JP6628407B2 - Low leakage shaking type open magnetic shield structure - Google Patents
Low leakage shaking type open magnetic shield structure Download PDFInfo
- Publication number
- JP6628407B2 JP6628407B2 JP2016030232A JP2016030232A JP6628407B2 JP 6628407 B2 JP6628407 B2 JP 6628407B2 JP 2016030232 A JP2016030232 A JP 2016030232A JP 2016030232 A JP2016030232 A JP 2016030232A JP 6628407 B2 JP6628407 B2 JP 6628407B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- shaking
- coil
- annular
- magnetic plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Building Environments (AREA)
Description
本発明は低漏洩シェイキング式開放型磁気シールド構造に関し,とくに磁気シェイキングを利用して遮蔽性能を向上させつつシェイキングノイズの漏洩を低く抑えた開放型磁気シールド構造に関する。 The present invention relates to a low-leakage shaking type open magnetic shield structure, and more particularly to an open type magnetic shield structure that suppresses leakage of shaking noise while improving shielding performance by using magnetic shaking.
半導体製造施設等で用いる電子顕微鏡,EB露光装置,EBステッパー等の電子ビーム応用装置は,微弱な磁気変動でも電子ビームの軌道が変化して製品の品質が劣化するため,外乱磁場変動を100nT(1mG)以下に制御された磁気シールドルーム(磁気シールド空間)に設置することが求められる。従来の一般的な磁気シールド空間はPCパーマロイ等の透磁率の高い磁性体で床,壁,天井の全体を隙間なく覆う構造(密閉型磁気シールド構造)であるが,材料サイズの制約等から接合部が多くなり,接合部からの外乱磁場の浸入に伴う性能劣化が問題となっていた。これに対し,図14に示すように,簾状又はルーバー状に並べた帯状磁性板(短冊形磁性板)を用いた磁気シールド構造(開放型磁気シールド構造)5が開発されている(特許文献1参照)。 Electron microscopes, EB exposure apparatuses, and EB steppers used in semiconductor manufacturing facilities, etc., apply electron beam application equipment such as an electron beam trajectory to change the trajectory of the electron beam even with a slight magnetic fluctuation. It is required to be installed in a magnetically shielded room (magnetically shielded space) controlled to 1 mG) or less. The conventional general magnetic shield space is made of a magnetic material with high magnetic permeability such as PC permalloy and has a structure that covers the entire floor, wall, and ceiling without any gap (closed magnetic shield structure). The number of parts has increased, and performance degradation due to the intrusion of a disturbance magnetic field from the joint has been a problem. On the other hand, as shown in FIG. 14, a magnetic shield structure (open magnetic shield structure) 5 using a band-shaped magnetic plate (strip-shaped magnetic plate) arranged in a cord or louver shape has been developed (Patent Document 1). 1).
開放型磁気シールド構造5は,例えば幅50mm程度の複数の帯状磁性板2を長さ方向中心軸Cが同一面F上に平行に並ぶように所要の板厚方向間隔dで積み重ねてシールド簾体3とし(図14(A)参照),複数のシールド簾体3a,3b,3c,3dを対応する端縁の接合部9の重ね合わせにより磁気的に接合して環状に閉じた帯状磁性板(以下,環帯状磁性板という)10を形成し,複数の環帯状磁性板10によって磁気シールド対象空間を囲んだものである(図14(B)参照)。環帯状磁性板10の適切な間隔dを設計することにより,磁気シールド対象空間に開放性(透視性,透光性,放熱性)を与えつつ,環帯状磁性板10(磁性体回路)に磁束を集中させて間隔dからの磁束の侵入及び漏洩(性能劣化)を小さく抑えることができる。また,接合部9で磁気的連続性が確保しやすいことから,性能劣化が少なく,所期性能を発揮することが容易な構造となっている。更に,安全率を小さく抑え,従来の密閉型磁気シールド構造に比して使用する材料を減らすことができるため,コストダウンにも繋がる利点を有している。 The open magnetic shield structure 5 is formed by stacking a plurality of band-shaped magnetic plates 2 having a width of, for example, about 50 mm at a required interval d in the thickness direction such that the central axes C in the longitudinal direction are arranged in parallel on the same plane F. 3 (see FIG. 14 (A)), and a plurality of shield magnetic members 3a, 3b, 3c, 3d are magnetically joined to each other by overlapping the corresponding joining portions 9 at the edges to form an annularly closed band-like magnetic plate ( A ring-shaped magnetic plate 10 is formed, and a space to be magnetically shielded is surrounded by a plurality of ring-shaped magnetic plates 10 (see FIG. 14B). By designing an appropriate distance d between the ring-shaped magnetic plates 10, a magnetic flux is applied to the ring-shaped magnetic plates 10 (magnetic circuit) while providing openness (transparency, light-transmitting properties, heat-radiating properties) to the space to be magnetically shielded. And the intrusion and leakage of magnetic flux from the distance d (deterioration in performance) can be reduced. In addition, since magnetic continuity is easily ensured at the joint portion 9, the structure has a structure in which performance deterioration is small and the desired performance is easily exhibited. Furthermore, the safety factor can be kept low, and the number of materials used can be reduced as compared with the conventional closed magnetic shield structure.
また開放型磁気シールド構造5は,外乱磁場の周波数が高くなると環帯状磁性板10の断面に流れる渦電流によって磁気シールド性能が劣化しうるが,環帯状磁性板10(磁性体回路)に銅板やアルミニウム板等の環帯状導体(導体回路)を付加して導体シールド効果を重畳することにより,200Hz程度までの外乱磁場(交流磁場)においても直流磁場と同等以上の遮蔽性能を発揮することができる(特許文献2参照)。すなわち,環帯状磁性板で構成された開放型磁気シールド構造5,或いは必要に応じて導体回路を付加した開放型磁気シールド構造5により磁気シールド空間を構築すれば,環境磁気ノイズ(外乱磁場変動)を効率的に100nT以下にまで遮断し,電子ビーム応用装置等を設置するに相応しい磁気環境(磁気シールド空間)を提供することができる。 In the open type magnetic shield structure 5, when the frequency of the disturbance magnetic field is increased, the magnetic shield performance may be deteriorated due to the eddy current flowing through the cross section of the annular magnetic plate 10, but the annular magnetic plate 10 (magnetic circuit) may have a copper plate or the like. By adding a ring-shaped conductor (conductor circuit) such as an aluminum plate and superimposing the conductor shielding effect, it is possible to exhibit a shielding performance equal to or higher than a DC magnetic field even in a disturbance magnetic field (AC magnetic field) up to about 200 Hz. (See Patent Document 2). That is, if a magnetic shield space is constructed by the open magnetic shield structure 5 composed of a ring-shaped magnetic plate or the open magnetic shield structure 5 to which a conductor circuit is added as required, environmental magnetic noise (disturbance magnetic field fluctuation) can be obtained. Can be efficiently shut down to 100 nT or less, and a magnetic environment (magnetic shield space) suitable for installing an electron beam application device or the like can be provided.
他方,医療施設や研究施設で用いるSQUID(超電導量子干渉素子)応用装置は,脳や心臓の活動に伴い発生する超微弱な脳磁波,心磁波等の磁場を測定するため,設置空間を1nT以下の磁気環境に制御することが求められる。このような超高度な磁気環境を得る手段として磁気シェイキングが提案されている(特許文献3,4,非特許文献1参照)。磁気シェイキングとは,周期的に変動する磁場(シェイキング磁場)を磁性体に印加して磁性体内部で磁束を揺らすことにより磁性体の磁気特性(実効的な透磁率)を向上させる手法である。例えば特許文献3は,比較的低コストで製造できる厚さ20μm以上500μm以下のフィルム(又はリボン)状のアモルファス磁性薄帯材で密閉型磁気シールド構造を構成し,磁気シェイキングによってパーマロイ並みの性能を得たことを報告している。 On the other hand, the SQUID (Superconducting Quantum Interference Device) applied equipment used in medical facilities and research facilities requires an installation space of 1 nT or less to measure ultra-small magnetic fields such as magnetoencephalograms and magnetocardiograms generated by the activities of the brain and heart. It is required to control the magnetic environment. Magnetic shaking has been proposed as a means for obtaining such an ultra-high magnetic environment (see Patent Documents 3, 4 and Non-Patent Document 1). The magnetic shaking is a method of applying a periodically changing magnetic field (shaking magnetic field) to a magnetic body to fluctuate a magnetic flux inside the magnetic body to improve the magnetic properties (effective magnetic permeability) of the magnetic body. For example, Patent Document 3 discloses that a hermetically sealed magnetic shield structure is formed of a film (or ribbon) -like amorphous magnetic ribbon material having a thickness of 20 μm or more and 500 μm or less which can be manufactured at a relatively low cost, and has a performance similar to that of Permalloy by magnetic shaking. We report that we got.
磁気シェイキングでは,磁性体内部で磁束を揺らす(シェイキングする)ため,磁性体の磁化容易方向の軸の周りにほぼ垂直にシェイキングコイルを巻き,遮蔽したい環境磁気ノイズの周波数成分fnよりも高い周波数fの電流(シェイキング電流)を印加してシェイキング磁場を発生させる。例えば特許文献4の開示する密閉型磁気シールド用の磁気シールド部材40は,図15に示すように,基材41の表面上にリボン状の8本のアモルファス磁性薄帯42aを長手方向が縦方向で平行となるように所定間隙で配列し,その表面上にリボン状の8本のアモルファス磁性薄帯42bを長手方向が横方向で平行となるように所定間隙で配列し,井桁配置の磁性薄帯42a,42bの所定間隙に表裏を縫うようにシェイキングコイル43を巻き付ける。図示例のシェイキングコイル43は,入力端子44と出力端子45との間を16の部分に分け,図15(B)に示すように奇数の部分で表面を通過させると共に偶数の部分で裏面を通過させることにより,磁性薄帯42a,42bの何れの長手方向に対してもほぼ垂直方向に巻き付けられている。 In magnetic shaking, in order to oscillate (shake) a magnetic flux inside a magnetic material, a shaking coil is wound almost perpendicularly around an axis in the direction of easy magnetization of the magnetic material, and a frequency f higher than a frequency component fn of environmental magnetic noise to be shielded is set. (Shaking current) is applied to generate a shaking magnetic field. For example, as shown in FIG. 15, a magnetic shield member 40 for a sealed magnetic shield disclosed in Patent Document 4 has eight ribbon-shaped amorphous magnetic ribbons 42a formed on a surface of a base material 41 in a longitudinal direction. Are arranged at predetermined intervals so that they are parallel to each other, and eight ribbon-like amorphous magnetic ribbons 42b are arranged at predetermined intervals on the surface so that their longitudinal directions are parallel in the horizontal direction. A shaking coil 43 is wound around a predetermined gap between the bands 42a and 42b so as to sew the front and back. In the illustrated example, the shaking coil 43 divides the space between the input terminal 44 and the output terminal 45 into 16 portions, and allows the odd-numbered portions to pass through the front surface and the even-numbered portions to pass through the back surface as shown in FIG. As a result, the magnetic ribbons 42a and 42b are wound substantially perpendicularly to any longitudinal direction.
しかし,従来の磁気シェイキングには,磁性体内部をシェイキングするための印加磁場(シェイキング磁場)が磁気シールド空間へ漏洩してしまう問題点がある。例えば図15の磁気シールド部材40において,シェイキングコイル43が表面及び裏面の両側に隣接平行している部分ではコイル外側の磁場が打ち消されるので磁気シールド空間への漏洩をある程度抑制できるが,シェイキングコイル43が表面又は裏面の片側のみに配置される周縁部分ではコイル外側の磁場(シェイキングノイズ)が磁気シールド空間に漏洩する。また,シェイキング効果を高めるためには磁性体の内部を均等にシェイキングすることが望ましいにも拘わらず,図15の磁気シールド部材40では,磁性薄帯42a,42bにそれぞれ長手方向のシェイキング磁場と他方の長手方向と交差する向きのシェイキング磁場とが同時に印加されるので,各磁性薄帯42a,42bの内部が均等にシェイキングされない問題点もある。 However, the conventional magnetic shaking has a problem that an applied magnetic field (shaking magnetic field) for shaking the inside of the magnetic material leaks to the magnetic shield space. For example, in the magnetic shield member 40 shown in FIG. 15, the magnetic field outside the coil is canceled out in a portion where the shaking coil 43 is adjacent and parallel to both sides of the front and back surfaces, so that leakage to the magnetic shield space can be suppressed to some extent. In the peripheral portion where is located only on one side of the front or back surface, the magnetic field (shaking noise) outside the coil leaks into the magnetic shield space. Further, although it is desirable to uniformly shake the inside of the magnetic material in order to enhance the shaking effect, in the magnetic shield member 40 shown in FIG. 15, the magnetic thin strips 42a and 42b are respectively provided with the shaking magnetic field in the longitudinal direction and the other. Since the shaking magnetic field in a direction intersecting the longitudinal direction of the magnetic ribbons 42a and 42b is simultaneously applied, there is also a problem that the insides of the magnetic ribbons 42a and 42b are not evenly shaken.
シェイキングノイズの漏洩を防止するため,例えば非特許文献1は,シェイキングコイルを巻き付けたアモルファス層の内側をアルミニウム層で被覆し,更にアルミニウム層の内側を磁気シェイキングのないアモルファス層で被覆する3層構造を提案している。ただし,このような3層構造の対策によっても磁気シールド空間の内壁付近において10nTを超えるシェイキングノイズが計測されている。また,3層構造のようなノイズ対策は,磁気シールドの施工コストの高騰に繋がる問題点もある。1nT以下の磁気シールド空間を磁気シェイキングによって実現するためには,磁性体内部を均等にシェイキングすると共に,シェイキングノイズを低減することが必要である。 In order to prevent leakage of shaking noise, for example, Non-Patent Document 1 discloses a three-layer structure in which the inside of an amorphous layer around which a shaking coil is wound is covered with an aluminum layer, and the inside of the aluminum layer is further covered with an amorphous layer without magnetic shaking. Have proposed. However, shaking noise exceeding 10 nT has been measured in the vicinity of the inner wall of the magnetically shielded space even with such a three-layer structure. In addition, there is a problem that a noise countermeasure such as a three-layer structure leads to a rise in construction cost of a magnetic shield. In order to realize a magnetic shield space of 1 nT or less by magnetic shaking, it is necessary to uniformly shake the inside of the magnetic material and to reduce shaking noise.
そこで本発明の目的は,シェイキングノイズの漏洩を小さく抑えることができる低漏洩シェイキング式開放型磁気シールド構造を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a low leakage shaking type open magnetic shield structure capable of suppressing the leakage of shaking noise.
図1及び図11の実施例を参照するに,本発明による低漏洩シェイキング式開放型磁気シールド構造は,磁気シールド対象空間1を貫く第1方向軸Azと所定間隔dzで交差する複数段の平行な平面Pz1,Pz2,……上にそれぞれ磁気シールド対象空間1を所定帯幅Wで囲むように設けた環帯状磁性板10(図1(A)及び(B)参照),環帯状磁性板10の各段の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに巻き付けて取り付け且つその両端22a,22bを平行に隣接させて引き出した導線コイルユニット20(図1(C)及び(D)参照),環帯状磁性板10の各段の複数の導線コイルユニット20を環状軸方向に順次直列に接続する結合導線26,その結合導線26と隣接平行配置で逆向きの電流を流すループ導線27,及び結合導線26及びループ導線27を介して各導線コイルユニット20が直列接続され且つ各導線コイルユニット20の引き出し部22a,22bに所定周波数のシェイキング電流I1を印加するコイル駆動装置30を備え,各導線コイルユニット20の発生磁場により環帯状磁性板10を磁気シェイキングすると共に結合導線26及びループ導線27の漏洩磁場を逆向きの電流により打ち消してなるものである。 Referring to the embodiment of FIGS . 1 and 11 , a low-leakage shaking type open magnetic shield structure according to the present invention includes a plurality of parallel parallel shafts intersecting a first direction axis Az penetrating a magnetic shield target space 1 at a predetermined interval dz. An annular magnetic plate 10 (see FIGS. 1 (A) and 1 (B)) and an annular magnetic plate 10 provided on the respective flat surfaces Pz1, Pz2,. The wire coil unit 20 (see FIG. 1 (C) and FIG. 1 (C)) which is wound around a plurality of portions distributed in the direction of the annular axis of each of the stages and attached and wound in a direction substantially perpendicular to the annular axis and both ends 22a, 22b thereof are drawn out in parallel. (D) refer), binding wire 26 to a plurality of conductors coil units 20 in each stage connected sequentially in series in the annular axial ring band magnetic plate 10, flow reverse current in adjacent parallel placement to its binding wire 26 -Loop wire 27, and bond wires 26 and the coil driving device each conductor coil unit 20 via the loop conductor 27 applies a shaking current I1 having a predetermined frequency to the lead portions 22a, 22b connected in series and each coil of wire units 20 with 30, is made of a leakage magnetic field coupling conductor 26 and the loop conductor 27 out consumption and the reverse current with the ring band-like magnetic plate 10 by the generated magnetic field of each coil of wire units 20 to magnetic shaking.
好ましい実施例では,図1(E)に示すように,各導線コイルユニット20の両端22a,22bを相互に撚りながら引き出す。更に好ましい実施例では,図10(A)に示すように,各導線コイルユニット20を環帯状磁性板10の各段に同じ右巻き又は左巻きとなるように巻き付け,コイル駆動装置30a,30bにより環帯状磁性板10の隣接する段毎に逆向きのシェイキング電流I1,I2を印加する。或いは,図10(B)に示すように,各導線コイルユニット20を環帯状磁性板10の隣接する段毎に逆の右巻き又は左巻きとなるように巻き付け,コイル駆動装置30により環帯状磁性板10の各段に同じ向きのシェイキング電流I1を印加してもよい。 In a preferred embodiment, as shown in FIG. 1E, both ends 22a and 22b of each wire coil unit 20 are pulled out while twisting each other. In a more preferred embodiment, as shown in FIG. 10 (A), each conductive coil unit 20 is wound around each step of the ring-shaped magnetic plate 10 so as to form the same right-handed or left-handed winding. Shaking currents I1 and I2 in opposite directions are applied to adjacent stages of the strip-shaped magnetic plate 10. Alternatively, as shown in FIG. 10 (B), each conductive coil unit 20 is wound in a reverse right-handed or left-handed manner for each adjacent step of the ring-shaped magnetic plate 10, and the ring-shaped magnetic plate is The shaking current I1 in the same direction may be applied to each of the ten stages.
望ましい実施例では,環帯状磁性板10の各段の導線コイルユニット20の巻き付け部位の相互間隔Tは,環帯状磁性板10の内部に誘起されるシェイキング磁場が均等となるように設定することができる。 In a preferred embodiment, the mutual interval T between the winding portions of the conductive coil unit 20 at each stage of the annular magnetic plate 10 is set such that the shaking magnetic field induced inside the annular magnetic plate 10 is uniform. it can.
本発明による低漏洩シェイキング式開放型磁気シールド構造は,磁気シールド対象空間1を貫く第1方向軸Azと所定間隔dzで交差する複数段の平行な平面Pz1,Pz2,……上にそれぞれ磁気シールド対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設け,環帯状磁性板10の各段の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付けて取り付け且つその両端22a,22bを平行に隣接させて引き出し,環帯状磁性板10の各段の複数の導線コイルユニット20を結合導線26によって環状軸方向に順次直列に接続し,その結合導線26と隣接させて逆向きの電流を流すループ導線27を平行に配置し,コイル駆動装置30により各導線コイルユニット20の引き出し部22a,22bに所定周波数のシェイキング電流I1を印加して発生させた磁場により環帯状磁性板10を磁気シェイキングすると共に結合導線26及びループ導線27の漏洩磁場を逆向きの電流により打ち消すので,次の有利な効果を奏する。 The low-leakage shaking type open magnetic shield structure according to the present invention comprises a magnetic shield on a plurality of parallel planes Pz1, Pz2,... Which intersect with a first direction axis Az penetrating the magnetic shield target space 1 at a predetermined interval dz. A ring-shaped magnetic plate 10 is provided so as to surround the target space 1 with a predetermined band width W, and a plurality of portions of the ring-shaped magnetic plate 10 which are distributed in the direction of the circular axis at respective stages are substantially perpendicular to the circular axis. 20 is wound and attached, and both ends 22a and 22b thereof are pulled out in parallel and adjacent to each other. A plurality of wire coil units 20 of each stage of the annular magnetic plate 10 are connected in series in the direction of the annular axis by a connecting wire 26 in order. bond wires 26 and is adjacent arranged parallel loop conductor 27 to flow a reverse current, the lead portion of each lead coil unit 20 by the coil driver 30 2a, since canceling the reverse current leakage magnetic field coupling conductor 26 and the loop conductor 27 with the ring band-like magnetic plate 10 by the magnetic field generated by applying a shaking current I1 having a predetermined frequency to 22b magnetically shaking, the following Has an advantageous effect.
(イ)環帯状磁性板10の各段に環状軸と実質上直角向きに導線コイルユニット20を巻き付け,環帯状磁性板10の環状軸の周りに同じ大きさでほぼ逆向きの電流を点対称で流すことにより,環帯状磁性板10の内側に軸方向に沿った均等なシェイキング磁場を発生させると共に,点対称で流れる逆向き電流の打ち消し効果によって導線コイルユニット20からの漏洩磁場(シェイキングノイズ)を低減することができる。
(ロ)環帯状磁性板10の内側に環状軸に沿った均等なシェイキング磁場を発生させることにより,磁性体内部の磁束を均等に揺らして磁気特性を効率的に向上させることができる。
(ハ)また,環帯状磁性板10に巻き付けた導線コイルユニット20の両端22a,22bを平行に隣接させて引き出すことにより,その引き出し部22a,22bを流れる逆向き電流の打ち消し効果によって巻き付け部以外からの漏洩磁場(シェイキングノイズ)も低減できる。
(A) A wire coil unit 20 is wound around each step of the annular magnetic plate 10 in a direction substantially perpendicular to the annular axis, and currents of the same magnitude and substantially opposite directions are annularly symmetric about the annular axis of the annular magnetic plate 10. , A uniform shaking magnetic field is generated along the axial direction inside the ring-shaped magnetic plate 10, and a leakage magnetic field (shaking noise) from the conductive coil unit 20 is generated due to the countercurrent effect of the reverse current flowing in a point-symmetric manner. Can be reduced.
(B) By generating a uniform shaking magnetic field along the ring axis inside the ring-shaped magnetic plate 10, the magnetic flux inside the magnetic body can be fluctuated evenly and the magnetic characteristics can be improved efficiently.
(C) In addition, by pulling out both ends 22a, 22b of the wire coil unit 20 wound around the ring-shaped magnetic plate 10 in parallel and adjacent to each other, the effect of canceling the reverse current flowing through the lead-out portions 22a, 22b causes the portions other than the wound portion. Leakage magnetic field (shaking noise) can be reduced.
(ニ)更に,導線コイルユニット20の両端22a,22bを相互に撚りながら引き出すことにより,引き出し部22a,22bを流れる逆向き電流の打ち消し効果を高めて導線コイルユニット20からの漏洩磁場を極めて小さく抑えることができる。
(ホ)また,環帯状磁性板10の隣接する段毎にシェイキング電流の向きを逆向きとし又は導線コイルユニット20の巻き付け向きを逆向きとし,隣接する段の導線コイルユニット20から漏洩する逆向きの磁場を相互に打ち消すことにより,漏洩磁場(シェイキングノイズ)を更に低減することができる。
(へ)環帯状磁性板10の内部の磁束を均等に揺らして磁気特性を効率的に向上させると共に,磁気シールド空間へ漏洩する磁場(シェイキングノイズ)を小さく抑えることにより,開放型磁気シールド構造の遮蔽性能を確実且つ大幅に向上させ,外乱磁場変動を1nT以下に制御することが期待できる。
(D) Further, by pulling out both ends 22a, 22b of the lead coil unit 20 while twisting each other, the effect of canceling the reverse current flowing through the lead portions 22a, 22b is enhanced, and the leakage magnetic field from the lead coil unit 20 is extremely small. Can be suppressed.
(E) In addition, the direction of the shaking current is reversed for each adjacent step of the annular magnetic plate 10 or the winding direction of the wire coil unit 20 is reversed, and the reverse direction leaks from the wire coil unit 20 of the adjacent step. By mutually canceling out the magnetic fields, the leakage magnetic field (shaking noise) can be further reduced.
(F) Evenly oscillating the magnetic flux inside the ring-shaped magnetic plate 10 to improve the magnetic properties efficiently and suppressing the magnetic field (shaking noise) leaking into the magnetic shield space to reduce the open magnetic shield structure. It can be expected that the shielding performance is surely and significantly improved, and the disturbance magnetic field fluctuation is controlled to 1 nT or less.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は,磁気シールド対象空間1(例えば磁気シールドルーム)の周囲に配置する本発明のシェイキング式開放型磁気シールド構造の実施例を示す。図1(A)の開放型磁気シールド構造5zは,磁気シールド対象空間1の中心点Oを貫く第1方向軸Azと所定間隔dzで交差する複数の平行な平面Pz1,Pz2,……上にそれぞれ所定帯幅W(例えば50mm)で空間を囲む環帯状磁性板10を配置し,図14(B)と同様に複数の環帯状磁性板10によって磁気シールド対象空間1を囲んだものである。図1(B)は開放型磁気シールド構造5zの何れかの段の環帯状磁性板10を含むXY平面図を示し,その楕円C部分の拡大平面図及び拡大側面図を図1(C)及び(D)に示す。図示例は,各環帯状磁性板10の中心軸である第1方向軸Azを鉛直方向軸(Z軸)としているが,方向軸Azは外来磁場の到来方向に応じて適宜選択可能であり,図12(B)及び(C)に示すように,対象空間1を貫く水平なX軸又はY軸とすることができる。また,図示例では環帯状磁性板10を設ける各平面Pzを第1方向軸Azと直交させているが,交差角度を直交以外とすることも可能である。 FIG. 1 shows an embodiment of a shaking type open magnetic shield structure according to the present invention which is arranged around a magnetic shield target space 1 (for example, a magnetic shield room). The open magnetic shield structure 5z shown in FIG. 1A is arranged on a plurality of parallel planes Pz1, Pz2,... Which intersect at a predetermined interval dz with a first direction axis Az passing through the center point O of the space 1 to be magnetically shielded. A ring-shaped magnetic plate 10 surrounding each space with a predetermined band width W (for example, 50 mm) is arranged, and a plurality of ring-shaped magnetic plates 10 surround the magnetic shield target space 1 as in FIG. 14B. FIG. 1B shows an XY plan view including the annular magnetic plate 10 at any stage of the open type magnetic shield structure 5z. FIG. 1C shows an enlarged plan view and an enlarged side view of an elliptic C portion. (D) is shown. In the illustrated example, the first direction axis Az, which is the central axis of each ring-shaped magnetic plate 10, is a vertical axis (Z axis), but the direction axis Az can be appropriately selected according to the arrival direction of the external magnetic field. As shown in FIGS. 12B and 12C, the horizontal X-axis or the Y-axis passing through the target space 1 can be used. In the illustrated example, each plane Pz on which the ring-shaped magnetic plate 10 is provided is orthogonal to the first direction axis Az, but the intersection angle may be other than orthogonal.
環帯状磁性板10は,例えば図14(A)に示すように,第1方向軸Azと交差する平面Pzと対象空間の内面との交差線に沿って,帯幅Wで適当な長さの複数の帯状導体板2を端縁の重ね合わせによって平らな多角形状(例えば井桁状)に接合することにより作成する。環帯状磁性板10は,磁気シェイキングにより磁気特性の向上が期待できる磁性体を用いて作成することができ,例えばコバルト系及び鉄系アモルファス,パーマロイ,電磁鋼板等とするが,とくに微弱磁場領域での透磁率が他と比べて格段に高いコバルト系アモルファスとすることが望ましい。一般にコバルト系アモルファスは,最大50mm程度の幅の薄帯状磁性板として提供され,それ以上の広幅材料は提供されていないので,密閉型磁気シールド構造では図15のように複数のアモルファス薄帯を平行に配列して磁気シールド面を形成する手間がかかるが,開放型磁気シールド構造では薄帯状磁性板をそのまま用いて環帯状磁性板10を形成できるので,開放型磁気シールド構造に適した磁性体ということができる。 As shown in FIG. 14A, for example, the ring-shaped magnetic plate 10 has a band width W and an appropriate length along an intersecting line between a plane Pz intersecting the first direction axis Az and the inner surface of the target space. It is created by joining a plurality of strip-shaped conductor plates 2 into a flat polygonal shape (for example, a cross-girder shape) by overlapping edges. The ring-shaped magnetic plate 10 can be made of a magnetic material whose magnetic properties can be expected to be improved by magnetic shaking. For example, a cobalt-based or iron-based amorphous, permalloy, electromagnetic steel plate, or the like is used. Is desirably a cobalt-based amorphous material having a significantly higher magnetic permeability than others. In general, cobalt-based amorphous is provided as a thin strip magnetic plate having a width of about 50 mm at the maximum, and no wider material is provided. Therefore, in the closed magnetic shield structure, as shown in FIG. It takes time to form the magnetic shield surface by arranging the magnetic shield surface in the open magnetic shield structure. However, in the open magnetic shield structure, the annular magnetic plate 10 can be formed by using the thin magnetic plate as it is. be able to.
図示例の磁気シールド構造は,図1(A)及び(B)に示すように,開放型磁気シールド構造5zの各段の環帯状磁性板10の複数部位にそれぞれ巻き付けた導線コイルユニット20と,その導線コイルユニット20に所定周波数のシェイキング電流を印加するコイル駆動装置30を有する。導線コイルユニット20は,環帯状磁性板10の全体に連続的に巻き付けるのではなく,環帯状磁性板10の環状軸方向に隔てた複数の部位にそれぞれ分散させて巻き付ける。環帯状磁性板10の磁気特性向上のためには環帯状磁性板10の内側に均等なシェイキング磁場を励起することが有効であり,環帯状磁性板10の全体に導線コイルを連続的に巻き付けることで均等なシェイキング磁場を発生させることもできるが,コイル外側の漏洩磁場(シェイキングノイズ)を低く抑えることが難しい(後述する実験例3を参照)。環帯状磁性板10の環状軸方向に分散した導線コイルユニット20を用いることにより,環帯状磁性板10の内側に均等なシェイキング磁場を発生させつつ,比較的容易に漏洩磁場(シェイキングノイズ)を低減することができる。 As shown in FIGS. 1A and 1B, the magnetic shield structure of the illustrated example includes a conductive coil unit 20 wound around a plurality of portions of the annular magnetic plate 10 at each stage of the open magnetic shield structure 5z. It has a coil driving device 30 for applying a shaking current of a predetermined frequency to the conductor coil unit 20. The lead coil unit 20 is not continuously wound around the entire annular magnetic plate 10, but is dispersed and wound around a plurality of portions of the annular magnetic plate 10 separated in the annular axis direction. In order to improve the magnetic properties of the annular magnetic plate 10, it is effective to excite a uniform shaking magnetic field inside the annular magnetic plate 10, and it is necessary to continuously wind a conductor coil around the entire annular magnetic plate 10. Can generate a uniform shaking magnetic field, but it is difficult to keep the leakage magnetic field (shaking noise) outside the coil low (see Experimental Example 3 described later). By using the conductive coil units 20 dispersed in the annular axis direction of the ring-shaped magnetic plate 10, the leakage magnetic field (shaking noise) can be relatively easily reduced while generating a uniform shaking magnetic field inside the ring-shaped magnetic plate 10. can do.
図示例の導線コイルユニット20は,図1(C)及び(D)の拡大平面図及び拡大側面図に示すように,その中間部分を環帯状磁性板10にその環状軸と実質上直角向きに巻き付け,その両端22a,22bを平行に隣接させて引き出してコイル駆動装置30と接続する。例えば帯幅50mmの環帯状磁性板10に導線コイルユニット20の中間部分を1〜2mmピッチ程度で巻き付けることにより,環帯状磁性板10の環状軸に対する導線コイルユニット20(電流方向)のなす角度を89°程度とする。図1(D)に示すように,環状軸と実質上直角向きに巻き付けた導線コイルユニット20は,環状軸と交差する断面(磁性体回路の断面)の重心に対して点対称の位置にシェイキング電流を流すことにより,環帯状磁性板10の内側に軸方向に沿って均等なシェイキング磁場を発生させ,環帯状磁性板10の内部の磁束を均等に揺らして磁気シェイキング効果を発揮することができる。 As shown in the enlarged plan view and the enlarged side view of FIGS. 1 (C) and 1 (D), the conductive coil unit 20 of the illustrated example has an intermediate portion thereof attached to the annular magnetic plate 10 in a direction substantially perpendicular to its annular axis. The coil is wound, and both ends 22a and 22b are pulled out in parallel and adjacent to each other and connected to the coil driving device 30. For example, by winding the intermediate portion of the wire coil unit 20 around the ring-shaped magnetic plate 10 having a band width of 50 mm at a pitch of about 1 to 2 mm, the angle formed by the wire coil unit 20 (current direction) with respect to the annular axis of the ring-shaped magnetic plate 10 is adjusted. It is about 89 °. As shown in FIG. 1 (D), the conductive coil unit 20 wound substantially perpendicular to the annular axis is shaken at a point symmetrical position with respect to the center of gravity of a cross section (cross section of the magnetic circuit) intersecting the annular axis. By applying a current, a uniform shaking magnetic field is generated inside the ring-shaped magnetic plate 10 along the axial direction, and the magnetic flux inside the ring-shaped magnetic plate 10 is evenly fluctuated to exert a magnetic shaking effect. .
また,環状軸と実質上直角向きに巻き付けた導線コイルユニット20は,磁性体回路の断面の重心に対して点対称で流れる逆向き電流の打ち消し効果によって環帯状磁性板10の外側への漏洩磁場(シェイキングノイズ)を低く抑えることができる。更に,導線コイルユニット20の引き出し部22a,22bを平行に隣接させて引き出すことにより,その引き出し部22a,22bを流れる逆向き電流の打ち消し効果によって巻き付け部以外からの漏洩磁場(シェイキングノイズ)も低減できる。図1(E)に示すように導線コイルユニット20の引き出し部22a,22bを相互に撚ることにより,逆向き電流の打ち消し効果を高めて漏洩磁場を更に抑えることも期待できる。このように図示例の導線コイルユニット20は,磁性体内側の均等なシェイキングと磁性体外側のシェイキングノイズの低減とが共に容易であることから,開放型磁気シールド構造は密閉型磁気シールド構造に比して磁気シェイキングによる遮蔽性能の大幅な向上が期待できる。 In addition, the conductive coil unit 20 wound substantially perpendicular to the annular axis has a leakage magnetic field to the outside of the annular magnetic plate 10 due to the countercurrent effect of the reverse current flowing point-symmetrically with respect to the center of gravity of the cross section of the magnetic circuit. (Shaking noise) can be kept low. Furthermore, by drawing out the lead portions 22a and 22b of the lead coil unit 20 in parallel and adjacent, the leakage magnetic field (shaking noise) from portions other than the winding portion is also reduced due to the effect of canceling the reverse current flowing through the lead portions 22a and 22b. it can. As shown in FIG. 1 (E), by mutually twisting the lead portions 22a and 22b of the conductor coil unit 20, it is expected that the effect of canceling the reverse current is enhanced and the leakage magnetic field is further suppressed. As described above, in the conductor coil unit 20 shown in the drawing, the open magnetic shield structure is easier than the closed magnetic shield structure because it is easy to uniformly shake the inside of the magnetic body and to reduce the shaking noise outside the magnetic body. As a result, a significant improvement in shielding performance by magnetic shaking can be expected.
図1のコイル駆動装置30は,各導線コイルユニット20の引き出し部22a,22bに所定周波数のシェイキング電流I1を並列に印加している。すなわち,環帯状磁性板10の各段に導線コイルユニット20を同じ右巻き又は左巻きとなるように巻き付けると共に,環帯状磁性板10と実質上同径の入出力ループ導線23a,23bを隣接させて平行に配置し,各導線コイルユニット20の一方の引き出し部22aを入力ループ導線(又は出力ループ導線)23aに接続すると共に,他方の引き出し部22bを出力ループ導線(又は入力ループ導線)23bに接続することにより,ループ導線23a,23bを介して各導線コイルユニット20をコイル駆動装置30と並列に接続する。 The coil driving device 30 shown in FIG. 1 applies a shaking current I1 having a predetermined frequency in parallel to the lead portions 22a and 22b of each conductive wire coil unit 20. That is, the wire coil unit 20 is wound around each step of the ring-shaped magnetic plate 10 so as to form the same clockwise or counterclockwise winding, and the input / output loop conductive wires 23a and 23b having substantially the same diameter as the ring-shaped magnetic plate 10 are arranged adjacent to each other. Arranged in parallel, one lead 22a of each conductor coil unit 20 is connected to an input loop conductor (or output loop conductor) 23a, and the other lead 22b is connected to an output loop conductor (or input loop conductor) 23b. By doing so, each conductor coil unit 20 is connected in parallel with the coil driving device 30 via the loop conductors 23a and 23b.
図1の実施例において,各導線コイルユニット20を接続する入出力ループ導線23a,23bからの磁場漏洩も問題となりうるが,図示例のように入出力ループ導線23a,23bを隣接させて平行に配置することにより,発生磁場を逆向きの入出力電流によって打ち消して入出力ループ導線23a,23bからの漏洩磁場を小さく抑えることができる。必要に応じて入出力ループ導線23a,23bを撚ることにより打ち消し効果を高めることも可能である。なお,入出力ループ導線23a,23bは環帯状磁性板10の各段に対応させて複数設ける必要はなく,図10(B)に示すように,単独の入出力ループ導線23a,23bを介して複数段の導線コイルユニット20にシェイキング電流I1を並列に印加することができる。 In the embodiment of FIG. 1, magnetic field leakage from the input / output loop conductors 23a and 23b connecting the respective conductor coil units 20 may be a problem, but as shown in the illustrated example, the input / output loop conductors 23a and 23b are adjacent to and parallel to each other. By arranging, the generated magnetic field is canceled by the input / output current in the opposite direction, and the leakage magnetic field from the input / output loop conductors 23a and 23b can be suppressed to a small value. If necessary, the canceling effect can be enhanced by twisting the input / output loop conductors 23a and 23b. It is not necessary to provide a plurality of input / output loop conductors 23a and 23b corresponding to each stage of the ring-shaped magnetic plate 10, and as shown in FIG. Shaking current I1 can be applied in parallel to a plurality of conductor coil units 20.
また,コイル駆動装置30と各導線コイルユニット20との接続は図1のような並列接続に限定されるものではなく,例えば図11(A)に示すように,隣接する導線コイルユニット20の引き出し部22a,22bを順次に直列接続(結線)し,コイル駆動装置30によって各導線コイルユニット20の引き出し部22a,22bにシェイキング電流I1を直列に印加することも可能である。図11(A)の実施例では,環帯状磁性板10の各段の複数部位にそれぞれ導線コイルユニット20を環状軸と実質上直角向きに巻き付けると共に,各導線コイルユニット20の両端の引き出し部22a,22bを平行に隣接させて引き出し,環状軸方向に隣接する各導線コイルユニット20の引き出し部22a,22bを結合導線26によって直列に接続している。図11(B)は環帯状磁性板10のXY平面図を示し,図11(C)及び(D)はその楕円C部分の拡大平面図及び拡大側面図を示す。 Further, the connection between the coil driving device 30 and each of the conductor coil units 20 is not limited to the parallel connection as shown in FIG. 1. For example, as shown in FIG. The sections 22a and 22b can be sequentially connected (connected) in series, and the shaking current I1 can be applied in series to the lead sections 22a and 22b of each conductive coil unit 20 by the coil driving device 30. In the embodiment shown in FIG. 11A, the wire coil unit 20 is wound around a plurality of portions of each step of the ring-shaped magnetic plate 10 in a direction substantially perpendicular to the annular axis, and the lead portions 22a at both ends of each wire coil unit 20 are provided. , 22b are pulled out in parallel and adjacent, and the lead-out portions 22a, 22b of the respective lead wire coil units 20 adjacent in the annular axis direction are connected in series by a connecting wire 26. FIG. 11B shows an XY plan view of the ring-shaped magnetic plate 10, and FIGS. 11C and 11D show an enlarged plan view and an enlarged side view of the elliptic C portion.
図11の実施例において,各導線コイルユニット20を直列に接続する結合導線26からの磁場漏洩も問題となりうるが,図11(B)に示すように環帯状磁性板10の各段に結合導線26と隣接させて逆向きの電流を流すループ導線27を平行に配置し,結合導線26及びループ導線27を介して各導線コイルユニット20をコイル駆動装置30に直列接続することにより,結合導線26からの発生磁場を打ち消して漏洩磁場を小さく抑えることができる。必要に応じて結合導線26とループ導線27とを撚ることにより打ち消し効果を高めることも可能である。 In the embodiment shown in FIG. 11, magnetic field leakage from the coupling conductor 26 connecting the respective conductor coil units 20 in series may be a problem. However, as shown in FIG. 26, a loop conductor 27 through which a current flows in the opposite direction is arranged in parallel, and each conductor coil unit 20 is connected in series to the coil driving device 30 via the coupling conductor 26 and the loop conductor 27, whereby the coupling conductor 26 And the leakage magnetic field can be suppressed small. If necessary, the canceling effect can be enhanced by twisting the coupling conductor 26 and the loop conductor 27.
例えば図11に示すように,結合導線26によって環帯状磁性板10の複数部位の導線コイルユニット20を始端部位から終端部位まで環状軸方向に直列接続し,その終端部位から始端部位まで環状軸方向を逆向きに戻る導線(戻り導線)をループ導線27とし,コイル駆動装置30からのシェイキング電流I1を始端部位から終端部位の各導線コイルユニット20に結合導線26を介して順次印加するとともに,終端部位からループ導線27及び始端部位を介してコイル駆動装置30に戻す。なお,図示例では1本の導線を複数段の環帯状磁性板10に連続的に巻き付けているが,異なる段の導線コイルユニット20は必ずしも相互に接続する必要はなく,少なくとも1つの段の導線コイルユニット20が直列に接続されていれば足りる。例えば,段毎にコイル駆動装置30を設けて段毎に直接接続された導線コイルユニット20にシェイキング電流を個別に印加することもできる。 For example, as shown in FIG. 11, a plurality of conductor coil units 20 of the ring-shaped magnetic plate 10 are connected in series in the annular axial direction from the starting end portion to the terminal end portion by the coupling conductive wire 26, and are connected in the annular axial direction from the terminal end portion to the starting end portion. Is used as a loop conductor 27, and a shaking current I1 from the coil driving device 30 is sequentially applied to each conductor coil unit 20 from the start end portion to the end portion via the coupling conductor 26, and the loop end 27 is terminated. The part is returned to the coil driving device 30 via the loop conductor 27 and the start end part. In the illustrated example, one conductor is continuously wound around the plurality of annular magnetic plates 10. However, the conductor coil units 20 in different stages do not necessarily need to be connected to each other. It is sufficient that the coil units 20 are connected in series. For example, a coil driving device 30 may be provided for each stage, and a shaking current may be individually applied to the conductive coil unit 20 directly connected to each stage.
[実験例1]
図1のシェイキング式開放型磁気シールド構造により漏洩磁場(シェイキングノイズ)が低減できることを確認する前に,先ず開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ導線コイル25を巻き付けた場合の漏洩磁場を確認するため,図2に示すようなモデル実験を行った。本実験では,図2(A)に示すように幅50mm,長さ1000mm,厚さ5mmの帯状磁性板4枚を井桁状に接合して外形950mmの環帯状磁性板10(磁性体回路)を構成し,その環帯状磁性板10を所定間隔dz=200mmで5段配置して開放型磁気シールド構造5zを形成し,各段の環帯状磁性板10にそれぞれ環状軸と直角向きに導線コイル25を所定ピッチTで巻き付けてシェイキング電流(周波数200Hz)を印加した。環帯状磁性板10の外形の大きさは,環状の磁性体回路の中心軸の長さを表している。
[Experimental example 1]
Before confirming that the leakage magnetic field (shaking noise) can be reduced by the shaking type open magnetic shield structure of FIG. 1, first, the conductive wire coil 25 was wound around the annular magnetic plate 10 of each stage of the open type magnetic shield structure 5z. In order to confirm the leakage magnetic field in the case, a model experiment as shown in FIG. 2 was performed. In this experiment, as shown in FIG. 2 (A), four strip-shaped magnetic plates having a width of 50 mm, a length of 1000 mm, and a thickness of 5 mm were joined in a grid pattern to form a ring-shaped magnetic plate 10 (magnetic circuit) having an outer shape of 950 mm. The ring-shaped magnetic plates 10 are arranged in five stages at a predetermined interval dz = 200 mm to form an open magnetic shield structure 5z. Was wound at a predetermined pitch T, and a shaking current (frequency: 200 Hz) was applied. The size of the outer shape of the annular magnetic plate 10 indicates the length of the central axis of the annular magnetic circuit.
図2(B)はこの開放型磁気シールド構造5zのXY平面と平行な平面図を示し,図2(C)はこの開放型磁気シールド構造5zのYZ平面と平行な断面図を示し,図2(D)は図2(B)の楕円D部分を拡大したコイル電流の模式的平面図を示し,図2(E)は環帯状磁性板10の環状軸方向から見たコイル電流の模式的側面図を示す。この場合の導線コイル25は,図2(B)及び(D)に示すように相互に連続しておらず,所定ピッチT間隔の巻き付け位置毎に相互に独立した閉回路を想定した。図2(C)及び(E)に示す各コイル(以下,1段コイルということがある)20は,発生する磁場の相殺効果を考慮して,磁性体回路の断面の重心に対して点対称の位置に配置されており,断面の大きさは50mm×5mmである。 FIG. 2B is a plan view of the open magnetic shield structure 5z parallel to the XY plane, and FIG. 2C is a cross-sectional view of the open magnetic shield structure 5z parallel to the YZ plane. 2D is a schematic plan view of the coil current obtained by enlarging an elliptical D portion in FIG. 2B, and FIG. 2E is a schematic side view of the coil current viewed from the annular axis direction of the annular magnetic plate 10. The figure is shown. As shown in FIGS. 2B and 2D, the conductive coil 25 in this case is assumed to be a closed circuit that is not continuous with each other and independent of each other at each winding position at a predetermined pitch T interval. Each coil (hereinafter sometimes referred to as a single-stage coil) 20 shown in FIGS. 2C and 2E is point-symmetric with respect to the center of gravity of the cross section of the magnetic circuit in consideration of the canceling effect of the generated magnetic field. And the size of the cross section is 50 mm × 5 mm.
また,比較のため,図6に示すように開放型磁気シールド構造5zの5段の環帯状磁性板10(磁性体回路)にまとめて導線コイル25を所定ピッチTで巻き付けてシェイキング電流(周波数200Hz)を印加する実験を行った。図6に示す各コイル(以下,5段コイルということがある)20も相互に連続しておらず,所定ピッチT間隔の巻き付け位置毎に相互に独立した閉回路を想定し,断面の大きさは50mm×805mmである。図2の1段コイルと図6の5段コイルとにそれぞれシェイキング電流を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーション(三次元非線形磁場解析)により求めた。 For comparison, as shown in FIG. 6, the conductive coil 25 is wound at a predetermined pitch T together on a five-stage ring-shaped magnetic plate 10 (magnetic circuit) of an open type magnetic shield structure 5z to form a shaking current (frequency 200 Hz). ) Was applied. Each coil (hereinafter, also referred to as a five-stage coil) 20 shown in FIG. 6 is not continuous with each other, and assumes a closed circuit independent of each other at each winding position at a predetermined pitch T interval. Is 50 mm × 805 mm. Shaking currents were respectively applied to the first-stage coil of FIG. 2 and the five-stage coil of FIG. 6, and the generated magnetic field inside the coil and the leakage magnetic field outside the coil were obtained by numerical simulation (three-dimensional nonlinear magnetic field analysis).
なお本実験では,図2の1段コイルと図6の5段コイルとで磁性体回路のシェイキング強度を揃えるため,環帯状磁性板10の内部に誘起される磁束密度が一致するように1段コイル及び5段コイルのシェイキング電流を設定した。すなわち,図2の1段コイルに1Aのシェイキング電流を印加したときの各段の磁性体回路の辺中央の磁束密度は19.6mTであるのに対し,図6の5段コイルに1Aのシェイキング電流を印加したときの各段の磁性体回路の辺中央の磁束密度は,1段目及び5段目では38.7mT,2段目〜4段目では57.8mTとなり,何れも1段コイルより大きくなった。これは5段コイルが各段の磁性体回路の間に跨っており,電流路が長いことに起因する。そのため,2段目〜4段目の磁束密度が1段コイルの19.6mTと一致するように,5段コイルに印加するシェイキング電流の電流値を0.339Aと設定した。 In this experiment, in order to equalize the shaking strength of the magnetic circuit between the one-stage coil of FIG. 2 and the five-stage coil of FIG. 6, the one-stage coil was adjusted so that the magnetic flux density induced inside the ring-shaped magnetic plate 10 matched. Shaking currents of the coil and the five-stage coil were set. That is, when a 1A shaking current is applied to the one-stage coil of FIG. 2, the magnetic flux density at the center of each side of the magnetic circuit of each stage is 19.6 mT, whereas the five-stage coil of FIG. When a current is applied, the magnetic flux density at the center of the side of the magnetic circuit in each stage is 38.7 mT in the first and fifth stages, and 57.8 mT in the second to fourth stages. Became bigger. This is because the five-stage coil extends between the magnetic circuits of each stage, and the current path is long. Therefore, the current value of the shaking current applied to the five-stage coil was set to 0.339 A so that the magnetic flux densities of the second to fourth stages matched 19.6 mT of the first-stage coil.
図4(A)及び(B)は,図2の1段コイル外側の漏洩磁場を,図2(B)及び(C)に示す開放型磁気シールド構造内側の評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。また図7(A)及び(B)は,図6の5段コイル外側の漏洩磁場を評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。なお,図4及び図7はそれぞれ磁性体回路が存在しないコイルのみを配置した場合の漏洩磁場を示しており,磁性体回路が存在する場合は,シェイキング電流により磁化された磁性体から発生する磁場が重畳されるため評価対象域Rの磁場分布は大きくなる。ただし,磁性体の種類,厚さ(積層枚数),大きさなどにより重畳される値は様々に変わるため,シェイキングコイルから発生する磁場のみを評価するためには,磁性体回路のないコイルのみの漏洩磁場を考慮することが有効である。 4 (A) and 4 (B) show the leakage magnetic field outside the one-stage coil of FIG. 2 and the contour of the magnetic field distribution of the evaluation area R inside the open magnetic shield structure shown in FIGS. 2 (B) and 2 (C). This is represented as a diagram / vector diagram. 7A and 7B show the leakage magnetic field outside the five-stage coil in FIG. 6 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target area R. FIGS. 4 and 7 show the leakage magnetic field when only the coil having no magnetic circuit is arranged. When the magnetic circuit is present, the magnetic field generated from the magnetic material magnetized by the shaking current is shown. Are superimposed, the magnetic field distribution in the evaluation target area R becomes large. However, the value to be superimposed varies depending on the type, thickness (number of layers), size, etc. of the magnetic material. Therefore, in order to evaluate only the magnetic field generated from the shaking coil, only the coil without the magnetic material circuit needs to be evaluated. It is effective to consider the leakage magnetic field.
1段コイルの作る図4の磁場分布と,5段コイルの作る図7の磁場分布とを比較すると,1段コイルのほうが1/13程度小さくなっていることが分かる。また,いずれの場合も,漏洩磁場は水平成分のみであり,垂直方向の磁場は殆ど漏洩していないことが分かる。この理由は,図2(D)及び(E)に示すコイル電流の模式図から分かるように,コイルに流れる電流Ia,Ib,Ic,Idは磁性体回路の断面の重心に対して点対称の位置(環状軸方向から見て点対称の位置)にあり,同じ大きさで方向が異なるため,電流Ia及びIcから発生する磁場(垂直成分)は打ち消し合ってゼロとなり,電流Ib及びIdから発生する磁場(水平成分)のみが評価対象域Rに漏洩するからである。5段コイルは,電流値は小さいにも拘わらず,磁場の水平成分を誘起する垂直電流路が長いため,漏洩磁場が大きくなっている。もっとも垂直方向の漏洩磁場についても,コイル近傍(評価対象域Rの周縁)では比較的大きいが,コイルから離れるに従って打ち消し合う効果が高まり,評価対象域Rの中心部(磁気シールド対象空間の中心部)では一気に小さくなっている。 Comparing the magnetic field distribution of FIG. 4 formed by the one-stage coil with the magnetic field distribution of FIG. 7 formed by the five-stage coil, it can be seen that the one-stage coil is smaller by about 1/13. In each case, the leakage magnetic field has only a horizontal component, and the magnetic field in the vertical direction hardly leaks. The reason for this is that, as can be seen from the schematic diagrams of the coil currents shown in FIGS. 2D and 2E, the currents Ia, Ib, Ic and Id flowing through the coils are point-symmetric with respect to the center of gravity of the cross section of the magnetic circuit. The magnetic field (vertical component) generated from the currents Ia and Ic cancels out to zero, and is generated from the currents Ib and Id because they are at the same position (a point symmetrical position when viewed from the annular axis direction) and have the same magnitude but different directions. This is because only the generated magnetic field (horizontal component) leaks to the evaluation target area R. The five-stage coil has a large leakage magnetic field because the vertical current path for inducing the horizontal component of the magnetic field is long despite the small current value. Although the leakage magnetic field in the vertical direction is relatively large in the vicinity of the coil (periphery of the evaluation target area R), the effect of canceling out increases as the distance from the coil increases, and the central part of the evaluation target area R (the central part of the magnetic shield target space). ) Is suddenly smaller.
図4及び図7の磁場分布の比較から,図2のように開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ環状軸に沿って導線コイル25を巻き付けてシェイキング電流を印加することにより,導線コイル25の外側に漏洩する磁場(シェイキングノイズ)を十分に低減できることが分かる。密閉型磁気シールド構造をシェイキングする場合は図6の5段コイルと同様のコイルが必要であることから,開放型磁気シールド構造は密閉型磁気シールド構造に比して磁気シェイキングの漏洩磁場を小さくできる利点があるといえる。また,図2(E)に示すように,磁性体回路の軸方向から見て点対称の位置に巻き付けた1段コイルは,磁性体回路の内部に軸方向に沿ったシェイキング磁場のみを発生させるので,環帯状磁性板内部の磁束を均等に揺らせることが分かる。 From the comparison of the magnetic field distributions of FIGS. 4 and 7, as shown in FIG. 2, a conducting coil 25 is wound around the annular magnetic plate 10 of each stage of the open magnetic shield structure 5z along the annular axis to apply a shaking current. This indicates that the magnetic field (shaking noise) leaking to the outside of the conductive coil 25 can be sufficiently reduced. When the closed magnetic shield structure is to be shaken, a coil similar to the five-stage coil shown in FIG. 6 is required. Therefore, the open magnetic shield structure can reduce the leakage magnetic field of the magnetic shaking as compared with the closed magnetic shield structure. It can be said that there are advantages. Further, as shown in FIG. 2E, the single-stage coil wound at a point-symmetric position when viewed from the axial direction of the magnetic circuit generates only a shaking magnetic field along the axial direction inside the magnetic circuit. Therefore, it can be seen that the magnetic flux inside the annular magnetic plate is fluctuated evenly.
[実験例2]
図2のモデル実験では,環帯状磁性板10の所定ピッチTの巻き付け位置毎に独立した閉回路コイルを巻き付けているが,実際の開放型磁気シールド構造5zの環帯状磁性板10を閉回路コイルでシェイキングすることは難しい。そこで次に,図3のように各段の環帯状磁性板10の環状軸に沿って所定ピッチTで連続的に導線コイル25に巻き付けた場合の漏洩磁場(シェイキングノイズ)を確認するため,上述した実験例1と同様に外形(環状の磁性体回路の中心軸の長さ)950mmの環帯状磁性板10(磁性体回路)を所定間隔dz=200mmで5段配置して開放型磁気シールド構造5zを形成し,図3(B)及び(C)に示すように5段の環帯状磁性板10の環状軸方向にそれぞれ所定ピッチT(100mm幅で1ターン,環帯状磁性板の各辺(900mm)で9ターン)で連続的に導線コイル25を巻き付けてシェイキング電流(周波数200Hz)を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーションにより求める実験を行った。図3(B)はこの開放型磁気シールド構造5zのXY平面と平行な平面図を示し,図3(C)はこの開放型磁気シールド構造5zのYZ平面と平行な断面図を示し,図3(D)は図3(B)の楕円D部分を拡大したコイル電流の模式的平面図を示し,図3(E)は環帯状磁性板10の環状軸方向から見たコイル電流の模式的側面図を示す。
[Experimental example 2]
In the model experiment of FIG. 2, an independent closed circuit coil is wound at each winding position of the annular magnetic plate 10 at a predetermined pitch T, but the actual annular magnetic plate 10 having the open magnetic shield structure 5z is closed. It is difficult to shake. Then, next, in order to confirm the leakage magnetic field (shaking noise) when continuously winding the conductive wire coil 25 at a predetermined pitch T along the annular axis of the annular magnetic plate 10 of each stage as shown in FIG. An open type magnetic shield structure in which five annular belt-shaped magnetic plates 10 (magnetic circuit) having an outer shape (length of the central axis of the annular magnetic circuit) of 950 mm are arranged at predetermined intervals dz = 200 mm in the same manner as in Experimental Example 1 described above. 5z, and as shown in FIGS. 3B and 3C, a predetermined pitch T (one turn with a width of 100 mm, each side of the ring-shaped magnetic plate 10 in the direction of the ring axis of the five-stage ring-shaped magnetic plate 10). The winding coil 25 is continuously wound for 9 turns at 900 mm), a shaking current (frequency 200 Hz) is applied, and the generated magnetic field inside the coil and the leakage magnetic field outside the coil are obtained by numerical simulation. Experiments were carried out. FIG. 3B is a plan view of the open magnetic shield structure 5z parallel to the XY plane, and FIG. 3C is a cross-sectional view of the open magnetic shield structure 5z parallel to the YZ plane. 3D is a schematic plan view of the coil current obtained by enlarging the portion of the ellipse D in FIG. 3B, and FIG. 3E is a schematic side view of the coil current as viewed from the direction of the annular axis of the annular magnetic plate 10. The figure is shown.
また,比較のため,図8に示すように開放型磁気シールド構造5zの5段の環帯状磁性板10(磁性体回路)にまとめて導線コイル25を所定ピッチT(100mm幅で1ターン,環帯状磁性板の各辺(900mm)で9ターン)で連続的に巻き付けてシェイキング電流を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーションにより求める実験を行った。環帯状磁性板10の内部に誘起される磁束密度を実験例1(図2の1段コイルの場合)と揃えるため,図3の1段コイルに印加するシェイキング電流の電流値を1.414Aと設定し,図8の5段コイルに印加するシェイキング電流の電流値は0.339Aと設定した。 For comparison, as shown in FIG. 8, the conductive coil 25 is integrated on a five-stage ring-shaped magnetic plate 10 (magnetic circuit) of an open type magnetic shield structure 5z and a lead coil 25 is arranged at a predetermined pitch T (one turn at a width of 100 mm, ring). An experiment was conducted in which the winding was continuously wound around each side (900 mm) of the strip-shaped magnetic plate (9 turns), a shaking current was applied, and a generated magnetic field inside the coil and a leakage magnetic field outside the coil were obtained by numerical simulation. In order to make the magnetic flux density induced inside the ring-shaped magnetic plate 10 equal to that of Experimental Example 1 (in the case of the single-stage coil of FIG. 2), the value of the shaking current applied to the single-stage coil of FIG. The shaking current applied to the five-stage coil shown in FIG. 8 was set to 0.339 A.
図5(A)及び(B)は,図3の1段コイル外側の漏洩磁場を,開放型磁気シールド構造内側の評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。また図9(A)及び(B)は,図8の5段コイル外側の漏洩磁場を評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。図5及び図9も,実験例1の図4及び図7の場合と同様に,磁性体から発生する磁場の重畳を避けるため,磁性体回路が存在しないコイルのみを配置した場合の漏洩磁場を示している。 FIGS. 5A and 5B show the leakage magnetic field outside the one-stage coil in FIG. 3 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target area R inside the open magnetic shield structure. 9A and 9B show the leakage magnetic field outside the five-stage coil in FIG. 8 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target area R. 5 and 9, similarly to FIGS. 4 and 7 of Experimental Example 1, in order to avoid the superposition of the magnetic field generated from the magnetic material, the leakage magnetic field in the case where only the coil having no magnetic circuit is arranged is reduced. Is shown.
1段コイルの作る図5の磁場分布と,5段コイルの作る図9の磁場分布とを比較すると,何れも漏洩磁場は垂直成分が支配的であり,1段コイルのほうが30倍程度大きくなっていることが分かる。この理由は,図3(D)及び(E)に示すコイル電流の模式図から分かるように,コイルに流れる電流Ia,Icは同じ大きさであるがXY平面上で方向が異なっているため,発生する磁場の垂直成分を打ち消し合う効果が不十分となるからである。図9の5段コイルでは,電流Ia,Icが離れているのである程度の打ち消し効果が見られるが,図5の1段コイルでは漏洩磁場の垂直成分が大きくなっている。なお,コイルに流れる電流Ib,IdもY軸方向で位置がずれているが,漏洩磁場(水平成分)への影響は比較的小さい。 When comparing the magnetic field distribution of FIG. 5 formed by the single-stage coil with the magnetic field distribution of FIG. 9 formed by the five-stage coil, the vertical component of the leakage magnetic field is dominant, and the leakage current of the single-stage coil is about 30 times larger. You can see that. This is because, as can be seen from the schematic diagrams of the coil currents shown in FIGS. 3D and 3E, the currents Ia and Ic flowing through the coils have the same magnitude but different directions on the XY plane. This is because the effect of canceling the vertical component of the generated magnetic field becomes insufficient. In the five-stage coil shown in FIG. 9, the currents Ia and Ic are far apart, so that a certain degree of canceling effect can be seen. However, in the one-stage coil shown in FIG. 5, the vertical component of the leakage magnetic field is large. Although the currents Ib and Id flowing through the coils are also displaced in the Y-axis direction, the influence on the leakage magnetic field (horizontal component) is relatively small.
図5及び図9の磁場分布の比較から,開放型磁気シールド構造の磁性体回路に所定ピッチT(100mm幅で1ターン)で連続的に導線コイル25を巻き付けてシェイキング電流を印加した場合は,図8の5段コイルの漏洩磁場よりも図3の1段コイルの漏洩磁場が大きくなることが分かる。すなわち,図3のように環帯状磁性板10の環状軸方向から見て点対称の位置にシェイキング電流を流す1段コイルは,環帯状磁性板10の内部の磁束を均等に揺らして磁気シェイキング効果を効率的に発揮させるために有効であるが,シェイキング電流に伴う漏洩磁場(シェイキングノイズ)によって磁気環境が劣化することが懸念される。 From the comparison of the magnetic field distributions shown in FIGS. 5 and 9, when the shaking current is applied by continuously winding the conductive wire coil 25 at a predetermined pitch T (one turn with a width of 100 mm) around the magnetic circuit having the open magnetic shield structure, It can be seen that the leakage magnetic field of the one-stage coil of FIG. 3 is larger than the leakage magnetic field of the five-stage coil of FIG. That is, as shown in FIG. 3, the single-stage coil that applies a shaking current to a point-symmetrical position when viewed from the direction of the annular axis of the annular magnetic plate 10 makes the magnetic flux inside the annular magnetic plate 10 fluctuate evenly, and the magnetic shaking effect is obtained. However, there is a concern that the magnetic environment is degraded by the leakage magnetic field (shaking noise) accompanying the shaking current.
なお,図3の開放型磁気シールド構造5zでは,5段配置の環帯状磁性板10にそれぞれ導線コイル25を連続的に巻き付け,そのコイル20の一端及び他端を入出力ライン20a,20bに接続し,交流電源であるコイル駆動装置30から入出力ライン20a,20bにシェイキング電流を印加している。この場合に,各段の磁性体回路に巻き付けたコイル20と共に入出力ライン20a,20bからの磁場の漏洩も問題となりうるが,図示例のように入出力ライン20a,20bを隣接させて平行に配置することにより,入出力ライン20a,20bの発生磁場を逆向きの入出力電流によって打ち消して漏洩磁場を小さく抑えることができる。必要に応じて出力ライン20a,20bを撚ることにより打ち消し効果を高めることも有効である。ただし,導線コイル25は,図示例のように複数段の環帯状磁性板10に連続的に巻き付ける必要はなく,少なくとも1つの段において連続していれば足りる。その場合は,段毎にコイル駆動装置30を設けて段毎の導線コイル25にシェイキング電流を個別に印加する。 In the open magnetic shield structure 5z shown in FIG. 3, the conductive coil 25 is continuously wound around the ring-shaped magnetic plates 10 arranged in five stages, and one end and the other end of the coil 20 are connected to the input / output lines 20a and 20b. In addition, a shaking current is applied to the input / output lines 20a and 20b from the coil driving device 30, which is an AC power supply. In this case, the leakage of the magnetic field from the input / output lines 20a and 20b together with the coil 20 wound around the magnetic circuit of each stage may be a problem. However, as shown in the illustrated example, the input / output lines 20a and 20b are arranged adjacent to and parallel to each other. By arranging, the magnetic field generated in the input / output lines 20a and 20b can be canceled by the input / output current in the opposite direction, so that the leakage magnetic field can be suppressed to be small. It is also effective to twist the output lines 20a and 20b as necessary to enhance the canceling effect. However, the conducting wire coil 25 does not need to be continuously wound around the ring-shaped magnetic plate 10 in a plurality of stages as in the illustrated example, and it is sufficient that the conductor coil 25 is continuous in at least one stage. In that case, a coil driving device 30 is provided for each stage, and a shaking current is individually applied to the conductive wire coil 25 for each stage.
[実験例3]
図3のように各段の環帯状磁性板10の各辺に所定ピッチTで連続的に導線コイル25に巻き付けた開放型磁気シールド構造5zにおいて,図3(D)及び(E)に示す所定ピッチTの導線コイル25のコイル電流Ia,Icを,図2(D)及び(E)に示す導線コイル25のコイル電流Ia,IcのようにXY平面上で近付ければ,図3の1段コイル20の作る図5の磁場分布を,図2の1段コイル20の作る図4の磁場分布に近付けて漏洩磁場を低減することが期待できる。そこで,図3の環帯状磁性板10の各辺(900mm)に連続的に巻き付ける導線コイル25の所定ピッチTを,(a)100mm(900mm幅で9ターン),(b)50mm(900mm幅では18ターン),(c)20mm(900mm幅では45ターン),(d)10mm(900mm幅では90ターン)と変えながら,評価対象域Rの漏洩磁場を数値シミュレーションにより順次求める実験を繰り返した。
[Experimental example 3]
As shown in FIG. 3, in the open type magnetic shield structure 5z in which each side of the ring-shaped magnetic plate 10 of each stage is continuously wound around the conductive wire coil 25 at a predetermined pitch T, a predetermined shape shown in FIGS. If the coil currents Ia and Ic of the conductor coil 25 having the pitch T are brought closer on the XY plane like the coil currents Ia and Ic of the conductor coil 25 shown in FIGS. 2D and 2E, one step in FIG. It can be expected that the magnetic field distribution of FIG. 5 formed by the coil 20 is made closer to the magnetic field distribution of FIG. Therefore, the predetermined pitch T of the conductive wire coil 25 continuously wound around each side (900 mm) of the ring-shaped magnetic plate 10 in FIG. 3 is set to (a) 100 mm (9 turns at 900 mm width) and (b) 50 mm (900 mm width at 900 mm width). Experiments were repeated in which the leakage magnetic field in the evaluation target region R was sequentially obtained by numerical simulation while changing the values to 18 turns), (c) 20 mm (45 turns for a 900 mm width), and (d) 10 mm (90 turns for a 900 mm width).
導線コイル25の所定ピッチTに拘わらず,環帯状磁性板10の内部に誘起される磁束密度を実験例1(図2の1段コイルの場合)と揃えると,(a)所定ピッチT=100mmのときはシェイキング電流の電流値を1.414A,(b)50mmのときは1.118A,(c)20mmのときは1.020A,(d)10mmのときは1.005Aとなる。また,所定ピッチTを小さくするとターン数(巻き数)が多くなるので,ターン数の増加に応じてシェイキング電流の電流値を小さくすることにより,シェイキングノイズの漏洩を更に低減することが期待できる。 Regardless of the predetermined pitch T of the conductor coil 25, if the magnetic flux density induced inside the annular magnetic plate 10 is made equal to that of the first experimental example (in the case of the single-stage coil in FIG. 2), (a) the predetermined pitch T = 100 mm In this case, the current value of the shaking current is 1.414 A, (b) 50 mm, 1.118 A, (c) 20 mm, 1.020 A, and (d) 10 mm, 1.005 A. Further, when the predetermined pitch T is reduced, the number of turns (the number of turns) increases, so that the leakage of shaking noise can be expected to be further reduced by reducing the value of the shaking current in accordance with the increase in the number of turns.
一般に環帯状磁性板10の内部をシェイキングするために必要なシェイキング電流(励磁電流)は,巻き付けた導線コイル25の電流値(A)×ターン数(T)=アンペアターン(AT)で表すことができる。そこで本実験では,導線コイル25の所定ピッチTに拘わらず,ターン数を考慮してアンペアターン(AT)が実験例1(図2の1段コイルの場合)と一致するように,(a)所定ピッチT=100mmのときはシェイキング電流の電流値を1.414A,(b)50mmのときは0.559A,(c)20mmのときは0.204A,(d)10mmのときは0.100Aに設定した。本実験の結果を表1に示す。 In general, a shaking current (excitation current) necessary for shaking the inside of the ring-shaped magnetic plate 10 can be expressed by a current value (A) of the wound conductive wire coil 25 × the number of turns (T) = ampere turn (AT). it can. Therefore, in this experiment, irrespective of the predetermined pitch T of the conductor coil 25, (a) such that the ampere turn (AT) matches the experimental example 1 (in the case of the single-stage coil in FIG. 2) in consideration of the number of turns. The current value of the shaking current is 1.414 A when the predetermined pitch T = 100 mm, 0.559 A when (b) 50 mm, 0.204 A when (c) 20 mm, and 0.100 A when (d) 10 mm. Set to. Table 1 shows the results of this experiment.
表1の5段コイル(連続)の欄は,図8のように5段の環帯状磁性板10に所定ピッチ100mmで連続的に巻き付けた導線コイル25の評価対象域Rにおける漏洩磁場を示す。また表1の1段コイル(連続)の漏洩磁場の平均値欄は,図3の1段導線コイル25の所定ピッチTを100mm,50mm,20mm,10mmと切り替えたときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示している。表1の5段コイル(連続)との比率欄から分かるように,図3の1段コイルのつくる水平面及び垂直面の漏洩磁場はともに,図8の5段コイルのつくる水平面及び垂直面の漏洩磁場よりも大きいが,1段コイルの所定ピッチTを小さく(ターン数を大きく)するとコイル電流Ia,IcがXY平面において接近するので(図3(D)及び(E)参照),漏洩磁場の打ち消し率を高めて水平面及び垂直面の漏洩磁場を何れも低減することができる。 The column of the five-stage coil (continuous) in Table 1 shows the leakage magnetic field in the evaluation target area R of the conductor coil 25 continuously wound at a predetermined pitch of 100 mm around the five-stage ring-shaped magnetic plate 10 as shown in FIG. The average value field of the leakage magnetic field of the single-stage coil (continuous) in Table 1 indicates the leakage of the evaluation target area R when the predetermined pitch T of the single-stage conductive coil 25 in FIG. 3 is switched to 100 mm, 50 mm, 20 mm, and 10 mm. The average value of the magnetic field in the horizontal plane and the change of the average value in the vertical plane are shown. As can be seen from the column of the ratio with the five-stage coil (continuous) in Table 1, both the horizontal and vertical leakage magnetic fields created by the one-stage coil of FIG. Although it is larger than the magnetic field, if the predetermined pitch T of the single-stage coil is reduced (the number of turns is increased), the coil currents Ia and Ic approach in the XY plane (see FIGS. 3D and 3E). By increasing the cancellation ratio, it is possible to reduce both the leakage magnetic fields on the horizontal plane and the vertical plane.
表1から,磁気シールド空間1を囲む環帯状磁性板10の各段に軸方向に沿って導線コイル(1段コイル)20を所定ピッチTで巻き付け,導線コイル25外側の漏洩磁場が打ち消されるように導線コイル25の所定巻き付けピッチTを設定することにより,環帯状磁性板10の内部の磁束を均等に揺らして磁気特性を効率的に向上させると同時に,磁気シールド空間1への漏洩磁場(シェイキングノイズ)を小さく抑えられることが分かる。ただし,1段コイルの所定ピッチTを10mmにまで小さくしても,漏洩磁場は所定ピッチが100mmの5段コイルよりも小さくならないので,漏洩磁場を更に低減するためにはピッチの設定以外の対策が求められる。 From Table 1, it can be seen that the conductor coil (first-stage coil) 20 is wound at a predetermined pitch T along each axis of the annular magnetic plate 10 surrounding the magnetic shield space 1 in the axial direction so that the leakage magnetic field outside the conductor coil 25 is canceled. By setting a predetermined winding pitch T of the wire coil 25 to uniformly fluctuate the magnetic flux inside the ring-shaped magnetic plate 10 to improve the magnetic characteristics efficiently, at the same time, the leakage magnetic field to the magnetic shield space 1 (shaking) It can be seen that noise) can be reduced. However, even if the predetermined pitch T of the one-stage coil is reduced to 10 mm, the leakage magnetic field does not become smaller than that of the five-stage coil having the predetermined pitch of 100 mm. Is required.
もっとも,表1は図3のモデル実験による漏洩磁場のシミュレーション結果であり,モデルが異なれば漏洩磁場も異なってくる。図3のモデル実験は比較的小型であるため漏洩磁場が大きくなっているが,磁気シールド空間1の大きさが変わると距離減衰効果によって漏洩磁場は低下し,通常の医療施設や研究施設の磁気シールドルームのサイズまで大きくすると漏洩磁場は大幅に低下するものと考えられる。すなわち,設計条件及び要求性能に応じて導線コイル25の所定ピッチTを適切に設定すれば,図3のように環帯状磁性板10の各段に所定ピッチTで連続的に導線コイル25に巻き付けたシェイキング式開放型磁気シールド構造は十分に実用化可能である。 However, Table 1 shows the simulation results of the stray magnetic field by the model experiment of FIG. 3, and the stray magnetic field differs with different models. In the model experiment shown in FIG. 3, the leakage magnetic field is large due to its relatively small size. However, if the size of the magnetic shield space 1 changes, the leakage magnetic field decreases due to the distance attenuation effect, and the magnetic field of a normal medical facility or research facility is reduced. It is considered that the leakage magnetic field is greatly reduced when the size of the shield room is increased. That is, if the predetermined pitch T of the conductive coil 25 is appropriately set according to the design conditions and the required performance, the conductive coil 25 is continuously wound at a predetermined pitch T on each stage of the annular magnetic plate 10 as shown in FIG. The shaking-type open magnetic shield structure is sufficiently practical.
[実験例4]
実験例3で確認したように,磁気シールド空間1を囲む環帯状磁性板10の各段に導線コイル25を連続的に巻き付けた開放型磁気シールド構造5zは比較的大きなシェイキングノイズ(垂直成分)を漏洩することから,図1(A)に示すように,外形(中心軸の長さ)950mmの環帯状磁性板10(磁性体回路)を5段配置した開放型磁気シールド構造5zにおいて,各環帯状磁性板10の環状軸方向に分散した複数の所定部位(各辺3箇所の部位)にそれぞれ導線コイルユニット20を環状軸と実質上直角向きに同じ右巻き又は左巻きで3ターン巻き付けることにより取り付け,巻き付け部の両端22a,22bを平行に隣接させて引き出してコイル駆動装置30により同じ向きのシェイキング電流I1(周波数200Hz)を印加した場合の漏洩磁場(シェイキングノイズ)を数値シミュレーションにより求める実験を行った。各導線コイルユニット20の引き出し部22a,22bは,図1(E)のように撚り線として引き出してコイル駆動装置30に並列に接続した。
[Experimental example 4]
As confirmed in Experimental Example 3, the open-type magnetic shield structure 5z in which the conductor coil 25 is continuously wound around each step of the annular magnetic plate 10 surrounding the magnetic shield space 1 generates relatively large shaking noise (vertical component). Because of the leakage, as shown in FIG. 1 (A), in the open-type magnetic shield structure 5z in which five annular belt-shaped magnetic plates 10 (magnetic circuits) each having an outer shape (length of the central axis) of 950 mm are arranged. The conductive coil unit 20 is attached to a plurality of predetermined portions (three portions on each side) dispersed in the annular axis direction of the belt-shaped magnetic plate 10 by winding the same right-handed or left-handed three turns substantially perpendicular to the annular axis. The coil drive device 30 applies a shaking current I1 (frequency 200 Hz) in the same direction by pulling out the two ends 22a and 22b of the wrapped portion in parallel and adjacent. Leakage magnetic field when (shaking noise) Experiments were conducted to determine the numerical simulation. The lead portions 22a and 22b of each lead coil unit 20 were drawn as stranded wires as shown in FIG. 1 (E) and connected to the coil driving device 30 in parallel.
本実験においても,アンペアターン(AT)が実験例1(図2の1段コイルの場合)及び実験例3(図3の1段コイルの場合)と一致するように,シェイキング電流(励磁電流)の電流値を設定した。すなわち,図1(A)では環帯状磁性板10の各辺(900mm)あたり9ターンであることから,実験例1及び実験例3と同様にシェイキング電流(励磁電流)が9ATとなるように,各導線コイルユニット20に流す電流値を1Aに設定した。シェイキング電流の大きさを変更する場合は,各導線コイルユニット20に流す電流値により調整できるが,各所定部位における導線コイルユニット20の巻き数(ターン数)により調整することも可能であり,各環帯状磁性板10における導線コイルユニット20の取り付け部位の増減により調整することも可能である。本実験の結果を,上述した実験例3の結果と共に表1に合わせて示す。 Also in this experiment, the shaking current (excitation current) was set so that the ampere-turn (AT) matched Experimental Example 1 (in the case of the single-stage coil in FIG. 2) and Experimental Example 3 (in the case of the single-stage coil in FIG. 3). Was set. That is, in FIG. 1A, since there are 9 turns per each side (900 mm) of the annular magnetic plate 10, the shaking current (excitation current) becomes 9AT as in the first and third examples. The value of the current flowing through each conductor coil unit 20 was set to 1A. When the magnitude of the shaking current is changed, the shaking current can be adjusted by the value of the current flowing through each conductor coil unit 20, but can also be adjusted by the number of turns (the number of turns) of the conductor coil unit 20 at each predetermined portion. It can be adjusted by increasing or decreasing the mounting position of the conductive coil unit 20 on the annular magnetic plate 10. The results of this experiment are shown in Table 1 together with the results of Experimental Example 3 described above.
表1のコイル分散(上下2欄のうち上側欄)の漏洩磁場の平均値欄は,図1(A)のように各環帯状磁性板10の環状軸方向に分散して取り付けた導線コイルユニット20に同じ向きのシェイキング電流I1を印加したときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示す。表1の5段コイル(連続)との比率欄から分かるように,図1(A)のように環帯状磁性板10に分散させた導線コイルユニット20のつくる漏洩磁場は,水平面及び垂直面共に図8の5段コイルのつくる漏洩磁場の0.02以下(1/50以下)であり,図3のように環帯状磁性板10に連続的に巻き付けた導線コイル25のつくる漏洩磁場に比して十分に小さくできることを示している。 The average value column of the stray magnetic field in the coil distribution (upper column of the upper and lower two columns) in Table 1 is a conductor coil distributed and mounted in the annular axis direction of each annular magnetic plate 10 as shown in FIG. The average value in the horizontal plane and the change in the average value in the vertical plane of the leakage magnetic field in the evaluation target area R when the shaking current I1 in the same direction is applied to the unit 20 are shown. As can be seen from the column of the ratio with the five-stage coil (continuous) in Table 1, the leakage magnetic field produced by the conductor coil unit 20 dispersed in the annular magnetic plate 10 as shown in FIG. It is 0.02 or less (less than 1/50) of the leakage magnetic field produced by the five-stage coil shown in FIG. 8, and is smaller than the leakage magnetic field produced by the conductor coil 25 continuously wound around the ring-shaped magnetic plate 10 as shown in FIG. It is possible to make it small enough.
本実験により,環帯状磁性板10の環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付けてシェイキング電流I1を流すことにより,環帯状磁性板10のシェイキングに伴う漏洩磁場(シェイキングノイズ)を大きく低減できることを確認できた。磁性体回路の環状軸と実質上直角向きに巻き付けた導線コイルユニット20は,磁性体回路の断面の重心に対して点対称で流れる逆向き電流によって巻き付け部からのシェイキングノイズを効率的に打ち消すことができると共に,平行に隣接させて引き出した引き出し部22a,22bを流れる逆向き電流によって巻き付け部以外からのシェイキングノイズも効率的に打ち消すことができたからと考えられる。 In this experiment, the shaking of the ring-shaped magnetic plate 10 was performed by winding the conductive coil unit 20 around a plurality of portions dispersed in the direction of the ring axis of the ring-shaped magnetic plate 10 in a direction substantially perpendicular to the ring axis and passing the shaking current I1. It has been confirmed that the leakage magnetic field (shaking noise) accompanying the above can be greatly reduced. The wire coil unit 20 wound substantially perpendicular to the annular axis of the magnetic circuit effectively eliminates shaking noise from the winding portion by a reverse current flowing point-symmetrically with respect to the center of gravity of the cross section of the magnetic circuit. This is considered to be due to the fact that the shaking noise from portions other than the winding portion could be efficiently canceled by the reverse currents flowing through the lead portions 22a and 22b drawn out in parallel and adjacent to each other.
この実験結果から,図1のシェイキング式開放型磁気シールド構造によれば,磁性体内側の磁束を均等に揺らして磁気特性を効率的に向上させつつ,磁気シールドルーム内への漏洩磁場を十分小さく抑えることができ,遮蔽性能を確実且つ大幅に向上させることができる。また,磁気シールド空間1の大きさが変わると距離減衰効果によって漏洩磁場は低下するので,通常の医療施設や研究施設の磁気シールドルームに適用した場合の漏洩磁場は極めて小さくなると考えられる。設計条件及び要求性能に応じて導線コイルユニット20の巻き付け部位(取り付けピッチ),巻き付け回数(ターン数),印加するシェイキング電流の電流値及び向きを適切に設定することにより,外乱磁場変動を1nT以下に制御した磁気シールドルームを実現することができる。 From these experimental results, the shaking type open magnetic shield structure of FIG. 1 shows that the magnetic flux inside the magnetic material is evenly fluctuated and the magnetic properties are efficiently improved, while the leakage magnetic field into the magnetic shield room is sufficiently small. The shielding performance can be reliably and significantly improved. Further, if the size of the magnetic shield space 1 changes, the leakage magnetic field decreases due to the distance attenuation effect, so it is considered that the leakage magnetic field when applied to a magnetic shield room of a normal medical facility or research facility becomes extremely small. By appropriately setting the winding part (mounting pitch), the number of turns (turn number), and the value and direction of the shaking current to be applied to the conductive coil unit 20 according to design conditions and required performance, the disturbance magnetic field fluctuation is 1 nT or less. A magnetically shielded room can be realized.
[実験例5]
上述したように,図1のように環帯状磁性板10の各段に環状軸と実質上直角向きに導線コイルユニット20を巻き付けてシェイキング電流I1を流すことにより,シェイキングノイズを十分小さく抑えることができるが,環帯状磁性板10の隣接する段毎に漏洩するシェイキングノイズを逆向きとすれば,隣接する段毎の漏洩磁場を互いに打ち消すことで磁気シールド空間1へのシェイキングノイズの漏洩を更に低減することが期待できる。このことを確認するため,図10(A)に示すように,環帯状磁性板10の各段に導線コイルユニット20を同じ右巻き又は左巻きとなるように巻き付けたうえで,コイル駆動装置30a,30bにより環帯状磁性板10の隣接する段毎に逆向きのシェイキング電流I1,I2(周波数200Hz)を印加し,磁気シールド空間1の漏洩磁場を数値シミュレーションにより求める実験を行った。本実験の結果を,上述した実験例4の結果と共に表1に合わせて示す。
[Experimental example 5]
As described above, by shaping the conductive coil unit 20 around each step of the annular magnetic plate 10 in a direction substantially perpendicular to the annular axis as shown in FIG. 1 and flowing the shaking current I1, shaking noise can be sufficiently suppressed. However, if the shaking noise that leaks from each adjacent step of the annular magnetic plate 10 is reversed, the leakage of the shaking noise to the magnetic shield space 1 can be further reduced by canceling out the leakage magnetic fields of each adjacent step. Can be expected. To confirm this, as shown in FIG. 10 (A), the wire coil unit 20 is wound around each step of the ring-shaped magnetic plate 10 in the same right-handed or left-handed manner. An experiment was performed in which opposite shaking currents I1 and I2 (frequency 200 Hz) were applied to adjacent stages of the ring-shaped magnetic plate 10 by 30b, and the leakage magnetic field of the magnetic shield space 1 was obtained by numerical simulation. The results of this experiment are shown in Table 1 together with the results of Experimental Example 4 described above.
表1のコイル分散(上下2欄のうち下側欄)の漏洩磁場の平均値欄は,図10(A)のように環帯状磁性板10の隣接する段毎に逆向きのシェイキング電流I1,I2を印加したときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示している。表1の5段コイル(連続)との比率欄から分かるように,図10(A)の漏洩磁場は,水平面及び垂直面共に図8の5段コイルのつくる漏洩磁場の0.05以下(1/200以下)であり,図1(A)のように環帯状磁性板10の各段に同じ向きのシェイキング電流I1を印加した場合に比して漏洩磁場(シェイキングノイズ)を1/4程度に小さくできることを示している。 The average value column of the stray magnetic field of the coil distribution (lower column of the upper and lower two columns) in Table 1 shows the shaking currents I1, I2 in the opposite directions for each adjacent stage of the ring-shaped magnetic plate 10 as shown in FIG. The average value in the horizontal plane and the change in the average value in the vertical plane of the leakage magnetic field in the evaluation target area R when I2 is applied are shown. As can be seen from the column of the ratio with the five-stage coil (continuous) in Table 1, the leakage magnetic field in FIG. 10A is 0.05 or less (1) of the leakage magnetic field created by the five-stage coil in FIG. / 200 or less), and the leakage magnetic field (shaking noise) is reduced to about 1/4 as compared with the case where the shaking current I1 in the same direction is applied to each step of the annular magnetic plate 10 as shown in FIG. This shows that it can be made smaller.
また,図10(B)に示すように,環帯状磁性板10の隣接する段毎に導線コイルユニット20を逆の右巻き又は左巻きとなるように巻き付けたうえで,コイル駆動装置30により環帯状磁性板10の各段に同じ向きのシェイキング電流を印加し,磁気シールド空間1の漏洩磁場を数値シミュレーションにより求める実験を行った。本実験の結果も,上述した表1のコイル分散(上下2欄のうち下側欄)と同様であった。これらの実験結果から,磁気シールド空間1を囲む環帯状磁性板10の各段に印加するシェイキング電流I1の向き又は環帯状磁性板10の各段に巻き付ける導線コイルユニット20の巻き付け向きを逆向きとすることにより,隣接する段毎の漏洩磁場を互いに打ち消すことで磁気シールド空間1へのシェイキングノイズの漏洩を低減できることを確認できた。 Also, as shown in FIG. 10B, the coil unit 20 is wound in the opposite right-handed or left-handed winding direction for each adjacent step of the ring-shaped magnetic plate 10, and then the ring-shaped magnetic plate 10 is wound by the coil driving device 30. An experiment was performed in which a shaking current in the same direction was applied to each stage of the magnetic plate 10 and the leakage magnetic field of the magnetic shield space 1 was obtained by numerical simulation. The results of this experiment were the same as the coil dispersion (lower column of the upper and lower two columns) in Table 1 described above. From these experimental results, the direction of the shaking current I1 applied to each step of the ring-shaped magnetic plate 10 surrounding the magnetic shield space 1 or the direction of winding of the conductive coil unit 20 wound around each step of the ring-shaped magnetic plate 10 is reversed. Thus, it was confirmed that the leakage of the shaking noise to the magnetic shield space 1 can be reduced by canceling out the leakage magnetic fields of the adjacent stages.
こうして本発明の目的である「シェイキングノイズの漏洩を小さく抑えることができる低漏洩シェイキング式開放型磁気シールド構造」の提供を達成できる。 Thus, it is possible to achieve the object of the present invention to provide a "low-leakage shaking-type open magnetic shield structure that can suppress the leakage of shaking noise".
図1の開放型磁気シールド構造5zは主にXY平面の一方向又は二方向の外乱磁場の遮蔽を目的としているが,外乱磁場の方向が決まっていない磁気シールド対象空間1において三方向の外乱磁場を遮蔽対象とする場合は,図1の構造を基本ユニットとして,図12(A)〜(C)のような複数ユニットを組み合わせた開放型磁気シールド構造とすることができる。図12は,医療施設や研究施設に設置される各辺外寸2550mmを基本サイズとした立方体形状の開放型磁気シールドルームの一例を示す。 Although the open type magnetic shield structure 5z of FIG. 1 is mainly intended to shield a disturbance magnetic field in one or two directions in the XY plane, a disturbance magnetic field in three directions is provided in the magnetic shield target space 1 in which the direction of the disturbance magnetic field is not determined. In the case where is to be shielded, the structure shown in FIG. 1 can be used as a basic unit to form an open magnetic shield structure in which a plurality of units are combined as shown in FIGS. FIG. 12 shows an example of a cubic open magnetic shield room having a basic size of 2550 mm on each side, which is installed in a medical facility or a research facility.
図12(A)は,磁気シールド対象空間1を貫く第1方向軸Az(Z軸)と所定間隔dzで交差する複数段の平行な平面Pz上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた図1と同様の開放型磁気シールド構造5zを示す。また,図12(B)は磁気シールド対象空間1を貫く第2方向軸Ax(X軸)と所定間隔dxで交差する複数段の平行な平面Px上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた開放型磁気シールド構造5xを示し,図12(C)は磁気シールド対象空間1を貫く第3方向軸Ay(Y軸)と所定間隔dyで交差する複数段の平行な平面Py上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた開放型磁気シールド構造5yを示す。磁気シールド対象空間1の周囲に3つの開放型磁気シールド構造5z,5x,5yを入れ子状に配置し,或いは開放型磁気シールド構造5z,5x,5yのうち何れか2つを選択して入れ子状に配置して一体化することにより,三方向の外乱磁場を遮蔽する磁気シールドルームとすることできる。 FIG. 12A shows a case where the target space 1 is surrounded by a predetermined band width W on a plurality of parallel planes Pz which intersect at a predetermined interval dz with a first direction axis Az (Z axis) penetrating the magnetic shield target space 1. An open magnetic shield structure 5z similar to FIG. 1 provided with the annular magnetic plate 10 as described above is shown. FIG. 12B shows the target space 1 with a predetermined band width W on a plurality of parallel planes Px intersecting at a predetermined interval dx with a second direction axis Ax (X axis) penetrating the magnetic shield target space 1. FIG. 12C shows an open type magnetic shield structure 5x in which an annular magnetic plate 10 is provided so as to surround the same, and FIG. 12C shows a plurality of axes which intersect with a third direction axis Ay (Y axis) passing through the magnetic shield target space 1 at a predetermined interval dy. The open type magnetic shield structure 5y in which the annular magnetic plate 10 is provided so as to surround the target space 1 with a predetermined band width W on a plane Py parallel to the steps is shown. Three open magnetic shield structures 5z, 5x, 5y are nested around the magnetic shield target space 1, or any two of the open magnetic shield structures 5z, 5x, 5y are selected and nested. By arranging and integrating them, a magnetically shielded room that shields a disturbance magnetic field in three directions can be provided.
図12(A)〜(C)の環帯状磁性板10は,それぞれコバルト系アモルファス(厚さ23μm×20枚積層,幅50mm)の帯板を井桁状に組んで構成し,例えば所定間隔dz=200mmで12段配置して開放型磁気シールド構造5z,5x,5yとすることができる。開放型磁気シールド構造5z,5xには,同じ帯状磁性板(コバルト系アモルファス)10で構成された扉枠14a,14b,14c,14dで囲まれた開口が設けられ,その開口にPCパーマロイ板(厚さ1mm×2枚積層)の2層(内側,外側)構造の扉12が取り付けられている。 Each of the ring-shaped magnetic plates 10 shown in FIGS. 12A to 12C is formed by assembling strips of cobalt-based amorphous (thickness of 23 μm × 20 sheets, width of 50 mm) in a grid pattern. The open magnetic shield structures 5z, 5x, and 5y can be arranged in 12 stages at 200 mm. The open magnetic shield structures 5z and 5x are provided with openings surrounded by door frames 14a, 14b, 14c and 14d made of the same band-like magnetic plate (cobalt-based amorphous) 10, and the PC permalloy plate ( A door 12 having a two-layer (inside and outside) structure with a thickness of 1 mm × two layers is attached.
開放型磁気シールド構造5z,5x,5yの各段の環帯状磁性板10には,図1,図10,図11の場合と同様にそれぞれ環状軸方向に分散した複数部位にそれぞれ環状軸と実質上直角向きに導線コイルユニット20を巻き付け,その両端22a,22bを平行に隣接させて引き出してコイル駆動装置30と接続し,コイル駆動装置30により各導線コイルユニット20に所定周波数のシェイキング電流を印加して磁気シールド構造5z,5x,5yを磁気シェイキングする。導線コイルユニット20の巻き付け部位(取り付けピッチ),巻き付け回数(ターン数),導線コイルユニット20に印加するシェイキング電流の電流値及び向きは,設計条件や要求性能(求められる磁場環境)に応じて適宜決定することができる。 The annular magnetic plate 10 of each stage of the open type magnetic shield structure 5z, 5x, 5y has substantially the same shape as that of FIGS. The wire coil unit 20 is wound in a direction perpendicular to the upper direction, and both ends 22a and 22b are pulled out in parallel and connected to the coil driving device 30, and a shaking current of a predetermined frequency is applied to each wire coil unit 20 by the coil driving device 30. Then, the magnetic shield structures 5z, 5x, 5y are magnetically shaken. The winding part (mounting pitch), number of turns (turn number), and the value and direction of the shaking current applied to the conductive coil unit 20 are appropriately determined according to design conditions and required performance (magnetic field environment required). Can be determined.
[実験例6]
図13(A)は,開口のない開放型磁気シールド構造5yの各段の環帯状磁性板(磁性体回路)10に導線コイルユニット20を所定相互間隔(取り付けピッチ)Tで取り付ける方法の一例を示す。図13(A)において,導線コイルユニット20の巻き付け部位の相互間隔Tにより環帯状磁性板10の内部に誘起される磁束密度の変化を確認するため,導線コイルユニット20の巻き付け部位の相互間隔Tを(a)150mm(一辺の巻き付け部位15箇所),(b)300mm(一辺の巻き付け部位8箇所),(c)525mm(一辺の巻き付け部位5箇所),(d)1050mm(一辺の巻き付け部位3箇所)に切り替えながら,環帯状磁性板10の内部に誘導される磁束密度の分布を数値シミュレーションにより求める実験を行った。
[Experimental example 6]
FIG. 13A shows an example of a method of attaching the conductive coil units 20 to the annular magnetic plate (magnetic circuit) 10 of each stage of the open magnetic shield structure 5y having no opening at a predetermined mutual interval (attachment pitch) T. Show. In FIG. 13A, in order to confirm the change in the magnetic flux density induced inside the annular magnetic plate 10 by the mutual interval T between the winding portions of the conductive coil unit 20, the mutual interval T between the winding portions of the conductive coil unit 20 is checked. (A) 150 mm (15 wrapping parts on one side), (b) 300 mm (8 wrapping parts on one side), (c) 525 mm (5 wrapping parts on one side), (d) 1050 mm (3 wrapping parts on one side) An experiment was performed in which the distribution of the magnetic flux density induced inside the ring-shaped magnetic plate 10 was determined by numerical simulation while switching to the position (a).
本実験では,相互間隔Tに拘わらず各巻き付け部位に環状軸と実質上直角向きに導線コイルユニット20を8ターン巻き付け(巻き付け回数=8T),図1(C)及び(D)に示すように,各巻き付け部位に幅52mm×高さ5mmの8個の閉回路を2mmピッチで形成した。また,相互間隔Tに拘わらず環帯状磁性板10の内部に誘起される磁束密度が揃えるため,環帯状磁性板(磁性体回路)10の1辺当たりのシェイキング電流(励磁電流)が12ATとなるように,(a)相互間隔T=150mmのときはシェイキング電流I1の電流値を0.1A,(b)300mmのときは0.1875A,(c)525mmのときは0.3A,(d)1050mmのときは0.5Aに設定した。本実験の結果を表2に示す。 In this experiment, irrespective of the interval T, the conductor coil unit 20 was wound around each winding portion in a direction substantially perpendicular to the annular axis for eight turns (number of windings = 8T), as shown in FIGS. 1 (C) and (D). Eight closed circuits each having a width of 52 mm and a height of 5 mm were formed at a pitch of 2 mm at each winding site. Further, since the magnetic flux density induced inside the annular magnetic plate 10 is uniform regardless of the mutual interval T, the shaking current (exciting current) per side of the annular magnetic plate (magnetic circuit) 10 is 12AT. Thus, (a) the current value of the shaking current I1 is 0.1 A when the mutual interval T is 150 mm, (b) 0.1875 A when the distance is 300 mm, (C) 0.3 A when the distance is 525 mm, and (d). At 1050 mm, it was set to 0.5A. Table 2 shows the results of this experiment.
表2の磁束密度の欄は,図13(A)の環帯状磁性板(磁性体回路)10において,相互間隔Tを切り替えながら導線コイルユニット20にシェイキング電流を印加したときに,コーナー部を除く磁性体内部に誘起される磁束密度の最大値,最小値,及び最小値を示している。表2から分かるように,導線コイルユニット20の巻き付け部位の相互間隔Tが大きいほど誘起される磁束密度のバラツキ(平均値に対する(最大値−最小値)の割合)も大きくなるが,相互間隔Tが525mm以下であれば磁束密度のバラツキは6%程度以下であり,環帯状磁性板10の内側を均等に揺らして磁気シェイキング効果を得るという観点からは問題ないといえる。それに対して相互間隔Tが1050mmの場合は,磁束密度のバラツキが30%を超えており,環帯状磁性板10の内側を均等に揺らすことが難しくなっている。 The column of the magnetic flux density in Table 2 excludes the corners when the shaking current is applied to the conductive coil unit 20 while switching the mutual interval T in the annular magnetic plate (magnetic circuit) 10 of FIG. It shows the maximum value, the minimum value, and the minimum value of the magnetic flux density induced inside the magnetic material. As can be seen from Table 2, the variation in the induced magnetic flux density (the ratio of (maximum value-minimum value) to the average value) increases as the mutual interval T between the winding portions of the wire coil unit 20 increases. Is 525 mm or less, the variation in the magnetic flux density is about 6% or less, and it can be said that there is no problem from the viewpoint of uniformly shaking the inside of the annular magnetic plate 10 to obtain the magnetic shaking effect. On the other hand, when the interval T is 1050 mm, the variation of the magnetic flux density exceeds 30%, and it is difficult to evenly swing the inside of the annular magnetic plate 10.
本実験により,環帯状磁性板10の各段の導線コイルユニット20の巻き付け部位の相互間隔Tは,環帯状磁性板10の内部に誘起されるシェイキング磁場が均等となる範囲,例えば磁束密度のバラツキが6%以下となるように設定することが望ましいことが確認できた。従って,図13(A)に示すように,例えば525mmの相互間隔Tで導線コイルユニット20を巻き付けた環帯状磁性板10を,第3方向軸Ay(Y軸)と所定間隔dyで交差する複数段の平行な平面Py上にそれぞれ配置することにより,開口のない開放型磁気シールド構造5yを構築することができる。開口のある開放型磁気シールド構造5z及び5xの環帯状磁性板10も同様に構成することができる。 According to this experiment, the mutual interval T between the winding portions of the conductive coil unit 20 at each stage of the annular magnetic plate 10 is within the range where the shaking magnetic field induced inside the annular magnetic plate 10 is uniform, for example, the variation of the magnetic flux density. Was desirably set to be 6% or less. Therefore, as shown in FIG. 13 (A), for example, a plurality of ring-shaped magnetic plates 10 around which the conductor coil units 20 are wound with a mutual interval T of 525 mm intersect with the third direction axis Ay (Y axis) at a predetermined interval dy. By arranging them on the parallel planes Py of the steps, an open magnetic shield structure 5y having no opening can be constructed. The ring-shaped magnetic plates 10 of the open type magnetic shield structures 5z and 5x having openings can be similarly configured.
図13(B)は,開口のある開放型磁気シールド構造5zの環帯状磁性板10に導線コイルユニット20を所定相互間隔(取り付けピッチ)Tで取り付ける方法の一例を示す。図示例は,環帯状磁性板10の各辺のうち扉12のある辺のみに導線コイルユニット20を取り付けているが,他の3辺についても同様に所定相互間隔Tで導線コイルユニット20が取り付けられる。開口のある開放型磁気シールド構造5xの環帯状磁性板10も同様に構成することができる。 FIG. 13B shows an example of a method of mounting the conductive coil units 20 at a predetermined mutual interval (mounting pitch) T on the annular magnetic plate 10 of the open magnetic shield structure 5z having an opening. In the illustrated example, the conductor coil unit 20 is attached only to the side of the ring-shaped magnetic plate 10 where the door 12 is located, but the conductor coil unit 20 is attached to the other three sides at a predetermined mutual interval T in the same manner. Can be The ring-shaped magnetic plate 10 having an open magnetic shield structure 5x having an opening can be similarly configured.
図13(A)及び(B)の環帯状磁性板10に取り付けた各導線コイルユニット20の両端22a,22bを平行に隣接させて引き出し,例えば図1(A),図10(A),又は図10(B)のようにコイル駆動装置30と接続し,コイル駆動装置30により各導線コイルユニット20の引き出し部22a,22bにシェイキング電流I1を並列に印加する。或いは,図11(A)のように各導線コイルユニット20の引き出し部22a,22bを結合導線26によって直列に結線し,コイル駆動装置30によってシェイキング電流I1を直列に印加すると共に,結合導線26と隣接させて平行に配置したループ導線27に逆向きの電流(−I1)を流す。 Both ends 22a and 22b of each wire coil unit 20 attached to the annular magnetic plate 10 of FIGS. 13A and 13B are drawn out in parallel and adjacent to each other, for example, as shown in FIGS. 1A, 10A, or As shown in FIG. 10B, the coil driving device 30 is connected, and the shaking current I1 is applied to the lead portions 22a and 22b of each conductive coil unit 20 in parallel by the coil driving device 30. Alternatively, as shown in FIG. 11 (A), the lead portions 22a and 22b of the respective conductor coil units 20 are connected in series by the coupling conductor 26, the shaking current I1 is applied in series by the coil driving device 30, and the coupling conductor 26 is connected to the coupling conductor 26. A current (−I1) in the opposite direction is caused to flow through the adjacent loop conductor 27 that is arranged in parallel.
1…磁気シールド対象空間 2…帯状磁性板
3…シールド簾体 5…開放型磁気シールド構造
8…磁気センサ 9…端縁(重ね合わせ部)
10…環帯状磁性板 12…扉
14…扉枠
20…導線コイルユニット 21…巻き付け部
22a,22b…引き出し部 23a,23b…入出力ループ導線
24a,24b…入出力ライン 25…導線コイル
26…結合導線 27…ループ導線
30…コイル駆動装置
40…磁気シールド部材 41…基材
42a,42b…磁性薄帯 43…導線コイル(シェイキングコイル)
44…入力端子 45…出力端子
Ax,Ay,Az…軸 d…間隔
I…電流 L…電流担体(コイル)
M…外乱磁場 O…中心点
Px,Py,Pz…平面 R…評価対象域
T…ピッチ W…環帯状磁性板の帯幅
DESCRIPTION OF SYMBOLS 1 ... Magnetic shield target space 2 ... Strip-shaped magnetic plate 3 ... Shield screen 5 ... Open magnetic shield structure 8 ... Magnetic sensor 9 ... Edge (overlapping part)
DESCRIPTION OF SYMBOLS 10 ... Ring-shaped magnetic plate 12 ... Door 14 ... Door frame 20 ... Conductor coil unit 21 ... Winding part 22a, 22b ... Leader 23a, 23b ... Input / output loop conductor 24a, 24b ... Input / output line 25 ... Conductor coil 26 ... Coupling Conducting wire 27 ... Loop conducting wire 30 ... Coil driving device 40 ... Magnetic shield member 41 ... Base materials 42a, 42b ... Magnetic ribbon 43 ... Conducting wire coil (shaking coil)
44 ... input terminal 45 ... output terminal Ax, Ay, Az ... axis d ... interval I ... current L ... current carrier (coil)
M: Disturbance magnetic field O: Center point Px, Py, Pz: Plane R: Evaluation area T: Pitch W: Band width of annular magnetic plate
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016030232A JP6628407B2 (en) | 2016-02-19 | 2016-02-19 | Low leakage shaking type open magnetic shield structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016030232A JP6628407B2 (en) | 2016-02-19 | 2016-02-19 | Low leakage shaking type open magnetic shield structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017147412A JP2017147412A (en) | 2017-08-24 |
JP6628407B2 true JP6628407B2 (en) | 2020-01-08 |
Family
ID=59683228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016030232A Expired - Fee Related JP6628407B2 (en) | 2016-02-19 | 2016-02-19 | Low leakage shaking type open magnetic shield structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6628407B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6668296B2 (en) | 2017-07-31 | 2020-03-18 | 矢崎総業株式会社 | Vehicle lighting system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691335B2 (en) * | 1986-01-17 | 1994-11-14 | 三菱電機株式会社 | Shield of electromagnetic equipment |
JPH03161998A (en) * | 1989-11-21 | 1991-07-11 | Kosuke Harada | Plane coil |
JP2002232182A (en) * | 2001-02-02 | 2002-08-16 | Mti:Kk | Magnetic shielding room of internal active magnetically shielded system |
JP2004179550A (en) * | 2002-11-28 | 2004-06-24 | Sangaku Renkei Kiko Kyushu:Kk | Split type cylindrical magnetic shield apparatus |
JP4794353B2 (en) * | 2006-05-17 | 2011-10-19 | 新日本製鐵株式会社 | Magnetic shield structure and magnetic shield method |
JP5328599B2 (en) * | 2009-10-09 | 2013-10-30 | 鹿島建設株式会社 | Composite magnetic shield structure and system |
JP5930400B2 (en) * | 2012-10-26 | 2016-06-08 | 鹿島建設株式会社 | Open magnetic shield structure with conductor circuit |
-
2016
- 2016-02-19 JP JP2016030232A patent/JP6628407B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017147412A (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1605742B1 (en) | Open magnetic shield structure and its magnetic frame | |
WO2011065455A1 (en) | Gradient coil, magnetic resonance imaging device, and method for designing coil pattern | |
JP6397349B2 (en) | Three-phase five-legged iron core and stationary electromagnetic equipment | |
JP2011082444A (en) | Structure and system for composite magnetic shield | |
CN104678334B (en) | A kind of gradient coil assembly, gradient coil and magnetic resonance imaging system | |
JP6628407B2 (en) | Low leakage shaking type open magnetic shield structure | |
KR101272239B1 (en) | shielding apparatus, shielding method and demagnetizing for measuring magnetic field | |
JP2010142586A (en) | Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method | |
JP5930400B2 (en) | Open magnetic shield structure with conductor circuit | |
US10217555B2 (en) | Compact inductor | |
JP6628404B2 (en) | Shaking type open magnetic shield structure | |
JP2008160027A (en) | Magnetic shielding body and magnetic shielding room | |
JP7165505B2 (en) | Active magnetic shield system and magnetocardiography system using it | |
JP6599258B2 (en) | Shaking type open magnetic shield structure | |
JP2011082228A (en) | Open type magnetic shielding structure and belt-like laminate magnetic plate for magnetic shielding | |
JP3020169B1 (en) | Magnetic shield device | |
JP2021158210A (en) | Multipolar electromagnet and accelerator using the same | |
JP2017020882A (en) | Three-dimensional magnetic field electromagnet device | |
CN110975964B (en) | Design method and application of magnetic device | |
JP5592193B2 (en) | Method of constructing a composite magnetic shield for disturbance magnetic fields | |
JP5900014B2 (en) | Magnetic shield device | |
JP5199426B2 (en) | Gradient magnetic field coil apparatus, nuclear magnetic resonance imaging apparatus, and coil pattern design method | |
JP4919433B2 (en) | Magnetic shield blade material and method of manufacturing the same | |
JPH03141619A (en) | Magnet for generating magnetic field uniform in wide region | |
JP3217466U (en) | Magnetic shield room |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6628407 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |