JP6756843B2 - Manufacturing method of composite substrate - Google Patents
Manufacturing method of composite substrate Download PDFInfo
- Publication number
- JP6756843B2 JP6756843B2 JP2018543966A JP2018543966A JP6756843B2 JP 6756843 B2 JP6756843 B2 JP 6756843B2 JP 2018543966 A JP2018543966 A JP 2018543966A JP 2018543966 A JP2018543966 A JP 2018543966A JP 6756843 B2 JP6756843 B2 JP 6756843B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- piezoelectric
- piezoelectric layer
- composite
- support substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 387
- 239000002131 composite material Substances 0.000 title claims description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 150000002500 ions Chemical class 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 42
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical group CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 30
- 229910052594 sapphire Inorganic materials 0.000 claims description 27
- 239000010980 sapphire Substances 0.000 claims description 27
- 238000005304 joining Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 21
- -1 hydrogen ions Chemical class 0.000 claims description 16
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 description 31
- 230000003746 surface roughness Effects 0.000 description 27
- 239000013078 crystal Substances 0.000 description 25
- 239000000843 powder Substances 0.000 description 25
- 238000001069 Raman spectroscopy Methods 0.000 description 22
- 229910004298 SiO 2 Inorganic materials 0.000 description 22
- 239000010408 film Substances 0.000 description 20
- 238000010897 surface acoustic wave method Methods 0.000 description 20
- 238000009792 diffusion process Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 17
- 230000004044 response Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 238000001994 activation Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910013553 LiNO Inorganic materials 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- 238000003841 Raman measurement Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/04—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/20—Doping by irradiation with electromagnetic waves or by particle radiation
- C30B31/22—Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
- H10N30/073—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Laminated Bodies (AREA)
Description
本発明は、タンタル酸リチウム等からなる圧電体層と支持基板とを含んで構成される複合基板及び複合基板の製造方法に関する。 The present invention relates to a composite substrate including a piezoelectric layer made of lithium tantalate and the like and a support substrate, and a method for manufacturing the composite substrate.
携帯電話等には、周波数調整・選択用の部品として、圧電基板上に弾性表面波を励起するための櫛形電極(IDT)が形成された弾性表面波(SAW)デバイスが用いられている。 A surface acoustic wave (SAW) device in which a surface acoustic wave (IDT) for exciting a surface acoustic wave is formed on a piezoelectric substrate is used as a component for frequency adjustment / selection in a mobile phone or the like.
弾性表面波デバイスには、小型で挿入損失が小さく、不要波を通さない性能が要求され、タンタル酸リチウム(LiTaO3;LT)やニオブ酸リチウム(LiNbO3;LN)などの圧電材料が用いられている。Piezoelectric materials such as lithium tantalate (LiTaO 3 ; LT) and lithium niobate (LiNbO 3 ; LN) are required for surface acoustic wave devices that are small in size, have small insertion loss, and do not allow unwanted waves to pass through. ing.
一方で、第四世代以降の携帯電話の通信規格は、送受信における周波数バンド間隔は狭く、バンド幅は広くなっている。このような通信規格のもとでは、弾性表面波デバイスに用いられる圧電材料は、その温度による特性変動を十分小さくする必要がある。また、バンド間に余計なノイズがはみ出ないように、フィルタやデュプレクサの肩特性は極めて急峻である必要があり、高いQ値が求められる。 On the other hand, in the communication standards of mobile phones of the 4th generation and later, the frequency band interval in transmission and reception is narrow and the bandwidth is wide. Under such communication standards, the piezoelectric material used for surface acoustic wave devices needs to sufficiently reduce the characteristic fluctuation due to its temperature. In addition, the shoulder characteristics of the filter and duplexer need to be extremely steep so that extra noise does not protrude between the bands, and a high Q value is required.
このような弾性表面波デバイスに用いられる材料に関して、圧電材料と他の材料からなる複合基板が検討されている。例えば、特許文献1には、支持基板上に、圧電膜を伝搬する弾性波音速より伝搬するバルク波音速が高速である高音速膜、圧電膜を伝搬するバルク波音速より伝搬するバルク波音速が低速である低音速膜、圧電膜が順に積層された複合基板が開示されており、この複合基板を用いた弾性波装置は、Q値を高められることが示されている。
As a material used for such a surface acoustic wave device, a composite substrate made of a piezoelectric material and another material has been studied. For example,
さらに、特許文献1には、この複合基板の製造方法として、イオン注入によって圧電膜を形成することが示されている。
Further,
また、非特許文献1では、H+イオンを注入したタンタル酸リチウム基板を、SiN膜又はSiO2膜を介して支持基板に接合した後、タンタル酸リチウム基板を二つに分離する方法が開示されている。Further, Non-Patent
イオン注入を伴う複合基板の製造方法では、圧電膜の膜厚が薄く、膜厚均一性にも優れた複合基板が得られる一方で、本発明者らが、イオン注入を伴う複合基板の製造方法について詳細に検討した結果、いくつかの問題点があることがわかった。 In the method for manufacturing a composite substrate with ion implantation, a composite substrate having a thin piezoelectric film and excellent film thickness uniformity can be obtained, while the present inventors have a method for manufacturing a composite substrate with ion implantation. As a result of detailed examination of, it was found that there are some problems.
すなわち、特許文献1や非特許文献1で用いられているようなLiTaO3基板にイオン注入を施して、これを分離した場合、注入されたH+等のイオンによって、LiTaO3基板内のLiイオンの一部がはじき出されるため、形成したLiTaO3層にLi量のバラツキが生じることが明らかとなった。このようなLi量のバラツキは、弾性表面波の音速や電気機械結合係数等の特性バラツキとして顕在化するため、弾性表面波デバイスの製造において大きな問題となる。That is, when ions are implanted into a LiTaO 3 substrate as used in
さらに、この場合、LiTaO3層のLi量が減少するため、LiTaO3の圧電材料としての性能が低下することになる。例えば、一致溶融(コングルエント)組成(Li/Li+Ta=48.5mol%)のLiTaO3基板を圧電基板として、イオン注入を伴って複合基板を作製した場合は、Li量は減少して、48.5mol%以下となる。
また、二重ルツボ法などにより作製した定比(ストイキオメトリー)組成(Li/Li+Ta=49.95〜50.0mol%)のLiTaO3基板を圧電基板として用いても、Li量は少なくとも0.1%程度減少して、49.9mol%以下となる。Further, in this case, since the amount of Li in the LiTaO 3 layer is reduced, the performance of LiTaO 3 as a piezoelectric material is lowered. For example, when a composite substrate is produced by using a LiTaO 3 substrate having a congruent composition (Li / Li + Ta = 48.5 mol%) as a piezoelectric substrate and ion implantation is performed, the amount of Li is reduced to 48.5 mol. It will be less than%.
Further, even if a LiTaO 3 substrate having a constant ratio (stoichiometry) composition (Li / Li + Ta = 49.95 to 50.0 mol%) prepared by a double crucible method or the like is used as the piezoelectric substrate, the amount of Li is at least 0. It decreases by about 1% to 49.9 mol% or less.
そのため、従来は、ストイキオメトリー組成のLiTaO3層を有し、研磨・研削による作製方法では得られないような膜厚が薄く、膜厚均一性に優れた複合基板は得られなかった。Therefore, conventionally, it has not been possible to obtain a composite substrate having three layers of LiTaO having a stoichiometric composition, having a thin film thickness that cannot be obtained by a manufacturing method by polishing and grinding, and having excellent film thickness uniformity.
したがって、本発明の目的は、Li量のバラツキが少ない圧電体層と支持基板とを含んで構成される複合基板と複合基板の製造方法を提供することである。 Therefore, an object of the present invention is to provide a composite substrate and a method for manufacturing a composite substrate, which are composed of a piezoelectric layer and a support substrate having a small variation in the amount of Li.
本発明者らは、上記目的を達成するために鋭意検討した結果、圧電体層にLi拡散を施すことによって、圧電体層のLi量のバラツキを抑えられることを見出して、本発明に至ったものである。 As a result of diligent studies to achieve the above object, the present inventors have found that the variation in the amount of Li in the piezoelectric layer can be suppressed by applying Li diffusion to the piezoelectric layer, and have reached the present invention. It is a thing.
すなわち、本発明は、圧電体層と支持基板とを含んで構成される複合基板の製造方法であって、圧電体基板にイオン注入を行う工程と、圧電体基板と支持基板とを接合する工程と、圧電体基板と支持基板とを接合する工程の後に、圧電体基板のイオン注入部において、支持基板に接合された圧電体層と残りの圧電体基板とに分離する工程と、この分離する工程の後に、圧電体層にLiを拡散させる工程とを含むことを特徴とするものである。 That is, the present invention is a method for manufacturing a composite substrate including a piezoelectric layer and a support substrate, in which a step of injecting ions into the piezoelectric substrate and a step of joining the piezoelectric substrate and the support substrate. After the step of joining the piezoelectric substrate and the support substrate, the step of separating the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate at the ion injection portion of the piezoelectric substrate is separated. It is characterized by including a step of diffusing Li into the piezoelectric layer after the step.
また、本発明では、圧電体基板と支持基板とを接合する工程の後に、圧電体基板をキュリー温度以上に昇温して、電界を印加した状態でキュリー温度以下に降温する工程を含むことが好ましく、圧電体基板と支持基板とを接合する工程の後に、圧電体基板を昇温して圧電性を回復させる工程を含むこともできる。 Further, in the present invention, after the step of joining the piezoelectric substrate and the support substrate, the step of raising the temperature of the piezoelectric substrate to the Curie temperature or higher and lowering the temperature to the Curie temperature or lower in a state where an electric field is applied may be included. Preferably, after the step of joining the piezoelectric substrate and the support substrate, a step of raising the temperature of the piezoelectric substrate to restore the piezoelectricity can also be included.
本発明では、その圧電体基板と支持基板とを接合する工程は、表面活性化常温接合法によって行うことが好ましく、圧電体層と前記支持基板との間に介在層を設けることもできる。 In the present invention, the step of joining the piezoelectric substrate and the support substrate is preferably performed by a surface-activated room temperature bonding method, and an intervening layer can be provided between the piezoelectric layer and the support substrate.
本発明の圧電体層にLiを拡散させる工程では、圧電体層を疑似ストイキオメトリー組成とすることが好ましく、また、圧電体基板にイオン注入を行う工程のイオン種は、水素イオン、水素分子イオン、ヘリウムイオンから選ばれる少なくとも1種のイオンであることが好ましい。 In the step of diffusing Li into the piezoelectric layer of the present invention, it is preferable that the piezoelectric layer has a pseudo-stoikiometry composition, and the ion species in the step of implanting ions into the piezoelectric substrate are hydrogen ions and hydrogen molecules. It is preferably at least one type of ion selected from an ion and a helium ion.
本発明の圧電体基板は、その厚さ方向にわたってLi濃度が異なっている範囲を有するものがよく、タンタル酸リチウムまたはニオブ酸リチウムであることが好ましい。また、支持基板は、シリコン、サファイア、炭化ケイ素、スピネルから選ばれる少なくとも1種の材料を含むものが好ましい。 The piezoelectric substrate of the present invention preferably has a range in which the Li concentration differs in the thickness direction thereof, and is preferably lithium tantalate or lithium niobate. Further, the support substrate preferably contains at least one material selected from silicon, sapphire, silicon carbide, and spinel.
本発明は、圧電体層と支持基板とを含んで構成される複合基板の製造方法であって、圧電体基板にイオン注入を行う工程と、圧電体基板と支持基板とを接合する工程と、圧電体基板と支持基板とを接合する工程の後に、圧電体基板のイオン注入部において、支持基板に接合された圧電体層と残りの圧電体基板とに分離する工程と、を含み、圧電体基板は、タンタル酸リチウムであり、Li濃度が48.5±0.5%である箇所と、Li濃度が50.0±0.5%である箇所を有し、その厚み方向について、基板表面側の方がLi濃度の高くなる範囲を有することを特徴とするものである。 The present invention is a method for manufacturing a composite substrate including a piezoelectric layer and a support substrate, which comprises a step of injecting ions into the piezoelectric substrate and a step of joining the piezoelectric substrate and the support substrate. After the step of joining the piezoelectric substrate and the support substrate, the ion injection portion of the piezoelectric substrate includes a step of separating the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate. The substrate is lithium tantalate, and has a portion having a Li concentration of 48.5 ± 0.5% and a portion having a Li concentration of 50.0 ± 0.5%, and the substrate surface in the thickness direction thereof. It is characterized in that the side has a range in which the Li concentration is higher.
本発明は、圧電体層と支持基板とを含んで構成される複合基板の製造方法であって、圧電体基板にイオン注入を行う工程と、圧電体基板と支持基板とを接合する工程と、圧電体基板と支持基板とを接合する工程の後に、圧電体基板のイオン注入部において、支持基板に接合された圧電体層と残りの圧電体基板とに分離する工程と、を含み、圧電体基板は、タンタル酸リチウムまたはニオブ酸リチウムであり、圧電体基板のイオン注入される深さ位置のLi濃度は、50.0%超であることを特徴とするものである。 The present invention is a method for manufacturing a composite substrate including a piezoelectric layer and a support substrate, which comprises a step of injecting ions into the piezoelectric substrate and a step of joining the piezoelectric substrate and the support substrate. After the step of joining the piezoelectric substrate and the support substrate, the ion injection portion of the piezoelectric substrate includes a step of separating the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate. The substrate is lithium tantalate or lithium niobate, and the Li concentration at the ion-injected depth position of the piezoelectric substrate is more than 50.0%.
本発明は、圧電体層と支持基板とを含んで構成される複合基板の製造方法であって、圧電体基板にイオン注入を行う工程と、圧電体基板と支持基板とを接合する工程と、圧電体基板と支持基板とを接合する工程の後に、圧電体基板のイオン注入部において、支持基板に接合された圧電体層と残りの圧電体基板とに分離する工程と、を含み、圧電体基板は、タンタル酸リチウムであり、Li濃度が48.5±0.5%である箇所と、Li濃度が50.0±0.5%である箇所を有し、その厚み方向について、基板表面側の方がLi濃度の高くなる範囲を有し、圧電体基板のイオン注入される深さ位置のLi濃度は、50.0%超であることを特徴とするものである。 The present invention is a method for manufacturing a composite substrate including a piezoelectric layer and a support substrate, which comprises a step of injecting ions into the piezoelectric substrate and a step of joining the piezoelectric substrate and the support substrate. After the step of joining the piezoelectric substrate and the support substrate, the ion injection portion of the piezoelectric substrate includes a step of separating the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate. The substrate is lithium tantalate, and has a portion having a Li concentration of 48.5 ± 0.5% and a portion having a Li concentration of 50.0 ± 0.5%, and the substrate surface in the thickness direction thereof. The side has a range in which the Li concentration is higher, and the Li concentration at the depth position where ions are injected from the piezoelectric substrate is more than 50.0%.
本発明では、圧電体基板の支持基板と接合する側の表面からイオン注入される深さ位置までのLi濃度は、49.0%以上52.5%以下であることが好ましい。また、前記圧電体層と前記支持基板との間に介在層を設けることが好ましい。 In the present invention, the Li concentration from the surface of the piezoelectric substrate on the side to be bonded to the support substrate to the depth position where ions are implanted is preferably 49.0% or more and 52.5% or less. Further, it is preferable to provide an intervening layer between the piezoelectric layer and the support substrate.
本発明は、圧電体層と支持基板とを含んで構成される複合基板であって、圧電体層は、タンタル酸リチウムまたはニオブ酸リチウムであり、圧電体層表面のLi濃度は、49.9%超であり、圧電体層の厚みは、1.0μm以下であり、圧電体層の表面粗さの最大高さRz値は、圧電体層の厚みの10%以下であることを特徴とするものである。 The present invention is a composite substrate including a piezoelectric layer and a support substrate. The piezoelectric layer is lithium tantalate or lithium niobate, and the Li concentration on the surface of the piezoelectric layer is 49.9. %, The thickness of the piezoelectric layer is 1.0 μm or less, and the maximum height Rz value of the surface roughness of the piezoelectric layer is 10% or less of the thickness of the piezoelectric layer. It is a thing.
本発明では、前記圧電体層と前記支持基板との間に介在層が存在することが好ましい。 In the present invention, it is preferable that an intervening layer is present between the piezoelectric layer and the support substrate.
本発明によれば、圧電体層のLi量のバラツキが少ない複合基板を製造することが可能となる。また、本発明により製造された複合基板を用いれば、優れた特性の弾性表面波デバイスを安定して製造することができる。
さらに、本発明によれば、ストイキオメトリー組成のLiTaO3層を有し、圧電体層の膜厚が薄く、膜厚均一性に優れた複合基板を製造することができる。According to the present invention, it is possible to manufacture a composite substrate having a small variation in the amount of Li in the piezoelectric layer. Further, by using the composite substrate manufactured by the present invention, it is possible to stably manufacture a surface acoustic wave device having excellent characteristics.
Further, according to the present invention, it is possible to manufacture a composite substrate having three LiTaO layers having a stoichiometric composition, having a thin piezoelectric layer, and having excellent film thickness uniformity.
本発明は、圧電体層と支持基板とを含んで構成される複合基板の製造方法である。ここで、圧電体層及び支持基板に用いられる材料は特に限定されないが、圧電材料としては、Liを組成中に含むタンタル酸リチウムやニオブ酸リチウムが好ましく、これらの単結晶を用いることができる。圧電材料がタンタル酸リチウム単結晶である場合、その結晶方位は回転36°〜49°Yカットであることが好ましい。 The present invention is a method for manufacturing a composite substrate including a piezoelectric layer and a support substrate. Here, the material used for the piezoelectric layer and the support substrate is not particularly limited, but as the piezoelectric material, lithium tantalate or lithium niobate containing Li in the composition is preferable, and these single crystals can be used. When the piezoelectric material is a lithium tantalate single crystal, the crystal orientation is preferably a rotation of 36 ° to 49 ° Y-cut.
また、支持基板材料としては、シリコン、サファイア、炭化ケイ素、スピネル等から選択することができ、これらを含む積層基板でもよい。 Further, the support substrate material can be selected from silicon, sapphire, silicon carbide, spinel and the like, and a laminated substrate containing these can be used.
本発明は、圧電体基板にイオン注入を行う工程を含む。この工程では、圧電体基板の任意の深さにイオンを注入し、後の圧電体基板の分離工程においては、このイオン注入部において分離される。したがって、この工程におけるイオン注入の深さが、圧電体基板分離後の圧電体層の厚みを決定する。そのため、イオン注入の深さは、目的とする複合基板の圧電体層の厚みと同等か、研磨代等を考慮すれば若干大きくすることが好ましい。イオン注入の深さは、材料、イオン種等によって異なるが、イオンの加速電圧によって調整できる。 The present invention includes a step of implanting ions into a piezoelectric substrate. In this step, ions are implanted into an arbitrary depth of the piezoelectric substrate, and in the subsequent separation step of the piezoelectric substrate, the ions are separated at the ion implantation portion. Therefore, the depth of ion implantation in this step determines the thickness of the piezoelectric layer after the piezoelectric substrate is separated. Therefore, it is preferable that the depth of ion implantation is equal to the thickness of the piezoelectric layer of the target composite substrate, or slightly increased in consideration of the polishing allowance and the like. The depth of ion implantation varies depending on the material, ion species, etc., but can be adjusted by the accelerating voltage of the ions.
また、イオン注入工程において用いるイオン種は、圧電体基板材料の結晶性を乱すものであれば特に限定されないが、水素イオン、水素分子イオン、ヘリウムイオン等の軽元素であることが好ましい。これらのイオン種を用いれば、小さな加速電圧でイオン注入することができ、装置上の制約が少ない、圧電基板の損傷が小さい、深さ方向の分布が良い等の利点がある。 The ion species used in the ion implantation step is not particularly limited as long as it disturbs the crystallinity of the piezoelectric substrate material, but is preferably a light element such as hydrogen ion, hydrogen molecule ion, or helium ion. By using these ion species, ions can be implanted with a small accelerating voltage, and there are advantages such as less restrictions on the device, less damage to the piezoelectric substrate, and better distribution in the depth direction.
ここで、イオン注入工程において用いるイオン種が水素イオンである場合は、そのドーズ量は1×1016〜1×1018atm/cm2であることが好ましく、イオン種が水素分子イオンである場合は、そのドーズ量は1×1016〜2×1018atm/cm2であることが好ましい。また、イオン種がヘリウムイオンである場合は、そのドーズ量は2×1016〜2×1018atm/cm2であることが好ましい。Here, when the ion species used in the ion implantation step is hydrogen ion, the dose amount is preferably 1 × 10 16 to 1 × 10 18 atm / cm 2 , and the ion species is hydrogen molecule ion. The dose amount is preferably 1 × 10 16 to 2 × 10 18 atm / cm 2 . When the ion species is helium ion, the dose amount is preferably 2 × 10 16 to 2 × 10 18 atm / cm 2 .
また、本発明は、圧電体基板と支持基板とを接合する工程を含む。この工程における接合方法は特に限定されず、接着剤等を介して接合してもよいし、拡散接合法、常温接合法、プラズマ活性化接合法、表面活性化常温接合法等の直接接合法も用いることができる。このとき、圧電体基板と支持基板との間には、介在層を設けてもよい。
タンタル酸リチウム単結晶基板やニオブ酸リチウム単結晶基板等の圧電基板と、シリコン、サファイア等の支持基板では、熱膨張係数の差が大きく、剥がれや欠陥等の抑制のためには、常温接合法を用いることが好ましいが、常温接合法は接合する系が限定されるという面もある。また、圧電体層の結晶性回復のために、熱処理が必要となる場合もある。The present invention also includes a step of joining the piezoelectric substrate and the support substrate. The joining method in this step is not particularly limited, and may be joined via an adhesive or the like, or a direct joining method such as a diffusion joining method, a room temperature joining method, a plasma activated joining method, or a surface activated room temperature joining method is also available. Can be used. At this time, an intervening layer may be provided between the piezoelectric substrate and the support substrate.
There is a large difference in the coefficient of thermal expansion between the piezoelectric substrate such as lithium tantalate single crystal substrate or lithium niobate single crystal substrate and the support substrate such as silicon or sapphire, and the room temperature bonding method is used to suppress peeling and defects. However, the room temperature joining method also has an aspect that the joining system is limited. In addition, heat treatment may be required to restore the crystallinity of the piezoelectric layer.
表面活性化接合法における表面活性化処理方法は、特に限定されないが、オゾン水処理、UVオゾン処理、イオンビーム処理、プラズマ処理等を用いることができる。 The surface activation treatment method in the surface activation bonding method is not particularly limited, but ozone water treatment, UV ozone treatment, ion beam treatment, plasma treatment and the like can be used.
本発明では、圧電体基板と支持基板とを接合した後、前述の圧電体基板のイオン注入部において、支持基板に接合された圧電体層と残りの圧電体基板とに分離される。このとき、分離方法は特に限定されないが、例えば、200℃以下の温度に加熱して、イオン注入部の一端にクサビ等による機械的応力を加えることによって分離可能である。 In the present invention, after joining the piezoelectric substrate and the support substrate, the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate are separated at the ion implantation portion of the piezoelectric substrate described above. At this time, the separation method is not particularly limited, but the separation can be performed by, for example, heating to a temperature of 200 ° C. or lower and applying a mechanical stress such as a wedge to one end of the ion-implanted portion.
支持基板に接合された圧電体層は、その表面を研磨して、表面粗さや厚みを調整することができる。圧電体層の表面粗さや厚みは、必要に応じて任意に設定すればよいが、表面粗さはRMS値で0.4nm以下、厚みは0.5〜5μm程度であることが好ましい。また、残りの圧電体基板は、再研磨を施して、圧電体基板として再利用することができる。 The surface roughness and thickness of the piezoelectric layer bonded to the support substrate can be adjusted by polishing the surface thereof. The surface roughness and thickness of the piezoelectric layer may be arbitrarily set as needed, but the surface roughness is preferably 0.4 nm or less in terms of RMS value, and the thickness is preferably about 0.5 to 5 μm. Further, the remaining piezoelectric substrate can be re-polished and reused as the piezoelectric substrate.
このようなイオン注入を伴う複合基板の製造方法では、圧電体層の厚みを1.0μm以下、表面粗さを最大高さRz値で、厚みの10%以下に制御することができる。好ましくは、厚みを0.8μm以下、表面粗さを最大高さRz値で、厚みの5%以下に制御することである。このレベルの膜厚及び均一性の制御は、接合した圧電体基板を研磨・研削する方法では困難である。 In the method for producing a composite substrate with ion implantation, the thickness of the piezoelectric layer can be controlled to 1.0 μm or less, and the surface roughness can be controlled to 10% or less of the thickness at the maximum height Rz value. Preferably, the thickness is controlled to 0.8 μm or less, and the surface roughness is controlled to 5% or less of the thickness at the maximum height Rz value. Controlling the film thickness and uniformity at this level is difficult with the method of polishing and grinding the bonded piezoelectric substrate.
さらに、本発明は、前記分離工程の後、支持基板に接合された圧電体層にLiを拡散させる工程を含む。この工程によって、イオン注入工程において生じた圧電体層のLi欠損を補うことができる。圧電体層にLiを拡散させる方法は、特に限定されず、Li拡散源と圧電体層を接触させてLiを拡散させることができる。このとき、Li拡散源の状態は固体、液体、気体の何れでもよい。 Further, the present invention includes a step of diffusing Li into the piezoelectric layer bonded to the support substrate after the separation step. By this step, the Li deficiency of the piezoelectric layer generated in the ion implantation step can be compensated. The method for diffusing Li into the piezoelectric layer is not particularly limited, and Li can be diffused by bringing the Li diffusion source into contact with the piezoelectric layer. At this time, the state of the Li diffusion source may be solid, liquid, or gas.
このLi拡散工程の具体的な手法としては、圧電材料がLiTaO3である場合は、その構成元素であるLi,Ta,Oを含む組成物を用いる。例えば、Li3TaO4を主成分とする粉体に、支持基板に接合された圧電体層を埋め込み、加熱することによって、圧電体層にLiを拡散させることができる。また、LiNO3,NaNO3,KNO3を等モル比で混合した融液中に、支持基板に接合された圧電体層を含浸させることによっても圧電体層にLiを拡散させることができる。As a specific method of this Li diffusion step, when the piezoelectric material is LiTaO 3 , a composition containing the constituent elements Li, Ta, O is used. For example, Li can be diffused in the piezoelectric layer by embedding the piezoelectric layer bonded to the support substrate in a powder containing Li 3 TaO 4 as a main component and heating the mixture. Li can also be diffused into the piezoelectric layer by impregnating the piezoelectric layer bonded to the support substrate into a melt in which LiNO 3 , NaNO 3 , and KNO 3 are mixed at an equimolar ratio.
このLi拡散工程においては、圧電体層が疑似ストイキオメトリー組成となるようにLi拡散を施すことが好ましい。このようにすれば、圧電体層が通常の一致溶融(コングルエント)組成である場合と比較して、電気機械結合係数、温度特性、Q値等の特性を向上させることができる。 In this Li diffusion step, it is preferable to perform Li diffusion so that the piezoelectric layer has a pseudo-stoikiometry composition. In this way, the characteristics such as the electromechanical coupling coefficient, the temperature characteristic, and the Q value can be improved as compared with the case where the piezoelectric layer has a normal congruent composition.
ここで、疑似ストイキオメトリー組成とは、圧電材料に応じて技術常識に基づいて判断されるが、圧電材料がLiTaO3の場合、LiとTaとの比率がLi:Ta=50−α:50+αであり、αが−1.0<α<2.5の範囲であることをいう。また、圧電材料がLiNbO3の場合、LiとNbとの比率がLi:Nb=50−α:50+αであり、αが−1.0<α<2.5の範囲であることをいう。Here, the pseudo-stoikiometry composition is determined based on common general knowledge depending on the piezoelectric material, but when the piezoelectric material is LiTaO 3 , the ratio of Li to Ta is Li: Ta = 50-α: 50 + α. It means that α is in the range of −1.0 <α <2.5. Further, when the piezoelectric material is LiNbO 3 , the ratio of Li to Nb is Li: Nb = 50-α: 50 + α, and α is in the range of −1.0 <α <2.5.
なお、タンタル酸リチウム単結晶基板及びニオブ酸リチウム単結晶基板のLi濃度については、公知の方法により測定すればよいが、例えば、ラマン分光法により評価することができる。タンタル酸リチウム単結晶基板については、ラマンシフトピークの半値幅とLi濃度(Li/(Li+Ta)の値)との間に、おおよそ線形な関係があることが知られている。したがって、このような関係を表す式を用いれば、酸化物単結晶基板の任意の位置における組成を評価することが可能である。 The Li concentration of the lithium tantalate single crystal substrate and the lithium niobate single crystal substrate may be measured by a known method, and can be evaluated by, for example, Raman spectroscopy. It is known that for a lithium tantalate single crystal substrate, there is a substantially linear relationship between the half width of the Raman shift peak and the Li concentration (Li / (Li + Ta) value). Therefore, it is possible to evaluate the composition of the oxide single crystal substrate at an arbitrary position by using an equation expressing such a relationship.
ラマンシフトピークの半値幅とLi濃度との関係式は、その組成が既知であって、Li濃度が異なる幾つかの試料のラマン半値幅を測定することによって得られるが、ラマン測定の条件が同じであれば、文献などで既に明らかになっている関係式を用いてもよい。 The relational expression between the half width of the Raman shift peak and the Li concentration can be obtained by measuring the Raman half width of several samples whose composition is known and whose Li concentration is different, but the conditions for Raman measurement are the same. If so, a relational expression already clarified in the literature or the like may be used.
例えば、タンタル酸リチウム単結晶については、下記の数式1を用いてもよい(2012 IEEE International Ultrasonics Symposium Proceedings,Page(s)1252‐1255参照)。
For example, for a lithium tantalate single crystal, the following
[数1]
Li/(Li+Ta)=(53.15−0.5FWHM1)/100[Number 1]
Li / (Li + Ta) = (53.15-0.5FWHM1) / 100
ここで、「FWHM1」は、600cm−1付近のラマンシフトピークの半値幅である。測定条件の詳細については文献を参照されたい。Here, "FWHM1" is the half width of the Raman shift peak near 600 cm -1 . Please refer to the literature for the details of the measurement conditions.
圧電体基板としてタンタル酸リチウム単結晶基板又はニオブ酸リチウム単結晶基板を用いる場合は、その厚さ方向にわたってLi濃度が概略一様であるものを用いることができ、そのLi濃度は、コングルエント組成や疑似ストイキオメトリー組成とすることができる。 When a lithium tantalate single crystal substrate or a lithium niobate single crystal substrate is used as the piezoelectric substrate, one having a Li concentration that is substantially uniform over the thickness direction can be used, and the Li concentration can be determined by the congluent composition or the congluent composition. It can be a pseudo-stoichiometric composition.
コングルエント組成の圧電単結晶基板は、チョクラルスキー法等により比較的容易に作製できる点で好ましい。一方、疑似ストイキオメトリー組成の圧電単結晶基板を用いれば、支持基板に接合された圧電体層にLiを拡散させる工程を短時間で行うことができる。 A piezoelectric single crystal substrate having a congluent composition is preferable because it can be relatively easily produced by the Czochralski method or the like. On the other hand, if a piezoelectric single crystal substrate having a pseudo-stoikiometry composition is used, the step of diffusing Li into the piezoelectric layer bonded to the support substrate can be performed in a short time.
疑似ストイキオメトリー組成の圧電単結晶基板は、公知の二重るつぼ法によって得られるが、この基板を用いるとコストが高くなってしまう。そのため、タンタル酸リチウム単結晶基板又はニオブ酸リチウム単結晶基板は、その厚さ方向にわたってLi濃度が異なっている範囲を有するものを用いることができる。すなわち、この基板を支持基板と接合して複合基板としたときに、圧電体層となる箇所が疑似ストイキオメトリー組成となっている圧電体基板を用いることができる。 A piezoelectric single crystal substrate having a pseudo-stoikiometry composition can be obtained by a known double crucible method, but using this substrate increases the cost. Therefore, as the lithium tantalate single crystal substrate or the lithium niobate single crystal substrate, those having a range in which the Li concentration differs in the thickness direction can be used. That is, when this substrate is joined to a support substrate to form a composite substrate, a piezoelectric substrate having a pseudo-stoikiometry composition at a portion to be a piezoelectric layer can be used.
このような圧電体基板は、コングルエント組成の圧電単結晶基板に、基板表面から内部へLiを拡散させることによって得られる。このとき、反応時間、反応温度等を調整することによって、表面が疑似ストイキオメトリー組成であり、内部がコングルエント組成である圧電体基板とすることができる。また、少なくとも基板表面から目的とする圧電体層の厚みと同等の深さまで疑似ストイキオメトリー組成となっていることが好ましい。 Such a piezoelectric substrate can be obtained by diffusing Li from the surface of the substrate to the inside of the piezoelectric single crystal substrate having a congluent composition. At this time, by adjusting the reaction time, the reaction temperature, and the like, it is possible to obtain a piezoelectric substrate having a pseudo-stoichiometry composition on the surface and a congluent composition on the inside. Further, it is preferable that the pseudo-stoikiometry composition is at least from the surface of the substrate to a depth equivalent to the thickness of the target piezoelectric layer.
具体的には、圧電体基板としてタンタル酸リチウム基板を用いる場合、Li濃度が48.5±0.5mol%である箇所と、Li濃度が50.0±0.5mol%である箇所を有し、その厚み方向について、基板表面側の方がLi濃度の高くなる範囲を有する基板であることが好ましい。 Specifically, when a lithium tantalate substrate is used as the piezoelectric substrate, it has a portion where the Li concentration is 48.5 ± 0.5 mol% and a portion where the Li concentration is 50.0 ± 0.5 mol%. It is preferable that the substrate has a range in which the Li concentration is higher on the surface side of the substrate in the thickness direction thereof.
また、圧電体基板として、タンタル酸リチウム基板またはニオブ酸リチウム基板を用いる場合、圧電体基板のイオン注入される深さ位置のLi濃度は、50.0mol%超であることが好ましく、50.05mol%以上であることがより好ましく、50.1mol%以上であることがさらに好ましい。このようにすれば、イオン注入によりLi濃度が減少しても、圧電体層のLi濃度を49.9mol%超にすることができ、優れた特性が得られる。
圧電体基板のイオン注入される深さ位置のLi濃度は、52.5mol%以下であることが好ましく、51.0mol%以下であることがより好ましく、50.5mol%以下であることが好ましい。When a lithium tantalate substrate or a lithium niobate substrate is used as the piezoelectric substrate, the Li concentration at the ion implantation depth position of the piezoelectric substrate is preferably more than 50.0 mol%, and 50.05 mol. % Or more is more preferable, and 50.1 mol% or more is further preferable. In this way, even if the Li concentration is reduced by ion implantation, the Li concentration of the piezoelectric layer can be increased to more than 49.9 mol%, and excellent characteristics can be obtained.
The Li concentration at the ion-implanted depth position of the piezoelectric substrate is preferably 52.5 mol% or less, more preferably 51.0 mol% or less, and preferably 50.5 mol% or less.
さらに、圧電体基板の支持基板と接合する側の表面からイオン注入される深さ位置までのLi濃度は、49.0mol%以上52.5mol%以下であることが好ましい。より好ましくは49.5mol%以上、さらに好ましく50.0mol%超であり、いっそう好ましくは50.1mol%以上である。 Further, the Li concentration from the surface of the piezoelectric substrate on the side to be bonded to the support substrate to the depth position where ions are implanted is preferably 49.0 mol% or more and 52.5 mol% or less. It is more preferably 49.5 mol% or more, further preferably more than 50.0 mol%, and even more preferably 50.1 mol% or more.
本発明者らは、圧電体基板のLi濃度が、イオン注入によるLi濃度の減少と相関があることを見出した。すなわち、コングルエント組成の圧電体基板にイオン注入したときのLi濃度の減少量よりも、疑似ストイキオメトリー組成の圧電体基板にイオン注入したときのLi濃度の減少量が小さい。すなわち、コングルエント組成の圧電体基板の場合、0.4mol%程度の減少が見られるが、疑似ストイキオメトリー組成の圧電体基板の場合は、0.1mol%程度の減少となり、バラツキも少ない。 The present inventors have found that the Li concentration of the piezoelectric substrate correlates with the decrease in Li concentration due to ion implantation. That is, the amount of decrease in Li concentration when ions are implanted into the piezoelectric substrate having a pseudo-stoichiometry composition is smaller than the amount of decrease in Li concentration when ions are implanted into the piezoelectric substrate having a congluent composition. That is, in the case of the piezoelectric substrate having the congluent composition, a decrease of about 0.4 mol% is observed, but in the case of the piezoelectric substrate having the pseudo-stoichiometry composition, the decrease is about 0.1 mol%, and there is little variation.
したがって、圧電体基板の支持基板と接合する側の表面からイオン注入される深さ位置までのLi濃度、特にイオン注入される深さ位置のLi濃度を、50.0mol%超にすれば、圧電体基板の分離工程の後に圧電体層にLiを拡散させる工程はなくてもよい。 Therefore, if the Li concentration from the surface of the piezoelectric substrate to the support substrate to the depth position where the ions are implanted, especially the Li concentration at the depth position where the ions are implanted is set to more than 50.0 mol%, the piezoelectric substrate is piezoelectric. It is not necessary to have a step of diffusing Li into the piezoelectric layer after the step of separating the body substrate.
なお、後述するように、圧電体基板にイオン注入を行うことによって、イオンが通過した部分の圧電性が損なわれる場合があるが、このようにすれば、圧電性が損なわれ難く、圧電性の回復処理を行わなくても圧電性を発揮する。 As will be described later, by implanting ions into the piezoelectric substrate, the piezoelectricity of the portion through which the ions have passed may be impaired. However, in this way, the piezoelectricity is not easily impaired, and the piezoelectricity is high. It exhibits piezoelectricity without recovery treatment.
本発明によれば、Li拡散を用いることによって、従来では不可能であった圧電体層表面のLi濃度が49.9mol%超であり、圧電体層の厚みが1.0μm以下であり、圧電体層の表面粗さの最大高さRz値が圧電体層の厚みの10%以下である複合基板を作製することができる。 According to the present invention, by using Li diffusion, the Li concentration on the surface of the piezoelectric layer is more than 49.9 mol%, the thickness of the piezoelectric layer is 1.0 μm or less, and the piezoelectric layer is piezoelectric, which was impossible in the past. A composite substrate having a maximum height Rz value of the surface roughness of the body layer of 10% or less of the thickness of the piezoelectric layer can be produced.
圧電体層表面のLi濃度は、49.95mol%以上であることが好ましく、52.0mol%以下であることが好ましい。
また、圧電体層の厚みは、0.8μm以下であることが好ましく、0.6μm以下であることがより好ましい。圧電体層の表面粗さの最大高さRz値は、圧電体層の厚みの5%以下であることが好ましく、1%以下であることがより好ましい。
なお、最大高さRzは、JIS B 0601:2013(ISO 4287:1997)に定められたパラメータであり、これらの規格に基づいて測定することができる。The Li concentration on the surface of the piezoelectric layer is preferably 49.95 mol% or more, and preferably 52.0 mol% or less.
The thickness of the piezoelectric layer is preferably 0.8 μm or less, and more preferably 0.6 μm or less. The maximum height Rz value of the surface roughness of the piezoelectric layer is preferably 5% or less, more preferably 1% or less of the thickness of the piezoelectric layer.
The maximum height Rz is a parameter defined in JIS B 0601: 2013 (ISO 4287: 1997), and can be measured based on these standards.
また、本発明の製造方法では、複合基板の圧電体層と支持基板との間には介在層を設けてもよい。この介在層の材料は特に限定されないが、無機材料であることが好ましく、例えば、SiO2,SiO2±0.5,TiをドープしたSiO2,a‐Si,p‐Si,a‐SiC,Al2O3等を主成分として含んでいてもよい。また、介在層は、複数の材料からなる層が積層されていてもよい。Further, in the manufacturing method of the present invention, an intervening layer may be provided between the piezoelectric layer of the composite substrate and the support substrate. The material of the intervening layer is not particularly limited, but is preferably an inorganic material, for example, SiO 2 , SiO 2 ± 0.5 , Ti-doped SiO 2 , a-Si, p-Si, a-SiC, Al 2 O 3 and the like may be contained as a main component. Further, the intervening layer may be a laminated layer made of a plurality of materials.
ところで、圧電体基板にイオン注入を行うことによって、イオンが通過した部分の圧電性が損なわれる場合がある。そのため、圧電体基板と支持基板とを接合した後に、圧電体基板をキュリー温度以上に昇温して、電界を印加した状態でキュリー温度以下に降温する工程を行うことが好ましい。このようにすることで、圧電体層の圧電性を回復することができる。また、この工程は、圧電体層にLiを拡散させる工程と同時に行ってもよい。 By the way, by implanting ions into the piezoelectric substrate, the piezoelectricity of the portion through which the ions have passed may be impaired. Therefore, after joining the piezoelectric substrate and the support substrate, it is preferable to perform a step of raising the temperature of the piezoelectric substrate to the Curie temperature or higher and lowering the temperature to the Curie temperature or lower in a state where an electric field is applied. By doing so, the piezoelectricity of the piezoelectric layer can be restored. Further, this step may be performed at the same time as the step of diffusing Li in the piezoelectric layer.
前記工程は、支持基板の種類によって電界を印加しにくい場合があり、圧電体基板を昇温することによって圧電性を回復させることもできる。このときの温度は、キュリー温度以下であって500℃〜700℃程度であることが好ましい。 In the above step, it may be difficult to apply an electric field depending on the type of the support substrate, and the piezoelectricity can be restored by raising the temperature of the piezoelectric substrate. The temperature at this time is preferably not less than the Curie temperature and is about 500 ° C. to 700 ° C.
以下、実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following Examples.
〈実施例1〉
実施例1では、まず、単一分極処理を施したコングルエント組成の4インチ径タンタル酸リチウム(Li:Ta=48.3:51.7)単結晶インゴットに、スライス、ラップ、研磨を行って、厚さ250μmで片側鏡面の42°回転Yカットのタンタル酸リチウム基板を作製した。<Example 1>
In Example 1, first, a 4-inch diameter lithium tantalate (Li: Ta = 48.3: 51.7) single crystal ingot having a congluent composition subjected to a single polarization treatment was sliced, wrapped, and polished. A lithium tantalate substrate having a thickness of 250 μm and a mirror surface on one side and a Y-cut 42 ° rotation was prepared.
次に、支持基板として、厚さ500μmで片側鏡面のサファイア基板を準備した。そして、LT基板とサファイア基板の鏡面における表面粗さがRMS値で1.0nm以下であることを確認した。続いて、LT基板の鏡面側から水素分子イオンを注入したが、このときのドーズ量は9×1016atm/cm2で、加速電圧は160KeVであった。Next, as a support substrate, a sapphire substrate having a thickness of 500 μm and a mirror surface on one side was prepared. Then, it was confirmed that the surface roughness on the mirror surface of the LT substrate and the sapphire substrate was 1.0 nm or less in RMS value. Subsequently, hydrogen molecule ions were injected from the mirror surface side of the LT substrate. At this time, the dose amount was 9 × 10 16 atm / cm 2 , and the accelerating voltage was 160 KeV.
イオン注入を行ったLT基板とサファイア基板は、「Takagi H.et al,“Room‐temperature wafer bonding using argonbeam activation”From Proceedings‐Electrochemical Society(2001),99‐35(Semiconductor Wafer Bonding:Science,Technology,and Applications V),265‐274.」に記載されている常温接合法を用いて接合した。 The ion-implanted LT substrate and sapphire substrate are described in "Takagi H. et al," Room-temperature wafer bonding argonbeam activation "From Proceedings-Electrochemical Bond (200). And Applications V), 265-274. ”, The bonding was performed using the room temperature bonding method described in the above.
具体的には、高真空のチャンバー内に洗浄したLT基板とサファイア基板をセットし、接合する基板表面に中性化したアルゴンの高速原子ビームを照射して活性化処理を行った。その後、LT基板とサファイア基板を貼り合せることによって接合した。 Specifically, the cleaned LT substrate and sapphire substrate were set in a high vacuum chamber, and the surface of the substrate to be joined was irradiated with a high-speed atomic beam of neutralized argon to perform activation treatment. Then, the LT substrate and the sapphire substrate were bonded by bonding.
その後、接合した基板を110℃に加熱して、圧電体基板のイオン注入部の一端にクサビを打ち込んで、支持基板に接合された圧電体層と残りの圧電体基板とに分離した。 Then, the bonded substrate was heated to 110 ° C., and a wedge was driven into one end of the ion-implanted portion of the piezoelectric substrate to separate the piezoelectric layer bonded to the support substrate and the remaining piezoelectric substrate.
このときの圧電体層の厚みは900nmであったが、この圧電体層の表面を200nm研磨して、圧電体層の厚みを700nmとした。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。 The thickness of the piezoelectric layer at this time was 900 nm, but the surface of the piezoelectric layer was polished by 200 nm to make the thickness of the piezoelectric layer 700 nm. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm.
この圧電体層とサファイア支持基板からなる接合基板について、中国科学院声楽研究所製ピエゾd33/d15メータ(型式ZJ‐3BN)を用いて、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板では圧電応答は観測できず、圧電性は確認できなかった。 A bonded substrate composed of this piezoelectric layer and a sapphire support substrate is induced by applying vertical vibration in the thickness direction to the main surface and the back surface using a piezo d33 / d15 meter (model ZJ-3BN) manufactured by the Institute of Voice, Chinese Academy of Sciences. When the voltage waveform was observed, the piezoelectric response could not be observed on this bonded substrate, and the piezoelectricity could not be confirmed.
次に、この接合基板をタンタル酸リチウムのキュリー温度以上の650℃に昇温して、LT基板の概略+Z方向に4000V/mの電界を印加した状態で、室温まで徐々に降温していった。 Next, the temperature of this bonded substrate was raised to 650 ° C., which is higher than the Curie temperature of lithium tantalate, and the temperature was gradually lowered to room temperature with an electric field of 4000 V / m applied in the approximate + Z direction of the LT substrate. ..
この分極処理の後に、再び、中国科学院声楽研究所製ピエゾd33/d15メータ(型式ZJ‐3BN)を用いて、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 After this polarization treatment, again, using a piezo d33 / d15 meter (model ZJ-3BN) manufactured by the Vocal Research Institute of the Chinese Academy of Sciences, observation of the voltage waveform induced by applying vertical vibration in the thickness direction to the main surface and the back surface was observed. As a result, the piezoelectric response could be observed at all points of this bonded substrate, and the piezoelectricity could be confirmed.
続いて、圧電体層表面の数箇所について、レーザーラマン分光測定装置(HORIBA Scientific社製LabRam HRシリーズ、Arイオンレーザー、スポットサイズ1μm、室温)を用いて、Li量の指標となる600cm−1付近のラマンシフトピークの半値幅(FWHM1)を測定し、測定した半値幅から上記数式1を用いてLi量を算出した。Subsequently, a laser Raman spectrophotometer (LabRam HR series manufactured by HORIBA Scientific Co., Ltd., Ar ion laser,
その結果、圧電体層表面のLi量は、47.9〜48.2mol%とバラツキがあった。なお、イオン注入前のLT基板表面についても、同様にLi量を算出したが、そのときのLi量は48.3mol%で均一であった。
したがって、このLT基板では、イオン注入によってLi量が最大0.4mol%減少している。As a result, the amount of Li on the surface of the piezoelectric layer varied from 47.9 to 48.2 mol%. The amount of Li was calculated in the same manner for the surface of the LT substrate before ion implantation, but the amount of Li at that time was uniform at 48.3 mol%.
Therefore, in this LT substrate, the amount of Li is reduced by a maximum of 0.4 mol% by ion implantation.
そこで、このバラツキのある接合基板に対して、「Appl.Pysic.Lett,Vol.62,2468(1993)」に記載されているLiの液相拡散を施した。具体的には、アルミナ製容器中でLiNO3,NaNO3,KNO3を等モル比で混合して300℃に加熱し、この融液中に分極処理を施した接合基板を12時間含浸させた。Therefore, the liquid-phase diffusion of Li described in "Apple.Psysic.Let, Vol.62,2468 (1993)" was applied to the bonded substrate having the variation. Specifically, LiNO 3 , NaNO 3 , and KNO 3 were mixed at an equimolar ratio in an alumina container and heated to 300 ° C., and the melt was impregnated with a polarized bonded substrate for 12 hours. ..
このようなLi拡散処理の後に、この接合基板を洗浄してLT圧電体層とサファイア支持基板から構成される複合基板を完成させた。続いて、作製した複合基板について、上記と同様にラマン分光測定を行い、圧電体層表面のLi量を算出した結果、そのLi量は、測定箇所のすべてにおいて48.3mol%となり均一であった。 After such Li diffusion treatment, the bonded substrate was washed to complete a composite substrate composed of an LT piezoelectric layer and a sapphire support substrate. Subsequently, Raman spectroscopy was performed on the produced composite substrate in the same manner as described above, and the amount of Li on the surface of the piezoelectric layer was calculated. As a result, the amount of Li was 48.3 mol% at all the measurement points and was uniform. ..
次に、複合基板の圧電体層表面に、スパッタ処理を施して厚さ0.4μmのAl膜を成膜した。続いて、レジストを塗布し、ステッパを用いて共振子の電極パターンを露光、現像し、さらに、RIE(Reactive Ion Etching)によって、SAWデバイスの電極を形成した。なお、ここでの共振子の一波長は、5μmとした。 Next, a sputtering treatment was performed on the surface of the piezoelectric layer of the composite substrate to form an Al film having a thickness of 0.4 μm. Subsequently, a resist was applied, the electrode pattern of the resonator was exposed and developed using a stepper, and the electrodes of the SAW device were further formed by RIE (Reactive Ion Etching). The wavelength of one resonator here was set to 5 μm.
このように作製した共振子について、RFプローバーを用いてSAWの入力インピーダンス波形を確認したところ、図1に示す結果が得られた。図1中には、比較のために、Li拡散処理を施さないこと以外は実施例1と同様に作製した複合基板を用いた共振子(比較例1)についての入力インピーダンス波形も併せて示す。 When the input impedance waveform of the SAW of the resonator produced in this way was confirmed using an RF prober, the results shown in FIG. 1 were obtained. For comparison, FIG. 1 also shows an input impedance waveform of a resonator (Comparative Example 1) using a composite substrate produced in the same manner as in Example 1 except that Li diffusion treatment is not performed.
また、図2には、実施例1及び比較例1の共振子のQ値を示す。なお、Q値は下記の数式2により求めた(2010 IEEE International Ultrasonics Symposium Proceedings,Page(s)861〜863参照)。 Further, FIG. 2 shows the Q values of the resonators of Example 1 and Comparative Example 1. The Q value was calculated by the following mathematical formula 2 (see 2010 IEEE International Ultrasonics Symposium Proceedings, Page (s) 861-863).
[数2]
Q(f)=ω*τ(f)*|Γ|/(1−|Γ|2)[Number 2]
Q (f) = ω * τ (f) * | Γ | / (1- | Γ | 2 )
ここで、ωは角周波数、τ(f)は群遅延時間、Γはネットワークアナライザで測定される反射係数である。 Here, ω is the angular frequency, τ (f) is the group delay time, and Γ is the reflectance coefficient measured by the network analyzer.
また、下記表1には、実施例1の共振子の電気機械結合係数(K2)、Q値の最大値、20℃〜85℃の温度範囲における共振周波数と反共振周波数の周波数温度係数(TCF)の値をそれぞれ示す。ここで、電気機械結合係数(K2)は、下記数式3により求めた。Further, Table 1 below shows the electromechanical coupling coefficient (K 2 ) of the resonator of Example 1, the maximum value of the Q value, and the frequency temperature coefficient of the resonance frequency and the antiresonance frequency in the temperature range of 20 ° C. to 85 ° C. The values of TCF) are shown respectively. Here, the electromechanical coupling coefficient (K 2 ) was calculated by the following
[数3]
K2=(πfr/2fa)/tan(πfr/2fa)
fr:共振周波数
fa:反共振周波数[Number 3]
K 2 = (πfr / 2fa) / tan (πfr / 2fa)
fr: Resonant frequency fa: Anti-resonant frequency
さらに、下記表1には、MBVDモデルによる下記の数式4により算出した共振負荷Qso、反共振負荷Qpoの値も示す(John D.et al.,“Modified Butterworth‐Van Dyke Circuit for FBAR Resonators and Automated Measurement System”,IEEE ULTRASONICS SYMPOSIUM,2000,pp.863‐868参照)。 Further, Table 1 below also shows the values of the resonance load Qso and the anti-resonance load Qpo calculated by the following formula 4 by the MBVD model (John D. et al., "Modified Butterworth-Van Dyke Circuit for FBAR Resonator and Electronics Engineer". See "Measurement System", IEEE ULTRASONICS SYSTEMSIUM, 2000, pp.863-868).
下記表1には、比較のために、前記比較例1とLi量が48.3mol%(コングルエント組成)である42°YカットのLT単結晶基板を用いた共振子(比較例2)の結果も併せて示す。 Table 1 below shows the results of a resonator (Comparative Example 2) using a 42 ° Y-cut LT single crystal substrate having a Li content of 48.3 mol% (congluent composition) as compared with Comparative Example 1 for comparison. Is also shown.
〈実施例2〉
実施例2では、実施例1と同様の方法で、LT基板にイオン注入を行い、LT基板とサファイア基板を接合した。さらに、イオン注入部においてLT基板を分離し、圧電体層の表面を研磨して、LT圧電体層とサファイア支持基板からなる接合基板を得た。<Example 2>
In Example 2, ions were implanted into the LT substrate in the same manner as in Example 1 to bond the LT substrate and the sapphire substrate. Further, the LT substrate was separated in the ion implantation section, and the surface of the piezoelectric layer was polished to obtain a bonded substrate composed of the LT piezoelectric layer and the sapphire support substrate.
続いて、この接合基板を小容器に敷き詰めたLi3TaO4を主成分とする粉体中に埋め込んだ。このときのLi3TaO4を主成分とする粉体は、モル比でLi2CO3:Ta2O5=7:3の割合に混合した粉末を1300℃で12時間焼成したものを用いた。Subsequently, this bonded substrate was embedded in a powder containing Li 3 TaO 4 as a main component, which was spread in a small container. At this time, as the powder containing Li 3 TaO 4 as a main component, a powder obtained by mixing a powder having a molar ratio of Li 2 CO 3 : Ta 2 O 5 = 7: 3 and firing at 1300 ° C. for 12 hours was used. ..
次に、この小容器を電気炉にセットし、炉内をN2雰囲気として、750℃で100時間加熱した。続いて、降温過程の750℃〜500℃の間において、LT基板の概略+Z軸方向に4000V/mの電界を印可し、その後室温まで徐々に降温していった。Then, set the small container into an electric furnace, the furnace as a N 2 atmosphere and heated at 750 ° C. 100 hours. Subsequently, an electric field of 4000 V / m was applied in the approximate + Z-axis direction of the LT substrate between 750 ° C. and 500 ° C. in the temperature lowering process, and then the temperature was gradually lowered to room temperature.
この処理の後、圧電体層の表面を10nm程度研磨して、LT圧電体層とサファイア支持基板から構成される複合基板を完成させた。この複合基板にひびやワレは生じなかった。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。 After this treatment, the surface of the piezoelectric layer was polished by about 10 nm to complete a composite substrate composed of the LT piezoelectric layer and the sapphire support substrate. No cracks or cracks occurred on this composite substrate. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm.
そして、このように作製した複合基板について、実施例1と同様に、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 Then, with respect to the composite substrate thus produced, the voltage waveform induced by applying vertical vibration in the thickness direction to the main surface and the back surface was observed in the same manner as in Example 1, and all the parts of the bonded substrate were observed. The piezoelectric response could be observed in, and the piezoelectricity could be confirmed.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、Li量は、測定箇所のすべてにおいて50.2mol%であり、均一な疑似ストイキオメトリー組成であった。 Further, as a result of performing laser Raman spectroscopic measurement on several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li was 50.2 mol% in all the measurement points and was uniform. It was a pseudo-stoikiometry composition.
さらに、実施例2の複合基板について、実施例1と同様に電極を形成して共振子を作製し、このSAW共振子について、実施例1と同様の評価を行った結果を下記表1に示す。 Further, with respect to the composite substrate of Example 2, electrodes were formed in the same manner as in Example 1 to produce a resonator, and the SAW resonator was evaluated in the same manner as in Example 1 and the results are shown in Table 1 below. ..
〈実施例3〉
実施例3では、まず、単一分極処理を施したコングルエント組成の4インチ径タンタル酸リチウム(Li:Ta=48.3:51.7)単結晶インゴットから、厚さ300μmの42°回転Yカットのタンタル酸リチウム基板を切り出した。次に、ラップ工程によって、切り出したLT基板の面粗さが算術平均粗さRa値で0.15μmとなるようにすると共に、LT基板の厚さは250μmとした。<Example 3>
In Example 3, first, a 42 ° rotating Y-cut having a thickness of 300 μm was obtained from a 4-inch diameter lithium tantalate (Li: Ta = 48.3: 51.7) single crystal ingot having a congluent composition subjected to a single polarization treatment. The lithium tantalate substrate was cut out. Next, the surface roughness of the cut out LT substrate was adjusted to 0.15 μm in arithmetic average roughness Ra value by the wrapping step, and the thickness of the LT substrate was set to 250 μm.
また、LT基板の両面を研磨して、表面粗さがRa値で0.01μmの準鏡面に仕上げた。続いて、このLT基板を小容器に敷き詰めたLi3TaO4を主成分とする粉体中に埋め込んだ。このときのLi3TaO4を主成分とする粉体は、モル比でLi2CO3:Ta2O5=7:3の割合に混合した粉末を1300℃で12時間焼成したものを用いた。Further, both sides of the LT substrate were polished to obtain a quasi-mirror surface having a surface roughness of 0.01 μm in Ra value. Subsequently, this LT substrate was embedded in a powder containing Li 3 TaO 4 as a main component, which was spread in a small container. At this time, as the powder containing Li 3 TaO 4 as a main component, a powder obtained by mixing a powder having a molar ratio of Li 2 CO 3 : Ta 2 O 5 = 7: 3 and firing at 1300 ° C. for 12 hours was used. ..
次に、この小容器を電気炉にセットし、炉内をN2雰囲気として、975℃で24時間加熱して、LT基板にLiを拡散させた。この処理の後にLT基板の片面に鏡面研磨を施した。Then, set the small container into an electric furnace, the furnace as a N 2 atmosphere and heated at 975 ° C. 24 hours to diffuse Li to LT substrate. After this treatment, one side of the LT substrate was mirror-polished.
そして、Li拡散処理を施したLT基板について、実施例1と同様のレーザーラマン分光測定装置を用いて、表面から深さ方向にわたって600cm−1付近のラマンシフトピークの半値幅(FWHM1)を測定し、測定した半値幅から上記数式1を用いてLi量を算出したところ、図3に示すLi量の深さ方向のプロファイルが得られた。Then, with respect to the LT substrate subjected to the Li diffusion treatment, the half width (FWHM1) of the Raman shift peak near 600 cm -1 was measured from the surface to the depth direction using the same laser Raman spectroscopic measuring device as in Example 1. When the Li amount was calculated from the measured half-value width using the
次に、支持基板として、厚さ500μmで片側鏡面のサファイア基板を準備した。そして、Li拡散処理を施したLT基板とサファイア基板の鏡面における表面粗さがRMS値で1.0nm以下であることを確認した。 Next, as a support substrate, a sapphire substrate having a thickness of 500 μm and a mirror surface on one side was prepared. Then, it was confirmed that the surface roughness of the mirror surface of the LT substrate and the sapphire substrate subjected to the Li diffusion treatment was 1.0 nm or less in RMS value.
続いて、LT基板の鏡面側から水素分子イオンを注入したが、このときのドーズ量は9×1016atm/cm2で、加速電圧は160KeVであった。Subsequently, hydrogen molecule ions were injected from the mirror surface side of the LT substrate. At this time, the dose amount was 9 × 10 16 atm / cm 2 , and the accelerating voltage was 160 KeV.
次に、イオン注入を行ったLT基板とサファイア基板は、実施例1と同様に、表面活性化常温接合法を用いて接合した。また、実施例1と同様の方法で、イオン注入部においてLT基板を分離し、圧電体層の表面を研磨して、LT圧電体層とサファイア支持基板からなる接合基板を得た。 Next, the LT substrate and the sapphire substrate that had been ion-implanted were bonded using the surface-activated room temperature bonding method in the same manner as in Example 1. Further, in the same manner as in Example 1, the LT substrate was separated in the ion implantation section, and the surface of the piezoelectric layer was polished to obtain a bonded substrate composed of the LT piezoelectric layer and the sapphire support substrate.
このときの圧電体層の厚みは900nmであったが、この圧電体層の表面を200nm研磨して、圧電体層の厚みを700nmとした。 The thickness of the piezoelectric layer at this time was 900 nm, but the surface of the piezoelectric layer was polished by 200 nm to make the thickness of the piezoelectric layer 700 nm.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、圧電体層表面のLi量は、49.5〜49.6mol%とバラツキがあった。なお、イオン注入前のLT基板表面についても、同様にLi量を算出したが、そのときのLi量は49.7mol%で均一であった。
したがって、このLT基板では、イオン注入によってLi量が最大0.2mol%減少している。Further, as a result of performing laser Raman spectroscopic measurement on several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li on the surface of the piezoelectric layer was 49.5 to 49.6 mol%. There was variation. The amount of Li was calculated in the same manner for the surface of the LT substrate before ion implantation, but the amount of Li at that time was uniform at 49.7 mol%.
Therefore, in this LT substrate, the amount of Li is reduced by a maximum of 0.2 mol% by ion implantation.
続いて、この接合基板を小容器に敷き詰めたLi3TaO4を主成分とする粉体中に埋め込んだ。このときのLi3TaO4を主成分とする粉体は、モル比でLi2CO3:Ta2O5=7:3の割合に混合した粉末を1300℃で12時間焼成したものを用いた。Subsequently, this bonded substrate was embedded in a powder containing Li 3 TaO 4 as a main component, which was spread in a small container. At this time, as the powder containing Li 3 TaO 4 as a main component, a powder obtained by mixing a powder having a molar ratio of Li 2 CO 3 : Ta 2 O 5 = 7: 3 and firing at 1300 ° C. for 12 hours was used. ..
そして、この小容器を電気炉にセットし、炉内をN2雰囲気として、750℃で20時間加熱した。続いて、降温過程の750℃〜500℃の間において、LT基板の概略+Z軸方向に4000V/mの電界を印可して、その後、室温まで徐々に降温していった。Then, set the small container into an electric furnace, the furnace as a N 2 atmosphere and heated at 750 ° C. 20 hours. Subsequently, an electric field of 4000 V / m was applied in the approximate + Z-axis direction of the LT substrate between 750 ° C. and 500 ° C. in the temperature lowering process, and then the temperature was gradually lowered to room temperature.
この処理の後に、圧電体層の表面を10nm程度研磨して、LT圧電体層とサファイア支持基板から構成される複合基板を完成させた。この複合基板にひびやワレは生じなかった。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。 After this treatment, the surface of the piezoelectric layer was polished by about 10 nm to complete a composite substrate composed of the LT piezoelectric layer and the sapphire support substrate. No cracks or cracks occurred on this composite substrate. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm.
このように作製した複合基板について、実施例1と同様に、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 As in Example 1, the composite substrate thus produced was observed to be induced by applying vertical vibration in the thickness direction to the main surface and the back surface. As a result, piezoelectricity was observed at all points of the bonded substrate. The response could be observed and the piezoelectricity could be confirmed.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、Li量は、測定箇所のすべてにおいて50.2mol%であり、均一な疑似ストイキオメトリー組成であった。 Further, as a result of performing laser Raman spectroscopic measurement at several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li was 50.2 mol% at all the measurement points and was uniform. It was a pseudo-stoikiometry composition.
さらに、実施例3の複合基板について、実施例1と同様に電極を形成して、共振子を作製し、このSAW共振子について、実施例1と同様の評価を行ったところ、実施例2とほぼ同様の結果を得た。 Further, with respect to the composite substrate of Example 3, electrodes were formed in the same manner as in Example 1, a resonator was produced, and the SAW resonator was evaluated in the same manner as in Example 1. Almost the same result was obtained.
〈実施例4〉
実施例4では、実施例3と同様な方法により、Li拡散処理を施したLT基板を準備した。このLT基板のLi量の深さ方向のプロファイルは、図3に示す実施例3とほぼ同様である。<Example 4>
In Example 4, an LT substrate subjected to Li diffusion treatment was prepared by the same method as in Example 3. The profile of the Li amount in the depth direction of this LT substrate is almost the same as that of Example 3 shown in FIG.
次に、このLT基板の鏡面側から水素分子イオンを注入したが、このときのドーズ量は9×1016atm/cm2で、加速電圧は160KeVであった。Next, hydrogen molecule ions were injected from the mirror surface side of this LT substrate. At this time, the dose amount was 9 × 10 16 atm / cm 2 , and the accelerating voltage was 160 KeV.
続いて、イオン注入を行ったLT基板の鏡面側に、室温CVD法を用いて、厚さ5μmのSiO2膜を堆積させた。また、このLT/SiO2基板を350℃で48時間加熱して脱ガスを行った後に、SiO2膜を研磨してその厚みを2.7μmとした。Subsequently, a SiO 2 film having a thickness of 5 μm was deposited on the mirror surface side of the LT substrate on which the ions were implanted by using the room temperature CVD method. Further, the LT / SiO 2 substrate was heated at 350 ° C. for 48 hours to degas, and then the SiO 2 film was polished to a thickness of 2.7 μm.
次に、支持基板として、片側が鏡面で表面に酸化(SiO2)膜が形成されているSi(SiO2/Si)基板を準備した。この支持基板の厚みは400μmであり、酸化膜の厚みは0.3μmであった。Next, as a support substrate, a Si (SiO 2 / Si) substrate having a mirror surface on one side and an oxidation (SiO 2 ) film formed on the surface was prepared. The thickness of this support substrate was 400 μm, and the thickness of the oxide film was 0.3 μm.
また、SiO2/Si基板の鏡面側に室温CVD法を用いて、厚さ50nmのa‐Si膜を形成した。そして、LT/SiO2基板とa‐Si/SiO2/Si基板の鏡面における表面粗さがRMS値で1.0nm以下であることを確認した。Further, an a-Si film having a thickness of 50 nm was formed on the mirror surface side of the SiO 2 / Si substrate by using the room temperature CVD method. Then, it was confirmed that the surface roughness of the LT / SiO 2 substrate and the a-Si / SiO 2 / Si substrate on the mirror surface was 1.0 nm or less in RMS value.
続いて、これらの基板をプラズマ活性化処理による表面活性化常温接合法により接合した。また、実施例1と同様の方法で、イオン注入部においてLT基板を分離し、圧電体層の表面を研磨して、LT圧電体層とSi支持基板からなる接合基板を得た。 Subsequently, these substrates were bonded by a surface-activated room temperature bonding method by plasma activation treatment. Further, in the same manner as in Example 1, the LT substrate was separated in the ion implantation section, and the surface of the piezoelectric layer was polished to obtain a bonded substrate composed of the LT piezoelectric layer and the Si support substrate.
このときの圧電体層の厚みは900nmであったが、この圧電体層の表面を200nm研磨して、圧電体層の厚みを700nmとした。ここでは、LT圧電体層とSi支持基板との間には介在層が存在しており、介在層はSiO2/a‐Si/SiO2の積層構造となっている。The thickness of the piezoelectric layer at this time was 900 nm, but the surface of the piezoelectric layer was polished by 200 nm to make the thickness of the piezoelectric layer 700 nm. Here, an intervening layer exists between the LT piezoelectric layer and the Si support substrate, and the intervening layer has a laminated structure of SiO 2 / a-Si / SiO 2 .
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、圧電体層表面のLi量は、49.5〜49.6mol%とバラツキがあった。なお、イオン注入前のLT基板表面についても、同様にLi量を算出したが、そのときのLi量は49.7mol%で均一であった。
したがって、このLT基板では、イオン注入によってLi量が最大0.2mol%減少している。Further, as a result of performing laser Raman spectroscopic measurement on several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li on the surface of the piezoelectric layer was 49.5 to 49.6 mol%. There was variation. The amount of Li was calculated in the same manner for the surface of the LT substrate before ion implantation, but the amount of Li at that time was uniform at 49.7 mol%.
Therefore, in this LT substrate, the amount of Li is reduced by a maximum of 0.2 mol% by ion implantation.
次に、この接合基板を小容器に敷き詰めたLi3TaO4を主成分とする粉体中に埋め込んだ。このときのLi3TaO4を主成分とする粉体は、モル比でLi2CO3:Ta2O5=7:3の割合に混合した粉末を1300℃で12時間焼成したものを用いた。Next, this bonded substrate was embedded in a powder containing Li 3 TaO 4 as a main component, which was spread in a small container. At this time, as the powder containing Li 3 TaO 4 as a main component, a powder obtained by mixing a powder having a molar ratio of Li 2 CO 3 : Ta 2 O 5 = 7: 3 and firing at 1300 ° C. for 12 hours was used. ..
そして、この小容器を電気炉にセットし、炉内をN2雰囲気として、750℃で20時間加熱した。続いて、降温過程の750℃〜500℃の間において、LT基板の概略+Z軸方向に4000V/mの電界を印可し、その後室温まで徐々に降温していった。Then, set the small container into an electric furnace, the furnace as a N 2 atmosphere and heated at 750 ° C. 20 hours. Subsequently, an electric field of 4000 V / m was applied in the approximate + Z-axis direction of the LT substrate between 750 ° C. and 500 ° C. in the temperature lowering process, and then the temperature was gradually lowered to room temperature.
この処理の後、圧電体層の表面を10nm程度研磨して、LT圧電体層とSi支持基板から構成される複合基板を完成させた。この複合基板にひびやワレは生じなかった。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。 After this treatment, the surface of the piezoelectric layer was polished by about 10 nm to complete a composite substrate composed of the LT piezoelectric layer and the Si support substrate. No cracks or cracks occurred on this composite substrate. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm.
このように作製した複合基板について、実施例1と同様に、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 As in Example 1, the composite substrate thus produced was observed to be induced by applying vertical vibration in the thickness direction to the main surface and the back surface. As a result, piezoelectricity was observed at all points of the bonded substrate. The response could be observed and the piezoelectricity could be confirmed.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、Li量は、測定箇所のすべてにおいて全て50.2mol%であり、均一な疑似ストイキオメトリー組成であった。 Further, as a result of performing laser Raman spectroscopic measurement on several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li was 50.2 mol% in all the measurement points and was uniform. It was a pseudo-stoikiometry composition.
さらに、実施例4の複合基板について、実施例1と同様に電極を形成して、共振子を作製し、このSAW共振子について、実施例1と同様の評価を行った結果を下記表1に示す。 Further, with respect to the composite substrate of Example 4, electrodes were formed in the same manner as in Example 1, a resonator was produced, and the SAW resonator was evaluated in the same manner as in Example 1. The results are shown in Table 1 below. Shown.
〈実施例5〉
実施例5では、まず、単一分極処理を施したコングルエント組成の4インチ径タンタル酸リチウム(Li:Ta=48.3:51.7)単結晶インゴットから、厚さ300μmの42°回転Yカットのタンタル酸リチウム基板を切り出した。次に、ラップ工程によって、切り出したLT基板の面粗さが算術平均粗さRa値で0.15μmとなるようにすると共に、LT基板の厚さは250μmとした。<Example 5>
In Example 5, first, a 42 ° rotating Y-cut having a thickness of 300 μm was obtained from a 4-inch diameter lithium tantalate (Li: Ta = 48.3: 51.7) single crystal ingot having a congluent composition subjected to a single polarization treatment. The lithium tantalate substrate was cut out. Next, the surface roughness of the cut out LT substrate was adjusted to 0.15 μm in arithmetic average roughness Ra value by the wrapping step, and the thickness of the LT substrate was set to 250 μm.
また、LT基板の両面を研磨して、表面粗さがRa値で0.01μmの準鏡面に仕上げた。続いて、このLT基板を小容器に敷き詰めたLi3TaO4を主成分とする粉体中に埋め込んだ。このときのLi3TaO4を主成分とする粉体は、モル比でLi2CO3:Ta2O5=7:3の割合に混合した粉末を1300℃で12時間焼成したものを用いた。Further, both sides of the LT substrate were polished to obtain a quasi-mirror surface having a surface roughness of 0.01 μm in Ra value. Subsequently, this LT substrate was embedded in a powder containing Li 3 TaO 4 as a main component, which was spread in a small container. At this time, as the powder containing Li 3 TaO 4 as a main component, a powder obtained by mixing a powder having a molar ratio of Li 2 CO 3 : Ta 2 O 5 = 7: 3 and firing at 1300 ° C. for 12 hours was used. ..
次に、この小容器を電気炉にセットし、炉内をN2雰囲気として、990℃で50時間加熱して、LT基板にLiを拡散させた。この処理の後にLT基板の片面に鏡面研磨を施した。Then, set the small container into an electric furnace, the furnace as a N 2 atmosphere and heated at 990 ° C. 50 hours to diffuse Li to LT substrate. After this treatment, one side of the LT substrate was mirror-polished.
そして、Li拡散処理を施したLT基板について、実施例1と同様のレーザーラマン分光測定装置を用いて、表面から深さ方向にわたって600cm−1付近のラマンシフトピークの半値幅(FWHM1)を測定し、測定した半値幅から上記数式1を用いてLi量を算出したところ、図5に示すLi量の深さ方向のプロファイルが得られた。Then, with respect to the LT substrate subjected to the Li diffusion treatment, the half width (FWHM1) of the Raman shift peak near 600 cm -1 was measured from the surface to the depth direction using the same laser Raman spectroscopic measuring device as in Example 1. When the Li amount was calculated from the measured half-value width using the
次に、支持基板として、厚さ500μmで片側鏡面のサファイア基板を準備した。そして、Li拡散処理を施したLT基板とサファイア基板の鏡面における表面粗さがRMS値で1.0nm以下であることを確認した。 Next, as a support substrate, a sapphire substrate having a thickness of 500 μm and a mirror surface on one side was prepared. Then, it was confirmed that the surface roughness of the mirror surface of the LT substrate and the sapphire substrate subjected to the Li diffusion treatment was 1.0 nm or less in RMS value.
続いて、LT基板の鏡面側から水素分子イオンを注入したが、このときのドーズ量は9×1016atm/cm2で、加速電圧は160KeVであった。このとき、イオンが注入される位置は、表面から900nmの深さの位置であり、その位置のLi量は50.1mol%である。Subsequently, hydrogen molecule ions were injected from the mirror surface side of the LT substrate. At this time, the dose amount was 9 × 10 16 atm / cm 2 , and the accelerating voltage was 160 KeV. At this time, the position where the ions are injected is a position at a depth of 900 nm from the surface, and the amount of Li at that position is 50.1 mol%.
次に、イオン注入を行ったLT基板とサファイア基板は、実施例1と同様に、表面活性化常温接合法を用いて接合した。また、実施例1と同様の方法で、イオン注入部においてLT基板を分離し、圧電体層の表面を研磨して、LT圧電体層とサファイア支持基板からなる接合基板を得た。 Next, the LT substrate and the sapphire substrate that had been ion-implanted were bonded using the surface-activated room temperature bonding method in the same manner as in Example 1. Further, in the same manner as in Example 1, the LT substrate was separated in the ion implantation section, and the surface of the piezoelectric layer was polished to obtain a bonded substrate composed of the LT piezoelectric layer and the sapphire support substrate.
このときの圧電体層の厚みは900nmであったが、この圧電体層の表面を200nm研磨して、圧電体層の厚みを700nmとした。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。この複合基板にひびやワレは生じなかった。 The thickness of the piezoelectric layer at this time was 900 nm, but the surface of the piezoelectric layer was polished by 200 nm to make the thickness of the piezoelectric layer 700 nm. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm. No cracks or cracks occurred on this composite substrate.
このように作製した複合基板について、実施例1と同様に、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 As in Example 1, the composite substrate thus produced was observed to be induced by applying vertical vibration in the thickness direction to the main surface and the back surface. As a result, piezoelectricity was observed at all points of the bonded substrate. The response could be observed and the piezoelectricity could be confirmed.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、Li量は、測定箇所のすべてにおいて50.0mol%であり、均一な疑似ストイキオメトリー組成であった。
このLT基板では、イオン注入によってLi量が最大0.1mol%減少している。Further, as a result of performing laser Raman spectroscopic measurement at several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li was 50.0 mol% at all the measurement points and was uniform. It was a pseudo-stoikiometry composition.
In this LT substrate, the amount of Li is reduced by a maximum of 0.1 mol% by ion implantation.
さらに、実施例5の複合基板について、実施例1と同様に電極を形成して、共振子を作製し、このSAW共振子について、実施例1と同様の評価を行ったところ、実施例2とほぼ同様の結果を得た。 Further, with respect to the composite substrate of Example 5, electrodes were formed in the same manner as in Example 1, a resonator was produced, and the SAW resonator was evaluated in the same manner as in Example 1. Almost the same result was obtained.
〈実施例6〉
実施例6では、まず、単一分極処理を施したコングルエント組成の4インチ径タンタル酸リチウム(Li:Ta=48.3:51.7)単結晶インゴットから、厚さ300μmの42°回転Yカットのタンタル酸リチウム基板を切り出した。次に、ラップ工程によって、切り出したLT基板の面粗さが算術平均粗さRa値で0.15μmとなるようにすると共に、LT基板の厚さは250μmとした。<Example 6>
In Example 6, first, a 42 ° rotating Y-cut having a thickness of 300 μm was obtained from a 4-inch diameter lithium tantalate (Li: Ta = 48.3: 51.7) single crystal ingot having a congluent composition subjected to a single polarization treatment. The lithium tantalate substrate was cut out. Next, the surface roughness of the cut out LT substrate was adjusted to 0.15 μm in arithmetic average roughness Ra value by the wrapping step, and the thickness of the LT substrate was set to 250 μm.
また、LT基板の両面を研磨して、表面粗さがRa値で0.01μmの準鏡面に仕上げた。続いて、このLT基板を小容器に敷き詰めたLi3TaO4を主成分とする粉体中に埋め込んだ。このときのLi3TaO4を主成分とする粉体は、モル比でLi2CO3:Ta2O5=7:3の割合に混合した粉末を1300℃で12時間焼成したものを用いた。Further, both sides of the LT substrate were polished to obtain a quasi-mirror surface having a surface roughness of 0.01 μm in Ra value. Subsequently, this LT substrate was embedded in a powder containing Li 3 TaO 4 as a main component, which was spread in a small container. At this time, as the powder containing Li 3 TaO 4 as a main component, a powder obtained by mixing a powder having a molar ratio of Li 2 CO 3 : Ta 2 O 5 = 7: 3 and firing at 1300 ° C. for 12 hours was used. ..
次に、この小容器を電気炉にセットし、炉内をN2雰囲気として、990℃で50時間加熱して、LT基板にLiを拡散させた。Then, set the small container into an electric furnace, the furnace as a N 2 atmosphere and heated at 990 ° C. 50 hours to diffuse Li to LT substrate.
そして、Li拡散処理を施したLT基板について、実施例1と同様のレーザーラマン分光測定装置を用いて、表面から深さ方向にわたって600cm−1付近のラマンシフトピークの半値幅(FWHM1)を測定し、測定した半値幅から上記数式1を用いてLi量を算出したところ、図5に示す実施例5とほぼ同様のLi量の深さ方向のプロファイルが得られた。Then, with respect to the LT substrate subjected to the Li diffusion treatment, the half width (FWHM1) of the Raman shift peak near 600 cm -1 was measured from the surface to the depth direction using the same laser Raman spectroscopic measuring device as in Example 1. When the Li amount was calculated from the measured half-value width using the
続いて、LT基板の鏡面側から水素分子イオンを注入したが、このときのドーズ量は9×1016atm/cm2で、加速電圧は160KeVであった。このとき、イオンが注入される位置は、表面から900nmの深さの位置であり、その位置のLi量は50.1mol%である。Subsequently, hydrogen molecule ions were injected from the mirror surface side of the LT substrate. At this time, the dose amount was 9 × 10 16 atm / cm 2 , and the accelerating voltage was 160 KeV. At this time, the position where the ions are injected is a position at a depth of 900 nm from the surface, and the amount of Li at that position is 50.1 mol%.
LT基板のイオン注入した側の面にプラズマCVD法を用いて35℃でSiO2を10μm程度堆積させた後に、SiO2を堆積させた面に鏡面研磨を施した。After depositing SiO 2 by about 10 μm at 35 ° C. on the ion-implanted side surface of the LT substrate using a plasma CVD method, the surface on which the SiO 2 was deposited was mirror-polished.
次に、支持基板として、厚さ500μmで片側鏡面の熱酸化膜付きのSi(SiO2/Si)基板を準備した。そして、SiO2/LT基板とSiO2/Si基板の鏡面における表面粗さがRMS値で1.0nm以下であることを確認した。Next, as a support substrate, a Si (SiO 2 / Si) substrate having a thickness of 500 μm and having a thermal oxide film on one side mirror surface was prepared. Then, it was confirmed that the surface roughness of the mirror surface of the SiO 2 / LT substrate and the SiO 2 / Si substrate was 1.0 nm or less in RMS value.
次に、SiO2/LT基板とSiO2/Si基板は、実施例1と同様に、表面活性化常温接合法を用いて接合した。また、実施例1と同様の方法で、イオン注入部においてLT基板を分離し、圧電体層の表面を研磨して、LT圧電体層とSi支持基板からなる接合基板を得た。この接合基板には、介在層として圧電体層と支持基板との間にSiO2層が存在する。Next, the SiO 2 / LT substrate and the SiO 2 / Si substrate were bonded by using the surface-activated room temperature bonding method as in Example 1. Further, in the same manner as in Example 1, the LT substrate was separated in the ion implantation section, and the surface of the piezoelectric layer was polished to obtain a bonded substrate composed of the LT piezoelectric layer and the Si support substrate. In this bonded substrate, a SiO 2 layer exists between the piezoelectric layer and the supporting substrate as an intervening layer.
このときの圧電体層の厚みは900nmであったが、この圧電体層の表面を200nm研磨して、圧電体層の厚みを700nmとした。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。この複合基板にひびやワレは生じなかった。 The thickness of the piezoelectric layer at this time was 900 nm, but the surface of the piezoelectric layer was polished by 200 nm to make the thickness of the piezoelectric layer 700 nm. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm. No cracks or cracks occurred on this composite substrate.
このように作製した複合基板について、実施例1と同様に、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 As in Example 1, the composite substrate thus produced was observed to be induced by applying vertical vibration in the thickness direction to the main surface and the back surface. As a result, piezoelectricity was observed at all points of the bonded substrate. The response could be observed and the piezoelectricity could be confirmed.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、Li量は、測定箇所のすべてにおいて50.0mol%であり、均一な疑似ストイキオメトリー組成であった。
このLT基板では、イオン注入によってLi量が最大0.1mol%減少している。Further, as a result of performing laser Raman spectroscopic measurement at several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li was 50.0 mol% at all the measurement points and was uniform. It was a pseudo-stoikiometry composition.
In this LT substrate, the amount of Li is reduced by a maximum of 0.1 mol% by ion implantation.
さらに、実施例6の複合基板について、実施例1と同様に電極を形成して、共振子を作製し、このSAW共振子について、実施例1と同様の評価を行ったところ、実施例2とほぼ同様の結果を得た。 Further, with respect to the composite substrate of Example 6, electrodes were formed in the same manner as in Example 1, a resonator was produced, and the SAW resonator was evaluated in the same manner as in Example 1. Almost the same result was obtained.
〈比較例3〉
比較例3では、まず、単一分極処理を施した疑似ストイキオメトリー組成(Li:Ta=49.95:50.05)のタンタル酸リチウム単結晶基板(4インチ径、厚さ300μm、42°回転Yカット)を準備した。このLT基板は二重ルツボ法により得られた単結晶から成り、全体が疑似ストイキオメトリー組成である。このLT基板の片面に鏡面研磨を施した。<Comparative example 3>
In Comparative Example 3, first, a lithium tantalate single crystal substrate (4 inch diameter, thickness 300 μm, 42 °) having a pseudo-stoikiometry composition (Li: Ta = 49.95: 50.05) subjected to a single polarization treatment was applied. Rotation Y cut) was prepared. This LT substrate is composed of a single crystal obtained by the double crucible method, and has a pseudo-stoikiometry composition as a whole. One side of this LT substrate was mirror-polished.
次に、支持基板として、厚さ500μmで片側鏡面のサファイア基板を準備した。そして、Li拡散処理を施したLT基板とサファイア基板の鏡面における表面粗さがRMS値で1.0nm以下であることを確認した。 Next, as a support substrate, a sapphire substrate having a thickness of 500 μm and a mirror surface on one side was prepared. Then, it was confirmed that the surface roughness of the mirror surface of the LT substrate and the sapphire substrate subjected to the Li diffusion treatment was 1.0 nm or less in RMS value.
続いて、LT基板の鏡面側から水素分子イオンを注入したが、このときのドーズ量は9×1016atm/cm2で、加速電圧は160KeVであった。このとき、イオンが注入される位置は、表面から900nmの深さの位置であり、その位置のLi量は49.95mol%である。Subsequently, hydrogen molecule ions were injected from the mirror surface side of the LT substrate. At this time, the dose amount was 9 × 10 16 atm / cm 2 , and the accelerating voltage was 160 KeV. At this time, the position where the ions are injected is a position at a depth of 900 nm from the surface, and the amount of Li at that position is 49.95 mol%.
次に、イオン注入を行ったLT基板とサファイア基板は、実施例1と同様に、表面活性化常温接合法を用いて接合した。また、実施例1と同様の方法で、イオン注入部においてLT基板を分離し、圧電体層の表面を研磨して、LT圧電体層とサファイア支持基板からなる接合基板を得た。 Next, the LT substrate and the sapphire substrate that had been ion-implanted were bonded using the surface-activated room temperature bonding method in the same manner as in Example 1. Further, in the same manner as in Example 1, the LT substrate was separated in the ion implantation section, and the surface of the piezoelectric layer was polished to obtain a bonded substrate composed of the LT piezoelectric layer and the sapphire support substrate.
このときの圧電体層の厚みは900nmであったが、この圧電体層の表面を200nm研磨して、圧電体層の厚みを700nmとした。また、原子間力顕微鏡(AFM)を用いて、表面粗さの最大高さRzを測定したところ、その値は1nmであった。この複合基板にひびやワレは生じなかった。 The thickness of the piezoelectric layer at this time was 900 nm, but the surface of the piezoelectric layer was polished by 200 nm to make the thickness of the piezoelectric layer 700 nm. Moreover, when the maximum height Rz of the surface roughness was measured using an atomic force microscope (AFM), the value was 1 nm. No cracks or cracks occurred on this composite substrate.
このように作製した複合基板について、実施例1と同様に、主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形の観測を行ったところ、この接合基板のすべての箇所において圧電応答を観測することができ、圧電性を確認することができた。 As in Example 1, the composite substrate thus produced was observed to be induced by applying vertical vibration in the thickness direction to the main surface and the back surface. As a result, piezoelectricity was observed at all points of the bonded substrate. The response could be observed and the piezoelectricity could be confirmed.
また、圧電体層表面の数箇所について、実施例1と同様に、レーザーラマン分光測定を行い、Li量を算出した結果、Li量は、測定箇所のすべてにおいて49.8mol%であり、均一な疑似ストイキオメトリー組成であった。
このLT基板では、イオン注入によってLi量が最大0.15mol%減少している。Further, as a result of performing laser Raman spectroscopic measurement at several points on the surface of the piezoelectric layer and calculating the amount of Li in the same manner as in Example 1, the amount of Li was 49.8 mol% at all the measurement points and was uniform. It was a pseudo-stoikiometry composition.
In this LT substrate, the amount of Li is reduced by a maximum of 0.15 mol% by ion implantation.
さらに、比較例3の複合基板について、実施例1と同様に電極を形成して、共振子を作製し、このSAW共振子について、実施例1と同様の評価を行ったところ、実施例2、5、6よりもわずかに劣る結果となった。
Further, with respect to the composite substrate of Comparative Example 3, electrodes were formed in the same manner as in Example 1, a resonator was produced, and the SAW resonator was evaluated in the same manner as in Example 1. The result was slightly inferior to 5 and 6.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016198521 | 2016-10-06 | ||
JP2016198521 | 2016-10-06 | ||
PCT/JP2017/036310 WO2018066653A1 (en) | 2016-10-06 | 2017-10-05 | Composite substrate and method of manufacturing composite substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018066653A1 JPWO2018066653A1 (en) | 2019-08-08 |
JP6756843B2 true JP6756843B2 (en) | 2020-09-16 |
Family
ID=61831483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018543966A Active JP6756843B2 (en) | 2016-10-06 | 2017-10-05 | Manufacturing method of composite substrate |
Country Status (5)
Country | Link |
---|---|
US (1) | US10756254B2 (en) |
EP (1) | EP3525347B1 (en) |
JP (1) | JP6756843B2 (en) |
KR (2) | KR20180038369A (en) |
WO (1) | WO2018066653A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102433349B1 (en) | 2016-11-11 | 2022-08-16 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Composite substrate, surface acoustic wave device and manufacturing method of composite substrate |
JP2020129762A (en) * | 2019-02-08 | 2020-08-27 | 信越化学工業株式会社 | Manufacturing method of composite substrate |
CN111477543A (en) * | 2020-04-23 | 2020-07-31 | 济南晶正电子科技有限公司 | Method for bonding substrate wafer and single crystal piezoelectric wafer and composite single crystal piezoelectric wafer substrate |
JP7262421B2 (en) * | 2020-05-08 | 2023-04-21 | 信越化学工業株式会社 | Piezoelectric composite substrate and manufacturing method thereof |
EP4163424A4 (en) * | 2020-06-09 | 2024-06-12 | Shin-Etsu Chemical Co., Ltd. | Substrate for group-iii nitride epitaxial growth and method for producing the same |
CN111799365B (en) * | 2020-06-29 | 2022-03-25 | 上海新硅聚合半导体有限公司 | Method for preparing films with different thicknesses based on same substrate, structure and application device thereof |
CN111880124B (en) * | 2020-07-10 | 2021-11-19 | 中国科学院上海微系统与信息技术研究所 | Preparation method of high-frequency adjustable magnetic field detector |
CN111883648B (en) * | 2020-07-23 | 2021-05-25 | 中国科学院上海微系统与信息技术研究所 | Preparation method of piezoelectric film, piezoelectric film and band-pass filter |
EP4414482A1 (en) * | 2023-02-07 | 2024-08-14 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Composite substrates for the epitaxial growth of thin films and method for fabricating such substrates |
CN117156947B (en) * | 2023-10-31 | 2024-02-20 | 北京青禾晶元半导体科技有限责任公司 | Preparation method of composite piezoelectric substrate |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2788176B1 (en) * | 1998-12-30 | 2001-05-25 | Thomson Csf | GUIDED ACOUSTIC WAVE DEVICE IN A THIN LAYER OF PIEZOELECTRIC MATERIAL ADHESED BY A MOLECULAR ADHESIVE ONTO A CARRIER SUBSTRATE AND MANUFACTURING METHOD |
DE50113227D1 (en) * | 2000-09-18 | 2007-12-20 | Caterpillar Inc | Method for producing a ferroelectric device |
KR101148587B1 (en) * | 2007-12-25 | 2012-05-23 | 가부시키가이샤 무라타 세이사쿠쇼 | Composite piezoelectric substrate manufacturing method |
JP4821834B2 (en) | 2008-10-31 | 2011-11-24 | 株式会社村田製作所 | Method for manufacturing piezoelectric composite substrate |
KR101534654B1 (en) | 2010-12-24 | 2015-07-07 | 가부시키가이샤 무라타 세이사쿠쇼 | Elastic wave device and production method thereof |
CN104862784B (en) * | 2014-06-09 | 2018-01-09 | 济南晶正电子科技有限公司 | A kind of method for the monocrystal thin films for manufacturing near stoichiometric proportion |
JP6296507B2 (en) * | 2015-01-26 | 2018-03-20 | 信越化学工業株式会社 | Method for producing piezoelectric oxide single crystal substrate made of lithium compound |
US20180048283A1 (en) * | 2015-04-16 | 2018-02-15 | Shin-Etsu Chemical Co., Ltd. | Lithium tantalate single crystal substrate, bonded substrate, manufacturing method of the bonded substrate, and surface acoustic wave device using the bonded substrate |
JP6115657B2 (en) * | 2016-01-21 | 2017-04-19 | 原 知穂 | Transfer method for thermal transfer printed products |
FR3051979B1 (en) * | 2016-05-25 | 2018-05-18 | Soitec | METHOD FOR THE HEALING OF DEFECTS IN A LAYER OBTAINED BY IMPLANTATION AND DETACHMENT OF A SUBSTRATE |
-
2017
- 2017-09-18 KR KR1020170119283A patent/KR20180038369A/en unknown
- 2017-10-05 KR KR1020197007157A patent/KR102444516B1/en active IP Right Grant
- 2017-10-05 WO PCT/JP2017/036310 patent/WO2018066653A1/en unknown
- 2017-10-05 US US16/339,910 patent/US10756254B2/en active Active
- 2017-10-05 JP JP2018543966A patent/JP6756843B2/en active Active
- 2017-10-05 EP EP17858489.2A patent/EP3525347B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3525347A4 (en) | 2020-09-23 |
US20200052189A1 (en) | 2020-02-13 |
KR102444516B1 (en) | 2022-09-16 |
WO2018066653A1 (en) | 2018-04-12 |
EP3525347B1 (en) | 2024-08-07 |
EP3525347A1 (en) | 2019-08-14 |
KR20190065249A (en) | 2019-06-11 |
KR20180038369A (en) | 2018-04-16 |
US10756254B2 (en) | 2020-08-25 |
JPWO2018066653A1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6756843B2 (en) | Manufacturing method of composite substrate | |
CN110463038B (en) | Bonded body and elastic wave element | |
US10886890B2 (en) | Composite substrate for surface acoustic wave device, method of producing composite substrate for surface acoustic wave device, and surface acoustic wave device using composite substrate | |
JP6335831B2 (en) | Manufacturing method of bonded substrate | |
KR101148587B1 (en) | Composite piezoelectric substrate manufacturing method | |
JP4657002B2 (en) | Composite piezoelectric substrate | |
US9209779B2 (en) | Heterogenous acoustic structure formed from a homogeneous material | |
JP2019077607A (en) | Lithium tantalate single crystal substrate, substrate bonded therewith, method for manufacturing bonded substrate, and surface acoustic wave device using bonded substrate | |
EP2486655A1 (en) | Acoustic wave device including a surface wave filter and a bulk wave filter, and method for making same | |
CN111066243B (en) | Elastic wave device and method for manufacturing same | |
WO2018230442A1 (en) | Bonded substrate, surface acoustic wave element, surface acoustic wave element device, and bonded substrate manufacturing method | |
US11070189B2 (en) | Joint and elastic wave element | |
JPH09208399A (en) | Piezoelectric substrate and surface acoustic wave device | |
JP6771635B2 (en) | Manufacturing method of composite wafer | |
KR102767535B1 (en) | Conjugate and method for making the same | |
US11411547B2 (en) | Joint and elastic wave element | |
JP7526260B2 (en) | Joint and manufacturing method thereof | |
JP2020129762A (en) | Manufacturing method of composite substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190307 |
|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20190514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6756843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |