JP6746032B2 - 霧特定装置、霧特定方法及び霧特定プログラム - Google Patents
霧特定装置、霧特定方法及び霧特定プログラム Download PDFInfo
- Publication number
- JP6746032B2 JP6746032B2 JP2020505557A JP2020505557A JP6746032B2 JP 6746032 B2 JP6746032 B2 JP 6746032B2 JP 2020505557 A JP2020505557 A JP 2020505557A JP 2020505557 A JP2020505557 A JP 2020505557A JP 6746032 B2 JP6746032 B2 JP 6746032B2
- Authority
- JP
- Japan
- Prior art keywords
- fog
- point data
- density
- reflection
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 52
- 230000003287 optical effect Effects 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 6
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 claims description 4
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/04—Systems determining the presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
- G06V10/507—Summing image-intensity values; Histogram projection analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/758—Involving statistics of pixels or of feature values, e.g. histogram matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
- G06V10/763—Non-hierarchical techniques, e.g. based on statistics of modelling distributions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Data Mining & Analysis (AREA)
- Biodiversity & Conservation Biology (AREA)
- Atmospheric Sciences (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Traffic Control Systems (AREA)
Description
特許文献1では、車両の周辺に電磁波が送信され、その反射波から反射点が特定される。特定された複数の反射点間の距離が一定の範囲内になる反射点が1つのセグメントとして分類される。第1反射点のセグメントである第1セグメントを通る電磁波の走査線上で第2反射点が存在する比率が高い場合に、第1セグメントが霧であると判定される。
この発明は、適切に霧の濃さを特定することを目的とする。
放射された光束が反射点で反射した反射光を受信する光センサによって得られた前記反射点を示す点データの集合を取得する点データ取得部と、
前記点データ取得部によって取得された前記集合に含まれる点データが示す前記反射点を俯瞰した場合に、前記光センサの周辺に前記反射点が円弧状に分布しているか否かにより、霧の濃さを特定する霧特定部と
を備える。
***構成の説明***
図1を参照して、実施の形態1に係る霧特定装置10の構成を説明する。
霧特定装置10は、移動体100に搭載されるECU(Electronic Control Unit)といったコンピュータである。
実施の形態1では、移動体100は、車両である。しかし、移動体100は、車両に限らず、船及び航空機といった他の種別であってもよい。霧特定装置10は、移動体100又は図示した他の構成要素と、一体化した形態又は分離不可能な形態で実装されてもよい、あるいは、取り外し可能な形態または分離可能な形態で実装されてもよい。
ストレージ13には、霧特定装置10の各機能構成要素の機能を実現するプログラムが格納されている。このプログラムは、プロセッサ11によりメモリ12に読み込まれ、プロセッサ11によって実行される。これにより、霧特定装置10の各機能構成要素の機能が実現される。
また、ストレージ13は、判定情報記憶部31の機能を実現する。
図2から図5を参照して、実施の形態1に係る霧特定装置10の動作を説明する。
実施の形態1に係る霧特定装置10の動作は、実施の形態1に係る霧特定方法に相当する。また、実施の形態1に係る霧特定装置10の動作は、実施の形態1に係る霧特定プログラムの処理に相当する。
(ステップS11:点データ取得処理)
点データ取得部21は、放射された光束が反射点で反射した反射光を受信する光センサ41によって得られた反射点を示す点データの集合を、通信インタフェース14を介して取得する。
点データは、光センサ41から放射されたある光束に対する反射点である1次反射点を示す1次点データと、ある光束に対する反射光の強度が1次反射点よりも低い反射点である2次反射点を示す2次点データとの組である。実施の形態1では、1次反射点は、反射光の強度が最も高い反射点であり、2次反射点は、1次反射点の次に反射光の強度が高い反射点である。
図3に示すように、光センサ41は、光の束である光束を放射する。霧が発生している場合には、まず、上下奥行き方向にまばらに拡散しているどこかの霧の粒子で光束を構成する光が反射する。概ねの場合には、光センサ41に近い位置での反射の反射光の強度が最も高くなる。そのため、光センサ41に近い位置で反射が発生した反射点が1次反射点になる。霧の粒子の間を通り抜けた光と、霧の粒子で反射した光とが、他の霧の粒子、又は、移動体100の周辺の車両といった障害物で反射する。概ねの場合には、この反射の反射光の強度が2番目に高くなるため、この反射が発生した反射点が2次反射点になる。
点データ取得部21は、ステップS11で取得された集合に含まれる点データをクラスタリングする。
具体的には、点データ取得部21は、1次反射点と2次反射点との少なくともいずれかの位置に基づき、集合に含まれる点データをクラスタリングして、1つ以上のクラスタを生成する。点データのクラスタリング方法については、既存のクラスタリング技術を用いればよい。例えば、点データ取得部21は、1次反射点の位置間の距離が一定の距離以内になる点データを1つのクラスタとする。
霧特定部22は、ステップS11で取得された集合に含まれる点データについての1次反射点と2次反射点との間の距離の分布に基づき、霧の濃さを特定する。ここでは、霧特定部22は、ステップS12で1つのクラスタにクラスタリングされた点データについての1次反射点と2次反射点との間の距離の分布に基づき、霧の濃さを特定する。
具体的には、霧特定部22は、霧の濃さに応じた距離の分布のパターンと、集合に含まれる点データについての距離の分布とを比較することにより、霧の濃さを特定する。実施の形態1では、霧特定部22は、霧の濃さに応じた距離の頻度のヒストグラムのパターンと、集合に含まれる点データについての距離の頻度のヒストグラムとを比較することにより、霧の濃さを特定する。
(ステップS21:ヒストグラム生成処理)
図5の(A)に示すように、霧特定部22は、ステップS12で1つのクラスタにクラスタリングされた点データについての1次反射点と2次反射点との間の距離の分布を表すヒストグラムを生成する。
具体的には、霧特定部22は、距離毎に点データの数を特定し、特定された点データの数をクラスタに含まれる点データの数で除して、距離毎の頻度を計算する。霧特定部22は、計算された頻度を示すヒストグラムを生成する。
ステップS22の処理は、判定情報記憶部31に記憶されたヒストグラムの各パターンを対象として実行される。
図5の(B)に示すように、霧特定部22は、対象のパターンと、ステップS21で生成されたヒストグラムとを比較して、霧の濃さを特定する。
具体的には、霧特定部22は、対象のパターンを判定情報記憶部31から読み出す。霧特定部22は、読み出された対象のパターンと、ステップS21で生成されたヒストグラムとを比較する。比較方法は、既存の類似度比較技術を用いればよい。実施の形態1では、霧特定部22は、ヒストグラムのビンをベクトルとして、読み出されたパターンのベクトルと、ステップS21で生成されたヒストグラムのベクトルとについて、ユークリッド距離又はヒストグラムインタセクションに基づく類似度を計算する。霧特定部22は、これに限らず、SVM(Support Vector Machine)とAdaboostと多層パーセプトロンの教師あり学習といった技術を用いて比較してもよい。
霧特定部22は、判定情報記憶部31に記憶されたヒストグラムのパターンのうち、ステップS22で計算された類似度が最も高いパターンを特定する。霧特定部22は、特定されたパターンに対応する霧の濃さを、移動体100の周囲の霧の濃さであると特定する。
図5の例1の場合には、ステップS21で生成されたヒストグラムは、視程15mの霧のパターン(図5では霧15と記載)との類似度が高くなる。そのため、例1では、視程15mの霧と判定される。また、図5の例2の場合には、ステップS21で生成されたヒストグラムは、霧なしのパターンとの類似度が高くなる。そのため、例2では、霧なしと判定される。
以上のように、実施の形態1に係る霧特定装置10は、1次反射点と2次反射点との間の距離の分布に基づき、霧の濃さを特定する。1次反射点と2次反射点との間の距離の分布は、霧の濃さに応じて変化するため、適切に霧の濃さを特定することが可能である。
<変形例1>
実施の形態1では、各機能構成要素がソフトウェアで実現された。しかし、変形例1として、各機能構成要素はハードウェアで実現されてもよい。この変形例1について、実施の形態1と異なる点を説明する。
各機能構成要素がハードウェアで実現される場合には、霧特定装置10は、プロセッサ11とメモリ12とストレージ13とに代えて、電子回路15を備える。電子回路15は、各機能構成要素と、メモリ12と、ストレージ13との機能とを実現する専用の回路である。
各機能構成要素を1つの電子回路15で実現してもよいし、各機能構成要素を複数の電子回路15に分散させて実現してもよい。
変形例2として、一部の各機能構成要素がハードウェアで実現され、他の各機能構成要素がソフトウェアで実現されてもよい。
実施の形態1では、霧特定装置10は1つのECUといったコンピュータにより実現された。しかし、霧特定装置10は複数のECUといったコンピュータにより実現されてもよい。
実施の形態2は、光センサ41の周辺に反射点が円弧状に分布しているか否かにより、霧の濃さを特定する点が実施の形態1と異なる。実施の形態2では、この異なる点を説明し、同一の点については説明を省略する。
図7から図10を参照して、実施の形態2に係る霧特定装置10の動作を説明する。
実施の形態2に係る霧特定装置10の動作は、実施の形態2に係る霧特定方法に相当する。また、実施の形態2に係る霧特定装置10の動作は、実施の形態2に係る霧特定プログラムの処理に相当する。
(ステップS31:点データ取得処理)
点データ取得部21は、放射された光束が反射点で反射した反射光を受信する光センサ41によって得られた反射点を示す点データの集合を取得する。
実施の形態2では、実施の形態1と異なり、点データは、1次点データと2次点データとの組である必要はない。実施の形態2では、点データは、1つの反射点だけを示していてもよい。
霧特定部22は、ステップS31で取得された集合に含まれる点データが示す反射点を俯瞰した場合に、光センサ41の周辺に反射点が円弧状に分布しているか否かにより、霧の濃さを特定する。
つまり、霧特定部22は、図8の(A)に示す反射点を示す点データの集合を、図8の(B)に示すように俯瞰変換する。つまり、霧特定部22は、点データの集合が示す反射点群を、奥行方向及び水平方向の座標系上に投影する。霧が発生している場合には、光センサ41の周辺で一様に光束が反射するため、光センサ41の周辺に円弧上に反射点が分布する。なお、図8の(B)では、反射点が円状ではなく、円弧状に分布している。これは、移動体100が存在する位置に反射点がないためである。
(ステップS41:円近似処理)
霧特定部22は、ステップS31で取得された集合に含まれる点データが示す反射点の奥行方向及び水平方向の座標を入力として、円の最小二乗法によって近似される円を計算する。
具体的には、霧特定部22は、数1に示す円の最小二乗法の式に、集合に含まれる点データi(i=1,...,n)が示す反射点の奥行方向及び水平方向の座標(xi,yi)を入力して、近似される円の中心座標(A,B)と、半径Cとを計算する。
霧特定部22は、ステップS31で取得された集合に含まれる各点データを対象として、対象の点データが示す反射点からステップS41で計算された円までの距離dを計算する。つまり、図10に示すように、霧特定部22は、対象の点データが示す反射点から円の接線に垂直に下した直線における、反射点から円までの長さを距離dとして計算する。そして、霧特定部22は、距離dの分散値を計算する。
霧特定部22は、ステップS42で計算された分散値により、霧の濃さを特定する。霧特定部22は、分散値が小さいほど、霧が濃いと特定する。
実施の形態2では、判定情報記憶部31は、霧の濃さ毎に分散値の閾値を記憶する。霧特定部22は、ステップS42で計算された分散値と、判定情報記憶部31に記憶された霧の濃さ毎の閾値とを比較することにより、霧の濃さを特定する。
以上のように、実施の形態2に係る霧特定装置10は、光センサ41の周辺に反射点が円弧状に分布しているか否かにより、霧の濃さを特定する。霧が発生している場合には、光センサ41の周辺に反射点が円弧状に分布するため、適切に霧が発生しているか否かを特定することが可能である。
実施の形態3は、実施の形態1で説明した霧の濃さの特定方法と、実施の形態2で説明した霧の濃さの特定方法とを組み合わせて、霧の濃さを特定する点が実施の形態1,2と異なる。実施の形態3では、この異なる点を説明し、同一の点については説明を省略する。
図11を参照して、実施の形態3に係る霧特定装置10の構成を説明する。
霧特定装置10は、霧特定部22が、第1特定部23と、第2特定部24と、総合特定部25とを備える点が実施の形態1,2と異なる。
図12を参照して、実施の形態3に係る霧特定装置10の動作を説明する。
実施の形態3に係る霧特定装置10の動作は、実施の形態3に係る霧特定方法に相当する。また、実施の形態3に係る霧特定装置10の動作は、実施の形態3に係る霧特定プログラムの処理に相当する。
点データ取得部21は、点データの集合を取得する。
実施の形態3では、点データは、1次点データと2次点データとの組である。
第1特定部23は、1次反射点と2次反射点との間の距離の分布に基づき、霧の濃さを第1濃さとして特定する。つまり、第1特定部23は、実施の形態1で説明した方法により、霧の濃さを特定する。
第2特定部24は、集合に含まれる点データが示す反射点を俯瞰した場合に、反射点から近似される円を計算し、計算された円と反射点と間の距離の分散に基づき、霧の濃さを第2濃さとして特定する。つまり、第2特定部24は、実施の形態2で説明した方法により、霧の濃さを特定する。
