JP6757505B2 - Power storage element - Google Patents
Power storage element Download PDFInfo
- Publication number
- JP6757505B2 JP6757505B2 JP2015066498A JP2015066498A JP6757505B2 JP 6757505 B2 JP6757505 B2 JP 6757505B2 JP 2015066498 A JP2015066498 A JP 2015066498A JP 2015066498 A JP2015066498 A JP 2015066498A JP 6757505 B2 JP6757505 B2 JP 6757505B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- positive electrode
- active material
- negative electrode
- power storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 title claims description 81
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 99
- 229910052717 sulfur Inorganic materials 0.000 claims description 99
- 239000011593 sulfur Substances 0.000 claims description 99
- 239000007774 positive electrode material Substances 0.000 claims description 31
- 238000004458 analytical method Methods 0.000 claims description 29
- 239000007773 negative electrode material Substances 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 8
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 239000002905 metal composite material Substances 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 239000011149 active material Substances 0.000 description 39
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 36
- 239000008151 electrolyte solution Substances 0.000 description 31
- 150000001875 compounds Chemical class 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 239000011888 foil Substances 0.000 description 23
- 239000000654 additive Substances 0.000 description 13
- -1 sulfonic acid compound Chemical class 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 230000000996 additive effect Effects 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002186 photoelectron spectrum Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- 229910013716 LiNi Inorganic materials 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000012752 auxiliary agent Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、非水電解質二次電池などの蓄電素子に関する。 The present invention relates to a power storage element such as a non-aqueous electrolyte secondary battery.
従来、正極と負極と電解液とを含み、電解液が特定の環式ジスルホン酸エステルを含有する非水電解質二次電池が知られている(例えば、特許文献1)。特許文献1に記載の電池では、環式ジスルホン酸エステルが還元されることによって、硫黄を含有する化合物が負極の表面に生じている。硫黄を含有する斯かる化合物は、負極の表面をXPS分析した場合に、162.9〜164.0eVにピークを有する化合物として検出される。 Conventionally, a non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution contains a specific cyclic disulfonic acid ester is known (for example, Patent Document 1). In the battery described in Patent Document 1, a sulfur-containing compound is generated on the surface of the negative electrode by reducing the cyclic disulfonic acid ester. Such a sulfur-containing compound is detected as a compound having a peak at 162.9 to 164.0 eV when the surface of the negative electrode is analyzed by XPS.
ところが、特許文献1に記載の電池では、長期間放置された後に容量及び出力が低下する場合がある。 However, in the battery described in Patent Document 1, the capacity and output may decrease after being left for a long period of time.
本発明は、長期間放置された後に容量及び出力が低下することが抑制された蓄電素子を提供することを課題とする。 An object of the present invention is to provide a power storage element in which a decrease in capacity and output is suppressed after being left for a long period of time.
本発明の蓄電素子は、正極と、負極とを備え、正極の表面がXPS分析された場合に、SO4 2−に基づいたピークによって算出される硫黄S1の濃度は、0.3原子%以上1.0原子%以下であり、S−S及びS−Cに基づいたピークによって算出される硫黄S2の濃度は、0原子%以上1.0原子%以下であり、(硫黄S2の濃度)/(硫黄S1の濃度)は、0以上2以下である。斯かる構成の蓄電素子によれば、長期間放置された後に容量及び出力が低下することを抑制できる。 Electric storage element of the present invention includes a positive electrode, a negative electrode, if the surface of the positive electrode is XPS analysis, the concentration of sulfur S1, is calculated by the peak based on the SO 4 2-is 0.3 atomic% or more It is 1.0 atomic% or less, and the concentration of sulfur S2 calculated by the peaks based on SS and SC is 0 atomic% or more and 1.0 atomic% or less (concentration of sulfur S2) /. (Concentration of sulfur S1) is 0 or more and 2 or less. According to the power storage element having such a configuration, it is possible to suppress a decrease in capacity and output after being left for a long period of time.
上記の蓄電素子では、(硫黄S2の濃度)/(硫黄S1の濃度)が時間の経過に伴って大きくなってもよい。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。 In the above-mentioned power storage element, (concentration of sulfur S2) / (concentration of sulfur S1) may increase with the passage of time. With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、負極の表面がXPS分析された場合に、
硫黄成分に基づいた163eV以上170eV以下のピークによって算出される硫黄S3の濃度は、0.5原子%以上5.0原子%以下であってもよい。これにより、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。
In the above power storage element, when the surface of the negative electrode is analyzed by XPS,
The concentration of sulfur S3 calculated by the peak of 163 eV or more and 170 eV or less based on the sulfur component may be 0.5 atomic% or more and 5.0 atomic% or less. As a result, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、正極は、活物質を含み、該活物質は、LivNiwMnxCoyOzの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y<1であり、1.7≦z≦2.3である)であってもよい。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。 In the above electricity storage device, the positive electrode comprises an active material, active material, Li v Ni w Mn x Co y O z lithium-metal composite oxide represented by the chemical composition (but, 0 <v ≦ 1. Even if it is 3, w + x + y = 1, 0 <w <1, 0 <x <1, 0 <y <1, and 1.7 ≦ z ≦ 2.3). Good. With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、負極は、活物質を含み、該活物質は、難黒鉛化炭素であってもよい。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。 In the above-mentioned power storage element, the negative electrode contains an active material, and the active material may be non-graphitized carbon. With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
本発明によれば、長期間放置された後に容量及び出力が低下することを抑制できる。 According to the present invention, it is possible to suppress a decrease in capacity and output after being left for a long period of time.
以下、本発明に係る蓄電素子の一実施形態について、図1〜図7を参照しつつ説明する。蓄電素子には、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 Hereinafter, an embodiment of the power storage element according to the present invention will be described with reference to FIGS. 1 to 7. The power storage element includes a secondary battery, a capacitor, and the like. In the present embodiment, a rechargeable secondary battery will be described as an example of the power storage element. The name of each component (each component) of the present embodiment is that of the present embodiment, and may be different from the name of each component (each component) in the background technology.
本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置100に用いられる。前記蓄電装置100では、該蓄電装置100に用いられる蓄電素子1が電気エネルギーを供給する。 The power storage element 1 of the present embodiment is a non-aqueous electrolyte secondary battery. More specifically, the power storage element 1 is a lithium ion secondary battery that utilizes electron transfer generated by the movement of lithium ions. This type of power storage element 1 supplies electrical energy. The power storage element 1 is used alone or in a plurality. Specifically, the power storage element 1 is used alone when the required output and the required voltage are small. On the other hand, when at least one of the required output and the required voltage is large, the power storage element 1 is used in the power storage device 100 in combination with the other power storage element 1. In the power storage device 100, the power storage element 1 used in the power storage device 100 supplies electrical energy.
蓄電素子1は、図1〜図7に示すように、正極11と負極12とを含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、ケース3内に注入された電解液と、を含む。また、蓄電素子1は、電極体2と外部端子7とを導通させる集電体5等をさらに有する。 As shown in FIGS. 1 to 7, the power storage element 1 includes an electrode body 2 including a positive electrode 11 and a negative electrode 12, a case 3 accommodating the electrode body 2, and an external terminal 7 arranged outside the case 3. It contains an external terminal 7 that is conductive to the electrode body 2 and an electrolytic solution injected into the case 3. Further, the power storage element 1 further includes a current collector 5 or the like for conducting the electrode body 2 and the external terminal 7.
電極体2は、正極11と負極12とがセパレータ4によって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。 The electrode body 2 is formed by winding a laminated body 22 in which a positive electrode 11 and a negative electrode 12 are laminated in a state of being insulated from each other by a separator 4.
正極11は、金属箔111(正極基材111)と、金属箔111に重なるように配置され且つ活物質を含む正極活物質層112と、を有する。正極活物質層112は、金属箔111の両面にそれぞれ重ねられる。例えば、XPS分析(後述)される正極11の表面は、正極活物質層112の一方の面であって、金属箔111に重なる面と反対の面である。 The positive electrode 11 has a metal foil 111 (positive electrode base material 111) and a positive electrode active material layer 112 that is arranged so as to overlap the metal foil 111 and contains an active material. The positive electrode active material layer 112 is laminated on both sides of the metal foil 111, respectively. For example, the surface of the positive electrode 11 to be analyzed by XPS (described later) is one surface of the positive electrode active material layer 112, which is the surface opposite to the surface overlapping the metal foil 111.
金属箔111は帯状である。金属箔111の厚みは、通常、10μm以上20μm以下である。本実施形態の正極11の金属箔111は、例えば、アルミニウム箔である。正極11は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層112が形成されず金属箔111が露出した露出部105を有する。 The metal foil 111 is strip-shaped. The thickness of the metal foil 111 is usually 10 μm or more and 20 μm or less. The metal foil 111 of the positive electrode 11 of the present embodiment is, for example, an aluminum foil. The positive electrode 11 has an exposed portion 105 in which the positive electrode active material layer 112 is not formed and the metal foil 111 is exposed at one edge portion in the width direction, which is the lateral direction of the band shape.
正極活物質層112は、セパレータ4を介して負極12と向き合うように配置される。負極12と向き合う正極活物質層112の表面(金属箔111に重なる面と反対の面)がXPS分析された場合に、SO4 2−に基づいたピークによって算出される硫黄S1の濃度は、0.3原子%以上1.0原子%以下である。S−S及びS−Cに基づいたピークによって算出される硫黄S2の濃度は、0原子%以上1.0原子%以下である。また、(硫黄S2の濃度)/(硫黄S1の濃度)は、0以上2以下である。なお、XPSとは、X線光電子分光(X-ray Photoelectron Spectroscopy)のことである。SO4 2−、S−S、S−Cのそれぞれに基づいたピークによる濃度の算出は、XPS分析によって得られた光電子スペクトルをピーク分割することによって行う。XPS分析の分析条件の詳細、ピーク分割による各硫黄の濃度の算出方法については、後述する実施例において詳しく説明する。 The positive electrode active material layer 112 is arranged so as to face the negative electrode 12 via the separator 4. If the surface of the positive electrode active material layer 112 facing the negative electrode 12 (the surface opposite to the surface which overlaps with the metal foil 111) is XPS analysis, the concentration of sulfur S1, it is calculated by the peak based on the SO 4 2-is 0 .3 atomic% or more and 1.0 atomic% or less. The concentration of sulfur S2 calculated from the peaks based on SS and SC is 0 atomic% or more and 1.0 atomic% or less. Further, (concentration of sulfur S2) / (concentration of sulfur S1) is 0 or more and 2 or less. In addition, XPS is X-ray Photoelectron Spectroscopy. SO 4 2-, S-S, calculation of the concentration by the peak based on the respective S-C is performed by peak splitting the photoelectron spectrum obtained by the XPS analysis. The details of the analysis conditions of the XPS analysis and the method of calculating the concentration of each sulfur by peak division will be described in detail in Examples described later.
正極11の正極活物質層112は、硫黄S1及び硫黄S2のうち少なくとも硫黄S1を含む化合物を表面に有する。電解液に含まれる後述の添加剤が分解すること、又は、硫黄S1や硫黄S2を含む化合物が正極活物質層112に塗布されること等によって、少なくとも硫黄S1を含む上記化合物は、正極活物質層112の表面に生じている。本実施形態では、正極活物質層112の表面に、電解液に含まれる後述の添加剤が分解することで生じた化合物であって少なくとも硫黄S1を含む化合物が生じている。 The positive electrode active material layer 112 of the positive electrode 11 has a compound containing at least sulfur S1 among sulfur S1 and sulfur S2 on the surface. The above-mentioned compound containing at least sulfur S1 is a positive electrode active material due to decomposition of an additive described later contained in the electrolytic solution or application of a compound containing sulfur S1 or sulfur S2 to the positive electrode active material layer 112. It occurs on the surface of layer 112. In the present embodiment, on the surface of the positive electrode active material layer 112, a compound produced by decomposition of an additive described later contained in the electrolytic solution and containing at least sulfur S1 is generated.
硫黄S1は、XPS分析によって得られた光電子スペクトルにおいて、SO4 2−に基づいたピークによって表される。XPS分析において照射された軟X線に対してSO4 2−のS元素が放出する光電子によって、SO4 2−に基づいたピークが得られる。SO4 2−に基づいたピークは、168eV以上170eV以下に表れる。硫黄S1を含む化合物は、例えば、スルホン酸化合物であると考えられる。なお、硫黄S1を含む化合物は、正極活物質の不純物である場合がある。硫黄S1の濃度は、0.3原子%以上0.7原子%以下であってもよい。 Sulfur S1 is in photoelectron spectrum obtained by XPS analysis, are represented by the peak based on the SO 4 2-. The photoelectrons SO 4 2-S-element is released with respect to the soft X-rays irradiated in XPS analysis, a peak based on the SO 4 2-is obtained. Peaks based on SO 4 2-manifests itself in less than 168 eV 170 eV. The compound containing sulfur S1 is considered to be, for example, a sulfonic acid compound. The compound containing sulfur S1 may be an impurity of the positive electrode active material. The concentration of sulfur S1 may be 0.3 atomic% or more and 0.7 atomic% or less.
硫黄S1の濃度は、例えば、電解液中に添加する不飽和スルトン化合物の量を多くすることによって大きくすることができる。一方、硫黄S1の濃度は、例えば、電解液中に添加する環状スルホン化合物の量を少なくすることによって小さくすることができる。 The concentration of sulfur S1 can be increased, for example, by increasing the amount of unsaturated sultone compound added to the electrolytic solution. On the other hand, the concentration of sulfur S1 can be reduced, for example, by reducing the amount of the cyclic sulfone compound added to the electrolytic solution.
硫黄S2は、XPS分析によって得られた光電子スペクトルにおいて、S−S及びS−Cに基づいたピークによって表される。XPS分析において照射された軟X線に対してS−S結合及びS−C結合のS元素が放出する光電子によって、S−S及びS−Cに基づいたピークが得られる。S−S及びS−Cに基づいたピークは、163eV以上165eV以下に表れる。硫黄S2を含む化合物は、例えば、ジスルフィド化合物であると考えられる。本実施形態では、正極11の正極活物質層112は、硫黄S2を含む化合物を表面に有し得る。 Sulfur S2 is represented by peaks based on SS and SC in the photoelectron spectrum obtained by XPS analysis. Photoelectrons emitted by the S element of the SS bond and the SC bond with respect to the irradiated soft X-rays in the XPS analysis provide peaks based on SS and SC. Peaks based on SS and SC appear above 163 eV and below 165 eV. The compound containing sulfur S2 is considered to be, for example, a disulfide compound. In the present embodiment, the positive electrode active material layer 112 of the positive electrode 11 may have a compound containing sulfur S2 on its surface.
上記の(硫黄S2の濃度)/(硫黄S1の濃度)は、0.8以上1.6以下であってもよい。 The above (concentration of sulfur S2) / (concentration of sulfur S1) may be 0.8 or more and 1.6 or less.
XPS分析においては、真空中で試料表面に軟X線を照射し、表面から放出される光電子をアナライザで検出する。光電子が物質中を進むことができる長さ(平均自由行程)が数nmであることから、表面における検出深さは、数nmである。XPS分析においては、物質中の束縛電子の結合エネルギー値を基にして表面に素材する元素を知ることができる。光電子スペクトルの各ピークのエネルギーシフトから、元素の価数や結合状態を知ることができる。ピークの面積の比を基にして、硫黄元素などの元素の定量分析を行うことができる。XPS分析の測定条件等の詳細については、実施例に記載する。 In XPS analysis, the surface of a sample is irradiated with soft X-rays in a vacuum, and photoelectrons emitted from the surface are detected by an analyzer. Since the length (mean free path) at which photoelectrons can travel through a substance is several nm, the detection depth on the surface is several nm. In XPS analysis, it is possible to know the element to be used as a material on the surface based on the binding energy value of the bound electron in the substance. From the energy shift of each peak in the photoelectron spectrum, the valence and bonding state of the element can be known. Quantitative analysis of elements such as sulfur elements can be performed based on the ratio of peak areas. Details such as measurement conditions for XPS analysis will be described in Examples.
(硫黄S2の濃度)/(硫黄S1の濃度)は、時間の経過に伴って大きくなる。通常、上記の(硫黄S2の濃度)/(硫黄S1の濃度)は、上記で示した硫黄S1の濃度、硫黄S2の濃度、及び、(硫黄S2の濃度)/(硫黄S1の濃度)の数値範囲内で、時間の経過に伴って大きくなる。上記の(硫黄S2の濃度)/(硫黄S1の濃度)が時間の経過に伴って大きくなるとは、65℃の環境下に電池を30日間静置した場合に、静置前の電池における(硫黄S2の濃度)/(硫黄S1の濃度)に対して、静置後の電池における(硫黄S2の濃度)/(硫黄S1の濃度)が少なくとも1.1倍以上であることを意味する。 (Concentration of sulfur S2) / (concentration of sulfur S1) increases with the passage of time. Usually, the above (concentration of sulfur S2) / (concentration of sulfur S1) is a numerical value of the concentration of sulfur S1, the concentration of sulfur S2, and (concentration of sulfur S2) / (concentration of sulfur S1) shown above. Within the range, it grows over time. The above-mentioned (concentration of sulfur S2) / (concentration of sulfur S1) increases with the passage of time when the battery is allowed to stand in an environment of 65 ° C. for 30 days, and the (sulfur) in the battery before standing. It means that (concentration of sulfur S2) / (concentration of sulfur S1) in the battery after standing is at least 1.1 times or more with respect to (concentration of S2) / (concentration of sulfur S1).
蓄電素子1では、例えば、65℃などの高温における放置によって、(硫黄S2の濃度)/(硫黄S1の濃度)が時間の経過に伴って大きくなる。 In the power storage element 1, (concentration of sulfur S2) / (concentration of sulfur S1) increases with the passage of time by being left at a high temperature such as 65 ° C.
正極活物質層112は、活物質と、バインダと、を含む。詳しくは、正極活物質層112は、活物質を80質量%以上98質量%以下含み、バインダを0.1質量%以上10質量%以下含む。 The positive electrode active material layer 112 contains an active material and a binder. Specifically, the positive electrode active material layer 112 contains 80% by mass or more and 98% by mass or less of the active material, and 0.1% by mass or more and 10% by mass or less of the binder.
正極11の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極11の活物質は、粒子状である。正極11の活物質は、例えば、リチウム金属酸化物である。具体的に、正極11の活物質は、例えば、LivMew+x+yOz(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LivCoyO2、LivNiwO2、LivMnxO4、LivNiwCoyMnxO2等)、LiaMeb(XOc)d(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiaFebPO4、LiaMnbPO4、LiaMnbSiO4、LiaCobPO4F等)である。 The active material of the positive electrode 11 is a compound that can occlude and release lithium ions. The active material of the positive electrode 11 is in the form of particles. The active material of the positive electrode 11 is, for example, a lithium metal oxide. Specifically, the active material of the positive electrode 11 is, for example, a composite oxide represented by Li v Me w + x + y O z (Me represents one or more transition metals) (L v Co y O 2 , Li v). Ni w O 2, Li v Mn x O 4, Li v Ni w Co y Mn x O 2 , etc.), Li a Me b (XO c) d (Me represents one or more transition metals, X is For example, a polyanionic compound represented by (representing P, Si, B, V) (Li a Fe b PO 4 , Li a Mn b PO 4 , Li a Mn b SiO 4 , Li a Co b PO 4 F, etc.). ..
本実施形態では、正極11の活物質は、LivNiwMnxCoyOzの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y<1であり、1.7≦z≦2.3である)である。 In this embodiment, the active material of the positive electrode 11, Li v Ni w Mn x Co y O z lithium-metal composite oxide represented by the chemical composition (provided that at 0 <v ≦ 1.3, w + x + y = 1 , 0 <w <1, 0 <x <1, 0 <y <1, and 1.7 ≦ z ≦ 2.3).
上記のごときLivNiwMnxCoyOzの化学組成で表されるリチウム金属複合酸化物においては、0<v<1.3であり、|w−x|<0.03であり、0.33≦y<1であってもよい。リチウム金属複合酸化物は、例えば、LiNi1/6Co2/3Mn1/6O2やLiNi1/3Co1/3Mn1/3O2である。 In the above such Li v Ni w Mn x Co y O lithium-metal composite oxide represented by the chemical composition of z, a 0 <v <1.3, | a <0.03, | w-x 0.33 ≦ y <1 may be satisfied. The lithium metal composite oxide is, for example, LiNi 1/6 Co 2/3 Mn 1/6 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
上記のごときLivNiwMnxCoyOzの化学組成で表されるリチウム金属複合酸化物は、α−NaFeO2型結晶構造(層状岩塩型構造)を有する。α−NaFeO2型結晶構造は、粉末X線回折によって常法に従って確認される。 Additional such Li v Ni w Mn x Co y O lithium-metal composite oxide represented by the chemical composition of z has alpha-NaFeO 2 type crystal structure (layered rock-salt structure). The α-NaFeO type 2 crystal structure is confirmed by powder X-ray diffraction according to a conventional method.
正極活物質層112に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。 The binder used for the positive electrode active material layer 112 is, for example, polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethylmethacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, polymethacrylic. Acid, styrene-butadiene rubber (SBR). The binder of this embodiment is polyvinylidene fluoride.
正極活物質層112は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の正極活物質層112は、導電助剤としてアセチレンブラックを有する。 The positive electrode active material layer 112 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The positive electrode active material layer 112 of the present embodiment has acetylene black as a conductive auxiliary agent.
負極12は、正極11と向き合うように配置される。負極12は、金属箔121(負極基材121)と、金属箔121に重なるように配置され且つ活物質を含む負極活物質層122と、を有する。負極活物質層122は、金属箔121の両面にそれぞれ重ねられる。金属箔121は帯状である。本実施形態の負極12の金属箔121は、例えば、銅箔である。負極12は、帯形状の短手方向である幅方向の一方の端縁部に、負極活物質層122が形成されず金属箔121が露出した露出部105を有する。 The negative electrode 12 is arranged so as to face the positive electrode 11. The negative electrode 12 has a metal foil 121 (negative electrode base material 121) and a negative electrode active material layer 122 that is arranged so as to overlap the metal foil 121 and contains an active material. The negative electrode active material layer 122 is laminated on both sides of the metal foil 121, respectively. The metal foil 121 is strip-shaped. The metal foil 121 of the negative electrode 12 of the present embodiment is, for example, a copper foil. The negative electrode 12 has an exposed portion 105 in which the negative electrode active material layer 122 is not formed and the metal foil 121 is exposed at one edge portion in the width direction, which is the lateral direction of the band shape.
負極活物質層122は、活物質と、バインダと、を有する。負極活物質層122は、セパレータ4を介して正極11と向き合うように配置される。正極11と向き合う負極活物質層122の表面(金属箔121に重なる面と反対の面)がXPS分析されることによって得られた光電子スペクトルのピーク分割を行った場合に、硫黄成分に基づいた163eV以上170eV以下のピークによって算出される硫黄S3の濃度は、0.5原子%以上5.0原子%以下である。硫黄S3の濃度は、0.5原子%以上3.0原子%以下であってもよい。負極12の表面(負極活物質層122の表面)のXPS分析は、上述した正極11の表面(正極活物質層112の表面)のXPS分析と同様にして行う。 The negative electrode active material layer 122 has an active material and a binder. The negative electrode active material layer 122 is arranged so as to face the positive electrode 11 via the separator 4. When the surface of the negative electrode active material layer 122 facing the positive electrode 11 (the surface opposite to the surface overlapping the metal foil 121) is subjected to peak division of the photoelectron spectrum obtained by XPS analysis, 163 eV based on the sulfur component is performed. The concentration of sulfur S3 calculated from the peak of 170 eV or less is 0.5 atomic% or more and 5.0 atomic% or less. The concentration of sulfur S3 may be 0.5 atomic% or more and 3.0 atomic% or less. The XPS analysis of the surface of the negative electrode 12 (the surface of the negative electrode active material layer 122) is performed in the same manner as the XPS analysis of the surface of the positive electrode 11 (the surface of the positive electrode active material layer 112) described above.
硫黄S3は、XPS分析によって得られた光電子スペクトルにおいて、S−S、S−C、SO4 2−、及び、SO3 2−といった硫黄成分に基づいたピークによって表される。これら硫黄成分に基づいたピークは、163eV以上170eV以下にそれぞれ表れる。 Sulfur S3 is the photoelectron spectrum obtained by the XPS analysis, S-S, S-C , SO 4 2-, and is represented by the peak based on the sulfur components such SO 3 2-. Peaks based on these sulfur components appear at 163 eV or more and 170 eV or less, respectively.
負極活物質層122は、硫黄S3を含む化合物を表面に有する。硫黄S3を含む化合物は、電解液に含まれる後述の添加剤が分解すること、又は、硫黄S3を含む化合物が負極活物質層122に塗布されること等によって、負極活物質層122の表面に生じている。本実施形態では、負極活物質層122の表面に、電解液に含まれる後述の添加剤が分解することで生じた硫黄S3を含む化合物が生じている。 The negative electrode active material layer 122 has a compound containing sulfur S3 on its surface. The compound containing sulfur S3 is formed on the surface of the negative electrode active material layer 122 by decomposing the additive described later contained in the electrolytic solution or by applying the compound containing sulfur S3 to the negative electrode active material layer 122. It is happening. In the present embodiment, on the surface of the negative electrode active material layer 122, a compound containing sulfur S3 produced by decomposition of an additive described later contained in the electrolytic solution is generated.
負極12の活物質は、負極12において充電反応及び放電反応の電極反応に寄与し得るものである。負極12の活物質は、粒子状である。負極12の活物質は、例えば、グラファイト、難黒鉛化炭素、及び易黒鉛化炭素などの炭素材、又は、ケイ素(Si)及び錫(Sn)などのリチウムイオンと合金化反応を生じる材料である。本実施形態の負極12の活物質は、難黒鉛化炭素である。 The active material of the negative electrode 12 can contribute to the electrode reaction of the charge reaction and the discharge reaction in the negative electrode 12. The active material of the negative electrode 12 is in the form of particles. The active material of the negative electrode 12 is, for example, a carbon material such as graphite, non-graphitized carbon, and easily graphitized carbon, or a material that undergoes an alloying reaction with lithium ions such as silicon (Si) and tin (Sn). .. The active material of the negative electrode 12 of this embodiment is non-graphitized carbon.
負極活物質層122に用いられるバインダは、正極活物質層112に用いられたバインダと同様のものである。本実施形態のバインダは、ポリフッ化ビニリデンである。 The binder used for the negative electrode active material layer 122 is the same as the binder used for the positive electrode active material layer 112. The binder of this embodiment is polyvinylidene fluoride.
負極活物質層122は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層122は、導電助剤を有していない。 The negative electrode active material layer 122 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The negative electrode active material layer 122 of the present embodiment does not have a conductive auxiliary agent.
セパレータ4は、絶縁性を有する部材である。セパレータ4は、帯状である。セパレータ4は、正極11と負極12との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極11と負極12とが互いに絶縁される。また、セパレータ4は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ4を挟んで交互に積層される正極11と負極12との間を移動する。 The separator 4 is a member having an insulating property. The separator 4 has a strip shape. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12. As a result, in the electrode body 2 (specifically, the laminated body 22), the positive electrode 11 and the negative electrode 12 are insulated from each other. Further, the separator 4 holds the electrolytic solution in the case 3. As a result, when the power storage element 1 is charged and discharged, lithium ions move between the positive electrode 11 and the negative electrode 12 which are alternately laminated with the separator 4 in between.
セパレータ4は、例えば、織物、不織布、又は多孔膜によって多孔質に構成される。セパレータ4の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、又は、セルロースが挙げられる。 The separator 4 is made porous by, for example, a woven fabric, a non-woven fabric, or a porous membrane. Examples of the material of the separator 4 include polymer compounds, glass, and ceramics. Examples of the polymer compound include polyesters such as polyacrylonitrile (PAN), polyamide (PA) and polyethylene terephthalate (PET), polyolefins (PP) such as polypropylene (PP) and polyethylene (PE), and cellulose. ..
セパレータ4の幅(帯形状の短手方向の寸法)は、負極活物質層122の幅より僅かに大きい。セパレータ4は、正極活物質層112及び負極活物質層122が重なるように幅方向に位置ずれした状態で重ね合わされた正極11と負極12との間に配置される。 The width of the separator 4 (dimension of the strip shape in the lateral direction) is slightly larger than the width of the negative electrode active material layer 122. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12 in which the positive electrode active material layer 112 and the negative electrode active material layer 122 are overlapped with each other in a state of being displaced in the width direction so as to overlap each other.
本実施形態の電極体2では、以上のように構成される正極11と負極12とがセパレータ4によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極11、負極12、及びセパレータ4の積層体22が巻回される。 In the electrode body 2 of the present embodiment, the positive electrode 11 and the negative electrode 12 configured as described above are wound in a state of being insulated by the separator 4. That is, in the electrode body 2 of the present embodiment, the laminated body 22 of the positive electrode 11, the negative electrode 12, and the separator 4 is wound.
正極11と負極12とが積層された状態で、図6に示すように、正極11の露出部105と負極12の露出部105とは重なっていない。即ち、正極11の露出部105が、正極11と負極12との重なる領域から幅方向に突出し、且つ、負極12の露出部105が、正極11と負極12との重なる領域から幅方向(正極11の露出部105の突出方向と反対の方向)に突出する。積層された状態の正極11、負極12、及びセパレータ4、即ち、積層体22が巻回されることによって、電極体2が形成される。正極11の露出部105又は負極12の露出部105のみが積層された部位によって、電極体2における露出積層部26が構成される。 In a state where the positive electrode 11 and the negative electrode 12 are laminated, as shown in FIG. 6, the exposed portion 105 of the positive electrode 11 and the exposed portion 105 of the negative electrode 12 do not overlap. That is, the exposed portion 105 of the positive electrode 11 protrudes in the width direction from the region where the positive electrode 11 and the negative electrode 12 overlap, and the exposed portion 105 of the negative electrode 12 extends in the width direction (positive electrode 11) from the region where the positive electrode 11 and the negative electrode 12 overlap. (In the direction opposite to the protruding direction of the exposed portion 105). The electrode body 2 is formed by winding the positive electrode 11, the negative electrode 12, and the separator 4, that is, the laminated body 22, in a laminated state. The exposed laminated portion 26 in the electrode body 2 is formed by the portion where only the exposed portion 105 of the positive electrode 11 or the exposed portion 105 of the negative electrode 12 is laminated.
露出積層部26は、電極体2における集電体5と導通される部位である。露出積層部26は、巻回された正極11、負極12、及びセパレータ4の巻回中心方向視において、中空部27(図6参照)を挟んで二つの部位(二分された露出積層部)261に区分けされる。 The exposed laminated portion 26 is a portion of the electrode body 2 that is electrically connected to the current collector 5. The exposed laminated portion 26 has two portions (divided exposed laminated portion) 261 sandwiching the hollow portion 27 (see FIG. 6) in the winding center direction of the wound positive electrode 11, negative electrode 12, and separator 4. It is divided into.
以上のように構成される露出積層部26は、電極体2の各極に設けられる。即ち、正極11の露出部105のみが積層された露出積層部26が電極体2における正極11の露出積層部を構成し、負極12の露出部105のみが積層された露出積層部26が電極体2における負極12の露出積層部を構成する。 The exposed laminated portion 26 configured as described above is provided at each pole of the electrode body 2. That is, the exposed laminated portion 26 in which only the exposed portion 105 of the positive electrode 11 is laminated constitutes the exposed laminated portion of the positive electrode 11 in the electrode body 2, and the exposed laminated portion 26 in which only the exposed portion 105 of the negative electrode 12 is laminated constitutes the electrode body. The exposed laminated portion of the negative electrode 12 in No. 2 is formed.
ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電体5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。 The case 3 has a case main body 31 having an opening, and a lid plate 32 that closes (closes) the opening of the case main body 31. In the case 3, the electrolytic solution is housed in the internal space together with the electrode body 2 and the current collector 5. Case 3 is formed of a metal that is resistant to electrolytes. The case 3 is formed of, for example, an aluminum-based metal material such as aluminum or an aluminum alloy. The case 3 may be formed of a metal material such as stainless steel and nickel, or a composite material in which a resin such as nylon is adhered to aluminum.
電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO4、LiBF4、及びLiPF6等である。 The electrolytic solution is a non-aqueous electrolyte solution. The electrolytic solution is obtained by dissolving the electrolyte salt in an organic solvent. The organic solvent is, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Electrolyte salts are LiClO 4 , LiBF 4 , LiPF 6 , and the like.
電解液は、例えば、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを含む。電解液は、例えば、これらの有機溶媒を所定の容積割合で混合した混合溶媒に、0.5〜1.5mol/LのLiPF6を溶解させたものである。 The electrolytic solution contains, for example, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. The electrolytic solution is, for example, a solution in which 0.5 to 1.5 mol / L of LiPF 6 is dissolved in a mixed solvent in which these organic solvents are mixed at a predetermined volume ratio.
電解液は、分子中に硫黄(S)を有する添加剤を0.1質量%以上5.0質量%以下含んでもよく、添加剤を1.0質量%以上5.0質量%以下含んでもよい。添加剤は、電解液に溶解している。添加剤としては、1,2−ペンタンジオール硫酸エステル、1,3−プロペンスルトン、1,4−ブタンスルトン等からなる群より選択された少なくとも1種が挙げられる。電解液は、グリコールサルファイトを含まない。 The electrolytic solution may contain an additive having sulfur (S) in the molecule in an amount of 0.1% by mass or more and 5.0% by mass or less, or may contain an additive of 1.0% by mass or more and 5.0% by mass or less. .. The additive is dissolved in the electrolyte. Examples of the additive include at least one selected from the group consisting of 1,2-pentanediol sulfate ester, 1,3-propene sultone, 1,4-butane sultone and the like. The electrolyte does not contain glycolsulfite.
添加剤は、時間が経過することによって分解する。添加剤は、電池の充放電反応によっても分解する。分解することで生じた化合物は、正極活物質層112又は負極活物質層122に付着する。 Additives decompose over time. Additives are also decomposed by the charge / discharge reaction of the battery. The compound produced by the decomposition adheres to the positive electrode active material layer 112 or the negative electrode active material layer 122.
ケース3は、ケース本体31の開口周縁部と、長方形状の蓋板32の周縁部とを重ね合わせた状態で接合することによって形成される。また、ケース3は、ケース本体31と蓋板32とによって画定される内部空間を有する。本実施形態では、ケース本体31の開口周縁部と蓋板32の周縁部とは、溶接によって接合される。 The case 3 is formed by joining the opening peripheral edge of the case body 31 and the peripheral edge of the rectangular lid plate 32 in a superposed state. Further, the case 3 has an internal space defined by the case main body 31 and the lid plate 32. In the present embodiment, the peripheral edge of the opening of the case body 31 and the peripheral edge of the lid plate 32 are joined by welding.
以下では、図1に示すように、蓋板32の長辺方向をX軸方向とし、蓋板32の短辺方向をY軸方向とし、蓋板32の法線方向をZ軸方向とする。 In the following, as shown in FIG. 1, the long side direction of the lid plate 32 is the X-axis direction, the short side direction of the lid plate 32 is the Y-axis direction, and the normal direction of the lid plate 32 is the Z-axis direction.
ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。 The case body 31 has a square tube shape (that is, a bottomed square tube shape) in which one end in the opening direction (Z-axis direction) is closed.
蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。具体的に、蓋板32は、ケース本体31の開口を塞ぐようにケース本体31に当接する。より具体的には、蓋板32が開口を塞ぐように、蓋板32の周縁部がケース本体31の開口周縁部に重ねられる。開口周縁部と蓋板32とが重ねられた状態で、蓋板32とケース本体31との境界部が溶接される。これにより、ケース3が構成される。 The lid plate 32 is a plate-shaped member that closes the opening of the case body 31. Specifically, the lid plate 32 comes into contact with the case body 31 so as to close the opening of the case body 31. More specifically, the peripheral edge of the lid plate 32 is overlapped with the peripheral edge of the opening of the case body 31 so that the lid plate 32 closes the opening. The boundary portion between the lid plate 32 and the case body 31 is welded in a state where the opening peripheral edge portion and the lid plate 32 are overlapped with each other. As a result, the case 3 is configured.
蓋板32は、Z軸方向視において、ケース本体31の開口周縁部に対応した輪郭形状を有する。即ち、蓋板32は、Z軸方向視において、X軸方向に長い矩形状の板材である。また、蓋板32の四隅は、円弧状である。 The lid plate 32 has a contour shape corresponding to the opening peripheral edge of the case body 31 in the Z-axis direction. That is, the lid plate 32 is a rectangular plate material long in the X-axis direction in the Z-axis direction. The four corners of the lid plate 32 are arcuate.
蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。 The lid plate 32 has a gas discharge valve 321 capable of discharging the gas in the case 3 to the outside. The gas discharge valve 321 discharges gas from the inside of the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure. The gas discharge valve 321 is provided at the center of the lid plate 32 in the X-axis direction.
ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。 The case 3 is provided with a liquid injection hole for injecting an electrolytic solution. The liquid injection hole communicates the inside and the outside of the case 3. The liquid injection hole is provided in the lid plate 32.
注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。 The injection hole is sealed (closed) by the injection plug 326. The liquid injection plug 326 is fixed to the case 3 (lid plate 32 in the example of this embodiment) by welding.
外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。例えば、外部端子7は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。 The external terminal 7 is a portion electrically connected to the external terminal 7 of another power storage element 1 or an external device or the like. The external terminal 7 is formed of a conductive member. For example, the external terminal 7 is formed of a highly weldable metal material such as an aluminum-based metal material such as aluminum or an aluminum alloy, or a copper-based metal material such as copper or a copper alloy.
外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。外部端子7は、蓋板32に沿って拡がる板状である。詳しくは、外部端子7は、Z軸方向視において矩形状の板状である。 The external terminal 7 has a surface 71 to which a bus bar or the like can be welded. The surface 71 is a flat surface. The external terminal 7 has a plate shape that extends along the lid plate 32. Specifically, the external terminal 7 has a rectangular plate shape in the Z-axis direction.
集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電体5は、クリップ部材50を介して電極体2と通電可能に接続される。即ち、蓄電素子1は、電極体2と集電体5とを通電可能に接続するクリップ部材50を備える。 The current collector 5 is arranged in the case 3 and is directly or indirectly connected to the electrode body 2 so as to be energized. The current collector 5 of the present embodiment is electrically connected to the electrode body 2 via the clip member 50. That is, the power storage element 1 includes a clip member 50 that connects the electrode body 2 and the current collector 5 so as to be energized.
集電体5は、導電性を有する部材によって形成される。図3に示すように、集電体5は、ケース3の内面に沿って配置される。 The current collector 5 is formed of a conductive member. As shown in FIG. 3, the current collector 5 is arranged along the inner surface of the case 3.
集電体5は、蓄電素子1の正極11と負極12とにそれぞれ配置される。本実施形態の蓄電素子1では、ケース3内において、電極体2の正極11の露出積層部26と、負極12の露出積層部26とにそれぞれ配置される。 The current collector 5 is arranged on the positive electrode 11 and the negative electrode 12 of the power storage element 1, respectively. In the power storage element 1 of the present embodiment, the storage element 1 is arranged in the exposed laminated portion 26 of the positive electrode 11 of the electrode body 2 and the exposed laminated portion 26 of the negative electrode 12 in the case 3, respectively.
正極11の集電体5と負極12の集電体5とは、異なる材料によって形成される。具体的に、正極11の集電体5は、例えば、アルミニウム又はアルミニウム合金によって形成され、負極12の集電体5は、例えば、銅又は銅合金によって形成される。 The current collector 5 of the positive electrode 11 and the current collector 5 of the negative electrode 12 are formed of different materials. Specifically, the current collector 5 of the positive electrode 11 is formed of, for example, aluminum or an aluminum alloy, and the current collector 5 of the negative electrode 12 is formed of, for example, copper or a copper alloy.
本実施形態の蓄電素子1では、電極体2とケース3とを絶縁する袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電体5)がケース3内に収容される。 In the power storage element 1 of the present embodiment, the electrode body 2 (specifically, the electrode body 2 and the current collector 5) in a state of being housed in a bag-shaped insulating cover 6 that insulates the electrode body 2 and the case 3 is the case 3. It is housed inside.
次に、上記実施形態の蓄電素子の製造方法について説明する。 Next, a method of manufacturing the power storage element of the above embodiment will be described.
蓄電素子1の製造方法では、金属箔(電極基材)に活物質を含む合剤を塗布し、活物質層を形成し、電極(正極11及び負極12)を作製する。次に、正極11、セパレータ4、及び負極12を重ね合わせて巻回し電極体2を形成する。続いて、電極体2をケース3に入れ、ケース3に電解液を入れることによって蓄電素子1を組み立てる。 In the method for manufacturing the power storage element 1, a mixture containing an active material is applied to a metal foil (electrode base material) to form an active material layer, and electrodes (positive electrode 11 and negative electrode 12) are produced. Next, the positive electrode 11, the separator 4, and the negative electrode 12 are superposed and wound to form the electrode body 2. Subsequently, the electrode body 2 is put into the case 3, and the electrolytic solution is put into the case 3 to assemble the power storage element 1.
電極(正極11)の作製では、金属箔111の両面に、活物質とバインダと溶媒とを含む合剤をそれぞれ塗布することによって正極活物質層112を形成する。正極活物質層112を形成するための塗布方法としては、一般的な方法が採用される。負極12も同様にして作製する。 In the production of the electrode (positive electrode 11), the positive electrode active material layer 112 is formed by applying a mixture containing an active material, a binder, and a solvent to both surfaces of the metal foil 111. As a coating method for forming the positive electrode active material layer 112, a general method is adopted. The negative electrode 12 is also manufactured in the same manner.
電極体2の形成では、正極11と負極12との間にセパレータ4を挟み込んだ積層体22を巻回する。詳しくは、正極活物質層112と負極活物質層122とがセパレータ4を介して互いに向き合うように、正極11とセパレータ4と負極12とを重ね合わせ、積層体22を作る。続いて、積層体22を巻回して、電極体2を形成する。 In the formation of the electrode body 2, the laminated body 22 having the separator 4 sandwiched between the positive electrode 11 and the negative electrode 12 is wound around. Specifically, the positive electrode 11, the separator 4, and the negative electrode 12 are superposed to form a laminated body 22 so that the positive electrode active material layer 112 and the negative electrode active material layer 122 face each other via the separator 4. Subsequently, the laminated body 22 is wound to form the electrode body 2.
蓄電素子1の組み立てでは、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極11と一方の外部端子7とを導通させ、且つ、負極12と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。 In assembling the power storage element 1, the electrode body 2 is put into the case body 31 of the case 3, the opening of the case body 31 is closed with the lid plate 32, and the electrolytic solution is injected into the case 3. When closing the opening of the case body 31 with the lid plate 32, the electrode body 2 is inserted inside the case body 31, the positive electrode 11 and one external terminal 7 are made conductive, and the negative electrode 12 and the other external terminal 7 are connected. The opening of the case body 31 is closed with the lid plate 32 in a conductive state. When the electrolytic solution is injected into the case 3, the electrolytic solution is injected into the case 3 through the injection hole of the lid plate 32 of the case 3.
上記のように構成された本実施形態の蓄電素子1では、正極11の表面(正極活物質層112の表面)がXPS分析された場合に、SO4 2−に基づいたピークによって算出される硫黄S1の濃度は、0.3原子%以上(例えば0.35原子%を超え)1.0原子%以下であり、S−S及びS−Cに基づいたピークによって算出される硫黄S2の濃度は、0原子%以上1.0原子%以下であり、(硫黄S2の濃度)/(硫黄S1の濃度)は、0以上2以下である。これにより、長期間放置された後に容量及び出力が低下することを抑制できる。 In the electricity storage device 1 of the present embodiment configured as described above, when the surface of the positive electrode 11 (the surface of the positive electrode active material layer 112) is XPS analysis, sulfur calculated by the peak based on the SO 4 2- The concentration of S1 is 0.3 atomic% or more (for example, more than 0.35 atomic%) and 1.0 atomic% or less, and the concentration of sulfur S2 calculated by the peaks based on SS and SC is , 0 atomic% or more and 1.0 atomic% or less, and (concentration of sulfur S2) / (concentration of sulfur S1) is 0 or more and 2 or less. As a result, it is possible to suppress a decrease in capacity and output after being left for a long period of time.
上記の蓄電素子1では、(硫黄S2の濃度)/(硫黄S1の濃度)が時間の経過に伴って大きくなる。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。 In the above-mentioned power storage element 1, (concentration of sulfur S2) / (concentration of sulfur S1) increases with the passage of time. With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、負極12の表面(負極活物質層122の表面)がXPS分析された場合に、
硫黄成分に基づいた163eV以上170eV以下のピークによって算出される硫黄S3の濃度は、0.5原子%以上5.0原子%以下である。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。
In the above power storage element, when the surface of the negative electrode 12 (the surface of the negative electrode active material layer 122) is analyzed by XPS,
The concentration of sulfur S3 calculated by the peak of 163 eV or more and 170 eV or less based on the sulfur component is 0.5 atomic% or more and 5.0 atomic% or less. With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、電解液は、分子中に硫黄(S)を有する上記の添加剤を含む。添加剤は、時間が経過すること、少なくとも1回充電処理を施すこと等によって分解し、硫黄を含有する化合物となる。硫黄を含有する斯かる化合物は、正極11及び負極12の活物質層の表面に付着する。硫黄を含有する斯かる化合物は、イオン伝導性が良好であり、比較的安定な化合物である。硫黄を含有する斯かる化合物は、XPS分析によって光電子スペクトルを得た場合に、SO4 2−に基づいたピーク、又は、S−S及びS−Cに基づいたピークによって表される。硫黄を含有する斯かる化合物は、正極11及び負極12の活物質層の表面に安定的に存在し、活物質層の表面における脱炭素反応を安定的に抑制すると考えられる。これにより、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できると考えられる。 In the above-mentioned power storage element, the electrolytic solution contains the above-mentioned additive having sulfur (S) in the molecule. Additives are decomposed over time, charged at least once, etc. to become sulfur-containing compounds. Such a sulfur-containing compound adheres to the surfaces of the active material layers of the positive electrode 11 and the negative electrode 12. Such a compound containing sulfur has good ionic conductivity and is a relatively stable compound. Such compounds containing sulfur, when obtaining the photoelectron spectrum by XPS analysis, a peak based on the SO 4 2-, or is represented by the peak based on the S-S and S-C. It is considered that such a sulfur-containing compound is stably present on the surface of the active material layer of the positive electrode 11 and the negative electrode 12, and stably suppresses the decarbonization reaction on the surface of the active material layer. It is considered that this makes it possible to more reliably suppress the decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、正極11の活物質は、LivNiwMnxCoyOzの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y<1であり、1.7≦z≦2.3である)である。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。 In the above power storage element, the active material of the positive electrode 11 is a lithium metal composite oxide represented by the chemical composition of Li v Ni w Mn x Co y Oz (however, 0 <v ≦ 1.3 and w + x + y = 1; 0 <w <1, 0 <x <1, 0 <y <1, 1.7≤z≤2.3). With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
上記の蓄電素子では、負極12の活物質は、難黒鉛化炭素である。斯かる構成により、長期間放置された後に蓄電素子の容量及び出力が低下することをより確実に抑制できる。 In the above-mentioned power storage element, the active material of the negative electrode 12 is non-graphitized carbon. With such a configuration, it is possible to more reliably suppress a decrease in the capacity and output of the power storage element after being left for a long period of time.
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The power storage element of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. In addition, some of the configurations of certain embodiments can be deleted.
上記の実施形態では、分子中に硫黄(S)を有する添加剤が分解することによって生じ且つ硫黄を含む化合物を、正極活物質層112や負極活物質層122が表面に有する蓄電素子1について詳しく説明した。しかしながら、本発明では、蓄電素子を組み立てる前に、硫黄を含む化合物が正極活物質層112や負極活物質層122に塗布されることによって、硫黄S1の濃度、硫黄S2の濃度、及び、硫黄S3の濃度が上述した数値範囲になっていてもよい。 In the above embodiment, the power storage element 1 having the positive electrode active material layer 112 and the negative electrode active material layer 122 on the surface of the compound generated by the decomposition of the additive having sulfur (S) in the molecule and containing sulfur is described in detail. explained. However, in the present invention, the concentration of sulfur S1, the concentration of sulfur S2, and sulfur S3 are formed by applying a sulfur-containing compound to the positive electrode active material layer 112 and the negative electrode active material layer 122 before assembling the power storage element. The concentration of may be in the above-mentioned numerical range.
上記の実施形態では、正極11の表面(正極活物質層112の表面)、及び、負極12の表面(負極活物質層122の表面)がXPS分析された場合の硫黄S1の濃度や硫黄S2の濃度について詳しく説明した。しかしながら、本発明では、XPS分析される部位は、これらに限らない。 In the above embodiment, the concentration of sulfur S1 and the sulfur S2 when the surface of the positive electrode 11 (the surface of the positive electrode active material layer 112) and the surface of the negative electrode 12 (the surface of the negative electrode active material layer 122) are analyzed by XPS. The concentration was explained in detail. However, in the present invention, the site to be analyzed by XPS is not limited to these.
上記の実施形態では、活物質層が金属箔に直接接した電極(正極11及び負極12)について詳しく説明したが、本発明では、正極及び負極の少なくともいずれか一方において、バインダと導電助剤とを含む中間層が金属箔と活物質層との間に配置されてもよい。 In the above embodiment, the electrodes (positive electrode 11 and negative electrode 12) in which the active material layer is in direct contact with the metal foil have been described in detail, but in the present invention, in at least one of the positive electrode and the negative electrode, a binder and a conductive auxiliary agent are used. An intermediate layer containing the above may be arranged between the metal foil and the active material layer.
上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極11又は負極12は、活物質層を金属箔の片面側にのみ備えてもよい。 In the above embodiment, the electrodes in which the active material layer is arranged on both side surfaces of the metal leaf of each electrode have been described, but in the power storage element of the present invention, the positive electrode 11 or the negative electrode 12 has the active material layer on one side of the metal leaf. It may be provided only on the side.
上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。 In the above embodiment, the power storage element 1 including the electrode body 2 in which the laminated body 22 is wound has been described in detail, but the power storage element of the present invention may include the laminated body 22 which is not wound. Specifically, the power storage element may include an electrode body in which a positive electrode, a separator, a negative electrode, and a separator each formed in a rectangular shape are stacked a plurality of times in this order.
上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。 In the above embodiment, the case where the power storage element 1 is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described, but the type and size (capacity) of the power storage element 1 are arbitrary. is there. Further, in the above embodiment, the lithium ion secondary battery has been described as an example of the power storage element 1, but the present invention is not limited to this. For example, the present invention can be applied to various secondary batteries and other storage elements of capacitors such as electric double layer capacitors.
蓄電素子1(例えば電池)は、図8に示すような蓄電装置100(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置100は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材91と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子に適用されていればよい。 The power storage element 1 (for example, a battery) may be used in a power storage device 100 (a battery module when the power storage element is a battery) as shown in FIG. The power storage device 100 includes at least two power storage elements 1 and a bus bar member 91 that electrically connects two (different) power storage elements 1 to each other. In this case, the technique of the present invention may be applied to at least one power storage element.
以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。 A non-aqueous electrolyte secondary battery (lithium ion secondary battery) was manufactured as shown below.
(実施例1)
(1)正極の作製
溶剤としてN−メチル−2−ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)と、活物質(LiNi1/6Co2/3Mn1/6O2)の粒子とを、混合し、混練することで、正極用の合剤を調製した。導電助剤、バインダ、活物質の配合量は、それぞれ4.5質量%、4.5質量%、91質量%とした。調製した正極用の合剤をアルミニウム箔の両面に、乾燥後の塗布量(目付量)が1.00g/m2となるようにそれぞれ塗布した。乾燥後、ロールプレスを行った。その後、真空乾燥して、水分を除去した。
(Example 1)
(1) Preparation of positive electrode N-methyl-2-pyrrolidone (NMP) as solvent, conductive additive (acetylene black), binder (PVdF), and active material (LiNi 1/6 Co 2/3 Mn 1/6) The particles of O 2 ) were mixed and kneaded to prepare a mixture for the positive electrode. The blending amounts of the conductive auxiliary agent, the binder, and the active material were 4.5% by mass, 4.5% by mass, and 91% by mass, respectively. The prepared mixture for the positive electrode was applied to both sides of the aluminum foil so that the coating amount (basis weight) after drying was 1.00 g / m 2 . After drying, a roll press was performed. Then, it was vacuum dried to remove water.
(2)負極の作製
活物質としては、平均粒径D50が10μmの粒子状の難黒鉛化性炭素を用いた。また、バインダとしては、PVdFを用いた。負極用の合剤は、溶剤としてNMPと、バインダと、活物質とを混合、混練することで調製した。バインダは、7質量%となるように配合し、活物質は、93質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が0.46g/m2となるように銅箔の両面にそれぞれ塗布した。乾燥後、ロールプレスを行い、真空乾燥して、水分を除去した。
(2) Preparation of Negative Electrode As the active material, particulate non-graphitizable carbon having an average particle size D50 of 10 μm was used. Moreover, PVdF was used as a binder. The mixture for the negative electrode was prepared by mixing and kneading NMP as a solvent, a binder, and an active material. The binder was blended so as to be 7% by mass, and the active material was blended so as to be 93% by mass. The prepared mixture for the negative electrode was applied to both sides of the copper foil so that the coating amount (basis weight) after drying was 0.46 g / m 2 . After drying, a roll press was performed and vacuum dried to remove water.
(3)セパレータ
セパレータとしてポリエチレン製微多孔膜を用いた。
(3) Separator A polyethylene microporous membrane was used as the separator.
(4)電解液の調製
電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、濃度が1mol/Lとなるように電解質塩(LiPF6)を溶解させ、電解液を調製した。電解液には、1質量%となるように1,2−ペンタンジオール硫酸エステルを添加した。
(4) Preparation of electrolytic solution As the electrolytic solution, the one prepared by the following method was used. As the non-aqueous solvent, a solvent obtained by mixing 1 part by volume of propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was used, and the electrolyte salt (LiPF 6 ) was added to the non-aqueous solvent so as to have a concentration of 1 mol / L. It was dissolved and an electrolytic solution was prepared. 1,2-Pentanediol sulfate ester was added to the electrolytic solution so as to be 1% by mass.
(5)ケース内への電極体の配置
上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
(5) Arrangement of Electrode Body in Case Using the above positive electrode, the above negative electrode, the above electrolytic solution, the separator, and the case, a battery was manufactured by a general method.
First, a sheet-like material in which a separator was arranged between the positive electrode and the negative electrode and laminated was wound. Next, the wound electrode body was placed in the case body of the aluminum square battery case as a case. Subsequently, the positive electrode and the negative electrode were electrically connected to each of the two external terminals. Furthermore, a lid plate was attached to the case body. The above electrolytic solution was injected into the case through a liquid injection port formed on the lid plate of the case. Finally, the case was sealed by sealing the injection port of the case.
(実施例2)
LiNi1/6Co2/3Mn1/6O2に代えてLiNi1/3Co1/3Mn1/3O2を活物質として用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Example 2)
Lithium ion in the same manner as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the active material instead of LiNi 1/6 Co 2/3 Mn 1/6 O 2. Manufactured a secondary battery.
(実施例3)
LiNi1/6Co2/3Mn1/6O2に代えてLiNi1/3Co1/3Mn1/3O2を活物質として用いた点、また、1,2−ペンタンジオール硫酸エステルを0.5質量%となるように、且つ1,3−プロペンスルトンを0.5質量%となるように電解液に添加した点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Example 3)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the active material instead of LiNi 1/6 Co 2/3 Mn 1/6 O 2 , and 1,2-pentanediol sulfate ester was used. A lithium ion secondary battery was produced in the same manner as in Example 1 except that 1,3-propene sultone was added to the electrolytic solution so as to be 0.5% by mass and 0.5% by mass. did.
(比較例1)
LiNi1/6Co2/3Mn1/6O2に代えてLiNi1/3Co1/3Mn1/3O2を活物質として用いた点、また、1,2−ペンタンジオール硫酸エステルに代えて1,3−プロペンスルトンを0.5質量%となるように電解液に添加した以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Comparative Example 1)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the active material instead of LiNi 1/6 Co 2/3 Mn 1/6 O 2 , and 1,2-pentanediol sulfate ester was used. A lithium ion secondary battery was produced in the same manner as in Example 1 except that 1,3-propene sultone was added to the electrolytic solution in an amount of 0.5% by mass instead.
(比較例2)
LiNi1/6Co2/3Mn1/6O2に代えてLiNi1/3Co1/3Mn1/3O2を活物質として用いた点、また、1,2−ペンタンジオール硫酸エステルに代えてグリコールサルファイトを1.0質量%となるように電解液に添加した以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Comparative Example 2)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the active material instead of LiNi 1/6 Co 2/3 Mn 1/6 O 2 , and 1,2-pentanediol sulfate ester was used. A lithium ion secondary battery was produced in the same manner as in Example 1 except that glycol sulfite was added to the electrolytic solution so as to be 1.0% by mass instead.
<XPS分析>
XPS分析(X線光電子分光法。ESCAともいう)は、PHI社製「Quantera SXM」を用いて行った。誘起X線は、単結晶分光AlKα1,2線(1486.6eV)であった。X線スポットは、200μmの円形であった。出力は、10kV,22mAであった。アナライザーモードは、Constant Analyzer Energy(CAE)Mode,Pass EnergyのWide Scan:Res.4=150eV Narrow scan:Res.2=50eVであった。光電子脱出角度(試料表面に対する検出器の傾き)は、45°であった。負極表面のXPS分析では、中性炭素C1sのメインピークを284.6eVとすることで、横軸補正を行った。一方、正極表面のXPS分析では、横軸補正を行わなかった。スペクトルのスムージングは、9−point smoothingによって行った。ピーク分割におけるデータ処理は、smoothing 3points,peak area measurement,background subtraction,peak synthesisを用いて行った。ピーク分割によって各成分の原子%を算出した。
測定の前には、電池に前処理を施した。前処理では、電池を0.1C(所定容量の電池を一定の電流で放電させ、1時間で放電が終わったとき、その電流を1Cという。)で2.5Vまで放電した。前処理後の電池から正極又は負極を取り出すときには、アルゴンガスで満たされたグローブボックス内で電池を解体した。取り出した正極又は負極は、大気に暴露されない状態で保管した。
なお、65℃、SOC80%(4.0V)の条件下で電池を所定日数放置した後にも、同様にしてXPS分析を行った。
<XPS analysis>
XPS analysis (X-ray photoelectron spectroscopy, also referred to as ESCA) was performed using "Quantera SXM" manufactured by PHI. The induced X-rays were single crystal spectroscopic AlKα 1 and 2 lines (1486.6 eV). The X-ray spot was a circle of 200 μm. The output was 10 kV, 22 mA. The analyzer mode is described in Constant Analyzer Energy (CAE) Mode, Pass Energy Wide Scan: Res. 4 = 150eV Now scan: Res. It was 2 = 50 eV. The photoelectron escape angle (inclination of the detector with respect to the sample surface) was 45 °. In the XPS analysis of the negative electrode surface, the horizontal axis correction was performed by setting the main peak of the neutral carbon C1s to 284.6 eV. On the other hand, in the XPS analysis of the positive electrode surface, the horizontal axis correction was not performed. Spectral smoothing was performed by 9-point smoothing. Data processing in peak division was performed using smoothing 3points, peak area measurement, backglond subtraction, and peak synthesis. The atomic% of each component was calculated by peak division.
Prior to the measurement, the batteries were pretreated. In the pretreatment, the battery was discharged to 2.5 V at 0.1 C (a battery having a predetermined capacity is discharged with a constant current, and when the discharge is completed in 1 hour, the current is referred to as 1 C). When removing the positive electrode or the negative electrode from the pretreated battery, the battery was disassembled in a glove box filled with argon gas. The removed positive electrode or negative electrode was stored in a state where it was not exposed to the atmosphere.
Even after the battery was left for a predetermined number of days under the conditions of 65 ° C. and 80% SOC (4.0 V), XPS analysis was performed in the same manner.
XPS分析の結果を表1〜表4に示す。表1には、正極のXPS分析の光電子スペクトルから、168eV以上170eV以下のピークに基づいて算出された硫黄S1の濃度(原子%)を示す。表2には、正極のXPS分析の光電子スペクトルから、163eV以上165eV以下のピークに基づいて算出された硫黄S2の濃度(原子%)を示す。表3には、硫黄S2の濃度/硫黄S1の濃度を示す。表4には、負極のXPS分析の光電子スペクトルから、163eV以上170eV以下のピークに基づいて算出された硫黄成分の硫黄S3の原子%を示す。 The results of the XPS analysis are shown in Tables 1 to 4. Table 1 shows the concentration (atomic%) of sulfur S1 calculated based on the peak of 168 eV or more and 170 eV or less from the photoelectron spectrum of the XPS analysis of the positive electrode. Table 2 shows the concentration (atomic%) of sulfur S2 calculated based on the peak of 163 eV or more and 165 eV or less from the photoelectron spectrum of the XPS analysis of the positive electrode. Table 3 shows the concentration of sulfur S2 / the concentration of sulfur S1. Table 4 shows the atomic% of sulfur S3 of the sulfur component calculated based on the peak of 163 eV or more and 170 eV or less from the photoelectron spectrum of the XPS analysis of the negative electrode.
上記の結果から把握されるように、正極において、(硫黄S2の濃度)/(硫黄S1の濃度)の値は、時間の経過に伴って大きくなった。 As can be seen from the above results, the value of (concentration of sulfur S2) / (concentration of sulfur S1) increased with the passage of time in the positive electrode.
<電池容量の評価>
製造直後、及び、65℃、SOC80%(4.0V)の条件下で電池を所定日数放置した後に、常法に従い電池容量を測定した。
<Evaluation of battery capacity>
Immediately after production, and after leaving the battery for a predetermined number of days under the conditions of 65 ° C. and 80% SOC (4.0 V), the battery capacity was measured according to a conventional method.
<アシスト出力性能の評価>
製造直後、及び、65℃、SOC80%(4.0V)の条件下で電池を所定日数放置した後に、25℃及び−10℃にて、それぞれアシスト出力を測定した。初期の値に対する所定日数後の出力値によって評価結果を示す。
<Evaluation of assist output performance>
Immediately after production, and after leaving the battery for a predetermined number of days under the conditions of 65 ° C. and 80% SOC (4.0 V), the assist output was measured at 25 ° C. and −10 ° C., respectively. The evaluation result is shown by the output value after a predetermined number of days with respect to the initial value.
上記の各評価結果について、所定日数後の測定値を、初期測定値に対する相対値によって表したグラフを図9〜図11に示す。図9は、放置後の電池容量の評価結果を示す。図10は、25℃でのアシスト出力性能の評価結果を示す。図11は、−10℃でのアシスト出力性能の評価結果を示す。 For each of the above evaluation results, graphs showing the measured values after a predetermined number of days as relative values to the initial measured values are shown in FIGS. 9 to 11. FIG. 9 shows the evaluation result of the battery capacity after being left unattended. FIG. 10 shows the evaluation result of the assist output performance at 25 ° C. FIG. 11 shows the evaluation result of the assist output performance at −10 ° C.
上記の結果から把握されるように、実施例の電池は、比較例の電池と比較して、長期間放置された後に容量及び出力が低下することを抑制できた。実施例の電池は、特に、−10℃という低温において出力が低下することを抑制できた。 As can be seen from the above results, the battery of the example was able to suppress a decrease in capacity and output after being left for a long period of time as compared with the battery of the comparative example. The battery of the example was able to suppress a decrease in output particularly at a low temperature of -10 ° C.
1:蓄電素子(非水電解質二次電池)、
2:電極体、
26:露出積層部、
3:ケース、 31:ケース本体、 32:蓋板、
4:セパレータ、
5:集電体、 50:クリップ部材、
6:絶縁カバー、
7:外部端子、 71:面、
11:正極、
111:正極の金属箔(正極基材)、 112:正極活物質層、
12:負極、
121:負極の金属箔(負極基材)、 122:負極活物質層、
91:バスバ部材、
100:蓄電装置。
1: Power storage element (non-aqueous electrolyte secondary battery),
2: Electrode body,
26: Exposed laminated part,
3: Case, 31: Case body, 32: Lid plate,
4: Separator,
5: Current collector, 50: Clip member,
6: Insulation cover,
7: External terminal, 71: Surface,
11: Positive electrode,
111: Metal leaf of positive electrode (positive electrode base material), 112: Positive electrode active material layer,
12: Negative electrode,
121: Metal foil of negative electrode (negative electrode base material), 122: Negative electrode active material layer,
91: Bus bar member,
100: Power storage device.
Claims (3)
0日目、及び、65℃、SOC80%の条件下で360日経過した後に、前記正極の表面がそれぞれXPS分析された場合のいずれでも、
SO4 2−に基づいたピークによって算出される硫黄S1の濃度は、0.3原子%以上1.0原子%以下であり、
S−S及びS−Cに基づいたピークによって算出される硫黄S2の濃度は、0原子%以上0.36原子%以下であり、
(硫黄S2の濃度)/(硫黄S1の濃度)は、0以上2以下であり、
前記正極は、正極活物質とバインダとを含み、該正極活物質は、LivNiwMnxCoyOzの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y≦1/3であり、1.7≦z≦2.3である)であり、
該バインダは、ポリフッ化ビニリデン、エチレンとビニルアルコールとの共重合体、及びポリメタクリル酸メチルからなる群から選択される少なくとも1種であり、
前記負極は、負極活物質を含み、該負極活物質は、難黒鉛化炭素である、蓄電素子。 It has a positive electrode and a negative electrode,
Day 0, and, 65 ° C., after a lapse 360 days under the conditions of SOC 80%, either when the positive electrode surface are respectively XPS analysis,
The concentration of sulfur S1, is calculated by the peak based on the SO 4 2-is 1.0 atomic% or less 0.3 atomic% or more,
The concentration of sulfur S2 calculated from the peaks based on SS and SC is 0 atomic% or more and 0.36 atomic% or less.
(Concentration of sulfur S2) / (concentration of sulfur S1) is 0 or more and 2 or less.
The positive electrode includes a positive electrode active material and the binder, the positive electrode active material, Li v Ni w Mn x Co y O z lithium-metal composite oxide represented by the chemical composition (but, 0 <v ≦ 1. 3, w + x + y = 1, 0 <w <1, 0 <x <1, 0 <y ≦ 1/3, 1.7 ≦ z ≦ 2.3). ,
The binder is at least one selected from the group consisting of polyvinylidene fluoride, a copolymer of ethylene and vinyl alcohol, and polymethylmethacrylate.
The negative electrode contains a negative electrode active material, and the negative electrode active material is a graphitized carbon, which is a power storage element.
硫黄成分に基づいた163eV以上170eV以下のピークによって算出される硫黄S3の濃度は、0.5原子%以上5.0原子%以下である、請求項1又は2に記載の蓄電素子。 Day 0, and, 65 ° C., after a lapse 360 days under the conditions of SOC 80%, either when the surface of the negative electrode is respectively XPS analysis,
The power storage device according to claim 1 or 2, wherein the concentration of sulfur S3 calculated by a peak of 163 eV or more and 170 eV or less based on the sulfur component is 0.5 atomic% or more and 5.0 atomic% or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015066498A JP6757505B2 (en) | 2015-03-27 | 2015-03-27 | Power storage element |
PCT/JP2016/059491 WO2016158703A1 (en) | 2015-03-27 | 2016-03-24 | Electricity storage element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015066498A JP6757505B2 (en) | 2015-03-27 | 2015-03-27 | Power storage element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016186883A JP2016186883A (en) | 2016-10-27 |
JP6757505B2 true JP6757505B2 (en) | 2020-09-23 |
Family
ID=57004307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015066498A Active JP6757505B2 (en) | 2015-03-27 | 2015-03-27 | Power storage element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6757505B2 (en) |
WO (1) | WO2016158703A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4190162B2 (en) * | 2001-03-01 | 2008-12-03 | 三井化学株式会社 | Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte |
JP5521327B2 (en) * | 2006-09-12 | 2014-06-11 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery |
JP5906698B2 (en) * | 2011-12-01 | 2016-04-20 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JP2013175412A (en) * | 2012-02-27 | 2013-09-05 | Sumitomo Electric Ind Ltd | Nonaqueous electrolyte battery |
JP5474224B2 (en) * | 2013-01-28 | 2014-04-16 | 日立マクセル株式会社 | Non-aqueous electrolyte secondary battery system |
JP2015050084A (en) * | 2013-09-03 | 2015-03-16 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery |
-
2015
- 2015-03-27 JP JP2015066498A patent/JP6757505B2/en active Active
-
2016
- 2016-03-24 WO PCT/JP2016/059491 patent/WO2016158703A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2016158703A1 (en) | 2016-10-06 |
JP2016186883A (en) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101851846B1 (en) | Lithium ion secondary battery and system using same | |
JP6044842B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP5783425B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2010287512A (en) | Method of manufacturing lithium ion secondary battery | |
KR20150139780A (en) | Nonaqueous electrolyte secondary battery and manufacturing method of the same | |
US10199689B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4714229B2 (en) | Lithium secondary battery | |
WO2018043375A1 (en) | Electricity storage element and method for producing same | |
JP5472755B2 (en) | Non-aqueous electrolyte type lithium ion secondary battery | |
JP2017191651A (en) | Power storage element | |
KR20150042714A (en) | Nonaqueous electrolyte secondary battery | |
JP6770701B2 (en) | Power storage element | |
JP6880488B2 (en) | Lithium ion secondary battery | |
JP6812928B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6947182B2 (en) | Power storage element and manufacturing method of power storage element | |
JP2016186886A (en) | Electricity storage element | |
JP6757505B2 (en) | Power storage element | |
JP6189644B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP7054479B2 (en) | Power storage element | |
JP2017010855A (en) | Nonaqueous electrolyte solution secondary battery | |
JP7249520B2 (en) | Storage element and storage device | |
JP2018098138A (en) | Power storage element | |
JP6726405B2 (en) | Storage element | |
KR20170022909A (en) | Lithium ion secondary battery and method of producing same | |
JP6853944B2 (en) | Power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200131 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200813 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6757505 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |