[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6626697B2 - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP6626697B2
JP6626697B2 JP2015228946A JP2015228946A JP6626697B2 JP 6626697 B2 JP6626697 B2 JP 6626697B2 JP 2015228946 A JP2015228946 A JP 2015228946A JP 2015228946 A JP2015228946 A JP 2015228946A JP 6626697 B2 JP6626697 B2 JP 6626697B2
Authority
JP
Japan
Prior art keywords
conductor
wiring
cavity
layer
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015228946A
Other languages
Japanese (ja)
Other versions
JP2017098404A (en
Inventor
義徳 中臣
義徳 中臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015228946A priority Critical patent/JP6626697B2/en
Publication of JP2017098404A publication Critical patent/JP2017098404A/en
Application granted granted Critical
Publication of JP6626697B2 publication Critical patent/JP6626697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、上面に別の電気基板が積載される複合基板用の配線基板およびその製造方法に関するものである。   The present invention relates to a wiring board for a composite board on which another electric board is mounted on the upper surface, and a method for manufacturing the same.

近年、携帯型のゲーム機や通信機器に代表される電子機器の小型、高機能化が進む中、それらに使用される配線基板にも小型、高機能化が要求されるようになっている。このような要求に対し、例えば半導体集積回路素子等の半導体素子を搭載する配線基板の上面に、別の電気基板が積載された、いわゆるPoP(Package on Package)とよばれる複合基板がある。   2. Description of the Related Art In recent years, as electronic devices typified by portable game machines and communication devices have become smaller and more sophisticated, wiring boards used therein have also been required to be smaller and more sophisticated. To meet such demands, there is a composite substrate called a so-called PoP (Package on Package) in which another electric substrate is mounted on the upper surface of a wiring substrate on which a semiconductor element such as a semiconductor integrated circuit element is mounted.

このような複合基板用の従来の配線基板の一例を、図4を基に説明する。
従来の配線基板Bは、積層部21と、半導体素子Sと、コンデンサーEと、モールド樹脂Rとを具備する。
An example of such a conventional wiring board for a composite board will be described with reference to FIG.
The conventional wiring board B includes a laminated portion 21, a semiconductor element S, a capacitor E, and a mold resin R.

積層部21は、複数の貫通孔22aを有する複数の絶縁層22および配線導体23から成る。
配線導体23は、絶縁層22の表面および貫通孔22a内に形成されている。
積層部21の上面に形成された配線導体23の一部には、半導体素子Sの電極、あるいはコンデンサーEの電極が例えば半田を介して接続されている。半導体素子Sは、コンデンサーEと配線導体23を介して電気的に接続されている。半導体素子Sにおいて過渡的な接地および電源電位の変動があった場合に、コンデンサーEから半導体素子Sに電荷を供給することにより、その過渡的な接地および電源電位の変動が抑制される。それにより半導体素子Sが安定的に作動する。コンデンサーEから半導体素子Sへの電荷の供給を良好に行うには、両者間を接続する配線導体23の電気抵抗値を小さくすることが重要である。
積層部21の下面に形成された配線導体23の一部は、外部の回路基板に接続される外部接続パッド24として機能する。
積層部21の上面には、配線導体23および半導体素子S、ならびにコンデンサーEを被覆するモールド樹脂Rが形成されている。
モールド樹脂Rには、積層部21の上面に形成された配線導体23を底面とする貫通孔25が形成されている。モールド樹脂Rの上面および貫通孔25内には配線導体26が形成されている。
モールド樹脂Rの上面に形成された配線導体26の一部は、別の電気基板(不図示)の電極と接続される基板接続パッドとして機能する。
これにより、別の電気基板(不図示)と配線基板Bとの間で電気信号を送受信することにより、半導体素子Sが作動する。
The laminated portion 21 includes a plurality of insulating layers 22 having a plurality of through holes 22a and a wiring conductor 23.
The wiring conductor 23 is formed on the surface of the insulating layer 22 and in the through hole 22a.
An electrode of the semiconductor element S or an electrode of the capacitor E is connected to a part of the wiring conductor 23 formed on the upper surface of the laminated portion 21 via, for example, solder. The semiconductor element S is electrically connected to the capacitor E via the wiring conductor 23. When a transient ground and power supply potential change occurs in the semiconductor element S, a charge is supplied from the capacitor E to the semiconductor element S, thereby suppressing the transient ground and power supply potential fluctuation. Thereby, the semiconductor element S operates stably. In order to supply the electric charge from the capacitor E to the semiconductor element S favorably, it is important to reduce the electric resistance of the wiring conductor 23 connecting the two.
A part of the wiring conductor 23 formed on the lower surface of the laminated portion 21 functions as an external connection pad 24 connected to an external circuit board.
A molding resin R that covers the wiring conductor 23, the semiconductor element S, and the capacitor E is formed on the upper surface of the laminated portion 21.
In the mold resin R, a through-hole 25 having the wiring conductor 23 formed on the upper surface of the laminated portion 21 as a bottom surface is formed. A wiring conductor 26 is formed on the upper surface of the mold resin R and in the through hole 25.
A part of the wiring conductor 26 formed on the upper surface of the mold resin R functions as a board connection pad connected to an electrode of another electric board (not shown).
Thus, the semiconductor element S operates by transmitting and receiving an electric signal between another electric board (not shown) and the wiring board B.

ところで、従来の配線基板Bにおいては、半導体素子Sがモールド樹脂Rにより被覆されており、半導体素子Sの周囲に熱伝導性に優れた物質がないため、半導体素子Sの作動時に発生する熱を外部に効率的に放熱することができない。
そこで、半導体素子Sから発生する熱を外部に効率的に放熱するため、半導体素子Sの近辺に銅等の熱伝導に優れた物質を配置することが考えられる。しかしながら、その場合、コンデンサーEを半導体素子Sの近くに配置することができなくなるので、両者の間を接続する配線導体23の長さが長くなる。その結果、コンデンサーEと半導体素子Sとを接続する配線導体23の電気抵抗値が大きくなり、コンデンサーEから半導体素子Sへの電荷の供給を良好に行えなくなってしまう。
By the way, in the conventional wiring board B, since the semiconductor element S is covered with the mold resin R and there is no material having excellent heat conductivity around the semiconductor element S, heat generated when the semiconductor element S is operated is reduced. It cannot efficiently radiate heat to the outside.
Then, in order to efficiently radiate the heat generated from the semiconductor element S to the outside, it is conceivable to arrange a substance having excellent heat conduction such as copper near the semiconductor element S. However, in this case, since the capacitor E cannot be arranged near the semiconductor element S, the length of the wiring conductor 23 connecting between the two becomes long. As a result, the electric resistance of the wiring conductor 23 connecting the capacitor E and the semiconductor element S increases, and it becomes impossible to supply the electric charge from the capacitor E to the semiconductor element S in a satisfactory manner.

特許第3575478号公報Japanese Patent No. 3575478

本発明は、半導体素子の作動時に生じる熱を効率的に放熱するとともに、半導体素子に過渡的な接地および電源電位の変動があった場合に半導体素子に電荷を良好に供給することで、半導体素子が壊れにくく安定的に作動することができる配線基板およびその製造方法を提供することを課題とする。   The present invention efficiently dissipates heat generated during operation of a semiconductor element, and satisfactorily supplies electric charge to the semiconductor element when there is a transient ground and power supply potential fluctuation in the semiconductor element. It is an object of the present invention to provide a wiring board which is hardly broken and can operate stably and a method for manufacturing the same.

本発明における配線基板は、複数の絶縁層が積層されて成り、表面および内部に電源用の配線導体および接地用の配線導体ならびに信号用の配線導体を有する積層部と、積層部の上面中央部に搭載されており各配線導体の一部と接続された半導体素子と、中央部に半導体素子を収容するキャビティが形成されており積層部の上面に配置された枠状基板と、枠状基板の上面にキャビティ上を覆うように形成された絶縁部と、を具備して成る配線基板であって、枠状基板は、比誘電率が30〜3000、かつ厚みが5〜30μmの誘電体層の上下面にそれぞれの厚みが50〜150μmの導体層を積層した3層構造であり、上下面の導体層の端面は、枠状基板においてキャビティに面する内周の側面、および外周の側面に露出しているとともに、それぞれが電源用の配線導体に接続された電源用の導体パターンと、接地用の配線導体に接続された接地用の導体パターンと、信号用の配線導体に接続された信号用の導体パターンとを含み、上下面の所定の導体パターン同士が誘電体層に設けられた貫通孔内に充填された貫通導体を介して互いに電気的に接続されており、上面の導体パターンの一部が他の基板と接続するための基板接続パッドを形成しているとともに、電源用の導体パターンの一部と接地用の導体パターンの一部とが誘電体層を挟んで対向するコンデンサー電極を形成していることを特徴とするものである。 The wiring board according to the present invention is formed by laminating a plurality of insulating layers, and has a laminated portion having a power supply wiring conductor, a grounding wiring conductor, and a signal wiring conductor on its surface and inside, and a top central portion of the laminated portion. A semiconductor element mounted on the substrate and connected to a part of each wiring conductor, a cavity in which a semiconductor element is housed in the center portion, and a frame-shaped substrate arranged on the upper surface of the laminated portion; A frame-like substrate having a dielectric constant of 30 to 3000 and a thickness of 5 to 30 μm. It has a three-layer structure in which conductor layers each having a thickness of 50 to 150 μm are laminated on the upper and lower surfaces, and the end surfaces of the conductor layers on the upper and lower surfaces are exposed on the inner peripheral side surface facing the cavity and the outer peripheral side surface in the frame-shaped substrate. And at the same time A power supply conductor pattern connected to the power supply wiring conductor, a grounding conductor pattern connected to the grounding wiring conductor, and a signal conductor pattern connected to the signal wiring conductor. The predetermined conductor patterns on the upper and lower surfaces are electrically connected to each other via through conductors filled in through holes provided in the dielectric layer, and a part of the conductor patterns on the upper surface is A substrate connection pad for connecting to the substrate is formed, and a part of the conductor pattern for the power supply and a part of the conductor pattern for the ground form a capacitor electrode facing each other with the dielectric layer interposed therebetween. It is characterized by having.

本発明における配線基板の製造方法は、比誘電率が30〜3000、かつ厚みが5〜30μmの誘電体層の上下面に金属箔を積層して成るとともに、中央部にキャビティ形成領域および外周部に前記キャビティ形成領域を囲繞する配線形成領域を有する基板材を準備する工程と、配線形成領域に複数の貫通孔を形成する工程と、上下面の金属箔の表面および貫通孔内に、金属めっき層を析出させ、貫通孔内に金属めっき層から成る貫通導体を形成するとともに誘電体層の上下面に金属箔および金属めっき層から成る厚みが50〜150μmの導体層を形成する工程と、導体層の表面に、配線形成領域における所定のパターンに対応する部分を被覆するエッチングレジストを形成する工程と、エッチングレジストの非被覆部に露出する導体層をエッチング除去することで配線形成領域の上下面の導体層のそれぞれに、電源用の導体パターンと接地用の導体パターンと信号用の導体パターンとを、所定の導体パターン同士が貫通導体により互いに電気的に接続され、かつ電源用の導体パターンの一部と接地用の導体パターンの一部とが誘電体層を挟んで対向するコンデンサー電極となるように形成するとともに、キャビティ形成領域における導体層を除去する工程と、キャビティ形成領域における誘電体層をくり抜いてキャビティを形成することにより枠状基板を得る工程と、枠状基板を粘着シート上に載置してキャビティ内に半導体素子を挿置する工程と、枠状基板の上面にキャビティ上を覆うとともに導体パターンの一部を他の基板と接続するための基板接続パッドとして露出させる開口部を有する絶縁部を形成する工程と、枠状基板から粘着シートを除去するとともに枠状基板の下面に複数の絶縁層が積層されて成り、表面および内部に、電源用の導体パターンと接続された電源用の配線導体と、接地用の導体パターンと接続された接地用の配線導体と、信号用の導体パターンと接続された信号用の配線導体とを有する積層部を形成する工程と、を行うことを特徴とするものである。   The method of manufacturing a wiring board according to the present invention comprises laminating metal foils on upper and lower surfaces of a dielectric layer having a relative dielectric constant of 30 to 3000 and a thickness of 5 to 30 μm, and forming a cavity forming region and an outer peripheral portion in a central portion. Preparing a substrate material having a wiring forming region surrounding the cavity forming region; forming a plurality of through holes in the wiring forming region; and forming metal plating on the upper and lower surfaces of the metal foil and the through holes. Depositing a layer, forming a through conductor formed of a metal plating layer in the through hole, and forming a conductive layer having a thickness of 50 to 150 μm formed of a metal foil and a metal plating layer on the upper and lower surfaces of the dielectric layer; Forming an etching resist on the surface of the layer to cover a portion corresponding to a predetermined pattern in the wiring formation region, and etching a conductive layer exposed on a non-covered portion of the etching resist. By removing the notch, the conductor pattern for power supply, the conductor pattern for grounding, and the conductor pattern for signal are electrically connected to the conductor layers on the upper and lower surfaces of the wiring formation area, respectively. And a part of the conductor pattern for the power supply and a part of the conductor pattern for the ground are formed to be the capacitor electrodes facing each other with the dielectric layer interposed therebetween, and the conductor layer in the cavity forming region is removed. Performing a step of forming a cavity by hollowing out a dielectric layer in a cavity forming region to obtain a frame-shaped substrate, and placing a frame-shaped substrate on an adhesive sheet and inserting a semiconductor element into the cavity. And cover the cavity on the upper surface of the frame-shaped substrate and expose a part of the conductor pattern as a substrate connection pad for connecting to another substrate. Forming an insulating portion having an opening, removing the adhesive sheet from the frame-shaped substrate, and laminating a plurality of insulating layers on the lower surface of the frame-shaped substrate, and connecting to the conductor pattern for power supply on the surface and inside A power supply wiring conductor, a grounding wiring conductor connected to the grounding conductor pattern, and a step of forming a laminated portion having a signal wiring conductor connected to the signal conductor pattern, Is performed.

本発明の配線基板によれば、半導体素子を収容するキャビティを有する枠状基板は、厚みが5〜30μmの誘電体層の上下面に厚みが50〜150μmと厚い導体層が形成されている。この厚い導体層により、半導体素子からの発熱を効率的に配線基板の外部に放熱し、半導体素子が壊れるのを防止することができる。
また、かかる導体層の一部は、それぞれが電源用の配線導体に接続された電源用の導体パターンと、接地用の配線導体に接続された接地用の導体パターンとを含んでおり、電源用の導体パターンの一部と接地用の導体パターンの一部とが誘電体層を挟んで対向するコンデンサー電極を形成して近接する半導体素子と接続されている。この枠状基板が有するコンデンサー機能により半導体素子を安定的に作動させることができる。
According to the wiring board of the present invention, in the frame-shaped substrate having a cavity for accommodating a semiconductor element, a thick conductor layer having a thickness of 50 to 150 μm is formed on upper and lower surfaces of a dielectric layer having a thickness of 5 to 30 μm. With this thick conductor layer, heat generated from the semiconductor element can be efficiently radiated to the outside of the wiring board, and the semiconductor element can be prevented from being broken.
Further, a part of the conductor layer includes a power supply conductor pattern each connected to a power supply wiring conductor and a grounding conductor pattern connected to a grounding wiring conductor. A part of the conductive pattern and a part of the grounding conductive pattern form capacitor electrodes facing each other with the dielectric layer interposed therebetween and are connected to the adjacent semiconductor element. The semiconductor element can be operated stably by the capacitor function of the frame-shaped substrate.

本発明の配線基板の製造方法によれば、半導体素子を収容するキャビティを有する枠状基板を、厚みが5〜30μmの誘電体層の上下面に厚みが50〜150μmと厚い導体層が積層された材料により形成することから、半導体素子から生じる熱をこの厚い導体層により効率的に外部に放熱することが可能な配線基板を提供することができる。
また、かかる導体層の一部を、電源用の導体パターンの一部と接地用の導体パターンの一部とが誘電体層を挟んで対向するコンデンサー電極となるように形成し、半導体素子とコンデンサー電極とを電源用および接地用の配線導体を介して接続する。このコンデンサー機能により半導体素子を安定的に作動させることが可能な配線基板を提供することができる。
半導体素子
According to the method for manufacturing a wiring board of the present invention, a frame-shaped substrate having a cavity for accommodating a semiconductor element is formed by laminating a conductor layer having a thickness of 50 to 150 μm on the upper and lower surfaces of a dielectric layer having a thickness of 5 to 30 μm. As a result, the wiring board can efficiently provide heat to the outside through the thick conductor layer.
In addition, a part of the conductor layer is formed such that a part of a power supply conductor pattern and a part of a ground conductor pattern become capacitor electrodes facing each other with a dielectric layer interposed therebetween, and a semiconductor element and a capacitor are formed. The electrodes are connected via power supply and ground wiring conductors. With this capacitor function, it is possible to provide a wiring board capable of stably operating a semiconductor element.
Semiconductor element

図1は、本発明の配線基板の実施形態の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of an embodiment of a wiring board of the present invention. 図2(a)〜(g)は、本発明の製造方法における実施形態の一例を説明するための工程毎の要部概略断面図である。FIGS. 2A to 2G are schematic cross-sectional views of a main part in each step for explaining an example of an embodiment in a manufacturing method of the present invention. 図3(h)〜(l)は、本発明の製造方法における実施形態の一例を説明するための工程毎の要部概略断面図である。3 (h) to 3 (l) are schematic cross-sectional views of essential parts in each step for explaining an example of an embodiment in a manufacturing method of the present invention. 図4は、従来の配線基板の実施形態の一例を示す概略断面図である。FIG. 4 is a schematic sectional view showing an example of an embodiment of a conventional wiring board.

まず、図1を基に、本発明の配線基板Aの一例を説明する。
配線基板Aは、積層部1と、枠状基板2と、半導体素子Sと、絶縁部3とを具備する。
First, an example of a wiring board A of the present invention will be described with reference to FIG.
The wiring board A includes a laminated section 1, a frame-shaped substrate 2, a semiconductor element S, and an insulating section 3.

積層部1は、それぞれが複数の貫通孔4を有する複数の絶縁層1aが積層されている。積層部1の表面および内部、ならびに貫通孔4内には、配線導体5が形成されている。配線導体5は、電源用の配線導体5aおよび接地用の配線導体5b、ならびに信号用の配線導体5cを含んでいる。積層部1の下面に形成された配線導体5の一部は、外部の回路基板に接続される外部接続パッド6として機能する。
絶縁層1aは、例えばエポキシ樹脂やポリイミド樹脂等の熱硬化性樹脂を含有する電気絶縁材料から成り、厚みはおよそ20〜50μm程度である。
配線導体5は、例えば周知のめっき法により、銅等の良導電性金属により形成される。
In the laminated portion 1, a plurality of insulating layers 1a each having a plurality of through holes 4 are laminated. A wiring conductor 5 is formed on the surface and inside of the laminated portion 1 and in the through hole 4. The wiring conductor 5 includes a power supply wiring conductor 5a, a grounding wiring conductor 5b, and a signal wiring conductor 5c. A part of the wiring conductor 5 formed on the lower surface of the laminated portion 1 functions as an external connection pad 6 connected to an external circuit board.
The insulating layer 1a is made of an electric insulating material containing a thermosetting resin such as an epoxy resin or a polyimide resin, and has a thickness of about 20 to 50 μm.
The wiring conductor 5 is formed of a good conductive metal such as copper by, for example, a well-known plating method.

枠状基板2は、誘電体層7の上下面に、それぞれ金属箔8および金属めっき層9が順次積層されて成る導体層10が形成されて成る。
枠状基板2は、中央部に半導体素子Sを収容するキャビティCが形成されている。
導体層10は、電源用の配線導体5aに接続された電源用の導体パターン10aと、接地用の配線導体5bに接続された接地用の導体パターン10bと、信号用の配線導体5cに接続された信号用の導体パターン10cとを含んでいる。そして、電源用の導体パターン10aと接地用の導体パターン10bとが、誘電体層7を挟んで対向するコンデンサー電極Tを形成している。
上面の各導体パターン10a、10b、10cの一部は、別の電気基板の電極と接続するための基板接続パッド11を含んでいる。
枠状基板2は、複数の貫通孔12を有している。貫通孔12内は、金属めっき層9の一部から成る貫通導体12aが被着されている。誘電体層7上面および下面の所定の各導体パターン10a、10b、10c同士が貫通導体12aを介して接続されている。
誘電体層7は、例えばエポキシ系の樹脂やチタン酸バリウム、あるいは酸化アルミニウム等から成る。誘電体層7の厚みは、およそ5〜30μm程度である。誘電体層7の比誘電率は30〜3000程度である。
金属箔8は、例えば銅箔から成る。金属めっき層9は、例えば周知のめっき法により銅めっきにより形成される。金属箔8および金属めっき層9から成る導体層10の厚みは、およそ50〜150μm程度である。
The frame-shaped substrate 2 has a conductor layer 10 formed by sequentially laminating a metal foil 8 and a metal plating layer 9 on the upper and lower surfaces of a dielectric layer 7, respectively.
The frame-shaped substrate 2 has a cavity C formed therein for accommodating the semiconductor element S in the center.
The conductor layer 10 is connected to the power supply conductor pattern 10a connected to the power supply wiring conductor 5a, the grounding conductor pattern 10b connected to the grounding wiring conductor 5b, and the signal wiring conductor 5c. Signal conductor pattern 10c. The conductor pattern 10a for power supply and the conductor pattern 10b for ground form a capacitor electrode T facing each other with the dielectric layer 7 interposed therebetween.
A part of each of the conductor patterns 10a, 10b, and 10c on the upper surface includes a board connection pad 11 for connecting to an electrode of another electric board.
The frame-shaped substrate 2 has a plurality of through holes 12. In the through hole 12, a through conductor 12a formed of a part of the metal plating layer 9 is attached. The predetermined conductor patterns 10a, 10b, and 10c on the upper and lower surfaces of the dielectric layer 7 are connected to each other via the through conductor 12a.
The dielectric layer 7 is made of, for example, an epoxy resin, barium titanate, or aluminum oxide. The thickness of the dielectric layer 7 is about 5 to 30 μm. The dielectric constant of the dielectric layer 7 is about 30 to 3000.
The metal foil 8 is made of, for example, a copper foil. The metal plating layer 9 is formed by, for example, copper plating by a well-known plating method. The thickness of the conductor layer 10 including the metal foil 8 and the metal plating layer 9 is about 50 to 150 μm.

半導体素子Sは、積層部1の上面中央部に搭載されるとともに、枠状基板2のキャビティC内に収容されている。半導体素子Sは、コンデンサー電極Tや積層部1に形成された電源用の配線導体5aおよび接地用の配線導体5b、ならびに信号用の配線導体5cと電気的に接続されている。   The semiconductor element S is mounted on the center of the upper surface of the stacked unit 1 and is housed in the cavity C of the frame-shaped substrate 2. The semiconductor element S is electrically connected to the power supply wiring conductor 5a, the grounding wiring conductor 5b, and the signal wiring conductor 5c formed on the capacitor electrode T and the laminated portion 1.

絶縁部3は、枠状基板2の上面にキャビティCを覆うように形成されている。
絶縁部3は、基板接続パッド11を露出する開口部3aを有している。
絶縁部3は、例えばエポキシ樹脂やポリイミド樹脂等の熱硬化性樹脂を含有する電気絶縁材料から成り、厚みはおよそ20〜50μm程度である。
The insulating part 3 is formed on the upper surface of the frame-shaped substrate 2 so as to cover the cavity C.
The insulating part 3 has an opening 3 a exposing the substrate connection pad 11.
The insulating part 3 is made of an electric insulating material containing a thermosetting resin such as an epoxy resin or a polyimide resin, and has a thickness of about 20 to 50 μm.

このように、本発明の配線基板Aによれば、中央部に半導体素子Sを収容するキャビティCが形成された枠状基板2を有している。
この枠状基板2は、厚みが5〜30μmの誘電体層7の上下面に厚みが50〜150μmと厚い導体層10が形成されている。この厚い導体層10を介して、半導体素子Sからの発熱を効率的に配線基板Aの外部に放熱することができる。これにより、半導体素子Sが熱により壊れることを有効に防止することができる。
また、かかる導体層10の一部は、それぞれが電源用の配線導体5aに接続された電源用の導体パターン10aと、接地用の配線導体5bに接続された接地用の導体パターン10bとを含んでおり、電源用の導体パターン10aの一部と接地用の導体パターン10bの一部とが誘電体層7を挟んで対向するコンデンサー電極Tを形成して近接する半導体素子Sと接続されている。半導体素子Sにおいて過渡的な接地および電源電位の変動があった場合に、このコンデンサー電極Tから半導体素子Sに電荷を供給することにより、その過渡的な接地および電源電位の変動が抑制される。これにより、半導体素子Sを安定して作動させることができる。
Thus, according to the wiring board A of the present invention, the frame-shaped substrate 2 in which the cavity C for housing the semiconductor element S is formed at the center.
The frame-shaped substrate 2 has a thick conductor layer 10 having a thickness of 50 to 150 μm on the upper and lower surfaces of a dielectric layer 7 having a thickness of 5 to 30 μm. Heat generated from the semiconductor element S can be efficiently radiated to the outside of the wiring board A via the thick conductor layer 10. Thereby, the semiconductor element S can be effectively prevented from being broken by heat.
A part of the conductor layer 10 includes a power supply conductor pattern 10a connected to the power supply wiring conductor 5a and a grounding conductor pattern 10b connected to the grounding wiring conductor 5b. A part of the conductor pattern 10a for the power supply and a part of the conductor pattern 10b for the ground form a capacitor electrode T facing each other with the dielectric layer 7 interposed therebetween and are connected to the adjacent semiconductor element S. . When a transient ground and power supply potential change occurs in the semiconductor element S, a charge is supplied from the capacitor electrode T to the semiconductor element S, thereby suppressing the transient ground and power supply potential fluctuation. Thereby, the semiconductor element S can be operated stably.

次に、本発明の製造方法の一例について、図2および図3を基にして説明する。なお、図1に示す配線基板Aと同一の部材については同じ符号を付して、詳細な説明は省略する。   Next, an example of the manufacturing method of the present invention will be described with reference to FIGS. Note that the same members as those of the wiring board A shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

まず、図2(a)に示すように、比誘電率が30〜3000、かつ厚みが5〜30μmの誘電体層7の上下面に金属箔8を積層して成るとともに、中央部にキャビティ形成領域Xおよび外周部にキャビティ形成領域Xを囲繞する配線形成領域Yを有する基板材2Pを準備する。
基板材2Pは、例えばエポキシ系の樹脂層の上下面に銅箔を配置しておき、平板状の加圧装置にて加熱しながらプレスすることで形成される。
First, as shown in FIG. 2A, a metal foil 8 is laminated on the upper and lower surfaces of a dielectric layer 7 having a relative dielectric constant of 30 to 3000 and a thickness of 5 to 30 μm, and a cavity is formed in the center. A substrate material 2P having a region X and a wiring forming region Y surrounding the cavity forming region X on the outer periphery is prepared.
The substrate material 2P is formed, for example, by arranging copper foil on the upper and lower surfaces of an epoxy-based resin layer and pressing while heating with a flat pressing device.

次に、図2(b)に示すように、基板材2Pの配線形成領域Yに複数の貫通孔12を形成する。
貫通孔12の直径は、およそ50〜100μm程度であり、例えばドリル加工やレーザー加工、あるいはブラスト加工により形成される。
Next, as shown in FIG. 2B, a plurality of through holes 12 are formed in the wiring forming area Y of the substrate material 2P.
The diameter of the through hole 12 is about 50 to 100 μm, and is formed by, for example, drilling, laser processing, or blasting.

次に、図2(c)に示すように、基板材2Pの上下面および貫通孔12内に、金属めっき層9を析出させる。これにより、貫通孔12内に金属めっき層9から成る貫通導体12aを形成するとともに、誘電体層7の上下面に金属箔8および金属めっき層9から成る導体層10を形成する。導体層10の厚みは、およそ50〜150μm程度である。
金属めっき層9は、例えば周知のめっき法により、銅等の良導電性金属で形成される。
Next, as shown in FIG. 2C, a metal plating layer 9 is deposited on the upper and lower surfaces of the substrate material 2P and in the through holes 12. As a result, a through conductor 12a made of the metal plating layer 9 is formed in the through hole 12, and a conductor layer 10 made of the metal foil 8 and the metal plating layer 9 is formed on the upper and lower surfaces of the dielectric layer 7. The thickness of the conductor layer 10 is about 50 to 150 μm.
The metal plating layer 9 is formed of a good conductive metal such as copper by a well-known plating method, for example.

次に、図2(d)に示すように、導体層10の表面に、配線形成領域Yにおける所定のパターンに対応する部分を被覆するエッチングレジストRを形成する。   Next, as shown in FIG. 2D, an etching resist R is formed on the surface of the conductor layer 10 so as to cover a portion corresponding to a predetermined pattern in the wiring formation region Y.

次に、図2(e)に示すように、エッチングレジストRの非被覆部に露出する導体層10をエッチング除去した後にエッチングレジストRを除去する。これにより、キャビティ形成領域Xの導体層10を除去するとともに、配線形成領域Yの上下面の導体層10のそれぞれに、電源用の導体パターン10aと接地用の導体パターン10bと信号用の導体パターン10cとを、所定の導体パターン同士が貫通導体12aにより互いに電気的に接続され、かつ電源用の導体パターン10aの一部と接地用の導体パターン10bの一部とが誘電体層7を挟んで対向するコンデンサー電極Tとなるように形成する。
上面の導体パターン10a、10b、10cの一部は、別の電気基板の電極と接続される基板接続パッド11を含んでいる。
Next, as shown in FIG. 2E, after the conductor layer 10 exposed to the uncovered portion of the etching resist R is removed by etching, the etching resist R is removed. As a result, the conductor layer 10 in the cavity formation region X is removed, and the conductor patterns 10a for power supply, the conductor pattern 10b for ground, and the conductor pattern for signal are provided in the conductor layers 10 on the upper and lower surfaces of the wiring formation region Y, respectively. A predetermined conductor pattern is electrically connected to each other by a through conductor 12a, and a part of the power supply conductor pattern 10a and a part of the grounding conductor pattern 10b sandwich the dielectric layer 7 therebetween. It is formed so as to be the opposite capacitor electrode T.
Some of the conductor patterns 10a, 10b, and 10c on the upper surface include board connection pads 11 that are connected to electrodes of another electric board.

次に、図2(f)に示すように、キャビティ形成領域Xにおける誘電体層7をくり抜いてキャビティCを形成する。
キャビティCは、例えばレーザー加工により形成される。
Next, as shown in FIG. 2F, a cavity C is formed by hollowing out the dielectric layer 7 in the cavity forming region X.
The cavity C is formed by, for example, laser processing.

次に、図2(g)に示すように、上下面に導体層10が形成された基板材2Pを粘着シートN上に載置して、キャビティC内に露出する粘着シートN上に電極を有する半導体素子Sを挿置する。   Next, as shown in FIG. 2 (g), the substrate material 2P having the conductor layer 10 formed on the upper and lower surfaces is placed on the adhesive sheet N, and the electrodes are placed on the adhesive sheet N exposed in the cavity C. The semiconductor element S is inserted.

次に、図3(h)に示すように、基板材2Pの上側に絶縁部3を形成する。絶縁部3は、基板接続パッド11を露出する開口部3aが、例えばレーザー加工により形成されている。絶縁部3の一部は、キャビティC内に侵入するとともに半導体素子Sに接着する。これにより半導体素子SがキャビティC内の所定の位置に固定される。絶縁部3を形成するには、基板材2Pの上面に、絶縁部3用の未硬化の樹脂シートを積層するとともに、上方からプレスしながら加熱処理する方法が採用される。絶縁部3は、例えばエポキシ樹脂やポリイミド樹脂等の熱硬化性樹脂を含有する電気絶縁材料から成り、厚みはおよそ20〜50μm程度である。   Next, as shown in FIG. 3H, the insulating portion 3 is formed on the upper side of the substrate material 2P. In the insulating part 3, an opening 3a exposing the substrate connection pad 11 is formed by, for example, laser processing. Part of the insulating portion 3 enters the cavity C and adheres to the semiconductor element S. Thereby, the semiconductor element S is fixed at a predetermined position in the cavity C. In order to form the insulating portion 3, a method of laminating an uncured resin sheet for the insulating portion 3 on the upper surface of the substrate material 2P and performing a heat treatment while pressing from above is adopted. The insulating part 3 is made of an electric insulating material containing a thermosetting resin such as an epoxy resin or a polyimide resin, and has a thickness of about 20 to 50 μm.

次に、図3(i)に示すように、粘着シートNを剥離した後に、基板材2Pの下側に絶縁層1Pを形成する。絶縁層1Pの一部は、キャビティC内に侵入するとともに半導体素子Sに接着する。これにより半導体素子SがキャビティC内に封止される。絶縁層1Pは、例えばエポキシ樹脂やポリイミド樹脂等の熱硬化性樹脂を含有する電気絶縁材料から成り、厚みはおよそ20〜50μm程度である。   Next, as shown in FIG. 3 (i), after peeling off the pressure-sensitive adhesive sheet N, an insulating layer 1P is formed below the substrate material 2P. Part of the insulating layer 1P enters the cavity C and adheres to the semiconductor element S. Thereby, the semiconductor element S is sealed in the cavity C. The insulating layer 1P is made of an electric insulating material containing a thermosetting resin such as an epoxy resin or a polyimide resin, and has a thickness of about 20 to 50 μm.

次に、図3(j)に示すように、絶縁層1Pに複数の貫通孔4を形成する。
貫通孔4は、下面の導体層10および半導体素子Sの電極を底面としており、直径は、およそ20〜100μm程度である。
Next, as shown in FIG. 3J, a plurality of through holes 4 are formed in the insulating layer 1P.
The through hole 4 has the bottom surface of the conductor layer 10 on the lower surface and the electrode of the semiconductor element S, and has a diameter of about 20 to 100 μm.

次に、図3(k)に示すように、絶縁層1Pの表面および貫通孔4内に配線導体5を被着させる。配線導体5は、電源用の導体パターン10aと接続された電源用の配線導体5aと、接地用の導体パターン10bと接続された接地用の配線導体5bと、信号用の導体パターン10cと接続された信号用の配線導体5cとを含んでいる。
配線導体5は、例えば周知のセミアディティブ法により、銅等の良導電性金属で形成される。
Next, as shown in FIG. 3 (k), a wiring conductor 5 is attached to the surface of the insulating layer 1P and the inside of the through hole 4. The wiring conductor 5 is connected to the power supply wiring conductor 5a connected to the power supply conductor pattern 10a, the grounding wiring conductor 5b connected to the grounding conductor pattern 10b, and the signal conductor pattern 10c. And a signal wiring conductor 5c.
The wiring conductor 5 is formed of a good conductive metal such as copper by a well-known semi-additive method, for example.

最後に、図3(l)に示すように、絶縁層1Pの表面および配線導体5の表面に別の絶縁層1Pおよび別の配線導体5を形成することで、下面に外部接続パッド6を有する積層部1を形成する。これにより、図1に示すような配線基板Aが形成される。   Finally, as shown in FIG. 3 (l), another insulating layer 1P and another wiring conductor 5 are formed on the surface of the insulating layer 1P and the surface of the wiring conductor 5, thereby having the external connection pad 6 on the lower surface. The laminated part 1 is formed. Thus, the wiring board A as shown in FIG. 1 is formed.

このように、本発明の配線基板の製造方法によれば、半導体素子Sを収容するキャビティCを有する枠状基板2を、厚みが5〜30μmの誘電体層7の上下面に厚みが50〜150μmと厚い導体層10が積層された材料により形成することから、半導体素子Sから生じる熱を効率的に外部に放熱することが可能な配線基板Aを提供することができる。
また、かかる導体層10の一部を、電源用の導体パターン10aの一部と接地用の導体パターン10bの一部とが誘電体層7を挟んで対向するコンデンサー電極Tとなるように形成し、半導体素子Sとコンデンサー電極Tとを電源用および接地用の配線導体5a、5bを介して接続する。半導体素子Sにおいて過渡的な接地および電源電位の変動があった場合に、このコンデンサー電極Tから半導体素子Sに電荷を供給することにより、その過渡的な接地および電源電位の変動が抑制される。これにより、半導体素子Sを安定して作動させることが可能な配線基板Aを提供することができる。
As described above, according to the method for manufacturing a wiring board of the present invention, the frame-shaped substrate 2 having the cavity C for accommodating the semiconductor element S is placed on the upper and lower surfaces of the dielectric layer 7 having a thickness of 5 to 30 μm by 50 to 50 μm. Since the conductor layer 10 having a thickness of 150 μm is formed of a laminated material, it is possible to provide the wiring board A capable of efficiently radiating heat generated from the semiconductor element S to the outside.
Further, a part of the conductor layer 10 is formed such that a part of the conductor pattern 10a for power supply and a part of the conductor pattern 10b for ground become a capacitor electrode T opposed to each other with the dielectric layer 7 interposed therebetween. The semiconductor element S and the capacitor electrode T are connected via power supply and ground wiring conductors 5a and 5b. When a transient ground and power supply potential change occurs in the semiconductor element S, a charge is supplied from the capacitor electrode T to the semiconductor element S, thereby suppressing the transient ground and power supply potential fluctuation. Accordingly, it is possible to provide the wiring board A that can operate the semiconductor element S stably.

1 積層部
1P 絶縁層
2 枠状基板
3 絶縁部
5a 電源用の配線導体
5b 接地用の配線導体
5c 信号用の配線導体
7 誘電体層
10 導体層
10a 電源用の導体パターン
10b 接地用の導体パターン
10c 信号用の導体パターン
11 基板接続パッド
12 貫通孔
12a 貫通導体
A 配線基板
C キャビティ
S 半導体素子
T コンデンサー電極
REFERENCE SIGNS LIST 1 laminated portion 1P insulating layer 2 frame-shaped substrate 3 insulating portion 5a power supply wiring conductor 5b grounding wiring conductor 5c signal wiring conductor 7 dielectric layer 10 conductor layer 10a power supply conductor pattern 10b grounding conductor pattern 10c Signal conductor pattern 11 Board connection pad 12 Through hole 12a Through conductor A Wiring board C Cavity S Semiconductor element T Capacitor electrode

Claims (2)

複数の絶縁層が積層されて成り、表面および内部に電源用の配線導体および接地用の配線導体ならびに信号用の配線導体を有する積層部と、該積層部の上面中央部に搭載されており前記各配線導体の一部と接続された半導体素子と、中央部に前記半導体素子を収容するキャビティが形成されており前記積層部の上面に配置された枠状基板と、前記枠状基板の上面に前記キャビティ上を覆うように形成された絶縁部と、を具備して成る配線基板であって、前記枠状基板は、比誘電率が30〜3000、かつ厚みが5〜30μmの誘電体層の上下面にそれぞれの厚みが50〜150μmの導体層を積層した3層構造であり、前記上下面の導体層の端面は、前記枠状基板において前記キャビティに面する内周の側面、および外周の側面に露出しているとともに、それぞれが前記電源用の配線導体に接続された電源用の導体パターンと、前記接地用の配線導体に接続された接地用の導体パターンと、前記信号用の配線導体に接続された信号用の導体パターンとを含み、前記上下面の所定の導体パターン同士が前記誘電体層に設けられた貫通孔内に充填された貫通導体を介して互いに電気的に接続されており、前記上面の導体パターンの一部が他の基板と接続するための基板接続パッドを形成しているとともに、前記電源用の導体パターンの一部と前記接地用の導体パターンの一部とが前記誘電体層を挟んで対向するコンデンサー電極を形成していることを特徴とする配線基板。 A plurality of insulating layers are stacked, a stacked portion having a power supply wiring conductor, a grounding wiring conductor, and a signal wiring conductor on the surface and inside, and a mounting portion mounted on a central portion of an upper surface of the stacked portion. A semiconductor element connected to a part of each wiring conductor, a cavity in which a cavity for accommodating the semiconductor element is formed in a central portion, and a frame-shaped substrate disposed on an upper surface of the laminated portion; and an upper surface of the frame-shaped substrate. An insulating portion formed so as to cover the cavity, wherein the frame-shaped substrate has a dielectric constant of 30 to 3000 and a thickness of 5 to 30 μm. It has a three-layer structure in which conductor layers each having a thickness of 50 to 150 μm are laminated on upper and lower surfaces, and the end surfaces of the upper and lower conductor layers are formed on the inner peripheral side surface facing the cavity in the frame-shaped substrate, and on the outer peripheral surface. Exposed on the side And a power supply conductor pattern each connected to the power supply wiring conductor, a grounding conductor pattern connected to the grounding wiring conductor, and a signal connection connected to the signal wiring conductor. The predetermined conductor patterns on the upper and lower surfaces are electrically connected to each other via a through conductor filled in a through hole provided in the dielectric layer, and the conductor on the upper surface is provided. A part of the pattern forms a substrate connection pad for connecting to another substrate, and a part of the power supply conductor pattern and a part of the grounding conductor pattern sandwich the dielectric layer. A wiring substrate, wherein opposed capacitor electrodes are formed in the wiring substrate. 比誘電率が30〜3000、かつ厚みが5〜30μmの誘電体層の上下面に金属箔を積層して成るとともに、中央部にキャビティ形成領域および外周部に前記キャビティ形成領域を囲繞する配線形成領域を有する基板材を準備する工程と、
前記配線形成領域に複数の貫通孔を形成する工程と、
前記上下面の金属箔の表面および前記貫通孔内に、金属めっき層を析出させ、前記貫通孔内に前記金属めっき層から成る貫通導体を形成するとともに前記誘電体層の上下面に前記金属箔および前記金属めっき層から成る厚みが50〜150μmの導体層を形成する工程と、
前記導体層の表面に、前記配線形成領域における所定のパターンに対応する部分を被覆するエッチングレジストを形成する工程と、
前記エッチングレジストの非被覆部に露出する前記導体層をエッチング除去することで前記配線形成領域の前記上下面の前記導体層のそれぞれに、電源用の導体パターンと接地用の導体パターンと信号用の導体パターンとを、所定の前記導体パターン同士が前記貫通導体により互いに電気的に接続され、かつ前記電源用の導体パターンの一部と前記接地用の導体パターンの一部とが前記誘電体層を挟んで対向するコンデンサー電極となるように形成するとともに、前記キャビティ形成領域における前記導体層を除去する工程と、
キャビティ形成領域における前記誘電体層をくり抜いてキャビティを形成することにより枠状基板を得る工程と、
前記枠状基板を粘着シート上に載置して前記キャビティ内に半導体素子を挿置する工程と、
前記枠状基板の上面に前記キャビティ上を覆うとともに前記導体パターンの一部を他の基板と接続するための基板接続パッドとして露出させる開口部を有する絶縁部を形成する工程と、
前記枠状基板から前記粘着シートを除去するとともに該枠状基板の下面に下面側の複数の絶縁層が積層されて成り、表面および内部に、前記電源用の導体パターンと接続された電源用の配線導体と、前記接地用の導体パターンと接続された接地用の配線導体と、前記信号用の導体パターンと接続された信号用の配線導体とを有する積層部を形成する工程と、
を行うことを特徴とする配線基板の製造方法。
A metal foil is laminated on the upper and lower surfaces of a dielectric layer having a relative dielectric constant of 30 to 3000 and a thickness of 5 to 30 μm, and a wiring is formed in a central portion and a cavity surrounding the cavity forming region in a peripheral portion. Preparing a substrate material having a region,
Forming a plurality of through holes in the wiring formation region;
A metal plating layer is deposited on the upper and lower surfaces of the metal foil and in the through-hole, a through conductor formed of the metal plating layer is formed in the through-hole, and the metal foil is formed on upper and lower surfaces of the dielectric layer. And forming a conductor layer having a thickness of 50 to 150 μm comprising the metal plating layer,
Forming an etching resist on the surface of the conductor layer to cover a portion corresponding to a predetermined pattern in the wiring formation region;
The conductor layer exposed on the uncovered portion of the etching resist is removed by etching, so that a conductor pattern for power, a conductor pattern for ground, and a signal A predetermined conductor pattern is electrically connected to each other by the through conductor, and a part of the conductor pattern for power supply and a part of the conductor pattern for ground form the dielectric layer. Forming a capacitor electrode facing the sandwich, and removing the conductor layer in the cavity forming region,
Obtaining a frame-shaped substrate by hollowing out the dielectric layer in the cavity forming region to form a cavity;
A step of placing the frame-shaped substrate on an adhesive sheet and inserting a semiconductor element into the cavity,
Forming an insulating portion having an opening on the upper surface of the frame-shaped substrate, the opening covering the cavity and exposing a part of the conductive pattern as a substrate connection pad for connecting to another substrate;
A plurality of insulating layers on the lower surface side are laminated on the lower surface of the frame-shaped substrate while removing the pressure-sensitive adhesive sheet from the frame-shaped substrate. A wiring conductor, a grounding wiring conductor connected to the grounding conductor pattern, and a step of forming a laminated portion having a signal wiring conductor connected to the signal conductor pattern,
A method of manufacturing a wiring board.
JP2015228946A 2015-11-24 2015-11-24 Wiring board and method of manufacturing the same Active JP6626697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015228946A JP6626697B2 (en) 2015-11-24 2015-11-24 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228946A JP6626697B2 (en) 2015-11-24 2015-11-24 Wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017098404A JP2017098404A (en) 2017-06-01
JP6626697B2 true JP6626697B2 (en) 2019-12-25

Family

ID=58818115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228946A Active JP6626697B2 (en) 2015-11-24 2015-11-24 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6626697B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886232B2 (en) 2019-05-10 2021-01-05 Applied Materials, Inc. Package structure and fabrication methods
US10937726B1 (en) 2019-11-27 2021-03-02 Applied Materials, Inc. Package structure with embedded core
US11063169B2 (en) 2019-05-10 2021-07-13 Applied Materials, Inc. Substrate structuring methods
US11232951B1 (en) 2020-07-14 2022-01-25 Applied Materials, Inc. Method and apparatus for laser drilling blind vias
US11257790B2 (en) 2020-03-10 2022-02-22 Applied Materials, Inc. High connectivity device stacking
US11342256B2 (en) 2019-01-24 2022-05-24 Applied Materials, Inc. Method of fine redistribution interconnect formation for advanced packaging applications
US11404318B2 (en) 2020-11-20 2022-08-02 Applied Materials, Inc. Methods of forming through-silicon vias in substrates for advanced packaging
US11400545B2 (en) 2020-05-11 2022-08-02 Applied Materials, Inc. Laser ablation for package fabrication
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US11521937B2 (en) 2020-11-16 2022-12-06 Applied Materials, Inc. Package structures with built-in EMI shielding
US11676832B2 (en) 2020-07-24 2023-06-13 Applied Materials, Inc. Laser ablation system for package fabrication
US11705365B2 (en) 2021-05-18 2023-07-18 Applied Materials, Inc. Methods of micro-via formation for advanced packaging
US11931855B2 (en) 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766310A1 (en) * 2018-03-12 2021-01-20 JUMATECH GmbH Method for producing a printed circuit board using a mould for conductor elements
JP7514655B2 (en) 2020-05-28 2024-07-11 新光電気工業株式会社 Substrate with built-in electronic components and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3407694B2 (en) * 1999-06-17 2003-05-19 株式会社村田製作所 High frequency multilayer circuit components
JP4863561B2 (en) * 2001-03-13 2012-01-25 イビデン株式会社 Method for manufacturing printed wiring board
US8546922B2 (en) * 2010-09-30 2013-10-01 Ibiden Co., Ltd. Wiring board
JP2014086481A (en) * 2012-10-22 2014-05-12 Panasonic Corp Sheet capacitor integrated semiconductor device and manufacturing method thereof
JP5583828B1 (en) * 2013-08-05 2014-09-03 株式会社フジクラ Electronic component built-in multilayer wiring board and method for manufacturing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342256B2 (en) 2019-01-24 2022-05-24 Applied Materials, Inc. Method of fine redistribution interconnect formation for advanced packaging applications
US11476202B2 (en) 2019-05-10 2022-10-18 Applied Materials, Inc. Reconstituted substrate structure and fabrication methods for heterogeneous packaging integration
US11063169B2 (en) 2019-05-10 2021-07-13 Applied Materials, Inc. Substrate structuring methods
US10886232B2 (en) 2019-05-10 2021-01-05 Applied Materials, Inc. Package structure and fabrication methods
US12051653B2 (en) 2019-05-10 2024-07-30 Applied Materials, Inc. Reconstituted substrate for radio frequency applications
US11264331B2 (en) 2019-05-10 2022-03-01 Applied Materials, Inc. Package structure and fabrication methods
US11264333B2 (en) 2019-05-10 2022-03-01 Applied Materials, Inc. Reconstituted substrate structure and fabrication methods for heterogeneous packaging integration
US11362235B2 (en) 2019-05-10 2022-06-14 Applied Materials, Inc. Substrate structuring methods
US11398433B2 (en) 2019-05-10 2022-07-26 Applied Materials, Inc. Reconstituted substrate structure and fabrication methods for heterogeneous packaging integration
US11887934B2 (en) 2019-05-10 2024-01-30 Applied Materials, Inc. Package structure and fabrication methods
US11521935B2 (en) 2019-05-10 2022-12-06 Applied Materials, Inc. Package structure and fabrication methods
US11417605B2 (en) 2019-05-10 2022-08-16 Applied Materials, Inc. Reconstituted substrate for radio frequency applications
US11715700B2 (en) 2019-05-10 2023-08-01 Applied Materials, Inc. Reconstituted substrate structure and fabrication methods for heterogeneous packaging integration
US11931855B2 (en) 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
US12087679B2 (en) 2019-11-27 2024-09-10 Applied Materials, Inc. Package core assembly and fabrication methods
US10937726B1 (en) 2019-11-27 2021-03-02 Applied Materials, Inc. Package structure with embedded core
US11881447B2 (en) 2019-11-27 2024-01-23 Applied Materials, Inc. Package core assembly and fabrication methods
US11862546B2 (en) 2019-11-27 2024-01-02 Applied Materials, Inc. Package core assembly and fabrication methods
US11742330B2 (en) 2020-03-10 2023-08-29 Applied Materials, Inc. High connectivity device stacking
US11257790B2 (en) 2020-03-10 2022-02-22 Applied Materials, Inc. High connectivity device stacking
US11927885B2 (en) 2020-04-15 2024-03-12 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US11400545B2 (en) 2020-05-11 2022-08-02 Applied Materials, Inc. Laser ablation for package fabrication
US11232951B1 (en) 2020-07-14 2022-01-25 Applied Materials, Inc. Method and apparatus for laser drilling blind vias
US11676832B2 (en) 2020-07-24 2023-06-13 Applied Materials, Inc. Laser ablation system for package fabrication
US11521937B2 (en) 2020-11-16 2022-12-06 Applied Materials, Inc. Package structures with built-in EMI shielding
US11404318B2 (en) 2020-11-20 2022-08-02 Applied Materials, Inc. Methods of forming through-silicon vias in substrates for advanced packaging
US11705365B2 (en) 2021-05-18 2023-07-18 Applied Materials, Inc. Methods of micro-via formation for advanced packaging

Also Published As

Publication number Publication date
JP2017098404A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6626697B2 (en) Wiring board and method of manufacturing the same
KR101095161B1 (en) Printed circuit board with electronic components embedded therein
JP5111342B2 (en) Wiring board
KR20180023384A (en) Electronic component embedded substrate and manufacturing method threrof
JP2007142406A (en) Method of manufacturing embedded printed circuit board
TW201444440A (en) Printed circuit board and fabricating method thereof
JP5286072B2 (en) Wiring board and manufacturing method thereof
US20160189979A1 (en) Method for producing wiring board
US9433108B2 (en) Method of fabricating a circuit board structure having an embedded electronic element
JP5370883B2 (en) Wiring board
JP5171664B2 (en) Wiring board and multilayer ceramic capacitor
JP2004146419A (en) Composite multilayer substrate and module using the same
JP4235092B2 (en) Wiring substrate and semiconductor device using the same
JP6068167B2 (en) Wiring board and manufacturing method thereof
KR20160009391A (en) Chip embedded substrate and method of manufacturing the same
JP2019096754A (en) Component built-in substrate
KR101130608B1 (en) Printed circuit board assembly
JP4508620B2 (en) Wiring board
JP4349891B2 (en) Wiring board and electronic device
KR100653247B1 (en) Printed circuit board having embedded electric components and fabricating method therefore
JP2006041238A (en) Wiring board and manufacturing method thereof
JP2017162990A (en) Electronic component built-in substrate and manufacturing method therefor
JP2016207763A (en) Component build-in wiring board and manufacturing method therefor
JP4360617B2 (en) Wiring board
JP2004327633A (en) Wiring substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6626697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150