この際、第2特定部24は、点データに含まれる1次点データだけを用いてもよいし、1次点データと2次点データとの両方を用いてもよい。
総合特定部25は、ステップS52で特定された第1濃さと、ステップS53で特定された第2濃さとから、霧の濃さを特定する。
例えば、第1濃さと第2濃さとが霧が発生しているか、あるいは、霧が発生していないかを特定しているとする。この場合には、総合特定部25は、第1濃さと第2濃さとの両方が霧が発生していることを示すなら、霧が発生していると判定し、それ以外の場合には霧が発生していないと判定する。
また、例えば、第1濃さと第2濃さとが複数の段階の霧の濃さのどの濃さであるかを特定しているとする。この場合には、総合特定部25は、第1濃さに重み付けした値と、第2濃さに重み付けした値との和と、濃さ毎に設定された閾値とを比較して、霧の濃さを特定する。つまり、第1濃さをX、第2濃さをY、第1濃さの重みをθ1、第2濃さの重みをθ2とした場合には、総合特定部25は、θ1X+θ2Yと、濃さ毎に設定された閾値thとを比較して、霧の濃さを判定する。
以上のように、実施の形態3に係る霧特定装置10は、実施の形態1,2で説明した方法を組み合わせて霧の濃さを特定する。これにより、より高い精度で霧の濃さを特定することが可能になる。
実施の形態4は、特定された霧の濃さに応じて、障害物を識別するためのセンサのセンサ閾値を設定する点が実施の形態1〜3と異なる。実施の形態4では、この異なる点を説明し、同一の点については説明を省略する。
図13を参照して、実施の形態4に係る霧特定装置10の構成を説明する。
霧特定装置10は、認識部26と、閾値設定部27とを備える点が、実施の形態1〜3と異なる。
図14及び図15を参照して、実施の形態4に係る霧特定装置10の動作を説明する。
実施の形態4に係る霧特定装置10の動作は、実施の形態4に係る霧特定方法に相当する。また、実施の形態4に係る霧特定装置10の動作は、実施の形態4に係る霧特定プログラムの処理に相当する。
ステップS61は、実施の形態1〜3で説明した霧の濃さを特定する処理である。
閾値設定部27は、ステップS61で特定された霧の濃さに応じて、障害物を識別するためのセンサのセンサ閾値を設定する。
図15では、センサとしてカメラが用いられ、車両のテールランプが識別される場合を示している。
カメラを用いてテールランプを識別する場合には、YUVデータのUV平面において、テールランプとその他とを線形に識別する境界線がセンサ閾値として用いられる。そこで、閾値設定部27は、霧の濃さに応じて、この境界線を設定する。境界線は、V=a・U+bと表せる。そこで、閾値設定部27は、霧の濃さに応じて、a,bの値を設定する。
図15に示すように、閾値設定部27は、霧が発生していない場合には、テールランプ以外の赤発光物がテールランプと誤認識されることを防止するため、センサ閾値である境界線を高めに設定する。一方、閾値設定部27は、霧が発生している場合には、センサ閾値である境界線を低めに設定して、赤発光物をテールランプと認識され易くする。
認識部26は、ステップS62で設定されたセンサ閾値を用いて、障害物を認識する。
図15の例であれば、認識部26は、ステップS62で設定された境界線を用いて、カメラによって得られた画像データからテールランプを検出する。
以上のように、実施の形態4に係る霧特定装置10は、霧の濃さに応じてセンサ閾値を設定する。これにより、障害物を適切に認識することが可能になる。
実施の形態5は、霧の濃さに応じて、障害物を識別するために用いるセンサを決定する点が実施の形態1〜4と異なる。実施の形態5では、この異なる点を説明し、同一の点については説明を省略する。
なお、ここでは、実施の形態1〜3に機能を加えた例を説明する。しかし、実施の形態4に機能を加えることも可能である。
図16を参照して、実施の形態5に係る霧特定装置10の構成を説明する。
霧特定装置10は、認識部26と、センサ決定部28とを備える点が、実施の形態1〜3と異なる。また、ストレージ13が信頼度記憶部32の機能を実現する点が、実施の形態1〜3と異なる。
図17及び図18を参照して、実施の形態5に係る霧特定装置10の動作を説明する。
実施の形態5に係る霧特定装置10の動作は、実施の形態5に係る霧特定方法に相当する。また、実施の形態5に係る霧特定装置10の動作は、実施の形態5に係る霧特定プログラムの処理に相当する。
ステップS71は、実施の形態1〜3で説明した霧の濃さを特定する処理である。
センサ決定部28は、ステップS71で特定された霧の濃さに応じて、障害物を識別するために用いるセンサを決定する。
具体的には、信頼度記憶部32は、霧の濃さ毎に、移動体100に搭載された各センサについて、距離毎の信頼度を記憶する。図18に示すように、移動体100にセンサとしてカメラとミリ波レーダとLiDARとが搭載されている場合には、信頼度記憶部32は、霧の濃さ毎に、カメラとミリ波レーダとLiDARとの距離毎の信頼度を記憶する。図18では、霧が発生している場合と霧が発生していない場合との距離毎の信頼度が示されている。各センサの信頼度は、実験により求められる。
センサ決定部28は、信頼度記憶部32を参照して、ステップS71で特定された霧の濃さの場合に信頼度の高いセンサを、障害物を識別するために用いるセンサとして決定する。センサ決定部28は、距離毎に障害物を識別するために用いるセンサを決定してもよい。
例えば、センサ決定部28は、霧が発生していない場合には、LiDARとカメラとを用いると決定し、霧が発生している場合には、ミリ波レーダとカメラとを用いると決定する。
認識部26は、ステップS72で決定されたセンサを用いて、障害物を認識する。
以上のように、実施の形態5に係る霧特定装置10は、霧の濃さに応じて、障害物を識別するために用いるセンサを決定する。これにより、障害物を適切に認識することが可能になる。
<変形例4>
実施の形態5では、実施の形態1〜3に機能が加えられた。しかし、実施の形態4に機能が加えられてもよい。
この場合には、図19に示すように、霧特定装置10は、図16に示す機能構成要素に加え、閾値設定部27を備える。そして、図20に示すように、ステップS82でセンサ決定部28が用いるセンサを決定した上で、ステップS83で閾値設定部27が決定されたセンサについてのセンサ閾値を決定する。
なお、ステップS81とステップS82とステップS84との処理は、図17のステップS71とステップS72とステップS73との処理と同じである。また、ステップS83の処理は、図14のステップS62の処理と同じである。
Claims (11)
- 放射された光束が反射点で反射した反射光を受信する光センサによって得られた前記反射点を示す点データの集合を取得する点データ取得部と、
前記点データ取得部によって取得された前記集合に含まれる点データが示す前記反射点を俯瞰した場合に、前記光センサの周辺に前記反射点が円弧状に分布しているか否かにより、霧の濃さを特定する霧特定部と
を備える霧特定装置。 - 前記霧特定部は、前記集合の前記点データが示す前記反射点を俯瞰した場合に、前記反射点から近似される円を計算し、計算された円と前記反射点と間の距離の分散に基づき、霧の濃さを特定する
請求項1に記載の霧特定装置。 - 前記霧特定部は、円の最小二乗法によって近似される円を計算する
請求項2に記載の霧特定装置。 - 前記霧特定部は、前記分散が小さいほど霧が濃いと特定する
請求項2又は3に記載の霧特定装置。 - 前記点データ取得部は、放射された光束が反射点で反射した反射光を受信する光センサによって得られた前記反射点を示す点データであって、ある光束に対する反射点である1次反射点を示す1次点データと、前記ある光束に対する反射光の強度が前記一次反射点よりも低い反射点である2次反射点を示す2次点データとの組である点データの集合を取得し、
前記霧特定部は、
前記集合に含まれる前記点データについての前記1次反射点と前記2次反射点との間の距離の分布に基づき、霧の濃さを第1濃さとして特定する第1特定部と、
前記分散に基づき、霧の濃さを第2濃さとして特定する第2特定部と、
前記第1特定部によって特定された第1濃さと、前記第2特定部によって特定された第2濃さとから、霧の濃さを特定する総合特定部と
を備える請求項2から4までのいずれか1項に記載の霧特定装置。 - 前記第1特定部は、霧の濃さに応じた前記距離の分布のパターンと、前記集合に含まれる前記点データについての前記距離の分布とを比較することにより、霧の濃さを特定する
請求項5に記載の霧特定装置。 - 前記第1特定部は、霧の濃さに応じた前記距離の頻度のヒストグラムのパターンと、前記集合に含まれる前記点データについての前記距離の頻度のヒストグラムとを比較することにより、霧の濃さを特定する
請求項6に記載の霧特定装置。 - 前記霧特定装置は、さらに、
前記霧特定部によって特定された霧の濃さに応じて、障害物を識別するためのセンサのセンサ閾値を設定する閾値設定部
を備える請求項1から7までのいずれか1項に記載の霧特定装置。 - 前記霧特定装置は、さらに、
前記霧特定部によって特定された霧の濃さに応じて、障害物を識別するために用いるセンサを決定するセンサ決定部
を備える請求項1から8までのいずれか1項に記載の霧特定装置。 - 点データ取得部が、放射された光束が反射点で反射した反射光を受信する光センサによって得られた前記反射点を示す点データの集合を取得し、
霧特定部が、前記集合に含まれる点データが示す前記反射点を俯瞰した場合に、前記光センサの周辺に前記反射点が円弧状に分布しているか否かにより、霧の濃さを特定する霧特定方法。 - 放射された光束が反射点で反射した反射光を受信する光センサによって得られた前記反射点を示す点データの集合を取得する点データ取得処理と、
前記点データ取得処理によって取得された前記集合に含まれる点データが示す前記反射点を俯瞰した場合に、前記光センサの周辺に前記反射点が円弧状に分布しているか否かにより、霧の濃さを特定する霧特定処理と
をコンピュータに実行させる霧特定プログラム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/009395 WO2019175919A1 (ja) | 2018-03-12 | 2018-03-12 | 霧特定装置、霧特定方法及び霧特定プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019175919A1 JPWO2019175919A1 (ja) | 2020-06-18 |
JP6746032B2 true JP6746032B2 (ja) | 2020-08-26 |
Family
ID=67906997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020505557A Active JP6746032B2 (ja) | 2018-03-12 | 2018-03-12 | 霧特定装置、霧特定方法及び霧特定プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US12124001B2 (ja) |
JP (1) | JP6746032B2 (ja) |
CN (1) | CN111819473B (ja) |
DE (1) | DE112018007029B4 (ja) |
WO (1) | WO2019175919A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023087204A (ja) * | 2021-12-13 | 2023-06-23 | 北陽電機株式会社 | ヒストグラム生成回路、光測距装置、ヒストグラム生成方法および光測距方法 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07216545A (ja) * | 1994-02-04 | 1995-08-15 | Nkk Corp | 連続真空蒸着膜の形成方法 |
JP3669205B2 (ja) | 1999-05-17 | 2005-07-06 | 日産自動車株式会社 | 障害物認識装置 |
JP3571268B2 (ja) * | 2000-01-20 | 2004-09-29 | 三菱電機株式会社 | 霧観測レーダ装置 |
JP3683258B2 (ja) | 2002-05-31 | 2005-08-17 | 松下電器産業株式会社 | 車両周辺監視装置、画像生成方法および画像生成プログラム |
US7110021B2 (en) | 2002-05-31 | 2006-09-19 | Matsushita Electric Industrial Co., Ltd. | Vehicle surroundings monitoring device, and image production method/program |
JP3861781B2 (ja) | 2002-09-17 | 2006-12-20 | 日産自動車株式会社 | 前方車両追跡システムおよび前方車両追跡方法 |
US7414706B2 (en) * | 2004-12-22 | 2008-08-19 | Northrop Grumman Corporation | Method and apparatus for imaging a target using cloud obscuration prediction and detection |
FR2884637B1 (fr) | 2005-04-19 | 2007-06-29 | Valeo Vision Sa | Procede de detection de brouillard nocturne et systeme de mise en oeuvre de ce procede |
JP4730267B2 (ja) | 2006-07-04 | 2011-07-20 | 株式会社デンソー | 車両用視界状況判定装置 |
JP4940458B2 (ja) * | 2007-08-10 | 2012-05-30 | 本田技研工業株式会社 | 物体検出装置 |
JP5092076B2 (ja) * | 2007-10-26 | 2012-12-05 | オプテックス株式会社 | レーザエリアセンサ |
JP4506822B2 (ja) * | 2007-11-26 | 2010-07-21 | 株式会社デンソー | 霧検知装置及びその設置方法 |
JP4980939B2 (ja) | 2008-01-22 | 2012-07-18 | 富士重工業株式会社 | 撮像手段の調整装置および物体検出装置 |
JP5155042B2 (ja) | 2008-07-04 | 2013-02-27 | 本田技研工業株式会社 | 車両周辺画像の切替装置 |
JP2010071704A (ja) * | 2008-09-17 | 2010-04-02 | Calsonic Kansei Corp | 車両用距離画像データ生成装置及び方法 |
JP5218906B2 (ja) | 2008-10-16 | 2013-06-26 | 国立大学法人東京農工大学 | 煙検出装置及び煙検出方法 |
JP2010286307A (ja) * | 2009-06-10 | 2010-12-24 | Nec Engineering Ltd | 画像撮像装置 |
DE102009028578A1 (de) * | 2009-08-17 | 2011-02-24 | Robert Bosch Gmbh | Verfahren für die Umfelderfassung mit einer Lidarsensorik |
DE102011017649B3 (de) * | 2011-04-28 | 2012-10-11 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Erkennung einer Intensität eines Aerosols in einem Sichtfeld einer Kamera eines Fahrzeugs |
WO2012171739A2 (de) | 2011-06-17 | 2012-12-20 | Robert Bosch Gmbh | Verfahren und steuergerät zur erkennung einer wetterbedingung in einem umfeld eines fahrzeugs |
JP2013167479A (ja) * | 2012-02-14 | 2013-08-29 | Toyota Motor Corp | レーザーレーダ装置及びレーザーレーダ装置で行われる物体検知方法 |
JP5898535B2 (ja) | 2012-03-13 | 2016-04-06 | 富士重工業株式会社 | 撮像ユニットの露光制御装置 |
US9221461B2 (en) | 2012-09-05 | 2015-12-29 | Google Inc. | Construction zone detection using a plurality of information sources |
US8473144B1 (en) | 2012-10-30 | 2013-06-25 | Google Inc. | Controlling vehicle lateral lane positioning |
US8983705B2 (en) * | 2013-04-30 | 2015-03-17 | Google Inc. | Methods and systems for detecting weather conditions including fog using vehicle onboard sensors |
JP6189523B2 (ja) | 2013-04-11 | 2017-08-30 | グーグル インコーポレイテッド | 車載センサを用いて気象状態を検出する方法及びシステム |
US10247854B2 (en) | 2013-05-07 | 2019-04-02 | Waymo Llc | Methods and systems for detecting weather conditions using vehicle onboard sensors |
WO2015031478A1 (en) | 2013-08-28 | 2015-03-05 | Gentex Corporation | Imaging system and method for fog detection |
WO2016103271A2 (en) * | 2014-12-27 | 2016-06-30 | Guardian Optical Technologies Ltd. | System and method for detecting surface vibrations |
US10436582B2 (en) * | 2015-04-02 | 2019-10-08 | Here Global B.V. | Device orientation detection |
DE102015208149A1 (de) * | 2015-05-04 | 2016-11-10 | Conti Temic Microelectronic Gmbh | Aktivierungsvorrichtung für mindestens einen Aktor eines Fahrzeugs, entsprechendes Verfahren und Fahrzeug |
JP6058072B2 (ja) | 2015-05-29 | 2017-01-11 | 三菱電機株式会社 | 物体識別装置 |
DE102015112103A1 (de) * | 2015-07-24 | 2017-01-26 | Preh Gmbh | Detektionsvorrichtung zur Nebelerkennung für ein Kraftfahrzeug |
DE112018007037B4 (de) * | 2018-03-12 | 2022-11-03 | Mitsubishi Electric Corporation | Nebelbestimmungsvorrichtung, Nebelbestimmungsverfahren und Nebelbestimmungsprogramm |
JP6723492B2 (ja) * | 2018-03-12 | 2020-07-15 | 三菱電機株式会社 | 霧特定装置、霧特定方法及び霧特定プログラム |
-
2018
- 2018-03-12 JP JP2020505557A patent/JP6746032B2/ja active Active
- 2018-03-12 CN CN201880090770.6A patent/CN111819473B/zh active Active
- 2018-03-12 DE DE112018007029.8T patent/DE112018007029B4/de active Active
- 2018-03-12 WO PCT/JP2018/009395 patent/WO2019175919A1/ja active Application Filing
- 2018-03-12 US US16/978,332 patent/US12124001B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE112018007029B4 (de) | 2022-12-08 |
WO2019175919A1 (ja) | 2019-09-19 |
JPWO2019175919A1 (ja) | 2020-06-18 |
CN111819473B (zh) | 2022-05-13 |
US12124001B2 (en) | 2024-10-22 |
CN111819473A (zh) | 2020-10-23 |
DE112018007029T5 (de) | 2020-11-05 |
US20200408919A1 (en) | 2020-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arnold et al. | A survey on 3d object detection methods for autonomous driving applications | |
US10502832B2 (en) | Object recognition apparatus and noise removal method | |
WO2020048265A1 (zh) | 多级目标分类及交通标志检测方法和装置、设备、介质 | |
US20160162742A1 (en) | Lidar-based classification of object movement | |
KR20190127624A (ko) | 라이다 센서를 이용한 밀집도 기반의 객체 검출 장치 및 방법 | |
JP6723491B2 (ja) | 霧特定装置、霧特定方法及び霧特定プログラム | |
JP6746032B2 (ja) | 霧特定装置、霧特定方法及び霧特定プログラム | |
US20220171975A1 (en) | Method for Determining a Semantic Free Space | |
US11538260B2 (en) | Object identification apparatus, object identification method, and nontransitory computer readable medium storing control program | |
US11867870B2 (en) | Fog determination apparatus, fog determination method, and computer readable medium | |
JP6657934B2 (ja) | 物体検出装置 | |
CN113920351A (zh) | 一种落叶目标点云的识别方法和装置 | |
US20220383146A1 (en) | Method and Device for Training a Machine Learning Algorithm | |
JP2021021967A (ja) | 認識システム、車両制御システム、認識方法、およびプログラム | |
US10304205B2 (en) | Image processing apparatus, method of controlling the same, and storage medium | |
US20220189158A1 (en) | Method and device for detecting boundary of road in 3d point cloud using cascade classifier | |
JP7489231B2 (ja) | 物体検知装置 | |
JP2020205035A (ja) | 画像分類器の訓練装置、ターゲットを検出する装置及び電子機器 | |
US20240193959A1 (en) | Systems and methods for detecting objects based on lidar data | |
Li et al. | Multifeature fusion vehicle detection algorithm based on choquet integral | |
Obradović et al. | Analysis of LiDAR-Camera Fusion for Marine Situational Awareness with Emphasis on Cluster Selection in Camera Frustum | |
KR20200041029A (ko) | 수중 표적 식별 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200219 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200219 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6746032 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |