なることを特徴とする請求項1〜3のいずれか1項に記載の蓄電デバイス特性測定装置。 Any of claims 1 to 3, wherein the current waveform includes a plurality of periods for simulating the constant current discharge state, and the amount of current in at least two of the plurality of periods is different from each other. The power storage device characteristic measuring device according to item 1. 前記電流波形が、前記定電圧充電後の休止状態を模擬する期間を複数回含み、該複数回の期間のうち少なくとも2回の期間の長さが互いに異なることを特徴とする請求項1〜4のいずれか1項に記載の蓄電デバイス特性測定装置。 Claims 1 to 4, wherein the current waveform includes a plurality of periods for simulating a hibernation state after charging at a constant voltage, and the lengths of at least two of the plurality of periods are different from each other. The power storage device characteristic measuring device according to any one of the above items. 車載用の蓄電デバイスの特性を測定する方法であって、
電流源からの電流を前記蓄電デバイスへ入力しながら、前記蓄電デバイスの端子間電圧、及び前記蓄電デバイスに入力される電流の大きさを測定するステップを含み、
前記ステップにおいて、定電流放電状態、前記定電流放電状態後の休止状態、定電圧充電状態、及び前記定電圧充電状態後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む電流波形を前記電流源から出力することを特徴とする、蓄電デバイス特性測定方法。
It is a method of measuring the characteristics of an in-vehicle power storage device.
The step includes measuring the voltage between terminals of the power storage device and the magnitude of the current input to the power storage device while inputting the current from the current source to the power storage device.
In the step, the period for simulating the constant current discharge state, the hibernation state after the constant current discharge state, the constant voltage charge state, and the hibernation state after the constant voltage charge state is simulated at least once within a predetermined measurement time. A method for measuring characteristics of a power storage device, which comprises outputting a current waveform including the current from the current source.
車載用の蓄電デバイスの特性を測定する装置において、前記蓄電デバイスに電流を入力する電流源から出力される電流量を制御する制御部を動作させるプログラムであって、
定電流放電状態、前記定電流放電状態後の休止状態、定電圧充電状態、及び前記定電圧充電状態後の休止状態をそれぞれ模擬する期間を所定の測定時間内に少なくとも1回ずつ含む電流波形を前記電流源から出力させるように前記制御部を動作させることを特徴とする、蓄電デバイス特性測定用プログラム。
A program that operates a control unit that controls the amount of current output from a current source that inputs a current to the power storage device in a device that measures the characteristics of the power storage device for a vehicle.
A current waveform including a period for simulating a constant current discharge state, a hibernation state after the constant current discharge state, a constant voltage charge state, and a hibernation state after the constant voltage charge state at least once within a predetermined measurement time. A program for measuring the characteristics of a power storage device, which comprises operating the control unit so as to output from the current source.
JP2016174713A 2016-09-07 2016-09-07 Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program Active JP6759892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016174713A JP6759892B2 (en) 2016-09-07 2016-09-07 Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016174713A JP6759892B2 (en) 2016-09-07 2016-09-07 Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program

Publications (2)

Publication Number Publication Date
JP2018040677A JP2018040677A (en) 2018-03-15
JP6759892B2 true JP6759892B2 (en) 2020-09-23

Family

ID=61625839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174713A Active JP6759892B2 (en) 2016-09-07 2016-09-07 Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program

Country Status (1)

Country Link
JP (1) JP6759892B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136629A (en) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc Device for diagnosing service life of battery
JP5163891B2 (en) * 2008-08-14 2013-03-13 三菱自動車工業株式会社 Battery deterioration judgment device
WO2011033781A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Method for charging/discharging positive electrode active material in a lithium secondary battery, charging/discharging system provided with lithium secondary battery and vehicle, electronic device, battery module, battery pack
JP5717671B2 (en) * 2012-02-28 2015-05-13 三菱重工業株式会社 Model constant acquisition method and model constant acquisition apparatus
JP2014238948A (en) * 2013-06-06 2014-12-18 ニューロング精密工業株式会社 Method for evaluating impedance of secondary battery
JP6206031B2 (en) * 2013-09-20 2017-10-04 株式会社Gsユアサ Storage device lifetime estimation device, lifetime estimation method, and storage system
US9784780B2 (en) * 2014-03-24 2017-10-10 Ford Global Technologies, Llc Battery simulator with variable current capacity
JP2016003963A (en) * 2014-06-17 2016-01-12 カルソニックカンセイ株式会社 Battery model identification method

Also Published As

Publication number Publication date
JP2018040677A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
CN104773083B (en) hybrid power transmission system and vehicle
Zhang et al. A novel model of the initial state of charge estimation for LiFePO4 batteries
US9411019B2 (en) Method and system for estimating state of health of battery set
JP5850492B2 (en) Battery system and battery evaluation method
WO2016208745A1 (en) Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating integrity of battery
JP5743857B2 (en) Method and apparatus for simulating a battery in real time
CN101226229B (en) Fast search algorithm for finding initial diffusion voltage in electro-chemical systems
Lee et al. Modelling and simulation of vehicle electric power system
CN105006871B (en) A kind of method and device for being used to simulate actual battery charging process
JP6737022B2 (en) Simulation method and simulation device
JP2014077681A (en) Chargeable/dischargeable power estimation apparatus for power storage element, power storage apparatus, and chargeable/dischargeable power estimation method
CN104335057A (en) Method and device for determining the actual capacity of a battery
JP2018009963A (en) Simulation method and simulation device
KR101965832B1 (en) Battery SOC estimation system and battery SOC estimation method using the same
US20140100802A1 (en) Method and computer system for measuring remaining battery capacity
Medora et al. An enhanced dynamic battery model of lead-acid batteries using manufacturers' data
US20160001670A1 (en) System and method for battery management
JP2014238948A (en) Method for evaluating impedance of secondary battery
JP6759892B2 (en) Power storage device characteristic measurement device, power storage device characteristic measurement method, and power storage device characteristic measurement program
US20230191945A1 (en) Learning method of characteristic estimation model for secondary battery, characteristic estimation method, and characteristic estimation device for secondary battery
JP6737023B2 (en) Simulation method and simulation device
JP6759891B2 (en) Parameter identification method and parameter identification device for in-vehicle power storage device model
JP6740764B2 (en) Storage device capacity selection method
KR20170007937A (en) Hybrid vehicle low battery soc estimating method
CN104467072B (en) Battery charge controller, the vehicle and charge control method for having the device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250