[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6750377B2 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
JP6750377B2
JP6750377B2 JP2016150863A JP2016150863A JP6750377B2 JP 6750377 B2 JP6750377 B2 JP 6750377B2 JP 2016150863 A JP2016150863 A JP 2016150863A JP 2016150863 A JP2016150863 A JP 2016150863A JP 6750377 B2 JP6750377 B2 JP 6750377B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
μmol
lead
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016150863A
Other languages
English (en)
Other versions
JP2018018800A (ja
Inventor
宏樹 籠橋
宏樹 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016150863A priority Critical patent/JP6750377B2/ja
Publication of JP2018018800A publication Critical patent/JP2018018800A/ja
Application granted granted Critical
Publication of JP6750377B2 publication Critical patent/JP6750377B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池に関する。
鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極板と、正極板と、電解液とを含む。負極板と正極板との間にはセパレータが配置される。セパレータとしては、ガラス繊維の不織布などが使用される。負極板は、負極集電体と負極電極材料とを備える。
負極電極材料は、酸化還元反応により容量を発現する活物質(鉛もしくは硫酸鉛)を含んでいる。負極板では、充電時に、硫酸鉛の還元反応が進行するが、硫酸鉛は海綿状鉛に還元されにくい。そのため、硫酸鉛が蓄積して、硫酸鉛の結晶が次第に成長するサルフェーションが進行し、鉛蓄電池の寿命性能が低下する。硫酸鉛の蓄積を抑制する目的から、負極板には防縮剤(エキスパンダ)が添加される。中でも有機物に由来する防縮剤は、有機防縮剤と称される。
据置型の鉛蓄電池では、従来、有機防縮剤として、天然物由来のリグニンもしくはリグノスルホン酸が負極に添加され、ガラス繊維の不織布がセパレータとして使用されている。
鉛蓄電池では、合成有機防縮剤の使用も提案されている。特許文献1では、低温ハイレート放電性能の観点から、硫黄元素含有量が4000〜6000μmol/gの有機防縮剤を用いることが教示されている。
特許文献2では、化合物中の硫黄含有量が6〜11質量%のビスフェノールA・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物を負極板に添加することが教示されている。また、特許文献2では、ガラス繊維、合成パルプ、およびシリカ粉末を水中で抄造した不織布を鉛蓄電池のセパレータとして利用することが提案されている。
国際公開第2015/181865号パンフレット 国際公開第2012/157311号パンフレット
鉛蓄電池において、天然のリグニンや合成有機防縮剤と、ガラス繊維不織布のセパレータとを組み合わせても、硫酸鉛の蓄積を抑制することは難しく、十分な寿命性能を得ることができない。また、負極板に添加された有機防縮剤の一部は、電解液に溶出して、正極電極材料を軟化させる傾向がある。正極電極材料が軟化すると、正極板の耐久性が低下し、正極集電体から正極電極材料が脱落しやすくなる。このような正極板の劣化は、鉛蓄電池の寿命性能を低下させる。
本発明の一側面は、負極板と、正極板と、前記負極板および前記正極板の間に介在するセパレータと、電解液と、を備え、
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、硫黄元素を含む有機防縮剤を含み、
前記有機防縮剤中の前記硫黄元素の含有量は、3000μmol/gを超え、かつ9000μmol/g以下であり、
前記セパレータは、ガラス繊維と前記ガラス繊維に付着したシリカ粒子とを含む不織布を含み、
前記シリカ粒子の平均粒子径は、1〜10μmである、鉛蓄電池に関する。
本発明によれば、鉛蓄電池の寿命性能を向上することができる。
本発明の一側面に係る鉛蓄電池のフタを外した状態を模式的に示す斜視図である。 図1の鉛蓄電池の正面図である。 図2Aの鉛蓄電池のIIB−IIB線による矢示断面図である。 セパレータがシリカ粒子を含む場合と含まない場合の有機防縮剤の硫黄元素の含有量と鉛蓄電池の寿命サイクルとの関係を示すグラフである。 セパレータ中のシリカ粒子の平均粒子径と鉛蓄電池の寿命サイクルとの関係を示すグラフである。 セパレータがシリカ粒子を含む場合と含まない場合の有機防縮剤の硫黄元素の含有量と有機防縮剤の溶出量との関係を示すグラフである。 セパレータがシリカ粒子を含まない場合の有機防縮剤の硫黄元素の含有量と負極電極材料の比抵抗との関係を示すグラフである。 セパレータがシリカ粒子を含まない場合の有機防縮剤の硫黄元素の含有量と負極の下部における硫酸鉛の蓄積量との関係を示すグラフである。
本発明の一側面に係る鉛蓄電池は、負極板と、正極板と、負極板および正極板の間に介在するセパレータと、電解液と、を備える。負極板は、負極集電体と、負極電極材料と、を備える。負極電極材料は、硫黄元素を含む有機防縮剤を含み、有機防縮剤中の前記硫黄元素の含有量は、3000μmol/gを超え、かつ9000μmol/g以下である。セパレータは、ガラス繊維とこのガラス繊維に付着したシリカ粒子とを含む不織布を含む。シリカ粒子の平均粒子径は、1〜10μmである。
従来、据置型の鉛蓄電池では、天然物に由来するリグニンもしくはリグノスルホン酸(以下、リグニンと称する。)が有機防縮剤として利用され、ガラス繊維の不織布がセパレータとして利用されている。リグニン中に含まれる硫黄元素の含有量は、通常、500〜600μmol/gである。しかし、負極板における硫酸鉛の蓄積を十分に抑制することは困難である。充電時に極板近傍で硫酸イオンが生成し、比重の高い硫酸溶液が部分的に生じることにより、電槽の下部に比重の高い硫酸溶液が沈降して滞留する傾向があるため、硫酸鉛の蓄積は、負極板の下部の領域において特に顕著である。また、3000μmol/gを超える硫黄元素の含有量を有する有機防縮剤を用いることも検討されている。しかし、このような硫黄元素の含有量が大きな有機防縮剤を、負極板に添加すると、負極板からの有機防縮剤の溶出が顕著になり、溶出した有機防縮剤の作用により正極電極材料が軟化する。そのため、従来の鉛蓄電池では、負極板の下部の領域における硫酸鉛の蓄積もしくは正極電極材料の軟化により、十分な寿命性能を得ることが困難であった。
これに対し、本発明の一側面に係る鉛蓄電池では、硫黄元素の含有量が3000μmol/gを超え、かつ9000μmol/g以下である有機防縮剤と、ガラス繊維およびガラス繊維に付着した平均粒子径1〜10μmのシリカ粒子を含む不織布を含むセパレータと、を組み合わせる。このような組み合わせにより、負極板の下部の領域における硫酸鉛の蓄積が抑制される。また、硫黄含有量が3000μmol/gを超え、かつ9000μmol/g以下である有機防縮剤を用いるが、負極板からの有機防縮剤の溶出が抑制され、これにより、正極電極材料の軟化も抑制される。よって、寿命性能を高めることができる。
このような効果は、セパレータ中に上記の平均粒子径を有するシリカ粒子が含まれることで、セパレータの周辺で電解液が適度にゲル化し、電解液の流動性が低下することによるものと考えられる。電解液の流動性が低下すると、比重の高い硫酸溶液の沈降が抑制され、負極板からの有機防縮剤の溶出が抑制されるとともに、有機防縮剤が溶出しても有機防縮剤の移動が抑制される。また、セパレータでは、シリカ粒子がガラス繊維間に入り込んだ状態であるため、ガラス繊維の移動が抑制され、セパレータの強度が向上する。このようなセパレータ強度の向上によっても、負極板からの有機防縮剤の溶出が抑制されると考えられる。
セパレータに含まれるシリカ粒子の平均粒子径が1μm未満である場合、鉛蓄電池の内部抵抗が増加し、寿命性能が低下する。シリカ粒子の平均粒子径が10μmを超える場合、電解液の流動性を低下させる効果が低くなり、正極電極材料の軟化もしくは脱落を抑制できなくなることで、寿命性能が損なわれる。高い寿命性能が得られ易い観点からは、シリカ粒子の平均粒子径は、1〜5μmであることが好ましく、1〜4μmであることがより好ましい。
シリカ粒子の平均粒子径は、例えば、セパレータの拡大写真において、10個以上のシリカ粒子を任意に選択し、選択された粒子の粒子径を平均化することにより求めることができる。シリカ粒子の粒子径は、拡大写真で確認できるシリカ粒子の投影面積と同面積の相当円の直径である。
本実施形態に係る鉛蓄電池で使用する有機防縮剤は、3000μmol/gを超え、かつ9000μmol/g以下の割合で硫黄元素を含む。寿命特性をさらに高める観点からは、有機防縮剤中の硫黄元素の含有量は、3500〜9000μmol/gが好ましく、4000〜9000μmol/gがさらに好ましく、5000〜9000μmol/gまたは5000〜8000μmol/gが特に好ましい。
なお、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。
本発明の一側面に係る鉛蓄電池は、特に制御弁式(密閉式)鉛蓄電池に適している。本実施形態に係る鉛蓄電池は、例えば、自動車用の鉛蓄電池、据置型の無停電電源用の鉛蓄電池やフォークリフトのような産業車両用の鉛蓄電池などとして利用できる。
負極電極材料の密度は、例えば2.5〜5g/cm3である。さらに高い寿命性能が得られる観点からは、負極電極材料の密度は、2.5〜4.5g/cm3であることが好ましい。負極電極材料の密度が2.5〜4.5g/cm3である場合、硫黄元素の含有量が6000μmol/g以上である有機防縮剤を用いると、高い寿命性能が得られ易い。また、寿命性能の点から、有機防縮剤の硫黄元素の含有量が3000μmol/gを超える(好ましくは4000μmol/g以上である)場合には、負極電極材料の密度は3.5〜4.5g/cm3であることが好ましく、有機防縮剤の硫黄元素の含有量が5000μmol/g以上である場合には、3.0〜4.5g/cm3であることが好ましい。負極電極材料の密度を2.5〜3.5g/cm3とする場合には、軽量化の観点から有利であることに加え、硫黄元素の含有量が6000μmol/g以上(好ましくは7000μmol/g以上)の有機防縮剤を用いた場合に、負極電極材料の比抵抗および負極板における硫酸鉛の蓄積を抑制する効果が顕著になる。
以下、本発明の一側面に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(負極板)
鉛蓄電池の負極板は、負極集電体と、負極電極材料とで構成されている。負極電極材料は、負極板から負極集電体を除いたものである。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。
集電体に用いる鉛合金は、Pb−Sb系合金、Pb−Ca系合金、Pb−Ca−Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。負極集電体は、組成の異なる複数の鉛合金層を有してもよい。
負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)と、3000μmol/gを超え、かつ9000μmo/g以下の硫黄元素を含有する有機防縮剤とを所定の含有量で含む。負極電極材料は、更に、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。
充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。
有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。
有機防縮剤の具体例としては、硫黄含有基を有するとともに芳香環を有する化合物のホルムアルデヒドによる縮合物が好ましい。化合物は、芳香環を複数有していてもよい。芳香環としては、ベンゼン環、ナフタレン環などが挙げられる。芳香環を有する化合物が複数の芳香環を有する場合には、複数の芳香環は直接結合や連結基(例えば、アルキレン基、スルホン基など)などで連結していてもよい。このような構造としては、例えば、ビフェニル、ビスフェニルアルカン、ビスフェニルスルホンなどが挙げられる。芳香環を有する化合物としては、例えば、上記の芳香環と、ヒドロキシ基および/またはアミノ基とを有する化合物が挙げられる。ヒドロキシ基やアミノ基は、芳香環に直接結合していてもよく、ヒドロキシ基やアミノ基を有するアルキル鎖として結合していてもよい。芳香環を有する化合物としては、ビスフェノール化合物、ヒドロキシビフェニル化合物、ヒドロキシナフタレン化合物、フェノール化合物などが好ましい。芳香環を有する化合物は、さらに置換基を有していてもよい。有機防縮剤は、これらの化合物の残基を一種含んでもよく、複数種含んでもよい。ビスフェノール化合物としては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、スルホニル基(−SO2−)を有するため、硫黄元素の含有量を大きくすることが容易である。なお、ビスフェノール化合物の縮合物は、常温より高い環境を経験しても、低温での始動性能が損なわれないので、常温より高い温度環境に置かれる鉛蓄電池に適している。
硫黄含有基は、化合物に含まれる芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、例えば、アミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の芳香族化合物を、上記の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。
N,N’−(スルホニルジ−4,1−フェニレン)ビス(1,2,3,4−テトラヒドロ−6−メチル−2,4−ジオキソピリミジン−5−スルホンアミド)の縮合物などを有機防縮剤として用いてもよい。
負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。
負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。
化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。
(正極)
鉛蓄電池の正極板としては、ペースト式の正極板を用いることが好ましい。
ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb−Ca系合金、Pb−Ca−Sn系合金が好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。
正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。
未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸を練合することで調製される。
(セパレータ)
セパレータを構成する不織布は、ガラス繊維を織らずに絡み合わせたマットであり、ガラス繊維に平均粒子径1〜10μmのシリカ粒子が付着している。このような不織布は、例えば、ガラス繊維とシリカ粒子とを抄造(湿式抄造など)することにより得ることができる。
ガラス繊維の平均繊維径は、例えば0.1μm以上、25μm以下が好ましい。平均繊維径は、後述のように、10本以上の繊維を任意に選択し、選択された繊維の拡大写真から求めることができる。なお、ガラス繊維は、単一の繊維径のものだけでなく、複数の繊維径(例えば、1μmのものと10μmのもの)を混合して用いてもよい。
上記の不織布は、ガラス繊維以外に、電解液に不溶性の繊維材料を含んでいてもよい。ガラス繊維以外の繊維材料としては、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維など)、パルプ繊維などを用いることができる。セパレータは、例えば、60質量%以上が繊維材料で形成されていることが好ましい。セパレータを構成する繊維材料に占めるガラス繊維の割合は、60質量%以上であることが好ましい。また、不織布は、シリカ粒子以外の無機粉体(例えば、ガラス粉末、珪藻土)などを含んでいてもよい。
セパレータに占める1〜10μmの平均粒子径を有するシリカ粒子の割合は、例えば、1〜50質量%であり、内部抵抗を低減し易い観点からは、1〜30質量%が好ましく、有機防縮剤の溶出を抑制し易い観点からは、10〜30質量%がより好ましい。
セパレータは、上記の不織布を含んでいればよく、例えば、上記の不織布のみで構成してもよく、必要に応じて、上記の不織布と、他の不織布および/または微多孔膜などとの積層物、上記の不織布に異種または同種の素材を貼り合わせた物、または上記の不織布と異種または同種の素材とをオスメスなどでかみ合わせた物などであってもよい。上記の不織布が少なくとも負極板の主面に接するようにセパレータを配することが好ましい。他の不織布としては、例えば、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維など)、パルプ繊維の不織布、平均粒子径が1〜10μmのシリカ粒子を含まないガラス繊維不織布などが使用される。微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末および/またはオイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。セパレータを構成する材料は、耐酸性を有するものが好ましく、ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。
セパレータの厚さ(総厚み)は、鉛蓄電池のサイズ、極板間の距離などに応じて選択すればよいが、例えば0.5〜5mmである。
(電解液)
電解液は、硫酸を含む水溶液である。化成後で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.10〜1.35g/cm3であり、1.20〜1.35g/cm3であることが好ましい。
次に、各物性の分析方法について説明する。
(1)負極電極材料の密度
負極電極材料の密度は化成後の満充電状態の負極電極材料のかさ密度の値を意味し、以下のようにして測定する。化成後の電池を満充電してから解体し、入手した負極板に水洗と乾燥とを施すことにより、負極板中の電解液を除く。次いで負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5〜0.55psiaの圧力で水銀を満たして、負極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、負極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
本明細書中、鉛蓄電池の満充電状態とは、化成後の鉛蓄電池を、25℃の気槽中、5時間率電流で2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が1mCA以下になった時点で充電を終了した状態である。
なお、本明細書中、1CAは電池の公称容量を1時間で放電する電流値である。例えば、公称容量が30Ahの電池であれば、1CAは30Aであり、1mCAは30mAである。
(2)有機防縮剤の分析
まず、化成後で満充電状態の鉛蓄電池を分解し、負極板を取り出し、水洗により硫酸を除去し、乾燥する。次に、乾燥した負極板から負極電極材料(初期試料)を採取し、初期試料を下記方法で分析する。
(2−1)負極電極材料中の有機防縮剤の定性分析
初期試料を1mol/Lの水酸化ナトリウム(NaOH)水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で取り除き、得られた濾液を透析により脱塩した後、濃縮し、乾燥する。脱塩は、濾液をイオン交換膜に通すことにより行ってもよく、濾液を透析チューブに入れて蒸留水中に浸すことにより行ってもよい。これにより有機防縮剤の粉末試料が得られる。
このようにして得た有機防縮剤の粉末試料を用いて測定した赤外分光スペクトルや粉末試料を蒸留水等で溶解し紫外可視吸光度計で測定した紫外可視吸収スペクトル、重水等の所定の溶媒で溶解し、得られた溶液のNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤種を特定する。
(2−2)負極電極材料中における有機防縮剤の含有量
上記(2−1)と同様に、有機防縮剤を含むNaOH水溶液の濾液を得た後、濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量することができる。
なお、有機防縮剤の含有量が未知の鉛蓄電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できないことがある。この場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機防縮剤を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定することができる。
(2−3)有機防縮剤中の硫黄元素の含有量
上記(2−1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液が得られる。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
(3)ガラス繊維およびシリカ粒子の分析
既化成の満充電状態の鉛蓄電池を分解し、セパレータを取り出し、水洗により硫酸を除去し、乾燥する。次に、乾燥したセパレータを粉砕し、粉砕試料を下記方法で分析する。
(3−1)ガラス繊維の平均繊維径
粉砕試料を光学顕微鏡または電子顕微鏡で観察し、長さを測定可能な繊維を10本以上選択して、その拡大写真を撮影する。次に、各繊維の写真を画像処理して、繊維の長さ方向の中心付近における繊維径を求める。得られた繊維径の平均を算出し、ガラス繊維の平均繊維径とすればよい。
(3−2)セパレータ中におけるガラス繊維の含有量
セパレータ中におけるガラス繊維の質量割合C(%)は、粉砕試料からガラス繊維を単離できる場合に求めることができる。このとき、質量割合C(%)は、例えば1gの粉砕試料から単離されたガラス繊維の質量x(g)を用いて、C(%)=100xより求められる。
セパレータ中におけるガラス繊維の体積割合Cvは、粉砕試料からのガラス繊維の単離が困難な場合にも求めることができる。まず、粉砕試料の任意の断面写真を複数個所で撮影し、断面写真を画像処理し、平均繊維長の10倍の長さ(L1)を1辺とする矩形領域内に含まれるガラス繊維の面積s1を求める。このとき、矩形領域の面積(L1 2)に占めるs1の割合は、セパレータ中におけるガラス繊維の体積割合Cvと見なすことができる。体積割合Cvは、Cv(%)=100s1/L1 2より求められる。
(3−3)シリカ粒子の平均粒子径
まず、ガラスセパレータの繊維を手でほぐし、その際に繊維から分離されたシリカ粒子を光学顕微鏡または電子顕微鏡で観察し、粒子径を測定可能なシリカ粒子を10個以上選択して、その拡大写真を撮影する。次に、各粒子の写真を画像処理して、粒子径を求める。得られた粒子径の平均をそれぞれ算出し、シリカ粒子の平均粒子径とすればよい。
(3−4)セパレータ中におけるシリカ粒子の含有量
セパレータ中におけるシリカ粒子の質量割合D(%)は、粉砕試料からシリカ粒子を単離できる場合に求めることができる。このとき、質量割合D(%)は、例えば1gの粉砕試料から単離されたシリカ粒子の質量y(g)を用いて、D(%)=100yより求められる。
セパレータ中におけるシリカ粒子の体積割合Dvは、粉砕試料からのシリカ粒子の単離が困難な場合にも求めることができる。まず、粉砕試料の任意の断面写真を複数個所で撮影し、断面写真を画像処理し、平均粒子径の10倍の長さ(L2)を1辺とする矩形領域内に含まれるシリカ粒子の面積s2を求める。このとき、矩形領域の面積(L2 2)に占めるs2の割合は、セパレータ中におけるシリカ粒子の体積割合Dvと見なすことができる。体積割合Dvは、Dv(%)=100s2/L2 2より求められる。
図1は、本発明の実施形態に係る鉛蓄電池のフタを外した一例を模式的に示す斜視図である。図2Aは、図1の鉛蓄電池の正面図であり、図2Bは、図2AのIIB−IIB線による矢示断面図である。
鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽10を具備する。極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。
複数の負極板2のそれぞれの上部には、上方に突出する集電用の耳部(図示せず)が設けられている。複数の正極板3のそれぞれの上部にも、上方に突出する集電用の耳部(図示せず)が設けられている。そして、負極板2の耳部同士は負極用ストラップ5aにより連結され一体化されている。同様に、正極板3の耳部同士も正極用ストラップ5bにより連結されて一体化されている。負極用ストラップ5aには負極柱6aが固定され、正極用ストラップ5bには正極柱6bが固定されている。
以下、本発明を実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
(1)負極板の作製
鉛粉、水、希硫酸、硫酸バリウム、カーボンブラック、および所定量の有機防縮剤を混合して、負極ペーストを得た。負極ペーストを、Pb−Ca−Sn系合金製の鋳造格子の網目部に充填し、熟成、乾燥し、未化成の負極板を得た。
有機防縮剤は、既化成で満充電後の負極電極材料100質量%に対し、有機防縮剤の含有量(A(質量%))が0.15質量%になるように、添加量を調整して、負極ペーストに添加した。また、負極ペーストを調製する際には、既化成で満充電後の負極電極材料の密度が2.5g/cm3になるように、負極ペーストに加える水と希硫酸の量を調節した。
なお、負極電極材料の密度は、既述の手順で、化成後の電池を満充電してから解体し、回収した測定試料を用いて求めた。電池の満充電は、既述の手順で行なった。負極電極材料の密度は、島津製作所(株)製の自動ポロシメータ(オートポアIV9505)を用いて既述の方法で測定した。
有機防縮剤には、スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物を用いた。ここでは、有機防縮剤中の硫黄元素の含有量が4000μmol/gになるように、導入するスルホン酸基の量を制御した。
なお、有機防縮剤中の硫黄元素含有量(μmol/g)については、負極電極材料を調製する前と、鉛蓄電池を解体し、有機防縮剤を抽出して測定した値には差がないことを確認した。そのため、以下、実施例および比較例で記載した有機防縮剤中の硫黄元素含有量としては、負極電極材料を調製する前の有機防縮剤について求めた値を記載している。
(2)正極板の作製
鉛粉と、水と、硫酸とを混練させて、正極ペーストを作製した。正極ペーストを、Pb−Ca−Sn系合金製の鋳造格子の網目部に充填し、熟成、乾燥し、未化成の正極板を得た。
(3)鉛蓄電池の作製
未化成の負極板4枚と未化成の正極板3枚とを用いて、負極板と正極板の間にセパレータを介在させて、負極板と正極板とを交互に積層することにより、極板群を形成した。セパレータとしては、ガラス繊維とシリカ粒子(平均粒子径3μm)とを湿式抄造により混抄した不織布を用いた。
セパレータ中のガラス繊維の質量割合Cおよびシリカ粒子の質量割合Dは、それぞれ、80質量%および20質量%であった。セパレータ中のガラス繊維およびシリカ粒子を電子顕微鏡で観察したところ、ガラス繊維の平均繊維径は0.7μmであり、シリカ粒子の平均粒子径は3μmであった。
極板群をポリプロピレン製の電槽に収容し、電解液を注液して、電槽内で化成を施し、制御弁式の鉛蓄電池を組み立てた。鉛蓄電池の出力は2Vで、公称容量は500Ah(5時間率)である。
なお、作製した1つの鉛蓄電池について、既述の手順で、負極板から取り出した負極電極材料(100質量%)中に含まれる有機防縮剤の含有量(A(質量%))を求めた。このようにして定量された有機防縮剤の含有量は、鉛蓄電池について調製される負極電極材料(100質量%)中の有機防縮剤の含有量(B(質量%))とは幾分異なった値となる。そのため、これらの含有量AおよびBの比率R(=A/B)を予め求め、他の鉛蓄電池の負極板に使用する負極電極材料を調製する際に、比率Rを利用して、負極電極材料中の有機防縮剤の含有量(A(質量%))が所定の値になるように、調製される負極電極材料中の有機防縮剤の含有量(B(質量%))を調整した。また、実施例および比較例では、使用する有機防縮剤の硫黄元素含有量ごとに比率Rを求め、同じ硫黄元素含有量の有機防縮剤を用いる負極電極材料については、求めた比率Rに基づいて有機防縮剤の含有量(B(質量%))を調整した。
《実施例2〜6および比較例1〜2》
有機防縮剤中の硫黄元素の含有量が5000μmol/g(実施例2)、6000μmol/g(実施例3)、7000μmol/g(実施例4)、8000μmol/g(実施例5)、9000μmol/g(実施例6)、2000μmol/g(比較例1)、または3000μmol/g(比較例2)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これらの硫黄元素の含有量を有する有機防縮剤をそれぞれ用いたこと以外は、実施例1と同様にして負極板を形成した。得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《比較例3》
有機防縮剤として、天然物に由来し、硫黄元素の含有量が600μmol/gであるリグニンを用いた。セパレータとしては、ガラス繊維の不織布を用いた。これら以外は、実施例1と同様に負極板を形成した。得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《比較例4〜10》
有機防縮剤中の硫黄元素の含有量が2000μmol/g(比較例4)、3000μmol/g(比較例5)、4000μmol/g(比較例6)、5000μmol/g(比較例7)、6000μmol/g(比較例8)、7000μmol/g(比較例9)、または8000μmol/g(比較例10)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これらの硫黄元素の含有量を有する有機防縮剤をそれぞれ用いた。また、セパレータとしては、ガラス繊維の不織布を用いた。これら以外は、実施例1と同様にして負極板を形成した。
得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《実施例7〜12および比較例11〜12》
既化成の負極電極材料の密度が3.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節したこと以外は、実施例1と同様にして負極板を作製した(実施例7)。
また、負極電極材料の密度が3.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節した。さらに、有機防縮剤中の硫黄元素の含有量が5000μmol/g(実施例8)、6000μmol/g(実施例9)、7000μmol/g(実施例10)、8000μmol/g(実施例11)、9000μmol/g(実施例12)、2000μmol/g(比較例11)、または3000μmol/g(比較例12)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これら以外は、実施例1と同様にして負極板を形成した。
そして、上記で得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《比較例13》
既化成の負極電極材料の密度が3.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節したこと以外は、比較例3と同様に有機防縮剤としてリグニンを用いて負極板を作製した。得られた負極板を用いたこと以外は、比較例3と同様にして、鉛蓄電池を組み立てた。
《比較例14〜20》
既化成の負極電極材料の密度が3.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節した。有機防縮剤中の硫黄元素の含有量が2000μmol/g(比較例14)、3000μmol/g(比較例15)、4000μmol/g(比較例16)、5000μmol/g(比較例17)、6000μmol/g(比較例18)、7000μmol/g(比較例19)、または8000μmol/g(比較例20)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これら以外は、比較例4〜10と同様にして負極板を作製した。得られた負極板を用いたこと以外は、比較例4と同様にして、鉛蓄電池を組み立てた。
《実施例13〜17》
既化成の負極電極材料の密度が3.0g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節したこと以外は、実施例1と同様にして負極板を作製した(実施例13)。
また、負極電極材料の密度が3.0g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節した。有機防縮剤中の硫黄元素の含有量が5000μmol/g(実施例14)、6000μmol/g(実施例15)、7000μmol/g(実施例16)、または8000μmol/g(実施例17)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これら以外は、実施例1と同様にして負極板を形成した。
そして、上記で得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《実施例18〜22》
既化成の負極電極材料の密度が4.0g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節したこと以外は、実施例1と同様にして負極板を作製した(実施例18)。
また、負極電極材料の密度を4.0g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節した。有機防縮剤中の硫黄元素の含有量が5000μmol/g(実施例19)、6000μmol/g(実施例20)、7000μmol/g(実施例21)、または8000μmol/g(実施例22)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これら以外は、実施例1と同様にして負極板を形成した。
そして、上記で得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《実施例23〜27》
既化成の負極電極材料の密度が4.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節したこと以外は、実施例1と同様にして負極板を作製した(実施例23)。
また、負極電極材料の密度を4.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節した。有機防縮剤中の硫黄元素の含有量が5000μmol/g(実施例24)、6000μmol/g(実施例25)、7000μmol/g(実施例26)、または8000μmol/g(実施例27)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。これら以外は、実施例1と同様にして負極板を形成した。
そして、上記で得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
《実施例28〜29および比較例21〜23》
負極電極材料の密度を3.5g/cm3となるように、負極ペーストに加える水と希硫酸の量を調節した。有機防縮剤中の硫黄元素の含有量が7000μmol/gになるように、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節した。セパレータに含有させるシリカ粒子の平均粒子径を0.01μm(比較例21)、0.1μm(比較例22)、1μm(実施例28)、10μm(実施例29)または100μm(比較例23)に変更した。これら以外は、実施例1と同様にして負極板を作製した そして、上記で得られた負極板を用いたこと以外は、実施例1と同様にして、鉛蓄電池を組み立てた。
[評価1]
実施例および比較例で作製した鉛蓄電池に関し、25℃にて、70%の放電深度で、充放電サイクル試験を行い、深度70%放電時の放電末電圧が1.7Vを下回ったときのサイクル数を求め、鉛蓄電池の寿命サイクルを評価した。
なお、充放電サイクル試験では、放電時には、0.2CAの電流値で3.5時間放電し、充電時には、2.42Vの一定電圧、最大電流0.2CAで、充電電気量が放電電気量の102%になるように定電圧充電した。そして、6サイクル毎に、均等充電を行なった。均等充電は、通常充電に加え、2.42Vの電圧で8時間充電を行なった。
上記の実施例および比較例において、セパレータがシリカ粒子を含む場合と含まない場合とについて、有機防縮剤中の硫黄元素の含有量と鉛蓄電池の寿命サイクルとの関係を図3に示す。なお、図3には、負極電極材料の密度が2.5g/cm3および3.5g/cm3の場合のデータを示した。リグニンを用いた比較例では、寿命サイクルが低くなっている。硫黄元素の含有量が3000μmol/gの場合には、セパレータ中にシリカ粒子が含まれるか否かによって寿命サイクル数にはほとんど違いがない。硫黄元素の含有量が2000μmol/gの場合には、セパレータ中にシリカ粒子が含まれる場合よりも、含まれない場合の方が、高い寿命サイクルが得られている。一方、硫黄元素の含有量が3000μmol/gを超える場合には、セパレータ中にシリカ粒子が含まれない場合に比べて含まれる場合の方が、寿命サイクルが大きく向上している。
図3から、シリカ粒子を含まないセパレータを用いた比較例では、硫黄元素の含有量が4000μmol/gや5000μmol/gのときに寿命サイクルが極大となり、硫黄含有量がさらに大きくなっても寿命サイクルは低下する。硫黄元素の含有量が8000μmol/gの場合には、リグニンの場合と同程度まで寿命サイクルが低くなっている。それに対し、シリカ粒子を含むセパレータを用いた実施例では、硫黄元素の含有量が3000μmol/gを超え、かつ9000μmol/g以下で、高い寿命サイクルが得られている。硫黄元素の含有量が4000〜9000μmol/gや5000〜9000μmol/gの場合には、特に寿命サイクルが高くなっている。
また、負極電極材料の各密度において、硫黄元素の含有量が4000〜8000μmol/gである場合の寿命サイクルの結果を表1に示す。
Figure 0006750377
表1に示すように、負極電極材料の密度が3g/cm3、4g/cm3、4.5g/cm3である場合にも、図3に示す実施例と同様に、高い寿命サイクルが得られた。寿命サイクルは、負極電極材料の密度が大きくなるほど高くなっている。
実施例28〜29および比較例21〜23の鉛蓄電池について、シリカ粒子の平均粒子径と寿命サイクルとの関係を調べた。図4は、セパレータ中のシリカ粒子の平均粒子径と鉛蓄電池の寿命サイクルとの関係を示すグラフである。図4に示されるように、シリカ粒子の平均粒子径が1〜10μmの場合には、平均粒子径が1μmより小さい場合および10μmよりも大きい場合に比べて、5000サイクル以上の高い寿命サイクルを確保することができている。
[評価2]
作製した鉛蓄電池に関し、負極板からの有機防縮剤の溶出量を測定した。ここでは、重負荷寿命試験の200サイクル時点の鉛蓄電池から負極板を取り出し、負極電極材料中における有機防縮剤の含有量C1を測定し、初期の有機防縮剤の含有量C2との差から有機防縮剤の溶出量を下記式より算出した。
溶出量(%)={1−(C1/C2)}×100
有機防縮剤中の硫黄元素の含有量と有機防縮剤の溶出量との関係を図5に示す。図5には、負極電極材料の密度が2.5g/cm3および3.5g/cm3のそれぞれにつき、セパレータがシリカ粒子を含む場合と含まない場合とにおいて、有機防縮剤の溶出量を示した。図5から、硫黄元素の含有量が3000μmol/gを超える場合には、シリカ粒子を含まないセパレータを用いた場合に比べて、シリカ粒子を含むセパレータを用いた場合に、有機防縮剤の溶出量が顕著に低減されている。
[評価3]
実施例および比較例で作製した鉛蓄電池に関し、充放電サイクル試験を行い、2000サイクル目の充電が終わった段階で、次のようにして比抵抗を測定した。
まず、鉛蓄電池から負極板を取り出し、水洗し、乾燥させた。負極板の負極電極材料が存在する領域の上端と下端の中心位置に、電流線と電圧線をそれぞれ2本ずつつなぎ、4端子法により直流電流を流して降下電圧を測定した。そして、CAE解析によって得た、降下電圧と比抵抗の関係を示す検量線から、比抵抗を算出した。
各鉛蓄電池における負極電極材料の比抵抗は、負極電極材料の密度が3.5g/cm3で、リグニンを用いた比較例13の鉛蓄電池における値を、100としたときの比率(%)で表した。また、硫酸鉛の蓄積量は、負極電極材料全体の質量を100としたときの質量比率(%)で表した。
また、2000サイクル目で、負極板の下部(負極板の高さの下から20%の位置)における硫酸鉛の蓄積量を調べた。硫酸鉛の蓄積量は、次のようにして求めた。まず、負極板から採取した負極電極材料を水洗し、乾燥し、粉砕した。粉砕物中に含まれる硫黄元素の量を、硫黄元素分析装置を用いて測定した。次いで、次式に従って硫酸鉛中の硫黄元素の含有量を求めた。
硫酸鉛中の硫黄元素含有量=(硫黄元素分析装置で得られた硫黄元素の質量)−(サンプルの質量×有機防縮剤の含有量×有機防縮剤中の硫黄元素含有量)
そして、得られた硫酸鉛中に含まれる硫黄元素の量を、硫酸鉛量に換算し、サンプルの単位質量あたりの硫酸鉛濃度を求めて、硫酸鉛の蓄積量とした。
有機防縮剤の硫黄元素の含有量と、負極電極材料の比抵抗との関係を図6に示す。また、有機防縮剤の硫黄元素の含有量と、負極板の下部の領域における硫酸鉛の蓄積量との関係を図7に示す。図6および図7では、負極電極材料の密度が2.5g/cm3および3.5g/cm3の場合のデータを示した。通常、負極電極材料の密度が小さくなると、比抵抗が大きくなり、硫酸鉛の蓄積量は多くなる。しかし、図6および図7に示されるように、硫黄元素の含有量が多くなると、負極電極材料の密度が2.5g/cm3の場合と3.5g/cm3の場合との比抵抗および硫酸鉛の蓄積量の差異は小さくなっている。これらの結果からは、高い硫黄元素含有量の効果は、負極電極材料の密度が低い場合に顕著になると言える。また、比抵抗を小さく抑える観点からは、硫黄元素含有量が高い有機防縮剤を用いた方が有利であるが、このような有機防縮剤を用いると、正極の軟化脱落が顕著になり易い。そのため、平均粒子径が1〜10μmのシリカ粒子を用いることで、正極の軟化脱落を抑制して、硫黄元素含有量が高い有機防縮剤を用いることができるため、比抵抗を低減できる。
本発明の実施形態は、制御弁式鉛蓄電池に適用可能であり、電動車両(フォークリフトなど)などの産業用蓄電装置などの電源として好適に用いられる。また、自動車もしくはバイクなどの蓄電装置の電源としても利用できる。
1:鉛蓄電池
2:負極板
3:正極板
4:セパレータ
5a:負極用ストラップ
5b:正極用ストラップ
6a:負極柱
6b:正極柱
10:電槽
11:極板群

Claims (4)

  1. 負極板と、正極板と、前記負極板および前記正極板の間に介在するセパレータと、電解液と、を備え、
    前記負極板は、負極集電体と、負極電極材料と、を備え、
    前記負極電極材料は、硫黄元素を含む有機防縮剤を含み、
    前記有機防縮剤中の前記硫黄元素の含有量は、3000μmol/gを超え、かつ9000μmol/g以下であり、
    前記セパレータは、ガラス繊維と前記ガラス繊維に付着したシリカ粒子とを含む不織布を含み、
    前記シリカ粒子の平均粒子径は、1〜10μmである、鉛蓄電池。
  2. 前記有機防縮剤中の前記硫黄元素の含有量は、4000〜9000μmol/gである、請求項1に記載の鉛蓄電池。
  3. 前記有機防縮剤中の前記硫黄元素の含有量は、5000〜9000μmol/gである、請求項1または2に記載の鉛蓄電池。
  4. 前記負極電極材料の密度は、2.5〜4.5g/cm3である、請求項1〜3のいずれか1項に記載の鉛蓄電池。
JP2016150863A 2016-07-29 2016-07-29 鉛蓄電池 Active JP6750377B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150863A JP6750377B2 (ja) 2016-07-29 2016-07-29 鉛蓄電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150863A JP6750377B2 (ja) 2016-07-29 2016-07-29 鉛蓄電池

Publications (2)

Publication Number Publication Date
JP2018018800A JP2018018800A (ja) 2018-02-01
JP6750377B2 true JP6750377B2 (ja) 2020-09-02

Family

ID=61076368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150863A Active JP6750377B2 (ja) 2016-07-29 2016-07-29 鉛蓄電池

Country Status (1)

Country Link
JP (1) JP6750377B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362597A (zh) * 2020-03-30 2022-11-18 旭化成株式会社 铅蓄电池
CN112952210A (zh) * 2021-04-01 2021-06-11 华富(江苏)电源新技术有限公司 重水基铅酸蓄电池及其胶体电解液和胶体电解液制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134716A (ja) * 1995-09-05 1997-05-20 Nippon Muki Co Ltd 密閉形鉛蓄電池用セパレータ並びにその製造法
JP4737815B2 (ja) * 2000-11-13 2011-08-03 日本板硝子株式会社 密閉型鉛蓄電池
JP4261821B2 (ja) * 2002-03-31 2009-04-30 日本板硝子株式会社 密閉型鉛蓄電池用セパレータ
JP4261862B2 (ja) * 2002-09-30 2009-04-30 日本板硝子株式会社 鉛蓄電池用セパレータ
JP5500315B2 (ja) * 2011-05-13 2014-05-21 新神戸電機株式会社 鉛蓄電池
US10790501B2 (en) * 2014-05-26 2020-09-29 Gs Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JP2018018800A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
JP7143927B2 (ja) 鉛蓄電池
JP6766504B2 (ja) 鉛蓄電池
JP6756182B2 (ja) 鉛蓄電池
JP6954353B2 (ja) 鉛蓄電池
JP6750377B2 (ja) 鉛蓄電池
JP7099450B2 (ja) 鉛蓄電池
JP7099449B2 (ja) 鉛蓄電池
JP7111099B2 (ja) 鉛蓄電池
WO2018199242A1 (ja) 鉛蓄電池
JP6750378B2 (ja) 鉛蓄電池
JP7388110B2 (ja) 鉛蓄電池
JP7099448B2 (ja) 鉛蓄電池
WO2021060386A1 (ja) 鉛蓄電池用負極板、鉛蓄電池、および鉛蓄電池用負極板の製造方法
JP7099452B2 (ja) 鉛蓄電池
JP6958034B2 (ja) 鉛蓄電池
JP7694585B2 (ja) 鉛蓄電池用クラッド式正極板および鉛蓄電池
JPWO2019225161A1 (ja) 鉛蓄電池
JP7666326B2 (ja) 鉛蓄電池
JP6750376B2 (ja) 鉛蓄電池
JP7608799B2 (ja) 鉛蓄電池
JP7314747B2 (ja) 鉛蓄電池用負極板およびそれを備える鉛蓄電池
WO2025047743A1 (ja) 鉛蓄電池
JP7099451B2 (ja) 鉛蓄電池
JP2024029809A (ja) 鉛蓄電池
JP6756181B2 (ja) 鉛蓄電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6750377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150