[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6742797B2 - Vibration waveform sensor - Google Patents

Vibration waveform sensor Download PDF

Info

Publication number
JP6742797B2
JP6742797B2 JP2016090163A JP2016090163A JP6742797B2 JP 6742797 B2 JP6742797 B2 JP 6742797B2 JP 2016090163 A JP2016090163 A JP 2016090163A JP 2016090163 A JP2016090163 A JP 2016090163A JP 6742797 B2 JP6742797 B2 JP 6742797B2
Authority
JP
Japan
Prior art keywords
pair
piezoelectric element
piezoelectric
vibration waveform
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016090163A
Other languages
Japanese (ja)
Other versions
JP2017196211A (en
Inventor
啓一 小林
啓一 小林
隆 石黒
隆 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2016090163A priority Critical patent/JP6742797B2/en
Publication of JP2017196211A publication Critical patent/JP2017196211A/en
Application granted granted Critical
Publication of JP6742797B2 publication Critical patent/JP6742797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、脈拍などの各種の波形を計測する振動波形センサに関し、更に具体的には、圧電素子を利用したセンサにおける感度維持とノイズ低減に関するものである。 The present invention relates to a vibration waveform sensor that measures various waveforms such as a pulse, and more specifically, to maintaining sensitivity and reducing noise in a sensor that uses a piezoelectric element.

脈波の連続測定による健康管理をうたい文句にしたセンサデバイスの中で、圧電素子を利用した振動波形センサというものが考案されている。例えば、下記特許文献1には、圧電素子によって脈波を検出することで動脈硬化度を評価する動脈硬化評価装置が開示されている。振動波形センサを構成する部品のうちで一番重要なのは、振動を拾う圧電素子である。脈波信号を効率よく捕捉し、センサの感度を上げるためには、圧電素子はd31方向に分極されている必要がある。これは、振動波形センサにおいては、脈波の捕捉は指の下の動脈からの振動がリングに伝わり、さらにそれが基板を通して素子に伝わることでなされるが、基板からの振動を効率良く捕捉するには、素子の実装方向に対して基板と垂直な方向,すなわちd31方向への振動を捕捉する必要があるからである。 Among sensor devices complaining about health management by continuous measurement of pulse waves, a vibration waveform sensor using a piezoelectric element has been devised. For example, Patent Document 1 below discloses an arteriosclerosis evaluation device that evaluates the degree of arteriosclerosis by detecting a pulse wave with a piezoelectric element. The most important component of the vibration waveform sensor is a piezoelectric element that picks up vibration. In order to efficiently capture the pulse wave signal and increase the sensitivity of the sensor, the piezoelectric element needs to be polarized in the d31 direction. In the vibration waveform sensor, this is done by capturing the pulse wave by transmitting the vibration from the artery under the finger to the ring and then transmitting it to the element through the substrate, but efficiently capturing the vibration from the substrate. This is because it is necessary to capture the vibration in the direction perpendicular to the substrate with respect to the mounting direction of the element, that is, the d31 direction.

一方で、センサの信号品位を考慮した場合、ノイズの発生は問題である。ノイズは素子の容量に依存するが、d31方向への感度が高くなるように分極する設計とは、それと同時に、ノイズが発生しやすい設計でもある。そのため、感度の高い圧電素子ほどノイズの影響も大きいという欠点がある。ノイズが大きいと得られた脈波波形のベースラインがずれて波形解析の精度に悪影響を与えるため、従来はソフトやアプリケーションでベースライン補正をかけていたが、元のデータのベースラインが安定したほうが、波形解析精度が上がるのはいうまでもない。 On the other hand, in consideration of the signal quality of the sensor, the generation of noise is a problem. Although the noise depends on the capacitance of the element, the design in which polarization is performed so that the sensitivity in the d31 direction is high is, at the same time, a design in which noise is likely to occur. Therefore, the piezoelectric element having higher sensitivity is more affected by noise, which is a drawback. If the noise is large, the baseline of the obtained pulse wave waveform will shift and adversely affect the accuracy of waveform analysis.Therefore, baseline correction was performed with software or applications, but the baseline of the original data became stable. Needless to say, the waveform analysis accuracy is improved.

国際公開第2010/024417号パンフレットInternational Publication No. 2010/024417 pamphlet

従来は、上述した問題を避けるために、圧電素子を分極した後で外部導体を削り落とし、端面を絶縁して、再度外部導体を焼き付ける工程を入れることなどが提案されてはいた。前記工程を入れることで、圧電素子自体は確実にd31方向に分極されつつも、内部導体が容量に寄与しないため、感度が高く、ノイズ発生の低い圧電素子が得られる。しかしながら、この方法はあまりに生産性が低く、実用性に欠けるという課題がある。 Conventionally, in order to avoid the above-mentioned problems, it has been proposed to polarize the piezoelectric element and then scrape off the outer conductor, insulate the end face, and re-bak the outer conductor. By including the above steps, the piezoelectric element itself is surely polarized in the d31 direction, but since the internal conductor does not contribute to the capacitance, a piezoelectric element with high sensitivity and low noise generation can be obtained. However, this method has a problem that productivity is too low and it is not practical.

本発明は、以上のような点に着目したもので、高いセンサ感度と耐ノイズ性能の両立が可能な圧電素子を用いた振動波形センサを提供することを、その目的とする。 The present invention focuses on the above points, and an object thereof is to provide a vibration waveform sensor using a piezoelectric element capable of achieving both high sensor sensitivity and noise resistance.

本発明は、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記圧電体の分極方向が前記一対の端子電極の対向する方向に対して垂直方向であり、前記一対の端子電極の各々が前記一対の導電パッドに接続されて、前記分極方向が前記基板に対して垂直になるように実装された圧電素子と、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、を備えを備えており、前記スペーサをグランド電位に接続したことを特徴とする。
主要な形態の一つによれば、前記基板上であって、前記導電パッドの周辺に導電膜が形成されており、この導電膜に、前記スペーサが設けられていることを特徴とする。更には、前記スペーサが導電性を有することを特徴とする。

The present invention provides a substrate, a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and a pair of terminals formed on the piezoelectric body. An electrode, and the polarization direction of the piezoelectric body is perpendicular to the direction in which the pair of terminal electrodes face each other, and each of the pair of terminal electrodes is connected to the pair of conductive pads to provide the polarization. A piezoelectric element mounted so that the direction is perpendicular to the substrate; and a spacer formed around the piezoelectric element and the pair of conductive pads to have a height higher than the mounting height of the piezoelectric element. It is characterized in that the spacer is connected to the ground potential.
According to one of the main aspects , a conductive film is formed on the substrate around the conductive pad, and the spacer is provided on the conductive film. Further, the spacer is electrically conductive.

主要な形態の一つは、前記スペーサが、前記圧電素子及び前記一対の導電パッドの周囲を囲むように形成されたことを特徴とする。他の形態の一つは、前記圧電素子は、前記圧電体内部に、前記分極方向に対向する一対の第1の内部導体を有することを特徴とする。更に他の形態の一つは、前記一対の第1の内部導体の交差面積は、前記圧電体を前記分極方向から見たときの面積の70〜99%であることを特徴とする。更に他の形態の一つは、前記圧電素子は、前記一対の端子電極の各々と接続された一対の第2の内部導体を有し、前記一対の第2の内部導体の交差面積は、前記圧電体を前記分極方向から見たときの面積の50%以下であることを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。 One of the main forms is characterized in that the spacer is formed so as to surround the piezoelectric element and the pair of conductive pads. One of the other modes is characterized in that the piezoelectric element has a pair of first internal conductors facing each other in the polarization direction inside the piezoelectric body. Still another embodiment is characterized in that an intersecting area of the pair of first internal conductors is 70 to 99% of an area when the piezoelectric body is viewed from the polarization direction. In still another embodiment, the piezoelectric element has a pair of second internal conductors connected to each of the pair of terminal electrodes, and an intersection area of the pair of second internal conductors is It is characterized in that it is 50% or less of the area when the piezoelectric body is viewed from the polarization direction. The above and other objects, features and advantages of the present invention will be apparent from the following detailed description and the accompanying drawings.

本発明によれば、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記圧電体の分極方向が前記一対の端子電極の対向する方向に対して垂直方向であり、前記一対の端子電極の各々が前記一対の導電パッドに接続されて、前記分極方向が前記基板に対して垂直になるように実装された圧電素子と、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、を備えるとともに、前記スペーサをグランド電位に接続することとした。このため、圧電素子の分極方向がd31のため高い感度を示しつつ、容量に寄与する内部導体がないか、あっても交差面積を狭くして、ノイズ成分を低く抑えることができるという効果がある。
According to the present invention, a substrate, a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and a pair formed on the piezoelectric body. A terminal electrode of, the polarization direction of the piezoelectric body is a direction perpendicular to the opposing direction of the pair of terminal electrodes, each of the pair of terminal electrodes is connected to the pair of conductive pads, A piezoelectric element mounted so that the polarization direction is perpendicular to the substrate, and a spacer formed around the piezoelectric element and the pair of conductive pads to have a height higher than the mounting height of the piezoelectric element. In addition, the spacer is connected to the ground potential . Therefore, since the polarization direction of the piezoelectric element is d31, high sensitivity is exhibited, and even if there is no internal conductor that contributes to capacitance, the crossing area can be narrowed to suppress the noise component even if there is any. ..

本発明の実施例1の振動波形センサを示す図であり、(A)は断面図,(B)は組立図,(C)は基板の実装面側から見た平面図である。It is a figure which shows the vibration waveform sensor of Example 1 of this invention, (A) is sectional drawing, (B) is an assembly drawing, (C) is the top view seen from the mounting surface side of a board|substrate. 前記実施例1の圧電素子を示す図であり、(A)は外観斜視図,(B)は前記(A)を#A−#A線に沿って切断し、矢印方向に見た断面図,(C)は分極時の様子を示す断面図である。It is a diagram showing a piezoelectric element of the first embodiment, (A) is an external perspective view, (B) is a cross-sectional view taken along line #A-#A of (A) and seen in the arrow direction, (C) is a cross-sectional view showing a state during polarization. 脈波波形を示すグラフであり、(A)は実施例1の圧電素子による脈波波形を示し、(B)は従来の圧電素子による脈波波形を示す。7A and 7B are graphs showing pulse wave waveforms, where FIG. 9A shows the pulse wave waveform of the piezoelectric element of Example 1, and FIG. 9B shows the pulse wave waveform of the conventional piezoelectric element. 本発明の実施例2を示す図であり、(A)は圧電素子の外観斜視図,(B)は前記(A)を#B−#B線に沿って切断し矢印方向に見た断面図,(C)は前記圧電素子の内部導体を示す平面図である。It is a figure which shows Example 2 of this invention, (A) is an external appearance perspective view of a piezoelectric element, (B) is the sectional view which cut|disconnected said (A) along the line #B-#B, and was seen in the arrow direction. , (C) are plan views showing internal conductors of the piezoelectric element. 本発明の実施例3を示す図であり、(A)は圧電素子の外観斜視図,(B)は前記(A)を#C−#C線に沿って切断し矢印方向に見た断面図,(C)は前記圧電素子の内部導体を示す平面図である。It is a figure which shows Example 3 of this invention, (A) is an external appearance perspective view of a piezoelectric element, (B) is sectional drawing which saw said (A) along line #C-#C, and was seen in the arrow direction. , (C) are plan views showing internal conductors of the piezoelectric element. 従来の圧電素子を示す図であり、(A)は圧電素子の外観斜視図,(B)は分極時の様子を示す断面図、(C)は前記圧電素子の内部導体を示す平面図である。It is a figure which shows the conventional piezoelectric element, (A) is an external perspective view of a piezoelectric element, (B) is sectional drawing which shows a mode at the time of polarization, (C) is a top view which shows the internal conductor of the said piezoelectric element. ..

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

最初に、図1〜図3及び図6を参照しながら、本発明の実施例1を説明する。図1には、本発明を脈波センサとして使用する場合が示されており、(A)は振動波形センサの断面図,(B)は組立図,(C)は基板の実装面側から見た平面図である。図2(A)は本実施例の圧電素子の外観斜視図,図2(B)は前記(A)を#A−#A線に沿って切断し矢印方向に見た断面図,図2(C)は分極時の様子を示す断面図である。図3は、脈波波形を示す図であり、(A)は本実施例の圧電素子による脈波波形を示し、(B)は従来の圧電素子による脈波波形を示す。図6は、従来の圧電素子を示す図であり、(A)は圧電素子の外観斜視図,(B)は分極時の様子を示す断面図,(C)は前記圧電素子の内部導体を示す平面図である。図1(A)〜(C)において、振動波形センサ10は、基板20の主面上に圧電素子30が配置されており、この圧電素子30をリング状のスペーサ40で覆った構造となっている。前記圧電素子30は、本実施例では、図1(C)に示すように長方形であり、長手方向を有している。 First, the first embodiment of the present invention will be described with reference to FIGS. 1 to 3 and 6. FIG. 1 shows a case where the present invention is used as a pulse wave sensor. (A) is a cross-sectional view of the vibration waveform sensor, (B) is an assembly view, and (C) is a view from the mounting surface side of the board. FIG. 2A is an external perspective view of the piezoelectric element of the present embodiment, and FIG. 2B is a cross-sectional view of the piezoelectric element cut along the line #A-#A as seen in the direction of the arrow in FIG. C) is a cross-sectional view showing a state during polarization. 3A and 3B are diagrams showing pulse wave waveforms. FIG. 3A shows a pulse wave waveform of the piezoelectric element of the present embodiment, and FIG. 3B shows a pulse wave waveform of the conventional piezoelectric element. 6A and 6B are views showing a conventional piezoelectric element, where FIG. 6A is an external perspective view of the piezoelectric element, FIG. 6B is a cross-sectional view showing a state during polarization, and FIG. 6C is an internal conductor of the piezoelectric element. It is a top view. 1A to 1C, the vibration waveform sensor 10 has a structure in which a piezoelectric element 30 is arranged on the main surface of a substrate 20, and the piezoelectric element 30 is covered with a ring-shaped spacer 40. There is. In this embodiment, the piezoelectric element 30 is rectangular and has a longitudinal direction as shown in FIG. 1(C).

以上の各部のうち、前記基板20は、圧電素子30を固定支持するとともに、その電極の引出や信号増幅を行うためのもので、ガラスエポキシやセラミックなどによって形成されている。基板20の主面には、中央付近に一対の導電パッド22,23が設けられており、その周囲には導電膜24が形成されている。導電パッド22,23は、基板20の裏面側にスルーホール22A,23Aによって引き出されて、外部導体22B,23Bに接続されている。導電パッド22,23には、圧電素子30の端子電極34,36が導電性接着剤などで接合されている。このように、導電パッド22,23及びスルーホール22A,23Aによって、基板20の裏面側に設けられた図示しないアンプなどと圧電素子30が接続されている。 Of the above parts, the substrate 20 is for fixing and supporting the piezoelectric element 30, and for extracting the electrode of the piezoelectric element 30 and amplifying the signal, and is made of glass epoxy or ceramic. On the main surface of the substrate 20, a pair of conductive pads 22 and 23 are provided near the center, and a conductive film 24 is formed around the conductive pads 22 and 23. The conductive pads 22 and 23 are drawn out to the back surface side of the substrate 20 by through holes 22A and 23A and connected to the external conductors 22B and 23B. The terminal electrodes 34 and 36 of the piezoelectric element 30 are bonded to the conductive pads 22 and 23 with a conductive adhesive or the like. In this manner, the piezoelectric element 30 is connected to an amplifier (not shown) provided on the back surface side of the substrate 20 by the conductive pads 22 and 23 and the through holes 22A and 23A.

前記圧電素子30は、本実施例では、圧電体32と、該圧電体32に形成された対向する一対の端子電極34,36とにより構成された圧電体が単板の構造である。前記圧電体32は、分極方向が、前記一対の端子電極34,36の対向する方向に対して垂直な方向である。そして、前記一対の端子電極34,36が、前記導電パッド22,23に接続され、圧電体32の分極方向が前記基板20に対して垂直になるように圧電素子30が実装される。前記圧電体32としては、例えば、PZT(チタン酸ジルコン酸鉛)が使用される。また、導電パッド22,23を覆うように絶縁性の樹脂が設けられていてもよい。このとき、圧電素子30も樹脂で覆ってもよい。 In this embodiment, the piezoelectric element 30 has a single-plate structure including a piezoelectric body 32 and a pair of opposing terminal electrodes 34 and 36 formed on the piezoelectric body 32. The piezoelectric body 32 has a polarization direction perpendicular to the direction in which the pair of terminal electrodes 34 and 36 face each other. Then, the pair of terminal electrodes 34 and 36 are connected to the conductive pads 22 and 23, and the piezoelectric element 30 is mounted so that the polarization direction of the piezoelectric body 32 is perpendicular to the substrate 20. As the piezoelectric body 32, for example, PZT (lead zirconate titanate) is used. Further, an insulating resin may be provided so as to cover the conductive pads 22 and 23. At this time, the piezoelectric element 30 may also be covered with resin.

次に、前記導電パッド22,23及び前記圧電素子30の周囲には、これらを囲むようにリング状のスペーサ40が設けられている。該スペーサ40の高さは、前記圧電素子30を基板20に実装したときの実装高さよりも高い。前記スペーサ40は導電膜24と電気的に接合している。また、導電膜24は、スルーホール24A,24B(図1(A)のみに図示))によって基板20の裏面側に引き出されている。前記スペーサ40は、例えばステンレスによって形成されて導電性を有しており、接触する人体の皮膚との間でグランド電位を共通にするとともに、皮膚の振動を導入して、更に基板20に伝達する振動導入体として機能する。 Next, a ring-shaped spacer 40 is provided around the conductive pads 22 and 23 and the piezoelectric element 30 so as to surround them. The height of the spacer 40 is higher than the mounting height when the piezoelectric element 30 is mounted on the substrate 20. The spacer 40 is electrically connected to the conductive film 24. In addition, the conductive film 24 is drawn out to the back surface side of the substrate 20 by through holes 24A and 24B (illustrated only in FIG. 1A). The spacer 40 is made of, for example, stainless steel and has conductivity, and has a common ground potential with the skin of a human body in contact therewith, and also introduces vibration of the skin and further transmits it to the substrate 20. Functions as a vibration introducing body.

皮膚の振動は、前記スペーサ40に伝達されるとともに、スペーサ40から基板20に伝達される。基板20は、振動体としても機能し、スペーサ40から伝達された振動は、圧電素子30に伝達されるようになっている。前記スペーサ40は、硬質で導電性を有するものであれば、金属に限定されるものではなく、例えば、硬質プラスチックの表面に金属めっきを施したものであってもよい。このように硬質で導電性を有するスペーサ40をはさむことによって、脈波振動が確実に伝わるとともに、電気的ノイズをグランドに逃がすことができるため、より品位の高い脈波信号が得られる。これが振動波形センサの基本的な構造である。 The vibration of the skin is transmitted to the spacer 40 and also transmitted from the spacer 40 to the substrate 20. The substrate 20 also functions as a vibrating body, and the vibration transmitted from the spacer 40 is transmitted to the piezoelectric element 30. The spacer 40 is not limited to metal as long as it is hard and has electrical conductivity, and may be, for example, hard plastic whose surface is plated with metal. By sandwiching the hard and conductive spacer 40 in this manner, the pulse wave vibration can be reliably transmitted and electrical noise can be released to the ground, so that a pulse wave signal of higher quality can be obtained. This is the basic structure of the vibration waveform sensor.

以上のような振動波形センサ10は、人体の指などの適宜位置に、医療用の固定テープ等によって、前記スペーサ40が人体の皮膚に当たるように装着される。なお、振動波形センサ10を装着する部位は、腕であってもよく、装着方法も、面ファスナーを利用して巻きつけるようにしてもよい。振動脈波は、導電性を有するスペーサ40を通して基板20経由で圧電素子30に伝わる。前記圧電素子30は、この振動を検知して電圧に変換し、脈波信号として、図示しない解析装置等に出力する。 The vibration waveform sensor 10 as described above is attached to an appropriate position such as a finger of a human body with a medical fixing tape or the like so that the spacer 40 contacts the skin of the human body. The part to which the vibration waveform sensor 10 is attached may be the arm, and the attaching method may be winding using a surface fastener. The pulsating arterial waves are transmitted to the piezoelectric element 30 via the substrate 20 through the spacer 40 having conductivity. The piezoelectric element 30 detects this vibration, converts it into a voltage, and outputs it as a pulse wave signal to an analyzer (not shown) or the like.

本実施例では、単板素子に対し、分極時のみd31方向,すなわち、端子電極34,36の対向する方向と垂直方向(いいかえれば、実装したときに基板20に対して垂直な方向)へ分極をかけて素子を作成している。すなわち、分極方向はd31方向なので従来品と同様の高い感度を示すが、容量的には単板のため、従来品の1/10程度の容量となり、高い感度を維持しながら、ノイズの影響を回避することができる。 In this embodiment, the single plate element is polarized in the d31 direction only during polarization, that is, in the direction perpendicular to the facing direction of the terminal electrodes 34 and 36 (in other words, the direction perpendicular to the substrate 20 when mounted). To produce the element. That is, since the polarization direction is the d31 direction, the same high sensitivity as the conventional product is shown, but since the capacity is a single plate, the capacity is about 1/10 of the conventional product, and while maintaining high sensitivity, the influence of noise is suppressed. It can be avoided.

次に、本実施例の製造手順の一例を説明する。まず、PZTを主成分とする圧電体粉末をPVBバインダーと20h混練後、ドクターブレードにて27μm厚のシートに成形する。本実施例では、このシート成形体を38層積層して熱圧着後、3.2×1.6mm形状にカットし、950℃で焼成して、3216形状(厚さt=1.0mm)の単板焼成体を得た。さらに、その焼成体に、外部導体(端子電極34,36)として、Agを形成し、850℃で焼き付けて単板素子を形成した。そして、図2(C)に示すように、分極端子42,44を、素子上面や下面よりも、やや小さい長方形断面として、外部導体(端子電極34,36)と直交するd31方向から所定の電圧をかけて分極を行った。 Next, an example of the manufacturing procedure of this embodiment will be described. First, a piezoelectric powder containing PZT as a main component was kneaded with a PVB binder for 20 hours, and then formed into a sheet having a thickness of 27 μm with a doctor blade. In this example, 38 layers of this sheet molded body were laminated by thermocompression, cut into a 3.2×1.6 mm shape, and fired at 950° C. to obtain a 3216 shape (thickness t=1.0 mm). A single plate fired body was obtained. Further, Ag was formed on the fired body as an external conductor (terminal electrodes 34, 36) and baked at 850° C. to form a single plate element. Then, as shown in FIG. 2(C), the polarization terminals 42 and 44 have rectangular cross sections that are slightly smaller than the upper and lower surfaces of the element, and have a predetermined voltage from the d31 direction orthogonal to the external conductors (terminal electrodes 34 and 36). Was applied to polarize.

そして、この圧電素子30を振動波形センサ10に実装して、脈波のセンシングを行った。結果として、素子の容量は、20pFであり、ノイズ低減に有効な低容量であった。また、この振動波形センサ10での速度脈波の波形データを図3(A)に示した。同図において、横軸は、時間t[s]、縦軸は、感度(起電力)[mV]である。 Then, the piezoelectric element 30 was mounted on the vibration waveform sensor 10 to perform pulse wave sensing. As a result, the capacitance of the device was 20 pF, which was a low capacitance effective for noise reduction. The waveform data of the velocity pulse wave in the vibration waveform sensor 10 is shown in FIG. In the figure, the horizontal axis represents time t[s], and the vertical axis represents sensitivity (electromotive force) [mV].

また、比較用に、図6に示す従来品の圧電素子100を形成した。具体的には、上述した積層工程において、内部導体110,112用に2μm厚のAg/Pdを塗布したシートS(図6(C)参照)を2枚配置して、圧電体1層の積層d31型素子を得た。そして、Agを焼き付けて外部導体(端子電極104,106)を形成した。一方の端子電極104は、一方の内部導体110と接続し、他方の端子電極106は、他方の内部導体112と接続している。そして、前記端子電極104,106を通して、図6(B)に示すように分極した。このような従来品の圧電素子100の分極方向は、図6(B)に示す矢印の通りとなり、d31方向であって、本発明の実施例の分極方向と同様である。この比較例についても、実施例と同様に振動波形センサに実装して、脈波のセンシングを行ったところ、素子の容量は147pFと高い容量となった。また、この振動波形センサでの脈波波形を図3(B)に示した。 For comparison, a conventional piezoelectric element 100 shown in FIG. 6 was formed. Specifically, in the above-mentioned laminating step, two sheets S (see FIG. 6C) coated with Ag/Pd having a thickness of 2 μm are arranged for the internal conductors 110 and 112 to laminate one piezoelectric layer. A d31 type device was obtained. Then, Ag was baked to form external conductors (terminal electrodes 104 and 106). One terminal electrode 104 is connected to one internal conductor 110, and the other terminal electrode 106 is connected to the other internal conductor 112. Then, it was polarized through the terminal electrodes 104 and 106 as shown in FIG. 6(B). The polarization direction of such a conventional piezoelectric element 100 is as shown by the arrow in FIG. 6B and is the d31 direction, which is the same as the polarization direction of the embodiment of the present invention. Also in this comparative example, when the same was mounted on the vibration waveform sensor and the pulse wave was sensed, the capacitance of the element was as high as 147 pF. Further, the pulse wave waveform of this vibration waveform sensor is shown in FIG. 3(B).

図3(A)に示すように、本実施例ではベースラインの揃ったきれいな波形が得られた。それに対して、図3(B)に示すように従来品では、ノイズの影響でベースラインがゆらぎ、同図に破線で示すようにベースラインBLにうねりがあり、波形が乱れているのがわかる。変位素子等に使われる従来の圧電素子は、変位量を多くとるため、内部導体(内部電極)の交差面積を大きくするような設計となっている。そして、この内部導体を用いて分極を施すと、分極方向はd31方向になるものの、センサに用いたときに、内部導体が容量に寄与して静電容量が大きくなるため、ノイズが入りやすくなる。 As shown in FIG. 3(A), in this example, a clean waveform with a uniform baseline was obtained. On the other hand, as shown in FIG. 3(B), in the conventional product, the baseline fluctuates due to the influence of noise, and as shown by the broken line in the figure, the baseline BL has waviness and the waveform is disturbed. .. A conventional piezoelectric element used for a displacement element or the like is designed to have a large crossing area of internal conductors (internal electrodes) in order to increase the displacement amount. When polarization is performed using this internal conductor, the polarization direction is the d31 direction, but when used in a sensor, the internal conductor contributes to the capacitance and increases the electrostatic capacitance, so that noise easily enters. ..

このように、実施例1によれば、基板20と、前記基板20上に形成された一対の導電パッド22,23と、前記一対の導電パッド22,23の各々から引き出された一対の外部導体22B,23Bと、圧電体32と該圧電体32に形成された一対の端子電極34,36とを有し、分極方向が前記一対の端子電極34,36の対向する方向に対して垂直方向であり、前記一対の端子電極34,36の各々が前記一対の導電パッド22,23に接続されて、前記分極方向が前記基板20に対して垂直になるように実装された圧電素子30と、前記圧電素子30及び前記一対の導電パッド22,23の周辺に、前記圧電素子30の実装高さよりも高く形成されたスペーサ40と、を備えることとした。このように、単板構造の圧電素子30にd31方向の分極を施すことで、従来と同様の高い感度を示すことができる。また、分極時のみ分極端子42,44を用い、分極に内部導体を用いない構造のため、容量的には圧電体単板となり、従来構造の1/10程度の容量となって、ノイズの影響を回避することができる。また、高価な貴金属を使用する内部導体が不要のため、コスト削減にも有効である。 Thus, according to the first embodiment, the substrate 20, the pair of conductive pads 22 and 23 formed on the substrate 20, and the pair of external conductors drawn from the pair of conductive pads 22 and 23, respectively. 22B and 23B, a piezoelectric body 32, and a pair of terminal electrodes 34 and 36 formed on the piezoelectric body 32, and the polarization direction is perpendicular to the facing direction of the pair of terminal electrodes 34 and 36. And a piezoelectric element 30 mounted so that each of the pair of terminal electrodes 34 and 36 is connected to the pair of conductive pads 22 and 23 so that the polarization direction is perpendicular to the substrate 20. A spacer 40 is formed around the piezoelectric element 30 and the pair of conductive pads 22 and 23 so as to have a height higher than the mounting height of the piezoelectric element 30. As described above, by polarizing the piezoelectric element 30 having a single plate structure in the d31 direction, it is possible to exhibit the same high sensitivity as in the conventional case. In addition, since the structure uses the polarization terminals 42 and 44 only during polarization and does not use an internal conductor for polarization, the capacity is a single piezoelectric plate, which is about 1/10 of the capacity of the conventional structure, and the influence of noise. Can be avoided. Further, since an internal conductor using an expensive precious metal is unnecessary, it is also effective in cost reduction.

次に、図4を参照しながら本発明の実施例2を説明する。上述した実施例は、圧電体の内部に導体を設けない構造としたが、本実施例は、分極時にのみ用い、基板に実装した後は使用しない内部導体を設けた構造である。図4(A)は本実施例の圧電素子の外観斜視図,図4(B)は前記(A)を#B−#B線に沿って切断し矢印方向に見た断面図,図4(C)は前記圧電素子の内部導体を示す平面図である。 Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. Although the above-described embodiment has a structure in which no conductor is provided inside the piezoelectric body, this embodiment has a structure in which an internal conductor is used only during polarization and not used after mounting on the substrate. 4A is an external perspective view of the piezoelectric element of the present embodiment, and FIG. 4B is a cross-sectional view taken along line #B-#B of FIG. C) is a plan view showing an internal conductor of the piezoelectric element.

図4に示すように、本実施例の圧電素子50は、圧電体52の対向する一対の側面に、一対の端子電極56,58を形成するとともに、前記圧電体52の他の一対の側面に、他の一対の端子電極60,62を形成した構造となっている。また、前記圧電体52の内部には、分極方向に対向する一対の内部導体64,66が設けられている。一方の内部導体64は、図4(C)に示すように引出部64Aを有しており、前記端子電極60に接続する。また、他方の内部導体66は、引出部66Aによって、他方の端子電極62に接続している。これら端子電極60,62は、分極用のものであって、圧電素子50を基板に実装した後には機能しないものである(が、使用することを妨げるものではない)。また、前記内部導体64,66は、回路で機能する端子電極56,58には接続されていない。 As shown in FIG. 4, in the piezoelectric element 50 of the present embodiment, a pair of terminal electrodes 56 and 58 are formed on a pair of side surfaces of a piezoelectric body 52 facing each other, and on the other pair of side surfaces of the piezoelectric body 52. The other pair of terminal electrodes 60, 62 is formed. Further, inside the piezoelectric body 52, a pair of internal conductors 64 and 66 facing each other in the polarization direction are provided. One inner conductor 64 has a lead-out portion 64A as shown in FIG. 4C, and is connected to the terminal electrode 60. Further, the other inner conductor 66 is connected to the other terminal electrode 62 by the lead-out portion 66A. These terminal electrodes 60 and 62 are for polarization and do not function after mounting the piezoelectric element 50 on the substrate (but do not prevent its use). Further, the internal conductors 64 and 66 are not connected to the terminal electrodes 56 and 58 that function in the circuit.

前記圧電体52の分極方向は、前記実施例1と同様に、前記一対の端子電極56,58の対向する方向に対して垂直である。前記内部導体64,66の交差面積は、前記圧電体52の分極方向から見たときの面積70〜99%とする。これは、チップ全体を分極できるように、その面積がチップのL×W(長さ×幅)で得られる面積の70%以上99%以下として感度を高めるためである。なお、本実施例の圧電素子50を基板20に実装した振動波形センサの構造自体は、前記実施例1と同様である。 The polarization direction of the piezoelectric body 52 is perpendicular to the facing direction of the pair of terminal electrodes 56 and 58, as in the first embodiment. The crossing area of the internal conductors 64 and 66 is 70 to 99% when viewed in the polarization direction of the piezoelectric body 52. This is because the area is 70% or more and 99% or less of the area obtained by L×W (length×width) of the chip to enhance the sensitivity so that the entire chip can be polarized. The structure of the vibration waveform sensor in which the piezoelectric element 50 of this embodiment is mounted on the substrate 20 is the same as that of the first embodiment.

次に、本実施例の製造手順の一例を説明する。まず、PZTを主成分とする圧電体粉末をPVBバインダーと20h混練後、ドクターブレードにて27μm厚のシートに成形する。本実施例では、図4(C)に示す構造の内部導体64,66をスクリーン印刷法で印刷し、図4(B)に示す層構造で積層した。なお、前記内部導体64,66は、Ag/Pdで2μm厚に印刷した。これらのシートSを積層して熱圧着後、3.2×1.6mm形状にカットし、950℃で焼成して、3216形状(厚さt=1.0mm)の焼成体を得た。さらに、その焼成体に、外部導体(端子電極56,58,60,62)としてAgを形成し、850℃で焼き付けて積層圧電素子を形成した。 Next, an example of the manufacturing procedure of this embodiment will be described. First, a piezoelectric powder containing PZT as a main component was kneaded with a PVB binder for 20 hours, and then formed into a sheet having a thickness of 27 μm with a doctor blade. In this example, the internal conductors 64 and 66 having the structure shown in FIG. 4C were printed by the screen printing method and laminated in the layer structure shown in FIG. 4B. The internal conductors 64 and 66 were printed with Ag/Pd to a thickness of 2 μm. These sheets S were laminated, thermocompression-bonded, cut into a 3.2×1.6 mm shape, and fired at 950° C. to obtain a fired body having a 3216 shape (thickness t=1.0 mm). Further, Ag was formed as an external conductor (terminal electrodes 56, 58, 60, 62) on the fired body and baked at 850° C. to form a laminated piezoelectric element.

一方の内部導体64は一方の端子電極60に接続し、他方の内部導体66は他方の端子電極62に接続している。そして、前記分極用の端子電極60,62から所定の電圧で分極を行った。分極はd31方向にチップ全体を通して行われるので、得られる電荷量が多く高感度なセンサ素子が得られる。本実施例では、前記内部導体64,66及び端子電極60,62は分極用であり、圧電素子50が基板20に実装された後は、回路には接続されず機能しない。このため、圧電素子をd31方向に分極して高い感度を維持しながら、前記内部導体64,66は容量に寄与しないためノイズが抑えられるという、上述した実施例1と同様の効果がある。 One inner conductor 64 is connected to one terminal electrode 60, and the other inner conductor 66 is connected to the other terminal electrode 62. Then, the terminal electrodes 60 and 62 for polarization were polarized at a predetermined voltage. Since the polarization is performed in the d31 direction through the entire chip, a high-sensitivity sensor element with a large amount of charges obtained can be obtained. In this embodiment, the internal conductors 64 and 66 and the terminal electrodes 60 and 62 are for polarization, and after the piezoelectric element 50 is mounted on the substrate 20, it is not connected to a circuit and does not function. Therefore, while maintaining high sensitivity by polarizing the piezoelectric element in the d31 direction, noise is suppressed because the internal conductors 64 and 66 do not contribute to the capacitance, which is the same effect as in the first embodiment described above.

次に、図5を参照しながら本発明の実施例3を説明する。本実施例は、圧電体の内部に分極用の内部導体と、回路用の内部導体をそれぞれ一対設けた構造となっている。図5(A)は圧電素子の外観斜視図,図5(B)は前記(A)を#C−#C線に沿って切断し矢印方向に見た断面図,図5(C)は前記圧電素子の内部導体を示す平面図である。なお、本実施例の圧電素子70の外観は、前記実施例2の圧電素子50と同様であり、4端子構造である。 Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment has a structure in which a pair of a polarization inner conductor and a circuit inner conductor are provided inside the piezoelectric body. 5A is an external perspective view of the piezoelectric element, FIG. 5B is a cross-sectional view taken along line #C-#C of FIG. 5A and seen in the direction of the arrow, and FIG. It is a top view which shows the internal conductor of a piezoelectric element. The external appearance of the piezoelectric element 70 of the present embodiment is the same as that of the piezoelectric element 50 of the second embodiment and has a four-terminal structure.

図5に示すように、本実施例の圧電素子70は、圧電体72の対向する一対の側面に、一対の端子電極76,78を形成するとともに、前記圧電体72の対向する他の一対の側面に、一対の端子電極80,82を形成した構造となっている。また、前記圧電体72の内部には、分極方向に対向する一対の第1の内部導体84,86と、一対の第2の内部導体90,92が設けられている。一方の第1の内部導体84は、引出部84Aによって前記端子電極80に接続され、他方の第1の内部導体86は、引出部86Aによって、前記端子電極82に接続している。これら第1の内部導体84,86と、端子電極80,82は分極用のものであって、圧電素子70を基板に実装した後には機能しないものである。一方の第2の内部導体90は、その端部90Aが前記端子電極76に接続され、他方の第2の内部導体92は、その端部92Aが前記端子電極78に接続されている。 As shown in FIG. 5, in the piezoelectric element 70 of this embodiment, a pair of terminal electrodes 76 and 78 are formed on a pair of side surfaces of a piezoelectric body 72 that face each other, and a pair of other pairs of the piezoelectric body 72 that face each other. It has a structure in which a pair of terminal electrodes 80 and 82 are formed on the side surface. Further, inside the piezoelectric body 72, a pair of first inner conductors 84, 86 and a pair of second inner conductors 90, 92 facing each other in the polarization direction are provided. One first inner conductor 84 is connected to the terminal electrode 80 by a lead-out portion 84A, and the other first inner conductor 86 is connected to the terminal electrode 82 by a lead-out portion 86A. The first inner conductors 84 and 86 and the terminal electrodes 80 and 82 are for polarization and do not function after the piezoelectric element 70 is mounted on the substrate. One end portion 90A of the second inner conductor 90 is connected to the terminal electrode 76, and the other end portion 92A of the second inner conductor 92 is connected to the terminal electrode 78.

前記圧電体72の分極方向は、前記実施例1と同様に、前記一対の端子電極76,78の対向する方向に対して垂直である。前記内部導体84,86の交差面積は、前記実施例2と同様に、前記圧電体72の分極方向から見たときのチップ面積の70%〜99%とする。一方、第2の内部導体90,92は、圧電素子70を基板20に実装した後に、回路に接続されて機能するものである。これら第2の内部導体90,92の交差面積は、前記圧電体72の分極方向から見たときのチップ面積の10%以上50%以下として、容量を低く抑える。本実施例の圧電素子70を基板20に実装した振動波形センサの構造自体は、前記実施例1と同様である。 The polarization direction of the piezoelectric body 72 is perpendicular to the facing direction of the pair of terminal electrodes 76 and 78, as in the first embodiment. The cross-sectional area of the internal conductors 84, 86 is 70% to 99% of the chip area when viewed from the polarization direction of the piezoelectric body 72, as in the second embodiment. On the other hand, the second inner conductors 90 and 92 are connected to a circuit and function after the piezoelectric element 70 is mounted on the substrate 20. The crossing area of the second inner conductors 90 and 92 is set to 10% or more and 50% or less of the chip area when viewed from the polarization direction of the piezoelectric body 72, and the capacitance is suppressed to be low. The structure itself of the vibration waveform sensor in which the piezoelectric element 70 of this embodiment is mounted on the substrate 20 is the same as that of the first embodiment.

次に、本実施例の製造手順の一例を説明する。まず、PZTを主成分とする圧電体粉末をPVBバインダーと20h混練後、ドクターブレードにて27μm厚のシートに成形する。本実施例では、図5(C)に示す構造の内部導体84,86,90,92をスクリーン印刷法で印刷し、図5(B)に示す層構造で積層した。なお、前記内部導体は、Ag/Pdで2μm厚に印刷した。これらのシートSを積層して熱圧着後、3.2×1.6mm形状にカットし、950℃で焼成して、3216形状(厚さt=1.0mm)の焼成体を得た。さらに、その焼成体に、外部導体(端子電極76,78,80,82)としてAgを形成し、850℃で焼き付けて積層圧電素子を形成した。 Next, an example of the manufacturing procedure of this embodiment will be described. First, a piezoelectric powder containing PZT as a main component was kneaded with a PVB binder for 20 hours, and then formed into a sheet having a thickness of 27 μm with a doctor blade. In this example, the internal conductors 84, 86, 90, 92 having the structure shown in FIG. 5C were printed by the screen printing method and laminated in the layer structure shown in FIG. 5B. The inner conductor was printed with Ag/Pd to a thickness of 2 μm. These sheets S were laminated, thermocompression-bonded, cut into a 3.2×1.6 mm shape, and fired at 950° C. to obtain a fired body having a 3216 shape (thickness t=1.0 mm). Further, Ag was formed as an external conductor (terminal electrodes 76, 78, 80, 82) on the fired body and baked at 850° C. to form a laminated piezoelectric element.

前記第1の内部導体84は、端子電極80に接続し、他方の第1の内部導体86は端子電極82に接続している。また、第2の内部導体90は端子電極76に接続し、他方の第2の内部導体92は端子電極78に接続している。そして、前記分極用の端子電極80,82から所定の電圧で分極を行った。本実施例では、前記第1の内部導体84,86と、端子電極80,82は分極専用であり、圧電素子70が基板20に実装された後は、回路には接続されず機能しない。このため、圧電素子をd31方向に分極して高い感度を維持しながら、前記第1の内部導体84,86は容量に寄与しない。なお、本実施例では、容量成分は、交差面積の狭い第2の内部導体90,92によって得られるため、ノイズ成分を低く抑えることができる。 The first inner conductor 84 is connected to the terminal electrode 80, and the other first inner conductor 86 is connected to the terminal electrode 82. The second inner conductor 90 is connected to the terminal electrode 76, and the other second inner conductor 92 is connected to the terminal electrode 78. Then, polarization was performed at a predetermined voltage from the terminal electrodes 80 and 82 for polarization. In this embodiment, the first inner conductors 84 and 86 and the terminal electrodes 80 and 82 are dedicated to polarization, and after the piezoelectric element 70 is mounted on the substrate 20, it is not connected to a circuit and does not function. Therefore, the first internal conductors 84 and 86 do not contribute to the capacitance while maintaining high sensitivity by polarizing the piezoelectric element in the d31 direction. In this embodiment, since the capacitance component is obtained by the second inner conductors 90 and 92 having a narrow crossing area, the noise component can be suppressed low.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例1では、脈波を測定対象としたが、本発明の振動波形センサの測定対象は脈波に限定されるものではなく、呼吸や他の公知の各種の波形を対象としてよい。例えば、エンジンやモータの振動波形を解析するといった具合である。
(2)前記実施例1では、リング状のスペーサ40を用いることとしたが、これも一例であり、角枠状のスペーサとしてもよいし、直接皮膚等に触れられる構造を取っていれば対向する2辺のみを接着した角柱であってもよい。また、板状ないし棒状のスペーサを基板20に立設するとともに、その近傍に圧電素子30を配置するような構成としてもよい。このように、スペーサが対象物に接触してその振動が基板20に伝達されれば、スペーサはどのような形状であってもよい。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the following is also included.
(1) In the first embodiment, the pulse wave was measured, but the measurement object of the vibration waveform sensor of the present invention is not limited to the pulse wave, and the respiratory wave and various other known waveforms are targets. Good. For example, the vibration waveform of an engine or a motor is analyzed.
(2) In the first embodiment, the ring-shaped spacer 40 is used, but this is also an example, and a square frame-shaped spacer may be used. It may be a prism having only two sides bonded. Alternatively, a plate-shaped or rod-shaped spacer may be provided upright on the substrate 20, and the piezoelectric element 30 may be arranged in the vicinity thereof. As described above, the spacer may have any shape as long as the spacer comes into contact with the object and the vibration thereof is transmitted to the substrate 20.

(3)前記実施例1では、金属製のスペーサ40を用いることとしたが、これも一例であり、スペーサは硬質で導電性を有するものであれば、金属製でなくてもよい。例えば、樹脂やセラミックなどの絶縁体の表面に導電膜を設けたものであってもよい。
(4)前記実施例では、圧電体は一般的なPZTを用いたが、これに限定されるものではなく、同様の効果を奏する適切な感度(圧電定数,容量)を有するものであればよい。また、前記圧電素子の形状や寸法も、用途等に応じて適宜変更してよい。
(5)前記実施例では、基板20としてガラスエポキシ樹脂を利用したが、これも一例であり、セラミックのような更に硬質のものであってもよい。
(6)前記スペーサ40の内側に、絶縁性樹脂等を充填してもよい。
(3) In the first embodiment, the metal spacer 40 is used, but this is also an example, and the spacer may not be made of metal as long as it is hard and conductive. For example, a conductive film may be provided on the surface of an insulator such as resin or ceramic.
(4) In the above-mentioned embodiment, the piezoelectric body used is a general PZT, but the piezoelectric body is not limited to this, and may be any one having appropriate sensitivity (piezoelectric constant, capacitance) that produces the same effect. .. Also, the shape and size of the piezoelectric element may be changed as appropriate according to the application.
(5) In the above embodiment, the glass epoxy resin was used as the substrate 20, but this is also an example, and a harder one such as ceramic may be used.
(6) An insulating resin or the like may be filled inside the spacer 40.

本発明によれば、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記圧電体の分極方向が前記一対の端子電極の対向する方向に対して垂直方向であり、前記一対の端子電極の各々が前記一対の導電パッドに接続されて、前記分極方向が前記基板に対して垂直になるように実装された圧電素子と、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、を備えるとともに、前記スペーサをグランド電位に接続することとした。このため、圧電素子の分極方向がd31のため高い感度を示しつつ、容量に寄与する内部導体がないか、あっても交差面積を狭くして、ノイズ成分を低く抑えることができるため、振動波形センサの用途に適用できる。
According to the present invention, a substrate, a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and a pair formed on the piezoelectric body. A terminal electrode of, the polarization direction of the piezoelectric body is a direction perpendicular to the opposing direction of the pair of terminal electrodes, each of the pair of terminal electrodes is connected to the pair of conductive pads, A piezoelectric element mounted so that the polarization direction is perpendicular to the substrate, and a spacer formed around the piezoelectric element and the pair of conductive pads to have a height higher than the mounting height of the piezoelectric element. In addition, the spacer is connected to the ground potential . Therefore, the piezoelectric element exhibits high sensitivity because the polarization direction is d31, and even if there is no internal conductor that contributes to the capacitance, the crossing area can be narrowed and the noise component can be suppressed to a low level. It can be applied to sensor applications.

10:振動波形センサ
20:基板
22,23:導電パッド
22A,23A:スルーホール
22B,23B:外部導体
24:導電膜
24A,24B:スルーホール
30:圧電素子
32:圧電体
34,36:端子電極
40:スペーサ
42,44:分極端子
50:圧電素子
52:圧電体
56,58:端子電極(回路用)
60,62;端子電極(分極用)
64,66:内部導体(ダミー電極)
64A,66A:引出部
70:圧電素子
72:圧電体
76,78:端子電極(回路用)
80,82:端子電極(分極用)
84,86:第1の内部導体(ダミー電極)
84A,86A:引出部
90,92:第2の内部導体(容量用電極)
90A,90B:端部
100:圧電素子
102:圧電体
104,106:端子電極
110,112:内部電極(分極用電極兼用)
110A,112A:端部
114,116:分極端子
BL:ベースライン
S:圧電体シート
10: Vibration waveform sensor 20: Substrate 22, 23: Conductive pad 22A, 23A: Through hole 22B, 23B: External conductor 24: Conductive film 24A, 24B: Through hole 30: Piezoelectric element 32: Piezoelectric body 34, 36: Terminal electrode 40: Spacer 42, 44: Polarization terminal 50: Piezoelectric element 52: Piezoelectric body 56, 58: Terminal electrode (for circuit)
60, 62; terminal electrode (for polarization)
64, 66: internal conductor (dummy electrode)
64A, 66A: Lead-out part 70: Piezoelectric element 72: Piezoelectric body 76, 78: Terminal electrode (for circuit)
80, 82: Terminal electrode (for polarization)
84, 86: first internal conductor (dummy electrode)
84A, 86A: Lead portion 90, 92: Second internal conductor (capacitance electrode)
90A, 90B: End portion 100: Piezoelectric element 102: Piezoelectric bodies 104, 106: Terminal electrodes 110, 112: Internal electrodes (also used as polarization electrodes)
110A, 112A: Ends 114, 116: Polarized terminal BL: Base line S: Piezoelectric sheet

Claims (7)

基板と、
前記基板上に形成された一対の導電パッドと、
前記一対の導電パッドの各々から引き出された一対の外部導体と、
圧電体と該圧電体に形成された一対の端子電極とを有し、前記圧電体の分極方向が前記一対の端子電極の対向する方向に対して垂直方向であり、前記一対の端子電極の各々が前記一対の導電パッドに接続されて、前記分極方向が前記基板に対して垂直になるように実装された圧電素子と、
前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、
を備えており、
前記スペーサをグランド電位に接続したことを特徴とする振動波形センサ。
Board,
A pair of conductive pads formed on the substrate,
A pair of outer conductors drawn from each of the pair of conductive pads,
Each of the pair of terminal electrodes has a piezoelectric body and a pair of terminal electrodes formed on the piezoelectric body, and the polarization direction of the piezoelectric body is a direction perpendicular to the facing direction of the pair of terminal electrodes. Is connected to the pair of conductive pads, the piezoelectric element mounted so that the polarization direction is perpendicular to the substrate,
Around the piezoelectric element and the pair of conductive pads, a spacer formed higher than the mounting height of the piezoelectric element,
Equipped with a,
A vibration waveform sensor, wherein the spacer is connected to a ground potential .
前記基板上であって、前記導電パッドの周辺に導電膜が形成されており、
この導電膜に、前記スペーサが設けられていることを特徴とする請求項1記載の振動波形センサ。
A conductive film is formed on the substrate around the conductive pad,
The vibration waveform sensor according to claim 1, wherein the spacer is provided on the conductive film.
前記スペーサが導電性を有することを特徴とする請求項1又は2のいずれか一項に記載の振動波形センサ。 The vibration waveform sensor according to claim 1, wherein the spacer has conductivity. 前記スペーサが、
前記圧電素子及び前記一対の導電パッドの周囲を囲むように形成されたことを特徴とする請求項1〜3のいずれか一項に記載の振動波形センサ。
The spacer is
The vibration waveform sensor according to claim 1 , wherein the vibration waveform sensor is formed so as to surround the piezoelectric element and the pair of conductive pads.
前記圧電素子は、前記圧電体内部に、前記分極方向に対向する一対の第1の内部導体を有することを特徴とする請求項1〜4のいずれか一項に記載の振動波形センサ。 The said piezoelectric element has a pair of 1st internal conductor which opposes the said polarization direction inside the said piezoelectric body, The vibration waveform sensor as described in any one of Claims 1-5 characterized by the above-mentioned. 前記一対の第1の内部導体の交差面積は、前記圧電体を前記分極方向から見たときの面積の70〜99%であることを特徴とする請求項記載の振動波形センサ。 The vibration waveform sensor according to claim 5 , wherein an intersecting area of the pair of first inner conductors is 70 to 99% of an area of the piezoelectric body when viewed from the polarization direction. 前記圧電素子は、前記一対の端子電極の各々と接続された一対の第2の内部導体を有し、前記一対の第2の内部導体の交差面積は、前記圧電体を前記分極方向から見たときの面積の50%以下であることを特徴とする請求項5又は6記載の振動波形センサ。 The piezoelectric element has a pair of second internal conductors connected to each of the pair of terminal electrodes, and a crossing area of the pair of second internal conductors is the piezoelectric body viewed from the polarization direction. The vibration waveform sensor according to claim 5 or 6 , wherein the area is 50% or less of the area.
JP2016090163A 2016-04-28 2016-04-28 Vibration waveform sensor Active JP6742797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090163A JP6742797B2 (en) 2016-04-28 2016-04-28 Vibration waveform sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090163A JP6742797B2 (en) 2016-04-28 2016-04-28 Vibration waveform sensor

Publications (2)

Publication Number Publication Date
JP2017196211A JP2017196211A (en) 2017-11-02
JP6742797B2 true JP6742797B2 (en) 2020-08-19

Family

ID=60236799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090163A Active JP6742797B2 (en) 2016-04-28 2016-04-28 Vibration waveform sensor

Country Status (1)

Country Link
JP (1) JP6742797B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952642B2 (en) * 2017-11-09 2021-03-23 Amorepacific Corporation Strain sensor unit and skin sensor module comprising the same
WO2019093773A1 (en) * 2017-11-09 2019-05-16 (주)아모레퍼시픽 Deformation sensor unit and skin sensor module comprising same
JP2019202004A (en) * 2018-05-24 2019-11-28 太陽誘電株式会社 Vibration waveform sensor and vibration waveform sensor module
JP7019510B2 (en) * 2018-05-25 2022-02-15 太陽誘電株式会社 Piezoelectric vibration sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060666B2 (en) * 1991-11-19 2000-07-10 日本電気株式会社 Thickness longitudinal vibration piezoelectric transformer and its driving method
JP2003008391A (en) * 2001-06-27 2003-01-10 Murata Mfg Co Ltd Thickness longitudinal piezoelectric resonator and its manufacturing method
JP4752156B2 (en) * 2001-08-23 2011-08-17 株式会社村田製作所 Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device
WO2013145352A1 (en) * 2012-03-29 2013-10-03 太陽誘電株式会社 Wideband sensor
EP2881035A4 (en) * 2012-07-30 2016-04-13 Mitsubishi Chem Corp Subject information detection unit, subject information processing device, electric toothbrush device, electric shaver device, subject information detection device, aging degree evaluation method, and aging degree evaluation device
JP2014072329A (en) * 2012-09-28 2014-04-21 Taiheiyo Cement Corp Method of manufacturing piezoelectric element

Also Published As

Publication number Publication date
JP2017196211A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP5605433B2 (en) Piezoelectric vibration device
WO2018090892A1 (en) Piezoelectric sensing device and application
JP6742797B2 (en) Vibration waveform sensor
JP3847265B2 (en) Electronic components
KR101603957B1 (en) Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal
JP5487672B2 (en) Physical quantity sensor
WO2017187710A1 (en) Vibration waveform sensor and pulse wave detector
KR20130016647A (en) Ultrasonic sensor
JPS61161446A (en) Ultrasonic wave probe and its production
CN108291796B (en) Piezoelectric deflection sensor and detection device
US11668728B2 (en) Acceleration transducer
JP5036412B2 (en) Piezoelectric sensors and electronic stringed instruments
CN108065961B (en) Ultrasonic transducer device, ultrasonic probe, and ultrasonic apparatus
US8256292B2 (en) Acceleration sensor with surface protection
KR102184454B1 (en) Ultrasonic transducer and method of manufacturing ultrasonic transducer
JP5036413B2 (en) Electrode integrated shield terminal
CN112262483A (en) Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module
JP2007064649A (en) Acceleration sensor
JP7019510B2 (en) Piezoelectric vibration sensor
JP2504116B2 (en) Vibration sensor
JP2019202004A (en) Vibration waveform sensor and vibration waveform sensor module
JP7585061B2 (en) Strain Sensor
JP6117555B2 (en) Piezoelectric parts
JPH0430545Y2 (en)
JP2023059604A (en) piezoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200729

R150 Certificate of patent or registration of utility model

Ref document number: 6742797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250