[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6754214B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP6754214B2
JP6754214B2 JP2016081236A JP2016081236A JP6754214B2 JP 6754214 B2 JP6754214 B2 JP 6754214B2 JP 2016081236 A JP2016081236 A JP 2016081236A JP 2016081236 A JP2016081236 A JP 2016081236A JP 6754214 B2 JP6754214 B2 JP 6754214B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
heat exchanger
compressor
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016081236A
Other languages
Japanese (ja)
Other versions
JP2017190074A (en
Inventor
徹也 石関
徹也 石関
泰伸 ▲高▼野
泰伸 ▲高▼野
耕平 山下
耕平 山下
竜 宮腰
竜 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2016081236A priority Critical patent/JP6754214B2/en
Priority to PCT/JP2017/014888 priority patent/WO2017179595A1/en
Publication of JP2017190074A publication Critical patent/JP2017190074A/en
Application granted granted Critical
Publication of JP6754214B2 publication Critical patent/JP6754214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle, particularly an air conditioner applicable to a hybrid vehicle or an electric vehicle.

近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外膨張弁で減圧した後、室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器や室外熱交換器において放熱させ、放熱した冷媒を室内膨張弁で減圧した後、吸熱器において吸熱させる除湿暖房モードや除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、放熱した冷媒を室内膨張弁で減圧した後、吸熱器において吸熱させる冷房モードを切り換えて実行するものが開発されている。 Due to the emergence of environmental problems in recent years, hybrid vehicles and electric vehicles have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and a radiator that is provided on the vehicle interior side are provided. It is equipped with a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is installed outside the vehicle interior to dissipate or absorb the refrigerant. The refrigerant discharged from the compressor is dissipated in the radiator, and the refrigerant dissipated in this radiator is dissipated. After decompressing with the outdoor expansion valve, the heating mode absorbs heat in the outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated in the radiator or outdoor heat exchanger, and the radiated refrigerant is decompressed by the indoor expansion valve. Dehumidifying heating mode and dehumidifying cooling mode that absorb heat in the heat exchanger, and cooling mode in which the refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger, the radiated refrigerant is decompressed by the indoor expansion valve, and then heat is absorbed in the heat exchanger. Those that switch and execute are being developed.

この場合、圧縮機の冷媒吸込側にはアキュムレータが設けられ、暖房モードでは冷房用の電磁弁を閉じ、暖房用の電磁弁を開いて室外熱交換器から出た冷媒をアキュムレータに流し、例えば冷房モードでは暖房用の電磁弁を閉じ、冷房用の電磁弁を開いて室外熱交換器から出た冷媒を室内膨張弁に流し、吸熱器を経た冷媒をアキュムレータに流すように構成されている。そして、このアキュムレータでは冷媒が一旦貯留されることで気液が分離され、このうちのガス冷媒が圧縮機に吸い込まれるようにすることで、圧縮機への液戻りを防止、若しくは、抑制するようにしていた(例えば、特許文献1参照)。 In this case, an accumulator is provided on the refrigerant suction side of the compressor. In the heating mode, the cooling electromagnetic valve is closed, the heating electromagnetic valve is opened, and the refrigerant discharged from the outdoor heat exchanger is allowed to flow through the accumulator, for example, cooling. In the mode, the heating electromagnetic valve is closed, the cooling electromagnetic valve is opened, the refrigerant discharged from the outdoor heat exchanger flows to the indoor expansion valve, and the refrigerant passed through the heat absorber flows to the accumulator. Then, in this accumulator, gas and liquid are separated once the refrigerant is stored, and the gas refrigerant is sucked into the compressor to prevent or suppress the liquid return to the compressor. (For example, see Patent Document 1).

特開2014−94671号公報Japanese Unexamined Patent Publication No. 2014-94671

ここで、圧縮機が停止しているときのアキュムレータ内では、圧縮機から出て冷媒回路内を流れて来た冷媒とオイルが流入し、そのうちの液体の部分がアキュムレータ内に溜まり、比重の軽いオイルが液状の冷媒の上に層を作り、蓋をしたような安定状態となっている。特に、外気温度が低い環境で実行されることになる暖房モードでは、室外熱交換器から出て暖房用の電磁弁を通り、アキュムレータに流入してその内部に溜まる液冷媒とオイルの量も多くなるため、アキュムレータの出口近くまでオイル面(アキュムレータ内の液面)が上昇するようになる。 Here, in the accumulator when the compressor is stopped, the refrigerant and oil that have flowed out of the compressor and flowed through the refrigerant circuit flow in, and the liquid part of them collects in the accumulator and has a light specific gravity. The oil forms a layer on top of the liquid refrigerant and is in a stable state as if it were covered. In particular, in the heating mode, which is to be executed in an environment where the outside air temperature is low, the amount of liquid refrigerant and oil that exits the outdoor heat exchanger, passes through the solenoid valve for heating, flows into the accumulator, and accumulates inside the accumulator is large. Therefore, the oil level (the liquid level in the accumulator) rises to near the outlet of the accumulator.

このような状態の暖房モードで圧縮機が起動されるとき、或いは、他の運転モード(上記除湿暖房モードや除湿冷房モード、冷房モード)から暖房モードに切り換えられると、圧縮機による冷媒の吸い込みによってアキュムレータ内の圧力は急激に低下することになる。このようにアキュムレータ内の圧力が急激に下がると、オイルより下の冷媒が一気に沸騰して気化し、上のオイルの層を激しく突き破る所謂突沸と称される現象が発生する。 When the compressor is started in the heating mode in such a state, or when it is switched from another operation mode (the above dehumidifying heating mode, dehumidifying cooling mode, cooling mode) to the heating mode, the compressor sucks in the refrigerant. The pressure in the accumulator will drop sharply. When the pressure in the accumulator drops sharply in this way, the refrigerant below the oil boils and vaporizes at once, causing a phenomenon called bumping that violently breaks through the layer of oil above.

そして、この突沸が激しくなると、アキュムレータ内の多くの液冷媒が出口から外部に押し出されるようになるため、圧縮機へ過剰な液戻りが発生し、液圧縮により圧縮機の信頼性が損なわれることになる。また、アキュムレータ内での突沸現象は比較的大きな音を伴うため、騒音の発生により搭乗者の快適性が損なわれる問題もあった。 When this bumping becomes severe, a large amount of liquid refrigerant in the accumulator is pushed out from the outlet, so that excessive liquid return to the compressor occurs, and the reliability of the compressor is impaired by liquid compression. become. In addition, since the bumping phenomenon in the accumulator is accompanied by a relatively loud noise, there is also a problem that the comfort of the passenger is impaired by the generation of noise.

本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒を室外膨張弁で減圧する運転モードで圧縮機を起動する際や、冷媒を室内膨張弁で減圧する運転モードから室外膨張弁で減圧する運転モードに切り換えるとき生じる圧縮機への液戻りとアキュムレータ内での騒音の発生を防止若しくは抑制することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and when the compressor is started in the operation mode in which the refrigerant is depressurized by the outdoor expansion valve, or the operation in which the refrigerant is depressurized by the indoor expansion valve. It is an object of the present invention to provide a vehicle air conditioner capable of preventing or suppressing liquid return to the compressor and generation of noise in the accumulator that occur when switching from the mode to the operation mode in which the pressure is reduced by the outdoor expansion valve.

請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、放熱器及び室外膨張弁をバイパスして、圧縮機から吐出された冷媒を室外熱交換器に直接流入させるためのバイパス配管と、室外熱交換器から出た冷媒を、室内膨張弁を経て吸熱器に流すための第1の開閉弁と、室外熱交換器から出た冷媒を、吸熱器を経ること無くアキュムレータに流すための第2の開閉弁と、圧縮機から吐出された冷媒を放熱器に流すための第3の開閉弁と、圧縮機から吐出された冷媒をバイパス配管に流すための第4の開閉弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置と、制御装置を備え、この制御装置により、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、この室外熱交換器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第1の運転モードと、第1の開閉弁を開き、第2の開閉弁を閉じることで、室外熱交換器から出た冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させ、この吸熱器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第2の運転モードを切り換えて実行するものであって、第1の運転モードは暖房モードであり、この暖房モードでは、第3の開閉弁を開き、第4の開閉弁を閉じると共に、第2の運転モードは、第3の開閉弁及び室外膨張弁を閉じ、第4の開閉弁を開くことにより、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モードと、第3の開閉弁を開き、第4の開閉弁を閉じることにより、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる除湿冷房モードと、第3の開閉弁を開き、第4の開閉弁を閉じることにより、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる冷房モードと、第3の開閉弁及び室外膨張弁を閉じ、第4の開閉弁を開くことにより、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、制御装置は、第1の運転モードから圧縮機を起動する際、起動後の所定期間、室外膨張弁の弁開度を所定の大きい値に維持することを特徴とする。 The vehicle air conditioner according to the first aspect of the present invention includes a compressor that compresses the refrigerant, an air flow passage through which the air supplied into the vehicle interior flows, and air that dissipates the refrigerant and supplies the air into the vehicle interior from the air flow passage. A radiator for heating, a heat exchanger for absorbing the refrigerant and cooling the air supplied to the passenger compartment from the air flow passage, an outdoor heat exchanger provided outside the passenger compartment, and the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, an accumulator connected to the refrigerant suction side of the compressor, a radiator and To bypass the outdoor expansion valve and allow the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger, and to allow the refrigerant discharged from the outdoor heat exchanger to flow through the indoor expansion valve to the heat exchanger. The first on-off valve, the second on-off valve for flowing the refrigerant discharged from the outdoor heat exchanger to the accumulator without passing through the heat exchanger, and the refrigerant discharged from the compressor to flow to the radiator. A third on-off valve, a fourth on-off valve for flowing the refrigerant discharged from the compressor to the bypass pipe, an auxiliary heating device for heating the air supplied to the passenger compartment from the air flow passage, and a control device. By closing the first on-off valve and opening the second on-off valve by this control device, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is dissipated by the outdoor expansion valve. After depressurizing, heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from this outdoor heat exchanger flows through the accumulator, and the first operation mode and the first on-off valve are opened so that the accumulator sucks the heat into the compressor. By closing the second on-off valve, the refrigerant discharged from the outdoor heat exchanger is decompressed by the indoor expansion valve, then heat is absorbed by the heat absorber, and the refrigerant discharged from this heat exchanger flows through the accumulator and compressed from this accumulator. The second operation mode to be sucked into the machine is switched and executed. The first operation mode is the heating mode. In this heating mode, the third on-off valve is opened and the fourth on-off valve is closed. At the same time, in the second operation mode, the third on-off valve and the outdoor expansion valve are closed, and the fourth on-off valve is opened so that the refrigerant discharged from the compressor flows from the bypass pipe to the outdoor heat exchanger to dissipate heat. After decompressing the radiated refrigerant with the indoor expansion valve, heat is absorbed by the heat exchanger and the auxiliary heating device is heated, and the third on-off valve is opened and the fourth on-off valve is closed. Allows the refrigerant discharged from the compressor to flow from the radiator to the outdoor heat exchanger to exchange heat between the radiator and the outdoor heat exchanger. The compressor dissipates heat with a container, decompresses the radiated refrigerant with an indoor expansion valve, and then absorbs heat with a heat absorber in a dehumidifying / cooling mode, and by opening the third on-off valve and closing the fourth on-off valve. A cooling mode in which the refrigerant discharged from the radiator is passed from the radiator to the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, the radiated refrigerant is depressurized by the indoor expansion valve, and then heat is absorbed by the heat exchanger. By closing the on-off valve of No. 3 and the outdoor expansion valve and opening the fourth on-off valve, the refrigerant discharged from the compressor flows from the bypass pipe to the outdoor heat exchanger to dissipate heat, and the radiated refrigerant is dissipated to the indoor expansion valve. When the compressor is started from the first operation mode, it is one of the maximum cooling modes, or a combination thereof, or all of them, in which the compressor is depressurized and then absorbed by the heat exchanger. It is characterized in that the valve opening degree of the outdoor expansion valve is maintained at a predetermined large value for a predetermined period after the start-up.

請求項2の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、放熱器及び室外膨張弁をバイパスして、圧縮機から吐出された冷媒を室外熱交換器に直接流入させるためのバイパス配管と、室外熱交換器から出た冷媒を、室内膨張弁を経て吸熱器に流すための第1の開閉弁と、室外熱交換器から出た冷媒を、吸熱器を経ること無くアキュムレータに流すための第2の開閉弁と、圧縮機から吐出された冷媒を放熱器に流すための第3の開閉弁と、圧縮機から吐出された冷媒をバイパス配管に流すための第4の開閉弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置と、制御装置を備え、この制御装置により、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、この室外熱交換器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第1の運転モードと、第1の開閉弁を開き、第2の開閉弁を閉じることで、室外熱交換器から出た冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させ、この吸熱器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第2の運転モードを切り換えて実行するものであって、第1の運転モードは暖房モードであり、この暖房モードでは、第3の開閉弁を開き、第4の開閉弁を閉じると共に、第2の運転モードは、第3の開閉弁及び室外膨張弁を閉じ、第4の開閉弁を開くことにより、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モードと、第3の開閉弁を開き、第4の開閉弁を閉じることにより、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる除湿冷房モードと、第3の開閉弁を開き、第4の開閉弁を閉じることにより、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる冷房モードと、第3の開閉弁及び室外膨張弁を閉じ、第4の開閉弁を開くことにより、圧縮機から吐出された冷媒をバイパス配管から室外熱交換器に流して放熱させ、放熱した当該冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、制御装置は、第2の運転モードから第1の運転モードに移行する際、移行後の所定期間、室外膨張弁の弁開度を所定の大きい値に維持することを特徴とする。 The vehicle air conditioner according to the second aspect of the present invention includes a compressor that compresses the refrigerant, an air flow passage through which the air supplied into the vehicle interior flows, and air that dissipates the refrigerant and supplies the air into the vehicle interior from the air flow passage. A radiator for heating, a heat exchanger for absorbing the refrigerant and cooling the air supplied to the passenger compartment from the air flow passage, an outdoor heat exchanger provided outside the passenger compartment, and the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, an accumulator connected to the refrigerant suction side of the compressor, a radiator and To bypass the outdoor expansion valve and allow the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger, and to allow the refrigerant discharged from the outdoor heat exchanger to flow through the indoor expansion valve to the heat exchanger. The first on-off valve, the second on-off valve for flowing the refrigerant discharged from the outdoor heat exchanger to the accumulator without passing through the heat exchanger, and the refrigerant discharged from the compressor to flow to the radiator. A third on-off valve, a fourth on-off valve for flowing the refrigerant discharged from the compressor to the bypass pipe, an auxiliary heating device for heating the air supplied to the passenger compartment from the air flow passage, and a control device. By closing the first on-off valve and opening the second on-off valve by this control device, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is dissipated by the outdoor expansion valve. After depressurizing, heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from this outdoor heat exchanger flows through the accumulator, and the first operation mode and the first on-off valve are opened so that the accumulator sucks the heat into the compressor. By closing the second on-off valve, the refrigerant discharged from the outdoor heat exchanger is decompressed by the indoor expansion valve, then heat is absorbed by the heat absorber, and the refrigerant discharged from this heat exchanger flows through the accumulator and compressed from this accumulator. The second operation mode to be sucked into the machine is switched and executed. The first operation mode is the heating mode. In this heating mode, the third on-off valve is opened and the fourth on-off valve is closed. At the same time, in the second operation mode, the third on-off valve and the outdoor expansion valve are closed, and the fourth on-off valve is opened so that the refrigerant discharged from the compressor flows from the bypass pipe to the outdoor heat exchanger to dissipate heat. After decompressing the radiated refrigerant with the indoor expansion valve, heat is absorbed by the heat exchanger and the auxiliary heating device is heated, and the third on-off valve is opened and the fourth on-off valve is closed. Allows the refrigerant discharged from the compressor to flow from the radiator to the outdoor heat exchanger to exchange heat between the radiator and the outdoor heat exchanger. The compressor dissipates heat with a container, decompresses the radiated refrigerant with an indoor expansion valve, and then absorbs heat with a heat absorber in a dehumidifying / cooling mode, and by opening the third on-off valve and closing the fourth on-off valve. A cooling mode in which the refrigerant discharged from the radiator is passed from the radiator to the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, the radiated refrigerant is depressurized by the indoor expansion valve, and then heat is absorbed by the heat exchanger. By closing the on-off valve of No. 3 and the outdoor expansion valve and opening the fourth on-off valve, the refrigerant discharged from the compressor flows from the bypass pipe to the outdoor heat exchanger to dissipate heat, and the radiated refrigerant is dissipated to the indoor expansion valve. The control device changes from the second operation mode to the first operation mode, which is one of the maximum cooling modes in which the heat is absorbed by the heat exchanger after depressurizing with, or a combination thereof, or all of them. At the time of transition, the valve opening degree of the outdoor expansion valve is maintained at a predetermined large value for a predetermined period after the transition.

請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、放熱器及び室外膨張弁をバイパスして、圧縮機から吐出された冷媒を室外熱交換器に直接流入させるためのバイパス配管と、室外熱交換器から出た冷媒を、室内膨張弁を経て吸熱器に流すための第1の開閉弁と、室外熱交換器から出た冷媒を、吸熱器を経ること無くアキュムレータに流すための第2の開閉弁と、圧縮機から吐出された冷媒を放熱器に流すための第3の開閉弁と、圧縮機から吐出された冷媒をバイパス配管に流すための第4の開閉弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置と、制御装置を備え、この制御装置により、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、この室外熱交換器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第1の運転モードと、第1の開閉弁を開き、第2の開閉弁を閉じることで、室外熱交換器から出た冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させ、この吸熱器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第2の運転モードを切り換えて実行する車両用空気調和装置において、制御装置が、第1の運転モードである前述した暖房モードから圧縮機を起動する際、起動後の所定期間、室外膨張弁の弁開度を所定の大きい値に維持するようにしたので、圧縮機の起動時にアキュムレータ内の冷媒が急激に減少することが抑制される。 According to the invention of claim 1, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied from the air flow passage to the vehicle interior by dissipating the refrigerant are heated. Heat exchanger for cooling the air supplied to the passenger compartment from the air flow passage by absorbing the refrigerant, the outdoor heat exchanger provided outside the passenger compartment, and the outdoor heat exchanger leaving the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, an accumulator connected to the refrigerant suction side of the compressor, a radiator and an outdoor expansion valve. A bypass pipe for bypassing and allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger, and a first for flowing the refrigerant discharged from the outdoor heat exchanger to the heat exchanger via the indoor expansion valve. An on-off valve, a second on-off valve for flowing the refrigerant discharged from the outdoor heat exchanger to the accumulator without passing through the heat exchanger, and a third on-off valve for flowing the refrigerant discharged from the compressor to the radiator. It is equipped with a valve, a fourth on-off valve for flowing the refrigerant discharged from the compressor to the bypass pipe, an auxiliary heating device for heating the air supplied to the passenger compartment from the air flow passage, and a control device. By closing the first on-off valve and opening the second on-off valve by the control device, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is depressurized by the outdoor expansion valve. The first operation mode in which heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from this outdoor heat exchanger flows to the accumulator, and the compressor is sucked from this accumulator, and the first on-off valve is opened to open and close the second. By closing the valve, the refrigerant discharged from the outdoor heat exchanger is decompressed by the indoor expansion valve, then heat is absorbed by the heat absorber, the refrigerant discharged from this heat exchanger flows into the accumulator, and is sucked into the compressor from this accumulator. In the vehicle air conditioner that switches and executes the second operation mode, when the control device activates the compressor from the above-mentioned heating mode, which is the first operation mode, the outdoor expansion valve of the outdoor expansion valve is activated for a predetermined period after the activation. Since the valve opening is maintained at a predetermined large value, it is possible to prevent the refrigerant in the accumulator from suddenly decreasing when the compressor is started.

これにより、圧縮機の起動時におけるアキュムレータ内の圧力の急激な低下を防止することができるので、液冷媒の上をオイルが蓋をしたような状態でアキュムレータ内の圧力が低下したときに生じる突沸の発生を防止若しくは抑制し、圧縮機での液圧縮やアキュムレータ内での騒音の発生を効果的に解消若しくは抑制することができるようになり、車両用空気調和装置の信頼性を向上させ、搭乗者の快適性も効果的に改善することができるようになる。 As a result, it is possible to prevent a sudden drop in the pressure inside the accumulator when the compressor is started, so that sudden boiling occurs when the pressure inside the accumulator drops while the oil covers the liquid refrigerant. It has become possible to prevent or suppress the generation of air conditioners, effectively eliminate or suppress the generation of liquid compression in the compressor and the generation of noise in the accumulator, improve the reliability of the air conditioner for vehicles, and board the vehicle. The comfort of the person can also be effectively improved.

請求項2の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、吸熱器に流入する冷媒を減圧するための室内膨張弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、放熱器及び室外膨張弁をバイパスして、圧縮機から吐出された冷媒を室外熱交換器に直接流入させるためのバイパス配管と、室外熱交換器から出た冷媒を、室内膨張弁を経て吸熱器に流すための第1の開閉弁と、室外熱交換器から出た冷媒を、吸熱器を経ること無くアキュムレータに流すための第2の開閉弁と、圧縮機から吐出された冷媒を放熱器に流すための第3の開閉弁と、圧縮機から吐出された冷媒をバイパス配管に流すための第4の開閉弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置と、制御装置を備え、この制御装置により、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、この室外熱交換器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第1の運転モードと、第1の開閉弁を開き、第2の開閉弁を閉じることで、室外熱交換器から出た冷媒を室内膨張弁で減圧した後、吸熱器にて吸熱させ、この吸熱器から出た冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる第2の運転モードを切り換えて実行する車両用空気調和装置において、制御装置が、第2の運転モードから第1の運転モードに移行する際、移行後の所定期間、室外膨張弁の弁開度を所定の大きい値に維持するようにしたので、第2の運転モードである前述した除湿暖房モード、除湿冷房モード、冷房モード、或いは、最大冷房モードから第1の運転モードである前述した暖房モードに移行する際に、アキュムレータ内の冷媒が急激に減少することが抑制される。 According to the invention of claim 2, in order to heat the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied from the air flow passage to the vehicle interior by dissipating the refrigerant. Heat exchanger for cooling the air supplied to the passenger compartment from the air flow passage by absorbing the refrigerant, the outdoor heat exchanger provided outside the passenger compartment, and the outdoor heat exchanger leaving the radiator. An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, an indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, an accumulator connected to the refrigerant suction side of the compressor, a radiator and an outdoor expansion valve. A bypass pipe for bypassing and allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger, and a first for flowing the refrigerant discharged from the outdoor heat exchanger to the heat exchanger via the indoor expansion valve. An on-off valve, a second on-off valve for flowing the refrigerant discharged from the outdoor heat exchanger to the accumulator without passing through the heat exchanger, and a third on-off valve for flowing the refrigerant discharged from the compressor to the radiator. It is equipped with a valve, a fourth on-off valve for flowing the refrigerant discharged from the compressor to the bypass pipe, an auxiliary heating device for heating the air supplied to the passenger compartment from the air flow passage, and a control device. By closing the first on-off valve and opening the second on-off valve by the control device, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is depressurized by the outdoor expansion valve. The first operation mode in which heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from this outdoor heat exchanger flows into the accumulator, and the refrigerant is sucked into the compressor from this accumulator, and the first on-off valve is opened to open and close the second. By closing the valve, the refrigerant discharged from the outdoor heat exchanger is decompressed by the indoor expansion valve, then heat is absorbed by the heat absorber, the refrigerant discharged from this heat exchanger flows into the accumulator, and is sucked into the compressor from this accumulator. In the vehicle air conditioner that switches and executes the second operation mode, when the control device shifts from the second operation mode to the first operation mode, the valve opening degree of the outdoor expansion valve is set for a predetermined period after the shift. Is maintained at a predetermined large value, so that the second operation mode, the above-mentioned dehumidification / heating mode, the dehumidification / cooling mode, the cooling mode, or the maximum cooling mode to the first operation mode, the above-mentioned heating mode. During the transition to, the sudden decrease in the refrigerant in the accumulator is suppressed.

これにより、第2の運転モードから第1の運転モードへの移行時におけるアキュムレータ内の圧力の急激な低下を防止することができるので、液冷媒の上をオイルが蓋をしたような状態でアキュムレータ内の圧力が低下したときに生じる突沸の発生を防止若しくは抑制し、圧縮機での液圧縮やアキュムレータ内での騒音の発生を効果的に解消若しくは抑制することができるようになり、車両用空気調和装置の信頼性を向上させ、搭乗者の快適性も効果的に改善することができるようになる。 As a result, it is possible to prevent a sudden drop in the pressure inside the accumulator at the time of transition from the second operation mode to the first operation mode, so that the accumulator is in a state where the oil covers the liquid refrigerant. It has become possible to prevent or suppress the occurrence of sudden boiling that occurs when the internal pressure drops, and to effectively eliminate or suppress the generation of liquid compression in the compressor and noise in the accumulator, and vehicle air. The reliability of the accumulator can be improved and the comfort of the occupant can be effectively improved.

本発明を適用した一実施形態の車両用空気調和装置の構成図である(暖房モード、除湿暖房モード、除湿冷房モード及び冷房モード)。It is a block diagram of the air conditioner for a vehicle of one Embodiment to which this invention was applied (heating mode, dehumidifying heating mode, dehumidifying cooling mode and cooling mode). 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the air conditioner for a vehicle of FIG. 図1の車両用空気調和装置のMAX冷房モード(最大冷房モード)のときの構成図である。It is a block diagram in the MAX cooling mode (maximum cooling mode) of the air conditioner for a vehicle of FIG. 暖房モードで圧縮機を起動するときに図2のコントローラが実行する突沸防止制御の例を説明する各機器のタイミングチャートである。It is a timing chart of each device explaining an example of bumping prevention control executed by the controller of FIG. 2 when a compressor is started in a heating mode. 除湿暖房モードから暖房モードに移行するときに図2のコントローラが実行する突沸防止制御の例を説明する各機器のタイミングチャートである。It is a timing chart of each device explaining an example of bumping prevention control executed by the controller of FIG. 2 when shifting from a dehumidifying heating mode to a heating mode.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)の各運転モードを選択的に実行するものである。 FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment of the present invention. The vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (neither is shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs the heating mode by the heat pump operation using the refrigerant circuit in the electric vehicle that cannot be heated by the waste heat of the engine, and further, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) is selectively executed.

尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。また、上記暖房モードが本発明における第1の運転モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードが本発明における第2の運転モードである。 It should be noted that the present invention is effective not only for electric vehicles as vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and further, it can be applied to ordinary vehicles traveling with an engine. Needless to say. The heating mode is the first operation mode in the present invention, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the MAX cooling mode is the second operation mode in the present invention.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment air-conditions (heating, cooling, dehumidifying, and ventilating) the interior of the electric vehicle, and includes an electric compressor 2 that compresses the refrigerant and the interior air of the vehicle. The radiator 4 is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and dissipates this refrigerant into the vehicle interior. An outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and a heat exchange between the refrigerant and the outside air so as to be provided outside the vehicle interior and function as a radiator during cooling and as an evaporator during heating. An indoor expansion valve 8 composed of an outdoor heat exchanger 7 for reducing the pressure and expansion of the refrigerant, and a heat absorber 9 provided in the air flow passage 3 for absorbing heat from the inside and outside of the vehicle during cooling and dehumidification. And the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R is configured.

そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.

また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17(第1の開閉弁)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8を介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。 Further, the outdoor heat exchanger 7 has a receiver dryer portion 14 and a supercooling portion 16 in sequence on the downstream side of the refrigerant, and the refrigerant pipe 13A discharged from the outdoor heat exchanger 7 is an electromagnetic valve 17 (first) that is opened during cooling. The on-off valve) is connected to the receiver dryer unit 14, and the refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat exchanger 9 via the indoor expansion valve 8. The receiver dryer section 14 and the supercooling section 16 structurally form a part of the outdoor heat exchanger 7.

また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。 Further, the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both of them constitute the internal heat exchanger 19. As a result, the refrigerant flowing into the indoor expansion valve 8 via the refrigerant pipe 13B is configured to be cooled (supercooled) by the low-temperature refrigerant leaving the heat absorber 9.

また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21(第2の開閉弁)を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。 Further, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is inside via an electromagnetic valve 21 (second on-off valve) opened during heating. It is communicatively connected to the refrigerant pipe 13C on the downstream side of the heat exchanger 19. The refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.

また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(第3の開閉弁)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(第4の開閉弁)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。 Further, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (third on-off valve) that is closed during dehumidifying and heating and MAX cooling, which will be described later. In this case, the refrigerant pipe 13G branches to the bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is passed through the solenoid valve 40 (fourth on-off valve) that is opened during dehumidifying heating and MAX cooling. It is communicated with the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. The bypass device 45 is composed of the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40.

このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。 By configuring the bypass device 45 with such a bypass pipe 35, an electromagnetic valve 30, and an electromagnetic valve 40, a dehumidifying heating mode or MAX in which the refrigerant discharged from the compressor 2 directly flows into the outdoor heat exchanger 7 as described later. It becomes possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed. The suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation mode), which is the air inside the vehicle interior, and the outside air (outside air introduction mode), which is the air outside the vehicle interior, is provided. There is. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air and outside air to the air flow passage 3 is provided.

また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。 Further, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 which is on the air upstream side of the radiator 4 with respect to the air flow of the air flow passage 3. There is. Then, when the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 via the heat absorber 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the interior of the vehicle.

また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Further, in the air flow passage 3 on the air upstream side of the auxiliary heater 23, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted. An air mix damper 28 for adjusting the ratio of ventilation to the heater 23 and the radiator 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (diff) outlets (represented by outlet 29 in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The outlet 29 is provided with an outlet switching damper 31 for switching and controlling the blowing of air from each of the outlets.

次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。 Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor, and the outside air temperature (Tam) of the vehicle is detected at the input of the controller 32. The outside air temperature sensor 33, the outside air humidity sensor 34 that detects the outside air humidity, the HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the vehicle interior. The inside air temperature sensor 37 that detects the temperature, the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle, the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration inside the vehicle, and the air outlet 29 blows into the vehicle interior. A blowout temperature sensor 41 that detects the temperature of the air to be generated, a discharge pressure sensor 42 that detects the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2. , The suction pressure sensor 44 that detects the suction refrigerant pressure of the compressor 2, the suction temperature sensor 55 that detects the suction refrigerant temperature of the compressor 2, and the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the air that has passed through the radiator 4). The radiator temperature sensor 46 that detects the temperature of the radiator 4 itself: the radiator temperature TH) and the refrigerant pressure of the radiator 4 (the pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator A radiator pressure sensor 47 that detects the pressure PCI) and a heat absorber temperature sensor 48 that detects the temperature of the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9 or the temperature of the heat absorber 9 itself: the heat absorber temperature Te). And, for example, a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9), and for example, for detecting the amount of solar radiation into the vehicle interior. A photosensor type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, an air conditioning (air conditioner) operation unit 53 for setting a set temperature and switching of an operation mode, and outdoor heat exchange. An outdoor heat exchanger temperature sensor 54 that detects the temperature of the vessel 7 (the temperature of the refrigerant immediately after exiting the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO), and the outdoor Each of the outdoor heat exchanger pressure sensors 56 that detects the refrigerant pressure of the heat exchanger 7 (the pressure of the refrigerant inside the outdoor heat exchanger 7 or immediately after coming out of the outdoor heat exchanger 7: outdoor heat exchanger pressure PXO). The output is connected. Further, at the input of the controller 32, an auxiliary heater temperature sensor that detects the temperature of the auxiliary heater 23 (the temperature of the air immediately after being heated by the auxiliary heater 23, or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc). Fifty outputs are also connected.

一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。 On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. Valve 6, indoor expansion valve 8 and auxiliary heater 23, solenoid valve 30 (for reheating), solenoid valve 17 (for cooling), solenoid valve 21 (for heating), solenoid valve 40 (for bypass) are connected. Has been done. Then, the controller 32 controls these based on the output of each sensor and the setting input by the air conditioning operation unit 53.

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モード(最大冷房モード)の各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will be described next. In the embodiment, the controller 32 switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode (maximum cooling mode). First, the outline of the flow and control of the refrigerant in each operation mode will be described.

(1)暖房モード(第1の運転モード)
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は暖房用の電磁弁21(第2の開閉弁)を開放し、冷房用の電磁弁17(第1の開閉弁)を閉じる。また、リヒート用の電磁弁30を開放し、バイパス用の電磁弁40を閉じる。
(1) Heating mode (first operation mode)
When the heating mode is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (second on-off valve) for heating to cool the air. The solenoid valve 17 (first on-off valve) for use is closed. Further, the solenoid valve 30 for reheating is opened, and the solenoid valve 40 for bypass is closed.

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passed through the heat absorber 9 in the air flow passage 3 as shown by the broken line in FIG. The air is ventilated to the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is the high temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4 are used. ), On the other hand, the refrigerant in the radiator 4 is deprived of heat by air and cooled to be condensed.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。即ち、室外熱交換器7から出た冷媒は吸熱器9を経ること無くアキュムレータ12に流れる。そして、放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat from the outside air that is ventilated by the outdoor blower 15 or by running. That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the electromagnetic valve 21, and the refrigerant pipe 13D, and after gas-liquid separation there, the gas refrigerant is used in the compressor 2. Repeat the circulation sucked into. That is, the refrigerant discharged from the outdoor heat exchanger 7 flows to the accumulator 12 without passing through the heat absorber 9. Then, the air heated by the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4) is blown out from the air outlet 29, so that the interior of the vehicle is heated. Become.

コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。また、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TH)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。 The controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target radiator temperature TCO (target value of the radiator temperature TH) calculated from the target blowout temperature TAO described later, and this target heat dissipation. The rotation speed of the compressor 2 is controlled based on the vessel pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Further, the controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. It controls and controls the degree of supercooling SC of the refrigerant at the outlet of the radiator 4. The target radiator temperature TCO is basically TCO = TAO, but a predetermined control limit is provided.

また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。 Further, in this heating mode, when the heating capacity of the radiator 4 is insufficient for the heating capacity required for the air conditioning in the vehicle interior, the controller 32 assists the insufficient amount with the heat generated by the auxiliary heater 23. Controls the energization of the heater 23. As a result, comfortable vehicle interior heating is realized, and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.

ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。 Here, if the auxiliary heater 23 is arranged on the downstream side of the air of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator. Since the temperature is increased by 4, the resistance value of the PTC heater becomes large, the current value also becomes low, and the calorific value decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, the example of the embodiment As described above, the ability of the auxiliary heater 23 composed of the PTC heater can be fully exhibited.

(2)除湿暖房モード(第2の運転モード)
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
(2) Dehumidifying and heating mode (second operation mode)
Next, in the dehumidifying / heating mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passed through the heat absorber 9 in the air flow passage 3 as shown by the broken line in FIG. The air is ventilated to the auxiliary heater 23 and the radiator 4.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and flows into the refrigerant pipe on the downstream side of the outdoor expansion valve 6. It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time, and the moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled and It is dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the accumulator 12.

このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。 At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4. It becomes. As a result, it becomes possible to suppress or eliminate the decrease in the amount of refrigerant circulation and secure the air conditioning capacity. Further, in this dehumidifying / heating mode, the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23, and the temperature rises, so that the dehumidifying and heating of the vehicle interior is performed.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。 The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof, and also controls the rotation speed of the compressor 2 and the auxiliary heater temperature. By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, the air in the heat absorber 9 is appropriately cooled and dehumidified while being appropriately cooled. The heating by the auxiliary heater 23 accurately prevents the temperature of the air blown from the outlet 29 into the vehicle interior from dropping.

これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。 As a result, it becomes possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it becomes possible to realize comfortable and efficient dehumidification heating in the vehicle interior. Further, as described above, in the dehumidifying / heating mode, the air mix damper 28 is in a state of ventilating all the air in the air flow passage 3 to the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. It becomes possible to improve energy saving by heating with the heater 23 and also to improve the controllability of dehumidifying, heating and air conditioning.

尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。 Since the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant is sent to the radiator 4. Since the heat is not washed away, the inconvenience that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, it is suppressed that the temperature of the air blown into the vehicle interior is lowered by the radiator 4, and the COP is also improved.

(3)除湿冷房モード(第2の運転モード)
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(3) Dehumidifying and cooling mode (second operation mode)
Next, in the dehumidifying / cooling mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passed through the heat absorber 9 in the air flow passage 3 as shown by the broken line in FIG. The air is ventilated to the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.

放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 The refrigerant leaving the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 which is slightly opened and controlled. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the accumulator 12. In this dehumidifying / cooling mode, since the controller 32 does not energize the auxiliary heater 23, it is cooled by the heat absorber 9, and the dehumidified air is reheated in the process of passing through the radiator 4 (the heat dissipation capacity is lower than that during heating). To. As a result, the interior of the vehicle is dehumidified and cooled.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。 The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. The valve opening degree of No. 6 is controlled, and the refrigerant pressure (radiator pressure PCI) of the radiator 4 is controlled.

(4)冷房モード(第2の運転モード)
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
(4) Cooling mode (second operation mode)
Next, in the cooling mode, the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the state of the dehumidifying cooling mode. The controller 32 controls the air mix damper 28, and as shown by the solid line in FIG. 1, the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 dissipates heat to the auxiliary heater 23. Adjust the ratio of ventilation to the vessel 4. Further, the controller 32 does not energize the auxiliary heater 23.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30, and the refrigerant discharged from the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6 To reach. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by running or by the outside air ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the accumulator 12. Since the dehumidified air cooled by the heat absorber 9 is blown out into the vehicle interior from the air outlet 29 (a part of the air passes through the radiator 4 to exchange heat), the interior of the vehicle is cooled by this. become. Further, in this cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof. To control.

(5)MAX冷房モード(最大冷房モード:第2の運転モード)
次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
(5) MAX cooling mode (maximum cooling mode: second operation mode)
Next, in the MAX cooling mode as the maximum cooling mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air in the air flow passage 3 is not ventilated to the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if there is some ventilation. Further, the controller 32 does not energize the auxiliary heater 23.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and flows into the refrigerant pipe on the downstream side of the outdoor expansion valve 6. It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the accumulator 12. At this time, since the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4. .. As a result, it becomes possible to suppress or eliminate the decrease in the amount of refrigerant circulation and secure the air conditioning capacity.

ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。 Here, since the high-temperature refrigerant is flowing through the radiator 4 in the above-mentioned cooling mode, direct heat conduction from the radiator 4 to the HVAC unit 10 is not a little generated, but in this MAX cooling mode, the refrigerant is transferred to the radiator 4. Does not flow, so that the heat transferred from the radiator 4 to the HVAC unit 10 does not heat the air in the air flow passage 3 from the heat absorber 9. Therefore, the vehicle interior is strongly cooled, and particularly in an environment where the outside air temperature Tam is high, the vehicle interior can be quickly cooled and comfortable vehicle interior air conditioning can be realized. Further, even in this MAX cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof. Control the number.

(6)運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
(6) Switching of operation mode The air flowing through the air flow passage 3 is cooled by the heat absorber 9 and heated by the radiator 4 (and the auxiliary heater 23) in each of the above operation modes (adjusted by the air mix damper 28). ), And it is blown into the passenger compartment from the outlet 29. The controller 32 is set by the air conditioning operation unit 53 with the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature inside the vehicle body detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like. The target outlet temperature TAO is calculated based on the target vehicle interior temperature (set temperature) in the vehicle interior, and each operation mode is switched to control the temperature of the air blown from the outlet 29 to this target outlet temperature TAO.

この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づき、暖房モードから除湿暖房モード、除湿暖房モードから除湿冷房モード、除湿冷房モードから冷房モード、冷房モードからMAX冷房モード、このMAX冷房モードから冷房モード、冷房モードから除湿冷房モード、除湿冷房モードから除湿暖房モード、除湿暖房モードから暖房モードに運転モードを切り換える。また、暖房モードから除湿冷房モードや冷房モード、除湿冷房モードや冷房モードから暖房モードに切り換える場合もある。実施例では上記のように各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。 In this case, the controller 32 has the outside air temperature Tam, the humidity in the vehicle interior, the target blowout temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, and the presence or absence of a dehumidification request in the vehicle interior. Based on the parameters such as, heating mode to dehumidifying heating mode, dehumidifying heating mode to dehumidifying cooling mode, dehumidifying cooling mode to cooling mode, cooling mode to MAX cooling mode, this MAX cooling mode to cooling mode, cooling mode to dehumidifying cooling mode , Switch the operation mode from dehumidifying / cooling mode to dehumidifying / heating mode and from dehumidifying / heating mode to heating mode. In addition, the heating mode may be switched to the dehumidifying / cooling mode or the cooling mode, and the dehumidifying / cooling mode or the cooling mode may be switched to the heating mode. In the embodiment, by switching each operation mode as described above, the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode can be accurately switched according to the environmental conditions and the necessity of dehumidification. Moreover, efficient vehicle interior air conditioning is realized.

(7)冷媒掃気運転
尚、前述した如く除湿暖房モードでは、電磁弁30を閉じ、室外膨張弁6も全閉として放熱器4に冷媒を流さない状態となるため、暖房モードから除湿暖房モードに切り換えた時点で放熱器4に残留している冷媒は内部に寝込んだ状態となり、循環冷媒量が減少してしまう。
(7) Refrigerant scavenging operation As described above, in the dehumidifying and heating mode, the electromagnetic valve 30 is closed and the outdoor expansion valve 6 is also fully closed so that the refrigerant does not flow to the radiator 4, so the heating mode is changed to the dehumidifying and heating mode. At the time of switching, the refrigerant remaining in the radiator 4 falls asleep inside, and the amount of circulating refrigerant decreases.

そこで、コントローラ32は、実施例では暖房モードから除湿暖房モードに切り換える際、冷媒掃気運転を実行する。この冷媒掃気運転でコントローラ32は、暖房モードから除湿暖房モードに切り換える際には、電磁弁21を閉じ、電磁弁17を開いて除湿暖房モードに移行した後、電磁弁30と電磁弁40を切り換える前に、室外膨張弁6の弁開度を所定時間だけ拡大(例えば全開)する。この状態は冷房モードと同様の状態である。また、実施例では圧縮機2の回転数NCは低く(例えば制御上の最低回転数)維持する。 Therefore, in the embodiment, the controller 32 executes the refrigerant scavenging operation when switching from the heating mode to the dehumidifying heating mode. In this refrigerant scavenging operation, when switching from the heating mode to the dehumidifying / heating mode, the controller 32 closes the solenoid valve 21, opens the solenoid valve 17, shifts to the dehumidifying / heating mode, and then switches between the solenoid valve 30 and the solenoid valve 40. Before, the valve opening degree of the outdoor expansion valve 6 is expanded (for example, fully opened) by a predetermined time. This state is the same as the cooling mode. Further, in the embodiment, the rotation speed NC of the compressor 2 is maintained low (for example, the minimum rotation speed in control).

これにより、放熱器4を含む電磁弁30から室外膨張弁6までの間に存在する冷媒を室外熱交換器7の方向に追い出す(掃気)。そして、所定期間が経過した後、電磁弁30を閉じ、電磁弁40を開き、室外膨張弁6を全閉に向けて閉じていく。この室外膨張弁6が全閉となった後、コントローラ32は圧縮機2の回転数を除湿暖房モードでの作動範囲で制御する状態に移行する。このような冷媒掃気運転により、放熱器4への冷媒の寝込みを防止し、冷媒回路R内の冷媒循環量を確保して空調性能の低下を防止する。 As a result, the refrigerant existing between the solenoid valve 30 including the radiator 4 and the outdoor expansion valve 6 is expelled in the direction of the outdoor heat exchanger 7 (scavenging). Then, after the predetermined period has elapsed, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the outdoor expansion valve 6 is closed toward full closure. After the outdoor expansion valve 6 is fully closed, the controller 32 shifts to a state in which the rotation speed of the compressor 2 is controlled within the operating range in the dehumidifying / heating mode. By such a refrigerant scavenging operation, it is possible to prevent the refrigerant from falling into the radiator 4 and to secure the amount of refrigerant circulating in the refrigerant circuit R to prevent deterioration of the air conditioning performance.

(8)突沸防止制御
ここで、前述した如く圧縮機2が停止しているときのアキュムレータ12内では、圧縮機2から出て冷媒回路R内を流れて来た冷媒とオイルが流入し、そのうちの液体の部分がアキュムレータ12内に溜まり、比重の軽いオイルが液冷媒の上に層を作り、蓋をしたような安定状態となっている。特に、暖房モードでは、室外熱交換器7から出て電磁弁21を通り、アキュムレータ12に流入してその内部に溜まる液冷媒とオイルの量も多くなる。
(8) bumping prevention control Here, as described above, in the accumulator 12 when the compressor 2 is stopped, the refrigerant and oil that have flowed out of the compressor 2 and flowed through the refrigerant circuit R flow in, of which The liquid portion of the above is accumulated in the accumulator 12, and the oil having a light specific gravity forms a layer on the liquid refrigerant, and is in a stable state as if it were covered. In particular, in the heating mode, the amount of liquid refrigerant and oil that exits from the outdoor heat exchanger 7, passes through the solenoid valve 21, flows into the accumulator 12, and accumulates inside the accumulator 12 also increases.

このような暖房モードで圧縮機2が起動されると、圧縮機2によりアキュムレータ12内の冷媒が吸引されるため、アキュムレータ12内の圧力は急激に低下し、オイルより下の冷媒が一気に沸騰して気化し、上のオイルの層を激しく突き破る突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生する。そして、このような突沸は、室外熱交換器7を出た冷媒が室内膨張弁8から吸熱器9方向に流れる除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(第2の運転モード)から暖房モード(第1の運転モード)へ移行する際にも同様に危惧される。そこで、コントローラ32は暖房モードで圧縮機2を起動する際や、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードから暖房モードに切り換える際、以下に説明する突沸防止制御を実行する。 When the compressor 2 is started in such a heating mode, the refrigerant in the accumulator 12 is sucked by the compressor 2, so that the pressure in the accumulator 12 drops sharply and the refrigerant below the oil boils at once. It evaporates and causes sudden boiling that violently breaks through the upper oil layer, causing excessive liquid return and noise (noise) to the compressor 2. In such sudden boiling, the refrigerant discharged from the outdoor heat exchanger 7 flows from the indoor expansion valve 8 toward the heat absorber 9 in a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and a MAX cooling mode (second operation mode). There is also a concern when shifting from the heating mode (first operation mode) to the heating mode (first operation mode). Therefore, when the controller 32 starts the compressor 2 in the heating mode, or when switching from the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode to the heating mode, the controller 32 executes the sudden boiling prevention control described below.

(8−1)暖房モードで圧縮機2を起動する際の突沸防止制御
先ず、図4を参照しながら、暖房モード(第1の運転モード)で車両用空気調和装置1の圧縮機2を起動する際にコントローラ32が実行する突沸防止制御の例について説明する。図4のタイミングチャートは、暖房モードで圧縮機2を起動する際の圧縮機2の回転数NCと、室外膨張弁6の弁開度と、電磁弁17及び電磁弁21の状態等を示している。
(8-1) Crash prevention control when starting the compressor 2 in the heating mode First, referring to FIG. 4, starting the compressor 2 of the vehicle air conditioner 1 in the heating mode (first operation mode). An example of bumping prevention control executed by the controller 32 at the time of the operation will be described. The timing chart of FIG. 4 shows the rotation speed NC of the compressor 2 when the compressor 2 is started in the heating mode, the valve opening degree of the outdoor expansion valve 6, the state of the solenoid valve 17 and the solenoid valve 21, and the like. There is.

コントローラ32は暖房モードでの停止状態から圧縮機2を起動する際、先ず、電磁弁17を閉じ、電磁弁21を開いた後、室外膨張弁6(停止中は全開となっている)の弁開度を所定の弁開度PPS1に向けて変更していく。この弁開度PPS1は開き気味の所定の大きい弁開度である。尚、補助ヒータ23は暖房モードでの作動範囲の制御を開始する。そして、この室外膨張弁6の弁開度が弁開度PPS1に到達した時点で圧縮機2を起動し、暖房モードでの作動範囲での制御状態(フィードフォワード+フィードバック制御)に移行させていく(回転数NCが目標値に収束)。 When the controller 32 starts the compressor 2 from the stopped state in the heating mode, the solenoid valve 17 is first closed, the solenoid valve 21 is opened, and then the valve of the outdoor expansion valve 6 (fully open while stopped). The opening degree is changed toward the predetermined valve opening degree PPS1. The valve opening PPS1 is a predetermined large valve opening that is slightly open. The auxiliary heater 23 starts controlling the operating range in the heating mode. Then, when the valve opening of the outdoor expansion valve 6 reaches the valve opening PPS1, the compressor 2 is started to shift to a control state (feedforward + feedback control) in the operating range in the heating mode. (Rotation speed NC converges to the target value).

コントローラ32は、この圧縮機2の起動後の所定期間(例えば30秒等)、室外膨張弁6の弁開度をPPS1に固定して維持し、所定期間の経過後、暖房モードでの作動範囲での制御状態に移行する。この所定期間が突沸防止制御の期間となる。このように、コントローラ32は、暖房モードから圧縮機2を起動する際、起動後の所定期間、室外膨張弁6の弁開度を所定の大きい値であるPPS1に維持するようにしたので、圧縮機2の起動時にアキュムレータ12内の冷媒が急激に減少することが抑制される。 The controller 32 keeps the valve opening degree of the outdoor expansion valve 6 fixed to PPS1 for a predetermined period (for example, 30 seconds) after the compressor 2 is started, and after the predetermined period elapses, the operating range in the heating mode. It shifts to the control state in. This predetermined period is the period of bumping prevention control. As described above, when the compressor 2 is started from the heating mode, the controller 32 maintains the valve opening degree of the outdoor expansion valve 6 at a predetermined large value PPS1 for a predetermined period after the start, so that the compressor 32 is compressed. It is suppressed that the refrigerant in the accumulator 12 suddenly decreases when the machine 2 is started.

これにより、圧縮機2の起動時におけるアキュムレータ12内の圧力の急激な低下を防止することができるので、液冷媒の上をオイルが蓋をしたような状態でアキュムレータ12内の圧力が低下したときに生じる突沸の発生を防止若しくは抑制し、圧縮機2での液圧縮やアキュムレータ12内での騒音の発生を効果的に解消若しくは抑制することができる。また、室外膨張弁6の弁開度を所定の弁開度PPS1(所定の大きい値)に維持することにより、室外膨張弁6の動作に伴うアキュムレータ12内の圧力変化も抑制されるので、これらにより車両用空気調和装置1の信頼性を向上させ、搭乗者の快適性も効果的に改善することができるようになる。 As a result, it is possible to prevent a sudden drop in the pressure in the accumulator 12 when the compressor 2 is started, so that when the pressure in the accumulator 12 drops in a state where the oil covers the liquid refrigerant. It is possible to prevent or suppress the occurrence of sudden boiling that occurs in the compressor 2, and effectively eliminate or suppress the generation of liquid compression in the compressor 2 and noise in the accumulator 12. Further, by maintaining the valve opening degree of the outdoor expansion valve 6 at a predetermined valve opening degree PPS1 (a predetermined large value), the pressure change in the accumulator 12 accompanying the operation of the outdoor expansion valve 6 is also suppressed. As a result, the reliability of the vehicle air conditioner 1 can be improved, and the comfort of the occupant can be effectively improved.

(8−2)除湿暖房モードから暖房モードに移行する際の突沸防止制御
次に、図5を参照しながら、除湿暖房モード(第2の運転モード)から暖房モード(第1の運転モード)に移行する際にコントローラ32が実行する突沸防止制御の例について説明する。図5のタイミングチャートは、除湿暖房モードから暖房モードに移行する際の圧縮機2の回転数NCと、室外膨張弁6の弁開度と、電磁弁40、電磁弁30、電磁弁17及び電磁弁21の状態等を示している。
(8-2) Crash prevention control when shifting from the dehumidifying / heating mode to the heating mode Next, referring to FIG. 5, the dehumidifying / heating mode (second operation mode) is changed to the heating mode (first operation mode). An example of bumping prevention control executed by the controller 32 at the time of transition will be described. The timing chart of FIG. 5 shows the rotation speed NC of the compressor 2 when shifting from the dehumidifying heating mode to the heating mode, the valve opening degree of the outdoor expansion valve 6, the solenoid valve 40, the solenoid valve 30, the solenoid valve 17, and the solenoid valve. The state of the valve 21 and the like are shown.

コントローラ32は除湿暖房モードから暖房モードに移行した後、先ず、圧縮機2を停止すると共に、室外膨張弁6を開き、その弁開度を前述した開き気味の所定値である弁開度PPS1に向けて拡大していく。そして、室外膨張弁6が弁開度PPS1となった後、コントローラ32は電磁弁40を閉じ、電磁弁30を開く。次に、コントローラ32は圧縮機2を起動し、電磁弁17を閉じ、電磁弁21を開き、圧縮機2を暖房モードでの作動範囲での制御状態(フィードフォワード+フィードバック制御)に移行させていく。 After shifting from the dehumidifying / heating mode to the heating mode, the controller 32 first stops the compressor 2 and opens the outdoor expansion valve 6, and sets the valve opening to the valve opening PPS1 which is a predetermined value of the opening slightly described above. We will continue to expand toward. Then, after the outdoor expansion valve 6 reaches the valve opening degree PPS1, the controller 32 closes the solenoid valve 40 and opens the solenoid valve 30. Next, the controller 32 starts the compressor 2, closes the solenoid valve 17, opens the solenoid valve 21, and shifts the compressor 2 to a control state (feedforward + feedback control) in the operating range in the heating mode. I will go.

コントローラ32は、この圧縮機2の起動後の所定期間(例えば前述した30秒等)、室外膨張弁6の弁開度を上記PPS1に固定して維持し、所定期間の経過後、暖房モードでの作動範囲での制御状態に移行する。この所定期間が突沸防止制御の期間となる。このように、コントローラ32は、除湿暖房モード(第2の運転モード)から暖房モード(第1の運転モード)に移行する際にも、同様に移行後の所定期間、室外膨張弁6の弁開度を所定の弁開度PPS1(所定の大きい値)に維持する。これにより、前述した暖房モードでの圧縮機2の起動時と同様にアキュムレータ12内の急激な圧力低下による突沸の発生を解消若しくは抑制し、快適な空調運転を実現する。 The controller 32 fixes and maintains the valve opening degree of the outdoor expansion valve 6 to the PPS 1 for a predetermined period after the start of the compressor 2 (for example, 30 seconds described above), and after the elapse of the predetermined period, in the heating mode. It shifts to the control state in the operating range of. This predetermined period is the period of bumping prevention control. As described above, when the controller 32 shifts from the dehumidifying / heating mode (second operation mode) to the heating mode (first operation mode), the outdoor expansion valve 6 is similarly opened for a predetermined period after the shift. The degree is maintained at a predetermined valve opening PPS1 (a predetermined large value). As a result, the occurrence of bumping due to a sudden drop in pressure in the accumulator 12 is eliminated or suppressed as in the case of starting the compressor 2 in the heating mode described above, and comfortable air conditioning operation is realized.

尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1に本発明を適用したが、それに限らず、暖房モードと、その他の運転モードの何れか、又は、それらの組み合わせを切り換えて実行する場合にも本発明は有効である。例えば、除湿冷房モード、冷房モードから暖房モードに移行するモード切換を行う場合にも本発明を実行してもよく、MAX冷房モードから暖房モードに直接移行可能とした場合にも有効である。 In the embodiment, the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode, but the present invention is not limited thereto. The present invention is also effective when the heating mode and any of the other operation modes, or a combination thereof, are switched and executed. For example, the present invention may be executed when the mode is switched between the dehumidifying cooling mode and the mode for shifting from the cooling mode to the heating mode, and it is also effective when the mode can be directly shifted from the MAX cooling mode to the heating mode.

また、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。 Further, the switching control of each operation mode shown in the embodiment is not limited to that, and the outside air temperature Tam, the humidity in the vehicle interior, the target blowout temperature TAO, depending on the capacity of the air conditioner for the vehicle and the usage environment. Adopt any of the parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification requirement in the vehicle interior, or a combination thereof, or all of them. It is good to set appropriate conditions.

更に、補助加熱装置は、実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。また、上記各実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, but is a heat medium circulation circuit that circulates a heat medium heated by the heater to heat the air in the air flow passage, or an engine. A heater core or the like that circulates the heated radiator water may be used. Further, the configuration of the refrigerant circuit R described in each of the above embodiments is not limited to that, and it goes without saying that the configuration can be changed without departing from the spirit of the present invention.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
12 アキュムレータ
17 電磁弁(第1の開閉弁)
21 電磁弁(第2の開閉弁)
23 補助ヒータ(補助加熱装置)
27 室内送風機(ブロワファン)
28 エアミックスダンパ
30 電磁弁(第3の開閉弁)
40 電磁弁(第4の開閉弁)
32 コントローラ(制御装置)
35 バイパス配管
45 バイパス装置
R 冷媒回路
1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Heat sink 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 12 Accumulator 17 Solenoid valve (first on-off valve)
21 Solenoid valve (second on-off valve)
23 Auxiliary heater (auxiliary heating device)
27 Indoor blower (blower fan)
28 Air mix damper 30 Solenoid valve (third on-off valve)
40 Solenoid valve (fourth on-off valve)
32 controller (control device)
35 Bypass piping 45 Bypass device R Refrigerant circuit

Claims (2)

冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記吸熱器に流入する冷媒を減圧するための室内膨張弁と、
前記圧縮機の冷媒吸込側に接続されたアキュムレータと、
前記放熱器及び前記室外膨張弁をバイパスして、前記圧縮機から吐出された冷媒を前記室外熱交換器に直接流入させるためのバイパス配管と、
前記室外熱交換器から出た冷媒を、前記室内膨張弁を経て前記吸熱器に流すための第1の開閉弁と、
前記室外熱交換器から出た冷媒を、前記吸熱器を経ること無く前記アキュムレータに流すための第2の開閉弁と、
前記圧縮機から吐出された冷媒を前記放熱器に流すための第3の開閉弁と、
前記圧縮機から吐出された冷媒を前記バイパス配管に流すための第4の開閉弁と、
前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置と、
制御装置を備え、
該制御装置により、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させ、該室外熱交換器から出た冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる第1の運転モードと、
前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記室外熱交換器から出た冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させ、該吸熱器から出た冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる第2の運転モードを切り換えて実行する車両用空気調和装置において、
前記第1の運転モードは暖房モードであり、該暖房モードでは、前記第3の開閉弁を開き、前記第4の開閉弁を閉じると共に、
前記第2の運転モードは、
前記第3の開閉弁及び前記室外膨張弁を閉じ、前記第4の開閉弁を開くことにより、前記圧縮機から吐出された冷媒を前記バイパス配管から前記室外熱交換器に流して放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させると共に、前記補助加熱装置を発熱させる除湿暖房モードと、
前記第3の開閉弁を開き、前記第4の開閉弁を閉じることにより、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
前記第3の開閉弁を開き、前記第4の開閉弁を閉じることにより、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる冷房モードと、
前記第3の開閉弁及び前記室外膨張弁を閉じ、前記第4の開閉弁を開くことにより、前記圧縮機から吐出された冷媒を前記バイパス配管から前記室外熱交換器に流して放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、
前記制御装置は、前記第1の運転モードから前記圧縮機を起動する際、起動後の所定期間、前記室外膨張弁の弁開度を所定の大きい値に維持することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
A radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the passenger compartment,
A heat absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior.
An outdoor heat exchanger provided outside the vehicle interior and
An outdoor expansion valve for reducing the pressure of the refrigerant that leaves the radiator and flows into the outdoor heat exchanger.
An indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat absorber,
An accumulator connected to the refrigerant suction side of the compressor,
Bypass piping for bypassing the radiator and the outdoor expansion valve and allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger.
A first on-off valve for flowing the refrigerant discharged from the outdoor heat exchanger to the heat absorber via the indoor expansion valve, and
A second on-off valve for allowing the refrigerant discharged from the outdoor heat exchanger to flow to the accumulator without passing through the heat absorber.
A third on-off valve for flowing the refrigerant discharged from the compressor to the radiator, and
A fourth on-off valve for flowing the refrigerant discharged from the compressor into the bypass pipe, and
An auxiliary heating device for heating the air supplied from the air flow passage to the passenger compartment,
Equipped with a control device
By closing the first on-off valve and opening the second on-off valve by the control device, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is expanded outdoors. A first operation mode in which the pressure is reduced by the valve, heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from the outdoor heat exchanger is allowed to flow through the accumulator, and the refrigerant is sucked from the accumulator into the compressor.
By opening the first on-off valve and closing the second on-off valve, the refrigerant discharged from the outdoor heat exchanger is decompressed by the indoor expansion valve, and then heat is absorbed by the heat absorber. In a vehicle air conditioner that switches and executes a second operation mode in which the refrigerant discharged from the compressor is allowed to flow into the accumulator and is sucked into the compressor from the accumulator.
The first operation mode is a heating mode, in which the third on-off valve is opened, the fourth on-off valve is closed, and the fourth on-off valve is closed.
The second operation mode is
By closing the third on-off valve and the outdoor expansion valve and opening the fourth on-off valve, the refrigerant discharged from the compressor is allowed to flow from the bypass pipe to the outdoor heat exchanger to dissipate heat. A dehumidifying / heating mode in which the refrigerant is decompressed by the indoor expansion valve and then heat is absorbed by the heat exchanger and the auxiliary heating device is heated.
By opening the third on-off valve and closing the fourth on-off valve, the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger to the radiator and the outdoor heat exchanger. A dehumidifying / cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then heat is absorbed by the heat exchanger.
By opening the third on-off valve and closing the fourth on-off valve, the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger. A cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then heat is absorbed by the heat exchanger.
By closing the third on-off valve and the outdoor expansion valve and opening the fourth on-off valve, the refrigerant discharged from the compressor is allowed to flow from the bypass pipe to the outdoor heat exchanger to dissipate heat. Any one of the maximum cooling modes in which the refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat exchanger, a combination thereof, or all of them.
The control device is characterized in that when the compressor is started from the first operation mode, the valve opening degree of the outdoor expansion valve is maintained at a predetermined large value for a predetermined period after the start. Harmonizer.
冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記吸熱器に流入する冷媒を減圧するための室内膨張弁と、
前記圧縮機の冷媒吸込側に接続されたアキュムレータと、
前記放熱器及び前記室外膨張弁をバイパスして、前記圧縮機から吐出された冷媒を前記室外熱交換器に直接流入させるためのバイパス配管と、
前記室外熱交換器から出た冷媒を、前記室内膨張弁を経て前記吸熱器に流すための第1の開閉弁と、
前記室外熱交換器から出た冷媒を、前記吸熱器を経ること無く前記アキュムレータに流すための第2の開閉弁と、
前記圧縮機から吐出された冷媒を前記放熱器に流すための第3の開閉弁と、
前記圧縮機から吐出された冷媒を前記バイパス配管に流すための第4の開閉弁と、
前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置と、
制御装置を備え、
該制御装置により、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させ、該室外熱交換器から出た冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる第1の運転モードと、
前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記室外熱交換器から出た冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させ、該吸熱器から出た冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる第2の運転モードを切り換えて実行する車両用空気調和装置において、
前記第1の運転モードは暖房モードであり、該暖房モードでは、前記第3の開閉弁を開き、前記第4の開閉弁を閉じると共に、
前記第2の運転モードは、
前記第3の開閉弁及び前記室外膨張弁を閉じ、前記第4の開閉弁を開くことにより、前記圧縮機から吐出された冷媒を前記バイパス配管から前記室外熱交換器に流して放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させると共に、前記補助加熱装置を発熱させる除湿暖房モードと、
前記第3の開閉弁を開き、前記第4の開閉弁を閉じることにより、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
前記第3の開閉弁を開き、前記第4の開閉弁を閉じることにより、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる冷房モードと、
前記第3の開閉弁及び前記室外膨張弁を閉じ、前記第4の開閉弁を開くことにより、前記圧縮機から吐出された冷媒を前記バイパス配管から前記室外熱交換器に流して放熱させ、放熱した当該冷媒を前記室内膨張弁で減圧した後、前記吸熱器にて吸熱させる最大冷房モードのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、
前記制御装置は、前記第2の運転モードから前記第1の運転モードに移行する際、移行後の所定期間、前記室外膨張弁の弁開度を所定の大きい値に維持することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
A radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the passenger compartment,
A heat absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior.
An outdoor heat exchanger provided outside the vehicle interior and
An outdoor expansion valve for reducing the pressure of the refrigerant that leaves the radiator and flows into the outdoor heat exchanger.
An indoor expansion valve for reducing the pressure of the refrigerant flowing into the heat absorber,
An accumulator connected to the refrigerant suction side of the compressor,
Bypass piping for bypassing the radiator and the outdoor expansion valve and allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger.
A first on-off valve for flowing the refrigerant discharged from the outdoor heat exchanger to the heat absorber via the indoor expansion valve, and
A second on-off valve for allowing the refrigerant discharged from the outdoor heat exchanger to flow to the accumulator without passing through the heat absorber.
A third on-off valve for flowing the refrigerant discharged from the compressor to the radiator, and
A fourth on-off valve for flowing the refrigerant discharged from the compressor into the bypass pipe, and
An auxiliary heating device for heating the air supplied from the air flow passage to the passenger compartment,
Equipped with a control device
By closing the first on-off valve and opening the second on-off valve by the control device, the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is expanded outdoors. A first operation mode in which the pressure is reduced by the valve, heat is absorbed by the outdoor heat exchanger, the refrigerant discharged from the outdoor heat exchanger is allowed to flow through the accumulator, and the refrigerant is sucked from the accumulator into the compressor.
By opening the first on-off valve and closing the second on-off valve, the refrigerant discharged from the outdoor heat exchanger is decompressed by the indoor expansion valve, and then heat is absorbed by the heat absorber. In a vehicle air conditioner that switches and executes a second operation mode in which the refrigerant discharged from the compressor is allowed to flow into the accumulator and is sucked into the compressor from the accumulator.
The first operation mode is a heating mode, in which the third on-off valve is opened, the fourth on-off valve is closed, and the fourth on-off valve is closed.
The second operation mode is
By closing the third on-off valve and the outdoor expansion valve and opening the fourth on-off valve, the refrigerant discharged from the compressor is allowed to flow from the bypass pipe to the outdoor heat exchanger to dissipate heat. A dehumidifying / heating mode in which the refrigerant is decompressed by the indoor expansion valve and then heat is absorbed by the heat exchanger and the auxiliary heating device is heated.
By opening the third on-off valve and closing the fourth on-off valve, the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger to the radiator and the outdoor heat exchanger. A dehumidifying / cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then heat is absorbed by the heat exchanger.
By opening the third on-off valve and closing the fourth on-off valve, the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger. A cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then heat is absorbed by the heat exchanger.
By closing the third on-off valve and the outdoor expansion valve and opening the fourth on-off valve, the refrigerant discharged from the compressor is allowed to flow from the bypass pipe to the outdoor heat exchanger to dissipate heat. Any one of the maximum cooling modes in which the refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat exchanger, a combination thereof, or all of them.
The control device is characterized in that when shifting from the second operation mode to the first operation mode, the valve opening degree of the outdoor expansion valve is maintained at a predetermined large value for a predetermined period after the transition. Air conditioner for vehicles.
JP2016081236A 2016-04-14 2016-04-14 Vehicle air conditioner Active JP6754214B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016081236A JP6754214B2 (en) 2016-04-14 2016-04-14 Vehicle air conditioner
PCT/JP2017/014888 WO2017179595A1 (en) 2016-04-14 2017-04-05 Vehicle air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016081236A JP6754214B2 (en) 2016-04-14 2016-04-14 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2017190074A JP2017190074A (en) 2017-10-19
JP6754214B2 true JP6754214B2 (en) 2020-09-09

Family

ID=60042564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016081236A Active JP6754214B2 (en) 2016-04-14 2016-04-14 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP6754214B2 (en)
WO (1) WO2017179595A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027455A (en) * 1999-05-13 2001-01-30 Denso Corp Heat pump air conditioner
JP2001322421A (en) * 2000-05-12 2001-11-20 Denso Corp Refrigerating cycle device
JP4096824B2 (en) * 2003-06-19 2008-06-04 株式会社デンソー Vapor compression refrigerator
JP5999637B2 (en) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 Air conditioner for vehicles

Also Published As

Publication number Publication date
WO2017179595A1 (en) 2017-10-19
JP2017190074A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6738157B2 (en) Vehicle air conditioner
JP6571405B2 (en) Air conditioner for vehicles
JP6710061B2 (en) Air conditioner for vehicle
JP6680600B2 (en) Vehicle air conditioner
CN109070692B (en) Air conditioner for vehicle
JP6571430B2 (en) Air conditioner for vehicles
JP2018192938A (en) Air conditioner for vehicle
WO2017146266A1 (en) Air-conditioning device for vehicle
CN109070693B (en) Air conditioner for vehicle
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018043152A1 (en) Vehicle air-conditioning apparatus
JP6738156B2 (en) Vehicle air conditioner
WO2018110211A1 (en) Vehicle air-conditioning device
WO2018123634A1 (en) Vehicular air conditioning device
JP2017198404A (en) Accumulator and vehicular air conditioner including the same
WO2017150735A1 (en) Air conditioner for vehicles
JP6754214B2 (en) Vehicle air conditioner
JP6948179B2 (en) Vehicle air conditioner
JP6854668B2 (en) Vehicle air conditioner
JP2019055648A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6754214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350