[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6697975B2 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP6697975B2
JP6697975B2 JP2016156352A JP2016156352A JP6697975B2 JP 6697975 B2 JP6697975 B2 JP 6697975B2 JP 2016156352 A JP2016156352 A JP 2016156352A JP 2016156352 A JP2016156352 A JP 2016156352A JP 6697975 B2 JP6697975 B2 JP 6697975B2
Authority
JP
Japan
Prior art keywords
valve
vibration
valve body
hole
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016156352A
Other languages
Japanese (ja)
Other versions
JP2018025331A5 (en
JP2018025331A (en
Inventor
直樹 鎌田
直樹 鎌田
欣也 奥津
欣也 奥津
隆 茂木
隆 茂木
庫人 山崎
庫人 山崎
伊藤 繁樹
繁樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Original Assignee
Fujikoki Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016156352A priority Critical patent/JP6697975B2/en
Application filed by Fujikoki Corp, Denso Corp filed Critical Fujikoki Corp
Priority to PCT/JP2017/026432 priority patent/WO2018030115A1/en
Priority to US16/322,961 priority patent/US20190178542A1/en
Priority to EP17839188.4A priority patent/EP3499150A4/en
Priority to CN202310468583.XA priority patent/CN116336703A/en
Priority to CN201780048788.5A priority patent/CN109564042A/en
Publication of JP2018025331A publication Critical patent/JP2018025331A/en
Publication of JP2018025331A5 publication Critical patent/JP2018025331A5/ja
Application granted granted Critical
Publication of JP6697975B2 publication Critical patent/JP6697975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)

Description

本発明は、冷凍サイクルに用いられる感温機構内蔵型の膨張弁に関する。   The present invention relates to an expansion valve with a built-in temperature sensing mechanism used in a refrigeration cycle.

従来、自動車に搭載される空調装置等に用いる冷凍サイクルについては、冷媒の通過量を温度に応じて調整する感温機構内蔵型の温度膨張弁が使用されている。このような膨張弁の弁本体は、高圧の冷媒が導入される入口ポートと入口ポートに連通する弁室とを有するとともに、弁本体の頂部には、パワーエレメントと称する弁体の駆動機構が装備される。   BACKGROUND ART Conventionally, for a refrigeration cycle used for an air conditioner mounted on an automobile, a temperature expansion valve with a built-in temperature sensing mechanism that adjusts the amount of refrigerant passing according to temperature has been used. The valve body of such an expansion valve has an inlet port into which high pressure refrigerant is introduced and a valve chamber communicating with the inlet port, and a valve element drive mechanism called a power element is provided at the top of the valve body. To be done.

弁室内に配設される球状の弁体は、弁室に開口する弁孔の弁座に対向し配置される。弁体は、弁室内に配置された支持部材に支持され、弁本体に取り付けられた調整ねじと支持部材との間に設置されたコイルバネにより弁座方向へ付勢される。そして、弁体は、パワーエレメントにより駆動される弁棒により操作されて、弁座との間の絞り通路の開度を制御する。また、弁孔を通った冷媒は、出口ポートから蒸発器側へ送られる。   The spherical valve element arranged in the valve chamber is arranged so as to face the valve seat of the valve hole that opens in the valve chamber. The valve body is supported by a support member arranged in the valve chamber, and is urged toward the valve seat by a coil spring installed between an adjusting screw attached to the valve body and the support member. The valve element is operated by the valve rod driven by the power element to control the opening degree of the throttle passage between the valve element and the valve seat. Further, the refrigerant having passed through the valve hole is sent from the outlet port to the evaporator side.

ここで、入口ポートから流れてきた高圧冷媒は、弁室を通過するが、膨張弁に送り込まれる高圧冷媒には、冷凍サイクル内において上流側で圧力変動が発生する場合があり、その圧力変動が伝達されると、弁体の動作を不安定にするという問題を生じる場合がある。この圧力変動が弁体の振動の原因となり、異音を発生することとなった。   Here, the high-pressure refrigerant flowing from the inlet port passes through the valve chamber, but the high-pressure refrigerant sent to the expansion valve may have a pressure fluctuation on the upstream side in the refrigeration cycle. When transmitted, it may cause a problem of destabilizing the operation of the valve body. This pressure fluctuation causes the valve body to vibrate, resulting in abnormal noise.

このような振動を防止するため、従来、弁室内に弁体を弾性的に支持する防振ばねを設ける構成が提案されている(特許文献1〜2参照)。   In order to prevent such vibration, there has been conventionally proposed a configuration in which a vibration-proof spring that elastically supports the valve body is provided in the valve chamber (see Patent Documents 1 and 2).

特開2005−156046号公報JP, 2005-156046, A 特開2013−68368号公報JP, 2013-68368, A

従来の防振ばねの構造は一定の防振効果を有するものの、以下のような問題点もあった。   Although the structure of the conventional anti-vibration spring has a certain anti-vibration effect, it also has the following problems.

すなわち、特許文献1には、弁体を支持する支持部材に、複数の弾性腕(脚部)を有する防振ばねを設け、この各脚部の先端を弁室内壁に弾性的に当接させることにより、支持部材をその周囲から中心に方向に向かって安定的に支持する構成が開示されている。
しかし、特許文献1においては防振ばねの脚部が入口ポートより弁室内に流入する冷媒に直接衝突する構成であるために、弁室内に導入される高圧冷媒に乱流発生の懸念が生じた。この点について、図7〜10を用いて説明する。
That is, in Patent Document 1, a support member that supports the valve body is provided with a vibration-proof spring having a plurality of elastic arms (legs), and the tips of the legs are elastically brought into contact with the inner wall of the valve chamber. Accordingly, a configuration is disclosed in which the support member is stably supported from its periphery toward the center in the direction.
However, in Patent Document 1, since the leg portion of the anti-vibration spring directly collides with the refrigerant flowing into the valve chamber through the inlet port, turbulence may occur in the high-pressure refrigerant introduced into the valve chamber. .. This point will be described with reference to FIGS.

図7に示すように、圧縮機(図示せず)により送出される高圧冷媒は、矢印Aで示されるように入口ポート320に入り、入口孔320aを通って、弁室324へ導入される。ここで、従来の防振ばね300は、弁体の支持部材400及び該支持部材400を弁体側に付勢するコイルばね344の間に挟持される円環状の板状部301と、該板状部301から放射状にかつ弁棒の中心軸方向に傾斜して折曲形成された複数の脚部302とより成る。そして、この複数の脚部302が入口孔320aより下側の弁室324の下側壁324bまで延びている。ここで、防振ばね300を取り付ける際の角度(防振ばね300の中心点を中心とした回転角度)に応じて、入口孔320aに対して、脚部302が様々な流路形状を形成することになる。   As shown in FIG. 7, the high-pressure refrigerant delivered by the compressor (not shown) enters the inlet port 320 as indicated by arrow A, is introduced into the valve chamber 324 through the inlet hole 320a. Here, the conventional vibration-proof spring 300 includes an annular plate-shaped portion 301 sandwiched between a support member 400 of a valve body and a coil spring 344 that biases the support member 400 toward the valve body, and the plate-shaped portion 301. It is composed of a plurality of leg portions 302 that are bent and formed radially from the portion 301 and are inclined in the direction of the central axis of the valve stem. Then, the plurality of legs 302 extend to the lower side wall 324b of the valve chamber 324 below the inlet hole 320a. Here, the leg portion 302 forms various flow passage shapes with respect to the inlet hole 320a according to the angle at which the anti-vibration spring 300 is attached (rotation angle about the center point of the anti-vibration spring 300). It will be.

図8〜10は、入口ポート320側から見た入口孔320aと脚部302による入口流路の形状例を示す。図8は、脚部302が入口孔320aの中央で上下方向に位置し、対面流路が2股に別れた場合を示している。図9は、脚部302が入口孔320aの片側を塞いでいる場合を示している。図10は、脚部302が入口孔320aの両側に位置し、門型流路となる場合を示している。このように様々な態様で脚部302が入口孔320aの一部を塞ぎ、入口流路もそれに応じた形状となるため、防振ばね300の向きによっては乱流が生じる可能性がある。乱流により、冷媒通過音が発生し、泡混じりの気泡が破裂すること等による異音の発生が懸念される。また、導入される冷媒の流量が低下する懸念もある。
これに対し、特許文献2は、防振ばねの脚部を弁棒の中心軸を中心として半径方向に湾脚させることにより、脚部の前記中心軸方向の長さを短くする技術を開示しているが、この場合、防振ばねを捻じりながら弁本体内に挿入しないと、脚部の特に根元の部分に負荷がかかり、防振ばねの変形を招いたりする懸念もあった。
8 to 10 show examples of the shape of the inlet passage formed by the inlet hole 320a and the leg portion 302 viewed from the inlet port 320 side. FIG. 8 shows a case in which the leg portion 302 is located vertically in the center of the inlet hole 320a, and the facing flow channel is divided into two. FIG. 9 shows a case where the leg portion 302 blocks one side of the inlet hole 320a. FIG. 10 shows a case in which the leg portions 302 are located on both sides of the inlet hole 320a and form a gate-shaped flow path. As described above, the leg portion 302 blocks a part of the inlet hole 320a in various modes, and the inlet flow path has a shape corresponding to the leg portion 302. Therefore, turbulent flow may occur depending on the orientation of the vibration-proof spring 300. Due to the turbulent flow, a noise passing through the refrigerant is generated, and there is a concern that abnormal noise may occur due to bursting of bubbles containing bubbles. Further, there is a concern that the flow rate of the introduced refrigerant will decrease.
On the other hand, Patent Document 2 discloses a technique for shortening the length of the leg portion in the direction of the central axis by making the leg portion of the anti-vibration spring extend radially around the central axis of the valve rod. However, in this case, if the vibration-proof spring is not inserted into the valve body while being twisted, there is a concern that a load is applied to the leg portion, especially the root portion thereof, and the vibration-proof spring is deformed.

そこで、本発明の目的は、弁体の振動を抑制し、かつ、防振ばねの変形を抑えて冷媒の通過音を低減させた防振ばねを備える膨張弁を提供することにある。   Then, the objective of this invention is suppressing the vibration of a valve body, and suppressing the deformation|transformation of an anti-vibration spring, and providing the expansion valve provided with the anti-vibration spring which reduced the passing noise of a refrigerant|coolant.

上記課題を解決するために、代表的な本発明の膨張弁の1つは、冷媒を弁室に流入する入口孔及び、前記冷媒を前記弁室から流出する弁孔を有する弁本体と、
前記弁孔を流れる冷媒の量を調節する弁体と、
前記弁本体に取り付けられて弁棒を介して前記弁体を駆動するパワーエレメントと、
前記弁体を支持する支持部材と、
前記支持部材を介して前記弁体を閉弁方向に押圧するコイルバネと、
前記弁体の振動を防止する防振ばねと、を備え、
前記支持部材は、前記コイルバネ内に嵌入する本体部を具備し、
前記防振ばねは、前記支持部材と前記コイルバネとの間に配置される円環状の基部と、前記基部から放射状に延びる複数の脚部と、を有し、
前記複数の脚部の各々は、前記基部と同一面に放射状に形成された上部と、当該上部から前記コイルバネ側に折れ曲がる折り曲がり部と、当該折り曲がり部から下方に延びる側部と、を備え、
前記複数の脚部の各々は、前記弁室の側壁面における前記入口孔よりも前記弁孔側に接し、
前記コイルバネの中心軸線に沿った方向において、前記脚部における前記入口孔側の端部と、前記支持部材の本体部における前記入口孔側の端部は、前記入口孔の前記弁孔側縁の近傍に位置し、前記脚部の少なくとも1つは、前記コイルバネを挟んで前記入口孔とは反対側に配置される
In order to solve the above problems, one of the typical expansion valves of the present invention is a valve main body having an inlet hole through which a refrigerant flows into a valve chamber and a valve hole through which the refrigerant flows out of the valve chamber,
A valve body for adjusting the amount of refrigerant flowing through the valve hole,
A power element attached to the valve body to drive the valve body via a valve rod;
A support member for supporting the valve body,
A coil spring for pressing the valve element in the valve closing direction via the support member,
A vibration-proof spring for preventing vibration of the valve body,
The support member includes a main body portion that is fitted into the coil spring,
The vibration-proof spring has an annular base portion arranged between the support member and the coil spring, and a plurality of leg portions radially extending from the base portion,
Each of the plurality of legs includes an upper portion formed radially on the same surface as the base portion, a bending portion that bends from the upper portion to the coil spring side, and a side portion that extends downward from the bending portion. ,
Each of the plurality of legs is in contact with the side of the valve chamber closer to the valve hole than the inlet hole,
In the direction along the central axis of the coil spring and the end portion of the inlet hole side of the leg portion, the end portion of the inlet hole side of the main body of the support member, of the valve hole side edge of the inlet aperture Located in the vicinity, at least one of the legs is arranged on the opposite side of the inlet hole with the coil spring interposed therebetween .

本発明による膨張弁の一実施例において、前記複数の脚部は、更に、前記基部と同一面において隣接する脚部同士の接続部を有していてもよい。 In one embodiment of the expansion valve according to the present invention, the plurality of leg portions may further include a connecting portion between leg portions that are adjacent to each other on the same plane as the base portion.

この発明による膨張弁は、上記のように構成されているので、弁体の振動を抑制し、かつ、防振ばねの変形を抑えて冷媒の通過音を低減させることができる。   Since the expansion valve according to the present invention is configured as described above, it is possible to suppress the vibration of the valve element and the deformation of the vibration-proof spring to reduce the passing noise of the refrigerant.

本発明による膨張弁の第1実施例を示す縦断面図である。1 is a vertical sectional view showing a first embodiment of an expansion valve according to the present invention. 第1実施例の膨張弁の要部の縦断面図である。It is a longitudinal cross-sectional view of the main part of the expansion valve of the first embodiment. 第1実施例の防振ばねを示す斜視図である。It is a perspective view which shows the vibration-proof spring of 1st Example. 第1実施例の防振ばねを示す平面図である。It is a top view which shows the vibration-proof spring of 1st Example. 第1実施例の防振ばねを示す側面図である。It is a side view which shows the vibration-proof spring of 1st Example. 第2実施例の防振ばねを示す平面図である。It is a top view which shows the vibration-proof spring of 2nd Example. 従来の膨張弁の一例を示す縦断面図である。It is a longitudinal cross-sectional view showing an example of a conventional expansion valve. 従来の膨張弁の入口流路の形状例を示す図である。It is a figure which shows the shape example of the inlet flow path of the conventional expansion valve. 従来の膨張弁の入口流路の形状例を示す図である。It is a figure which shows the shape example of the inlet flow path of the conventional expansion valve. 従来の膨張弁の入口流路の形状例を示す図である。It is a figure which shows the shape example of the inlet flow path of the conventional expansion valve.

<第1実施例>
図1は、本発明による膨張弁の第1実施例を示す縦断面図である。図2は、第1実施例の膨張弁の要部の縦断面図である。
<First embodiment>
FIG. 1 is a vertical sectional view showing a first embodiment of an expansion valve according to the present invention. FIG. 2 is a vertical cross-sectional view of the main part of the expansion valve of the first embodiment.

図1に示すように、膨張弁10は、弁本体11、パワーエレメント70、弁体40、弁棒60、Oリング36、支持部材100、防振ばね140、コイルバネ44、調整ねじ120を備えている。   As shown in FIG. 1, the expansion valve 10 includes a valve body 11, a power element 70, a valve body 40, a valve rod 60, an O-ring 36, a support member 100, a vibration-proof spring 140, a coil spring 44, and an adjusting screw 120. There is.

弁本体11は、例えばアルミ合金製であって、例えば図1のX方向を押出方向として、アルミ合金等を押出成形し、これに機械加工を施すことによって得ることができる。この弁本体11は、上面部に形成されパワーエレメント70の雄ねじ72aに螺合してこれを固定する雌ねじであるパワーエレメント取付部12と、高圧の冷媒が導入される入口ポート20と、入口ポート20より流入した冷媒が流出する冷媒の出口ポート28と、冷媒の戻り通路30と、Oリング36を取り付ける穴部33と、弁本体11の底面部に形成された雌ねじ11aと、弁本体11を図示されない蒸発器や他の部品等に取り付けるための取付穴(あるいは取付用雌ねじ)80等とを有する。   The valve body 11 is made of, for example, an aluminum alloy, and can be obtained, for example, by extrusion-molding an aluminum alloy or the like with the X direction in FIG. 1 as the extrusion direction and subjecting this to machining. The valve body 11 includes a power element mounting portion 12, which is a female screw formed on an upper surface portion and screwed into a male screw 72a of the power element 70 to fix the male screw 72a, an inlet port 20 into which high-pressure refrigerant is introduced, and an inlet port. The refrigerant outlet port 28 through which the refrigerant flowing in from 20 flows out, the refrigerant return passage 30, the hole 33 for mounting the O-ring 36, the female screw 11a formed on the bottom surface of the valve body 11, and the valve body 11 It has a mounting hole (or a female screw for mounting) 80 for mounting on an evaporator (not shown), other components, and the like.

パワーエレメント取付部12は、弁本体11の上面に円形状に開口し、その内壁面に雌ねじを有する有底の円筒状穴として形成される。この穴の底部中央には戻り通路30に至る(連通する)開口32が形成されている。ここで、パワーエレメント取付部12の中心軸の方向は、戻り通路30内を通過する冷媒の通過方向(X方向)とほぼ直交する方向(Y方向)となっている。   The power element mounting portion 12 is formed as a bottomed cylindrical hole having a circular opening on the upper surface of the valve body 11 and having an internal thread on its inner wall surface. At the center of the bottom of this hole, an opening 32 is formed (communicating) with the return passage 30. Here, the direction of the central axis of the power element attachment portion 12 is a direction (Y direction) substantially orthogonal to the passage direction (X direction) of the refrigerant passing through the return passage 30.

雌ねじ11aは、弁本体11の下面に開口するように形成されており、その上部に挿入穴11bが形成されている。雌ねじ11aの開口部分を調整ねじ120で封鎖することにより弁本体11の内部に弁室24が形成される。弁室24は、円筒状の側壁面を備え、入口孔20aの上端より上方が上壁面24a、入口孔20aの下端より下方が下壁面24bである。上壁面24aは後述する防振ばね140が摺動するのに必要な上下方向の長さが確保されている。また、挿入穴11bの上端と入口孔20aの間の部分は、強度に必要な厚みを有していればよい。   The female screw 11a is formed so as to open on the lower surface of the valve body 11, and an insertion hole 11b is formed in the upper portion thereof. The valve chamber 24 is formed inside the valve body 11 by closing the opening of the female screw 11a with the adjusting screw 120. The valve chamber 24 has a cylindrical side wall surface, and an upper wall surface 24a is above the upper end of the inlet hole 20a and a lower wall surface 24b is below the lower end of the inlet hole 20a. The upper wall surface 24a secures a vertical length required for sliding the vibration-proof spring 140 described later. Further, the portion between the upper end of the insertion hole 11b and the inlet hole 20a may have a thickness necessary for strength.

入口ポート20は、弁室24の側方から入口ポート20より小径の入口孔20aを介して弁室24と連通して形成されている。また、出口ポート28の奥には出口ポート28よりも小径の狭窄部28aが設けられており、この狭窄部28aは、弁室24の上方に配置されている。この狭窄部28aは、オリフィスとなる弁孔26を介して弁室24の上端部に連通している。また、弁孔26の弁室24側には、弁座25が形成されている。弁本体11には戻り通路30と狭窄部28aとを連通するように上下方向(図1におけるY方向)に通し孔29が形成されている。そして、弁孔26と通し孔29と開口32と弁室24とは、それぞれの中心軸が同一直線上になるように配置されている。戻り通路30は、弁本体11における出口ポート28のさらに上方に形成され、弁本体11を横方向(図1におけるX方向)に貫通するように形成されている。また、戻り通路30の下側に、通し孔29と同軸で通し孔29よりも内径の大きい穴部33が形成されている。   The inlet port 20 is formed so as to communicate with the valve chamber 24 from the side of the valve chamber 24 via an inlet hole 20a having a smaller diameter than the inlet port 20. Further, a narrowed portion 28 a having a smaller diameter than the outlet port 28 is provided at the back of the outlet port 28, and the narrowed portion 28 a is arranged above the valve chamber 24. The narrowed portion 28a communicates with the upper end portion of the valve chamber 24 via the valve hole 26 serving as an orifice. A valve seat 25 is formed on the valve chamber 24 side of the valve hole 26. A through hole 29 is formed in the valve body 11 in the vertical direction (Y direction in FIG. 1) so as to connect the return passage 30 and the narrowed portion 28a. The valve hole 26, the through hole 29, the opening 32, and the valve chamber 24 are arranged such that their central axes are on the same straight line. The return passage 30 is formed further above the outlet port 28 in the valve body 11 and penetrates the valve body 11 in the lateral direction (X direction in FIG. 1 ). A hole 33 coaxial with the through hole 29 and having a larger inner diameter than the through hole 29 is formed below the return passage 30.

なお、図1においては、入口ポート20及び出口ポート28は弁本体11の左右に開口し、同様に戻り通路30も弁本体11の左右を貫通するように形成されているが、これら入口ポート、出口ポート及び戻り通路の両開口は、当該膨張弁が配置される冷凍サイクルのレイアウトによって種々変更が可能である。例えば出口ポート28及び戻り通路30の左側開口は、図1の紙面手前側あるいは紙面奥側に開口するように(すなわち弁棒60の中心線から見た場合に入口ポート及び出口ポートが直交するように、同様に戻り通路の両開口も直交するように形成)しても良い。   In addition, in FIG. 1, the inlet port 20 and the outlet port 28 are opened to the left and right of the valve body 11, and the return passage 30 is also formed so as to penetrate right and left of the valve body 11. Both openings of the outlet port and the return passage can be variously changed depending on the layout of the refrigeration cycle in which the expansion valve is arranged. For example, the left side openings of the outlet port 28 and the return passage 30 are opened to the front side or the back side of the paper of FIG. 1 (that is, the inlet port and the outlet port are orthogonal to each other when viewed from the center line of the valve rod 60). Similarly, both openings of the return passage may be formed so as to be orthogonal to each other.

パワーエレメント70は、例えばステンレス鋼等で形成された上蓋部材71及び中央部に貫通口72bを備えた受け部材72と、これら上蓋部材71及び受け部材72の間に挟み込まれるダイアフラム73と、このダイアフラム73及び受け部材72の間に配置されたストッパ部材90等から構成されている。そして、上蓋部材71、ダイアフラム73及び受け部材72を重ね合わせた端部を周溶接することにより、これらは一体化されている。上蓋部材71とダイアフラム73との間には、圧力作動室75が形成され、この圧力作動室75内に作動ガスが封入された後、封止栓65で封止される。受け部材72の下部は円筒状でその周囲には雄ねじ72aが形成され、パッキン35を介してパワーエレメント取付部12の雌ねじ(弁本体11の上面に開口された雌ねじ)と螺合することにより、パワーエレメント70が弁本体11に取付けられている。   The power element 70 includes an upper lid member 71 made of, for example, stainless steel and a receiving member 72 having a through hole 72b in a central portion, a diaphragm 73 sandwiched between the upper lid member 71 and the receiving member 72, and this diaphragm. It is composed of a stopper member 90 and the like arranged between 73 and the receiving member 72. Then, the upper lid member 71, the diaphragm 73, and the receiving member 72 are integrated by circumferentially welding the overlapped end portions. A pressure working chamber 75 is formed between the upper lid member 71 and the diaphragm 73. The pressure working chamber 75 is filled with a working gas and then sealed with a sealing plug 65. The lower part of the receiving member 72 is cylindrical, and a male screw 72a is formed on the periphery thereof, and by being screwed with a female screw of the power element mounting portion 12 (a female screw opened on the upper surface of the valve body 11) via the packing 35, The power element 70 is attached to the valve body 11.

弁体40は、弁座25に対向するように配置された球状の部材であり、弁室24内に設けられている。弁棒60は、弁本体11の弁孔26、通し孔29及び開口32のそれぞれに挿通される態様で設けられており、弁棒60の上端は、パワーエレメント70のストッパ部材90の下側に設けられた受け部92に当接し、その下端は、弁体40と接触するように配置される。Oリング36は、穴部33に装着されており、上部に装着される止め部材37がOリング36の抜け止めとなっている。   The valve body 40 is a spherical member arranged so as to face the valve seat 25, and is provided inside the valve chamber 24. The valve rod 60 is provided so as to be inserted into each of the valve hole 26, the through hole 29, and the opening 32 of the valve body 11, and the upper end of the valve rod 60 is below the stopper member 90 of the power element 70. It abuts on the receiving portion 92 provided, and its lower end is arranged so as to come into contact with the valve body 40. The O-ring 36 is attached to the hole 33, and the stopper member 37 attached to the upper portion prevents the O-ring 36 from coming off.

支持部材100は、弁体40を弁座25の方向(弁棒60の方向)に支持する部材である。弁体40は支持部材100に固着されているが、支持部材100は常にコイルばね44により弁座25及び弁棒60の方向に付勢されているので、支持部材100が弁体40に当接するだけの構成でもよい。支持部材100は、本体部103、上面部101、フランジ部102を備えている。円柱状の本体部103の上面は円錐状のくぼみを備えて弁体40の下面を支持する上面部101となっている。また、支持部材100は本体部103より側面(外周側に)に突出するフランジ部102を備えており、当該フランジ部102の下面が防振ばね140及びコイルバネ44の一端を受ける構造となっている。このときフランジ部102より下側の本体部103の外径はコイルバネ44の内径よりも小さく構成され、コイルバネ44の内側に入るようになっている。   The support member 100 is a member that supports the valve body 40 in the direction of the valve seat 25 (direction of the valve rod 60). Although the valve body 40 is fixed to the support member 100, the support member 100 is always biased by the coil spring 44 toward the valve seat 25 and the valve rod 60, so that the support member 100 abuts on the valve body 40. It may be a simple structure. The support member 100 includes a main body 103, an upper surface 101, and a flange 102. The upper surface of the cylindrical main body portion 103 is an upper surface portion 101 having a conical recess and supporting the lower surface of the valve body 40. Further, the support member 100 is provided with a flange portion 102 projecting from the main body portion 103 to the side surface (outer peripheral side), and the lower surface of the flange portion 102 receives the vibration-proof spring 140 and one end of the coil spring 44. .. At this time, the outer diameter of the body portion 103 below the flange portion 102 is smaller than the inner diameter of the coil spring 44, and is located inside the coil spring 44.

コイルバネ44は、支持部材100に設けられたフランジ部102の下面と調整ねじ120に形成された凹部125との間に設置されている。このコイルバネ44の弾性力により、弁体40は支持部材100を介して弁座25に向けて付勢されている。フランジ部102の下面とコイルバネ44の間には、防振ばね140が設置されるがこの構成の詳細は後述する。   The coil spring 44 is installed between the lower surface of the flange portion 102 provided on the support member 100 and the recess 125 formed on the adjusting screw 120. The valve body 40 is biased toward the valve seat 25 via the support member 100 by the elastic force of the coil spring 44. An anti-vibration spring 140 is installed between the lower surface of the flange portion 102 and the coil spring 44, and details of this configuration will be described later.

調整ねじ120は、本体部121、六角穴122、挿入部123、先端部124、凹部
125を備えている。挿入部123は本体部121の上部に本体部121よりも外径が縮
径して設けられ、先端部124は挿入部123の上部に挿入部123よりも外径が縮径し
て設けられている。また、本体部121の外周は弁本体11の下面に開口する雌ねじ11
aに螺合するための雄ねじ部121aとなっている。さらに、調整ねじ120の上部には
、上部が開口して円柱状の空間を有する凹部125が設けられている。凹部125は本体
部121近辺まで達する深さに形成されている。また、凹部125の内径は、コイルバネ
44が凹部125内に安定的に配置されるようにコイルバネ44の外径よりやや大きい内
径となっている。また、調整ねじ120(本体部121)の下部には、該調整ねじ120
を回すための図示されない六角レンチ挿入用の六角穴122が設けられている。
The adjusting screw 120 includes a main body 121, a hexagonal hole 122, an insertion portion 123, a tip portion 124, and a recess 125. The insertion portion 123 is provided on the upper portion of the main body portion 121 with a smaller outer diameter than the main body portion 121, and the tip portion 124 is provided on the upper portion of the insertion portion 123 with a smaller outer diameter than the insertion portion 123. There is. Further, the outer circumference of the main body portion 121 is a female screw 11 that opens to the lower surface of the valve main body 11.
It is a male screw part 121a for screwing into a. Furthermore, a recess 125 having a cylindrical space with an open top is provided at the top of the adjusting screw 120. The recess 125 is formed to a depth reaching the vicinity of the main body 121. Further, the inner diameter of the recess 125 is slightly larger than the outer diameter of the coil spring 44 so that the coil spring 44 can be stably arranged in the recess 125. In addition, the adjusting screw 120 (main body 121) is provided below the adjusting screw 120.
A hexagonal hole 122 for inserting a hexagonal wrench (not shown) for turning is provided.

図3は、第1実施例の防振ばね140を示す斜視図である。図4は、第1実施例の防振ばね140を示す平面図である。図5は、第1実施例の防振ばねを示す側面図である。防振ばね140は、基部141と脚部142を備えている。防振ばね140は、ステンレス鋼、その合金等、弾性のある板材からプレス成形することができる。   FIG. 3 is a perspective view showing the vibration-proof spring 140 of the first embodiment. FIG. 4 is a plan view showing the vibration-proof spring 140 of the first embodiment. FIG. 5 is a side view showing the vibration damping spring of the first embodiment. The vibration-proof spring 140 includes a base 141 and legs 142. The vibration-proof spring 140 can be press-molded from an elastic plate material such as stainless steel or its alloy.

基部141は、防振ばね140の上部を形成する円環状の板状の部材であり、中央に取付孔141aを有する。   The base portion 141 is an annular plate-shaped member that forms an upper portion of the vibration-proof spring 140, and has a mounting hole 141a at the center.

脚部142は、基部141の外周側から周方向の接線に対して垂直方向に、換言すれば放射状に、複数延びている。第1実施例では同じ長さの8本の脚部142が等角度間隔で備えられている。脚部142は、上部142a、折り曲がり部142b、側部142c、突起部142dで構成されている。また、脚部142は、折り曲がり部142bにおいて下方に折り曲げられている。   A plurality of legs 142 extend from the outer peripheral side of the base 141 in a direction perpendicular to the tangential line in the circumferential direction, in other words, radially. In the first embodiment, eight leg portions 142 having the same length are provided at equal angular intervals. The leg portion 142 includes an upper portion 142a, a bent portion 142b, a side portion 142c, and a protruding portion 142d. The leg portion 142 is bent downward at the bent portion 142b.

上部142aは、基部141と略同一平面で形成されている。このため、各脚部142の根元の部分においては基部141を有する面において、それぞれ所定形状の切欠145を確保している。図4では長さCが上部142aの長さとなる。脚部142が上部142aを備えることで、基部141と同一面において脚部142は折り曲がり部よりも基部141の中心側から形成されていることになる。また、上部142aの基部141への接続部の付近(脚部142の付け根付近)において、隣り合う上部142aの幅方向の側面の間に形成された切欠145は、上部142aの根本側面から同じ曲率で連続して結ぶことで円弧状に形成されており、これにより上部142a同士(脚部142同士)が滑らかに接続されている。もちろん、切欠145は、上部142aの根本側面から異なる曲率で結ぶことで円弧状以外の形状にて形成されても良い。   The upper portion 142a is formed in substantially the same plane as the base portion 141. Therefore, in the root portion of each leg portion 142, a cutout 145 having a predetermined shape is secured in the surface having the base portion 141. In FIG. 4, the length C is the length of the upper portion 142a. Since the leg portion 142 includes the upper portion 142a, the leg portion 142 is formed closer to the center of the base portion 141 than the bent portion on the same plane as the base portion 141. Further, in the vicinity of the connecting portion of the upper portion 142a to the base portion 141 (near the root of the leg portion 142), the notch 145 formed between the side surfaces in the width direction of the adjacent upper portions 142a has the same curvature from the root side surface of the upper portion 142a. Are continuously connected to form an arc shape, whereby the upper portions 142a (leg portions 142) are smoothly connected. Of course, the notch 145 may be formed in a shape other than an arc shape by connecting the root side surface of the upper portion 142a with different curvatures.

折り曲がり部142bは、上部142aから外側に連続して下方(コイルバネ44側)に向けて折り曲がり形成されている。折り曲がり部142bは、一定の曲率半径を伴っていてもよい。折り曲がり部142bは、(90−θ)度曲げ加工して形成される。   The bent portion 142b is formed so as to be continuously bent outward from the upper portion 142a and directed downward (to the coil spring 44 side). The bent portion 142b may have a constant radius of curvature. The bent portion 142b is formed by bending (90-θ) degrees.

側部142cは、折り曲がり部142bの下方に連続して直線状に形成されている。側部142cの角度は、上下方向に対して下方外側に向けてθ度を有している。   The side portion 142c is linearly formed continuously below the bent portion 142b. The angle of the side portion 142c is θ degrees downward and outward with respect to the vertical direction.

突起部142dは、側部142c下端近傍に外側に向けて形成されている。例えば、突起部142dは半球状など、球表面の一部等により形成できる。この突起部142dは、弁本体11内に装着されると入口孔20aの開口部上部の部分(上壁面24a)に弾発的に接触するが、弁体40が最下限位置となった場合でも突起部142dが入口孔20aの開口部に入り込まないように、各部の寸法が設定されている。   The protrusion 142d is formed outward in the vicinity of the lower end of the side portion 142c. For example, the protrusion 142d can be formed by a part of the spherical surface such as a hemisphere. When the protrusion 142d is mounted in the valve body 11, the protrusion 142d elastically contacts the upper portion (upper wall surface 24a) of the opening of the inlet hole 20a, but even when the valve body 40 is at the lowest position. The dimensions of each part are set so that the protrusion 142d does not enter the opening of the inlet hole 20a.

脚部142の上下方向の長さは、防振ばね140の上下移動の範囲内における最下端において、脚部142の下端部が入口孔20aの開口部内に落ちなければ適宜の長さで設定されることができるが、入口ポート20から導入される冷媒の流れを阻害しないためには、脚部142の下端部が入口孔20aの開口部に達しないようにすることが望ましい。また、本実施例においてはそれぞれの脚部142の幅は上部142a、折り曲がり部142b、側部142cのいずれも一定の幅で形成されているが、本発明においては特にそれのみに限定されることはなく、先端の幅を狭くしたり、逆に広くしたり、その他、弁体の振動抑制に最も相応しい形状に変更が可能である。また、脚部142の厚み(防振ばね140を1枚の弾性板材よりプレス加工して形成する場合には、防振ばね140の厚み)も弁体の振動抑制に相応しい厚さが採用される。   The length of the leg portion 142 in the vertical direction is set to an appropriate length as long as the lower end portion of the leg portion 142 does not fall into the opening of the inlet hole 20a at the lowest end within the range of vertical movement of the vibration-proof spring 140. However, in order not to hinder the flow of the refrigerant introduced from the inlet port 20, it is desirable that the lower end portion of the leg portion 142 does not reach the opening portion of the inlet hole 20a. Further, in the present embodiment, the width of each leg 142 is formed to have a constant width in all of the upper portion 142a, the bent portion 142b, and the side portion 142c, but the present invention is not limited thereto. However, it is possible to narrow the width of the tip, widen the width of the tip, or change the shape to the most suitable shape for suppressing the vibration of the valve body. Further, the thickness of the leg portion 142 (the thickness of the vibration-proof spring 140 when the vibration-proof spring 140 is formed by pressing from one elastic plate material) is also a thickness suitable for suppressing the vibration of the valve body. .

防振ばね140においては、隣り合う脚部142の間には冷媒が通過するための隙間D(図4)を有している。また、防振ばね140における突起部142d先端部で結ばれる外径は、弁室24内の上壁面24aの内径よりも大きくなっており、取り付けた際に弾性力が働き、弁室24の上壁面24aへ突起部142dが押圧するようになっている。また、脚部142の内側にコイルバネ44が配置される大きさが確保されている。   The vibration-proof spring 140 has a gap D (FIG. 4) between the adjacent leg portions 142 for the refrigerant to pass therethrough. The outer diameter of the vibration-proof spring 140 connected at the tip of the protrusion 142d is larger than the inner diameter of the upper wall surface 24a in the valve chamber 24, and elastic force acts when the valve chamber 24 is attached. The projection 142d is adapted to be pressed against the wall surface 24a. Further, the size in which the coil spring 44 is arranged inside the leg portion 142 is secured.

図1、2に示されるように、防振ばね140の装着に際しては、まず支持部材100の本体部103に、下側から防振ばね140の取付孔141aに通し、防振ばね140の基部141の上面を支持部材100のフランジ部102の下面に当接させる。次に、防振ばね140の下側からコイルバネ44を取り付ける。このとき、コイルバネ44の内側に支持部材100の本体部103が配置され、コイルバネ44の上面が防振ばね140の基部141下面に当接する。これにより、防振ばね140は、弁室24内に設置される。   As shown in FIGS. 1 and 2, when mounting the vibration-proof spring 140, first, the main body 103 of the support member 100 is passed through the mounting hole 141a of the vibration-proof spring 140 from the lower side, and the base 141 of the vibration-proof spring 140 is inserted. The upper surface of the above is brought into contact with the lower surface of the flange portion 102 of the support member 100. Next, the coil spring 44 is attached from below the vibration-proof spring 140. At this time, the main body 103 of the support member 100 is arranged inside the coil spring 44, and the upper surface of the coil spring 44 contacts the lower surface of the base 141 of the vibration-proof spring 140. As a result, the vibration-proof spring 140 is installed inside the valve chamber 24.

防振ばね140を取り付けた膨張弁10において、防振ばね140の基部141は下側からコイルバネ44により付勢されているため、支持部材100のフランジ部102とコイルバネ44の間に所定の力で挟持されることにより取り付けられていることとなる。そして、防振ばね140は、脚部142の弾性力により突起部142dが弁室24の上壁面24aへ向けて所定の力で押され、弁体40の動きに応じて、摺動抵抗が発生する。   In the expansion valve 10 to which the vibration-proof spring 140 is attached, the base portion 141 of the vibration-proof spring 140 is urged by the coil spring 44 from the lower side. It is attached by being sandwiched. Then, in the vibration-proof spring 140, the elastic force of the leg portion 142 pushes the protrusion 142d toward the upper wall surface 24a of the valve chamber 24 with a predetermined force, and a sliding resistance is generated according to the movement of the valve body 40. To do.

次に、作用について説明する。本発明の第1実施例の膨張弁10においては、圧縮機(図示せず)から吐出された高圧の冷媒は入口ポート20から入口孔20aを通って弁室24内に流入し、弁孔26を通過して膨張され、出口ポート28から蒸発器(図示せず)へ送り出される。また、この蒸発器から送り出された冷媒は、戻り通路30の左側入口から入って右側出口に抜けるように通過し、圧縮機へ戻る。このとき、戻り通路30内を通過する冷媒の一部は開口32からパワーエレメント70の下部に流入する。そしてパワーエレメント70の下部に流入した冷媒の温度変化に応じて圧力作動室75内の作動ガスの圧力を変化させる。このとき、圧力作動室75における内圧の変動に応じて変形したダイアフラム73の動きを受け、ストッパ部材90が上下動する。そして、ストッパ部材90の移動が弁棒60を介して弁体40に伝達され、膨張される冷媒の流量が制御される。   Next, the operation will be described. In the expansion valve 10 of the first embodiment of the present invention, the high-pressure refrigerant discharged from the compressor (not shown) flows from the inlet port 20 into the valve chamber 24 through the inlet hole 20a, and the valve hole 26 Through the outlet port 28 and expanded to an evaporator (not shown). Further, the refrigerant sent out from this evaporator passes through the return passage 30 so as to enter from the left inlet and exit to the right outlet, and then return to the compressor. At this time, part of the refrigerant passing through the return passage 30 flows into the lower portion of the power element 70 from the opening 32. Then, the pressure of the working gas in the pressure working chamber 75 is changed according to the temperature change of the refrigerant flowing into the lower portion of the power element 70. At this time, the stopper member 90 moves up and down in response to the movement of the diaphragm 73 deformed according to the change of the internal pressure in the pressure working chamber 75. Then, the movement of the stopper member 90 is transmitted to the valve body 40 via the valve rod 60, and the flow rate of the expanded refrigerant is controlled.

弁体40が開閉方向(上下方向)へ動く場合、防振ばね140は、弁体40及び支持部材100と共に挙動する。このとき、防振ばね140は所定の力で弁本体11の弁室24の上壁面24aを押圧しているため、防振ばね140が摺動する際、脚部242の突起部142dと弁室24の上壁面24aの間で摩擦力が発生する。これにより、入口ポート20からの高圧冷媒の圧力変動に対して弁体40及び支持部材100が上下方向に敏感に反応することがなくなり、上下方向の振動を防止又は低減することができる。さらに、防振ばね140から弁室24の上壁面24aへ複数の脚部142により複数の箇所で押圧しているため、入口ポート20からの高圧冷媒の圧力変動に対して、弁体40及び支持部材100が押圧力に抗して横方向に簡単に動くことがなく、横方向の振動を防止する効果を発揮する。同時に、弁体40及び支持部材100の上下方向の動きをガイドする。   When the valve body 40 moves in the opening/closing direction (vertical direction), the vibration-proof spring 140 behaves together with the valve body 40 and the support member 100. At this time, since the vibration-proof spring 140 presses the upper wall surface 24a of the valve chamber 24 of the valve body 11 with a predetermined force, when the vibration-proof spring 140 slides, the projection 142d of the leg portion 242 and the valve chamber 24d. A frictional force is generated between the upper wall surfaces 24 a of 24. As a result, the valve body 40 and the support member 100 do not sensitively react in the vertical direction with respect to the pressure fluctuation of the high-pressure refrigerant from the inlet port 20, and the vertical vibration can be prevented or reduced. Further, since the vibration-proof spring 140 presses the upper wall surface 24a of the valve chamber 24 at a plurality of places by the plurality of legs 142, the valve body 40 and the support are supported against the pressure fluctuation of the high-pressure refrigerant from the inlet port 20. The member 100 does not easily move laterally against the pressing force, and exhibits an effect of preventing lateral vibration. At the same time, the vertical movement of the valve body 40 and the support member 100 is guided.

また、防振ばね140は、弁室24における入口孔20aより上の上壁面24aで接しているため、脚部142が、入口孔20aにかかることがなく、冷媒流量や乱流の発生を抑制し冷媒の通過音を低減させることができる。また、防振ばね140は、放射状に延びた脚部142で構成されているため、弁本体11の底部に形成された雌ねじ11aの開口部から挿入するだけで容易に弁本体11内への取付ができる。さらに、防振ばね140は、基部141を有する面において一定の切欠深さ(切欠145)を有していることから、脚部142の長さを防振ばねの高さ以上に長くできる。このため、脚部142のバネ定数を小さくでき、脚部142の変形に対する力の変化を小さくでき、より安定した摺動抵抗を得ることができる。また、脚部142の幅を同じにすることで、バネ定数の計算、すなわち当該第1防振ばね140の設計がし易くなる。また、脚部142が基部141の周方向の接線に対して垂直方向に(放射状に)形成されることで、基部141の円周方向のねじりの力をかけずに摺動抵抗を発生させることができる。   Further, since the anti-vibration spring 140 is in contact with the upper wall surface 24a of the valve chamber 24 above the inlet hole 20a, the leg portion 142 does not contact the inlet hole 20a, and the generation of the refrigerant flow rate and the turbulent flow is suppressed. Then, the passing sound of the refrigerant can be reduced. Further, since the vibration-proof spring 140 is composed of the radially extending legs 142, the vibration-proof spring 140 can be easily attached to the inside of the valve body 11 simply by inserting it from the opening of the female screw 11a formed at the bottom of the valve body 11. You can Furthermore, since the vibration-proof spring 140 has a constant notch depth (notch 145) on the surface having the base 141, the length of the leg 142 can be made longer than the height of the vibration-proof spring. Therefore, the spring constant of the leg portion 142 can be reduced, the change in force due to the deformation of the leg portion 142 can be reduced, and more stable sliding resistance can be obtained. Further, by making the widths of the legs 142 the same, it becomes easy to calculate the spring constant, that is, to design the first anti-vibration spring 140. Further, since the leg portions 142 are formed in a direction perpendicular to the tangent line of the base portion 141 in the circumferential direction (radially), sliding resistance is generated without applying a circumferential twisting force of the base portion 141. You can

<第2実施例>
図6は、第2実施例の防振ばねを示す平面図である。第2実施例は、第1実施例の防振ばね140を防振ばね240に置き換えた構成であり、それ以外は第1実施例で示したものと共通であるので、共通の箇所は再度の説明を省略してある。
<Second embodiment>
FIG. 6 is a plan view showing the vibration damping spring of the second embodiment. The second embodiment has a structure in which the vibration-proof spring 140 of the first embodiment is replaced with a vibration-proof spring 240, and the other parts are common to those shown in the first embodiment, and therefore common parts are duplicated. The description is omitted.

防振ばね240は、基部241と脚部242を備えている。防振ばね240は、ステンレス鋼、その合金等、弾性のある板材からプレス成形することができる。   The vibration-proof spring 240 includes a base portion 241 and a leg portion 242. The vibration-proof spring 240 can be press-molded from an elastic plate material such as stainless steel or its alloy.

基部241は、防振ばね240の上部を形成する円環状の板状の部材であり、中央に第1実施例と同様の取付孔141aを有する。   The base 241 is an annular plate-shaped member that forms the upper portion of the vibration-proof spring 240, and has a mounting hole 141a at the center similar to the first embodiment.

脚部242は、基部241の外周側から周方向の接線に対して垂直方向に、すなわち放射状に複数延びている。第2実施例では8本の脚部242が等角度間隔で備えられている。脚部242は、上部242a、折り曲がり部142b、側部142c、突起部142dで構成され、折り曲がり部142b、側部142c、突起部142dは第1実施例と同様である。   A plurality of legs 242 extend from the outer peripheral side of the base 241 in a direction perpendicular to the tangential line in the circumferential direction, that is, radially. In the second embodiment, eight leg portions 242 are provided at equal angular intervals. The leg portion 242 includes an upper portion 242a, a bent portion 142b, a side portion 142c, and a protruding portion 142d. The bent portion 142b, the side portion 142c, and the protruding portion 142d are the same as those in the first embodiment.

ここで、第1実施例では円弧状の切欠145を有していたが、第2実施例では略三角状の切欠245となっている点で異なる。このため、第2実施例の上部242aの長さEは、第1実施例の上部142aの長さCよりも長い。そして、その分だけ第2実施例の脚部242の長さは、長くなる。また、第2実施例の基部241の外周は第1実施例の基部141の外周よりも小さくなっている。なお、隣り合う上部242aの幅方向の側面は、強度や応力集中を考慮して小さい円弧状部を形成してもよい。   Here, the first embodiment has the arcuate notch 145, but the second embodiment is different in that it has the substantially triangular notch 245. Therefore, the length E of the upper portion 242a of the second embodiment is longer than the length C of the upper portion 142a of the first embodiment. Then, the length of the leg portion 242 of the second embodiment becomes longer by that amount. The outer circumference of the base 241 of the second embodiment is smaller than the outer circumference of the base 141 of the first embodiment. The side surfaces in the width direction of the adjacent upper portions 242a may be formed with a small arc-shaped portion in consideration of strength and stress concentration.

第2実施例では、略三角状の切欠245を形成することで、防振ばね240の長さをさらに長くできる。このため、脚部242のバネ定数をより小さくでき、脚部242の変形に対する力の変化をより小さくでき、より安定した摺動抵抗とすることができる。   In the second embodiment, by forming the substantially triangular notch 245, the length of the vibration-proof spring 240 can be further increased. Therefore, the spring constant of the leg portion 242 can be further reduced, the change in force due to the deformation of the leg portion 242 can be further reduced, and more stable sliding resistance can be achieved.

以上の様に、本発明の実施形態について第1実施例、第2実施例を示してきたが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例に設けられた全ての構成(構造)を備えるものに限定されるものではない。また、ある実施例の構成の一部を削除したり、他の実施例の構成に置き換えたり、あるいはまた、ある実施例の構成に他の実施例の構成を加えることも可能である。   As described above, although the first embodiment and the second embodiment have been shown with respect to the embodiment of the present invention, the present invention is not limited to the above-mentioned embodiments, and various modifications are included. For example, the present invention is not limited to those having all the configurations (structures) provided in the above-described embodiments. It is also possible to delete a part of the configuration of a certain embodiment, replace it with the configuration of another embodiment, or add the configuration of another embodiment to the configuration of a certain embodiment.

例えば、上記実施例では、脚部142、242は、同じ長さの8本の脚部142が等角度間隔で備えていることを示した。脚部142、242の本数が8本であれば挙動の安定性と摺動抵抗を確保でき、脚部間の隙間のバランスも保たれるが、これに限られるものではない。例えば、脚部は2本以上であれば、良く、また、同じ長さ、等角度間隔に限らなくても良い。また、上記実施例で示した脚部の幅が途中で変わるものであっても採用することは可能である。   For example, in the above embodiment, the leg portions 142 and 242 are shown to have eight leg portions 142 having the same length at equal angular intervals. If the number of legs 142 and 242 is eight, stability of behavior and sliding resistance can be secured, and the balance of the gap between the legs can be maintained, but the invention is not limited to this. For example, the number of legs may be two or more, and the legs are not limited to have the same length and equal angular intervals. Further, even if the width of the leg portion shown in the above embodiment changes in the middle, it can be adopted.

また、上記実施例で示したパワーエレメント70は、ねじによる取り付けを示しているが、これ以外に、弁本体上部に形成された円筒部を設け、この円筒部の内側にパワーエレメント70を挿入し、該円筒部を内側カシメ加工することにより、該パワーエレメント70を取り付ける構成でも良い。   Further, although the power element 70 shown in the above-mentioned embodiment is shown to be attached by screws, in addition to this, a cylindrical portion formed on the upper part of the valve body is provided, and the power element 70 is inserted inside this cylindrical portion. The power element 70 may be attached by caulking the cylindrical portion inside.

10 膨張弁
11 弁本体
20 入口ポート
20a 入口孔
24 弁室
24a 上壁面
25 弁座
26 弁孔
28 出口ポート
30 戻り通路
40 弁体
44 コイルバネ
60 弁棒
70 パワーエレメント
100 支持部材
120 調整ねじ
140、240 防振ばね
141、241 基部
142、242 脚部
10 expansion valve 11 valve body 20 inlet port 20a inlet hole 24 valve chamber 24a upper wall surface 25 valve seat 26 valve hole 28 outlet port 30 return passage 40 valve body 44 coil spring 60 valve rod 70 power element 100 support member 120 adjusting screw 140, 240 Anti-vibration springs 141, 241 Bases 142, 242 Legs

Claims (7)

冷媒を弁室に流入する入口孔及び、前記冷媒を前記弁室から流出する弁孔を有する弁本体と、
前記弁孔を流れる冷媒の量を調節する弁体と、
前記弁本体に取り付けられて弁棒を介して前記弁体を駆動するパワーエレメントと、
前記弁体を支持する支持部材と、
前記支持部材を介して前記弁体を閉弁方向に押圧するコイルバネと、
前記弁体の振動を防止する防振ばねと、を備え、
前記支持部材は、前記コイルバネ内に嵌入する本体部を具備し、
前記防振ばねは、前記支持部材と前記コイルバネとの間に配置される円環状の基部と、前記基部から放射状に延びる複数の脚部と、を有し、
前記複数の脚部の各々は、前記基部と同一面に放射状に形成された上部と、当該上部から前記コイルバネ側に折れ曲がる折り曲がり部と、当該折り曲がり部から下方に延びる側部と、を備え、
前記複数の脚部の各々は、前記弁室の側壁面における前記入口孔よりも前記弁孔側に接し、
前記コイルバネの中心軸線に沿った方向において、前記脚部における前記入口孔側の端部と、前記支持部材の本体部における前記入口孔側の端部は、前記入口孔の前記弁孔側縁の近傍に位置し、前記脚部の少なくとも1つは、前記コイルバネを挟んで前記入口孔とは反対側に配置される膨張弁。
A valve body having an inlet hole through which the refrigerant flows into the valve chamber, and a valve hole through which the refrigerant flows out of the valve chamber;
A valve body for adjusting the amount of refrigerant flowing through the valve hole,
A power element attached to the valve body to drive the valve body via a valve rod;
A support member for supporting the valve body,
A coil spring for pressing the valve element in the valve closing direction via the support member,
A vibration-proof spring for preventing vibration of the valve body,
The support member includes a main body portion that is fitted into the coil spring,
The vibration-proof spring has a ring-shaped base portion arranged between the support member and the coil spring, and a plurality of leg portions radially extending from the base portion,
Each of the plurality of legs includes an upper portion formed radially on the same surface as the base portion, a bending portion that bends from the upper portion to the coil spring side, and a side portion that extends downward from the bending portion. ,
Each of the plurality of legs is in contact with the valve hole side with respect to the inlet hole in the side wall surface of the valve chamber,
In the direction along the central axis of the coil spring and the end portion of the inlet hole side of the leg portion, the end portion of the inlet hole side of the main body of the support member, of the valve hole side edge of the inlet aperture An expansion valve that is located in the vicinity and at least one of the legs is arranged on the opposite side of the inlet hole with the coil spring interposed therebetween .
前記上部は、前記基部と同一面において前記複数の脚部同士の間に形成された切欠により画定される、請求項1に記載の膨張弁。   The expansion valve according to claim 1, wherein the upper portion is defined by a notch formed between the plurality of leg portions in the same plane as the base portion. 前記切欠は、円弧状である、請求項2に記載の膨張弁。   The expansion valve according to claim 2, wherein the notch has an arc shape. 前記切欠は、略三角状である、請求項2に記載の膨張弁。   The expansion valve according to claim 2, wherein the notch has a substantially triangular shape. 前記複数の脚部の各々において、前記上部、前記折り曲がり部、及び前記側部は、幅が一定である、請求項1乃至請求項4のいずれか一項に記載の膨張弁。   The expansion valve according to claim 1, wherein in each of the plurality of legs, the upper portion, the bent portion, and the side portion have a constant width. 前記複数の脚部の各々は、更に、前記側部の下端近傍に設けられた突起部を有し、
当該突起部が前記弁室の側壁面における前記入口孔よりも前記弁孔側に接する、請求項1乃至請求項5のいずれか一項に記載の膨張弁。
Each of the plurality of legs further has a protrusion provided near the lower end of the side portion,
The expansion valve according to any one of claims 1 to 5, wherein the protrusion is in contact with a side wall surface of the valve chamber closer to the valve hole than the inlet hole.
前記複数の脚部は、更に、前記基部と同一面において隣接する脚部同士の接続部を有する、請求項1乃至請求項6のいずれか一項に記載の膨張弁。   The expansion valve according to any one of claims 1 to 6, wherein each of the plurality of legs further has a connecting portion between adjacent legs on the same surface as the base.
JP2016156352A 2016-08-09 2016-08-09 Expansion valve Active JP6697975B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016156352A JP6697975B2 (en) 2016-08-09 2016-08-09 Expansion valve
US16/322,961 US20190178542A1 (en) 2016-08-09 2017-07-21 Expansion valve
EP17839188.4A EP3499150A4 (en) 2016-08-09 2017-07-21 Expansion valve
CN202310468583.XA CN116336703A (en) 2016-08-09 2017-07-21 Expansion valve
PCT/JP2017/026432 WO2018030115A1 (en) 2016-08-09 2017-07-21 Expansion valve
CN201780048788.5A CN109564042A (en) 2016-08-09 2017-07-21 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016156352A JP6697975B2 (en) 2016-08-09 2016-08-09 Expansion valve

Publications (3)

Publication Number Publication Date
JP2018025331A JP2018025331A (en) 2018-02-15
JP2018025331A5 JP2018025331A5 (en) 2019-01-17
JP6697975B2 true JP6697975B2 (en) 2020-05-27

Family

ID=61161965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156352A Active JP6697975B2 (en) 2016-08-09 2016-08-09 Expansion valve

Country Status (5)

Country Link
US (1) US20190178542A1 (en)
EP (1) EP3499150A4 (en)
JP (1) JP6697975B2 (en)
CN (2) CN109564042A (en)
WO (1) WO2018030115A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015769B2 (en) * 2018-10-12 2022-02-03 株式会社鷺宮製作所 Thermal expansion valve and refrigeration cycle system equipped with it
CN113623901A (en) * 2020-05-09 2021-11-09 盾安环境技术有限公司 Throttling device and air conditioning system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253773A (en) * 1984-05-31 1985-12-14 カルソニックカンセイ株式会社 Expansion valve
JP4069548B2 (en) * 1999-04-27 2008-04-02 株式会社デンソー Control valve
JP2001082835A (en) * 1999-09-13 2001-03-30 Denso Corp Pressure control valve
JP3920059B2 (en) * 2001-09-17 2007-05-30 株式会社テージーケー Expansion valve
JP4078519B2 (en) * 2001-12-26 2008-04-23 Nok株式会社 Pressure release valve
KR100463057B1 (en) * 2002-11-08 2004-12-23 현대자동차주식회사 Expansion valve
JP4255892B2 (en) * 2003-11-06 2009-04-15 株式会社不二工機 Expansion valve
JP4666904B2 (en) * 2003-11-27 2011-04-06 株式会社不二工機 Expansion valve
KR20070062318A (en) * 2005-12-12 2007-06-15 기아자동차주식회사 An air conditioner expansion valve for vehicle
CN101118020A (en) * 2006-08-01 2008-02-06 王永乐 Heat expansion valve
CN102588669B (en) * 2011-01-07 2015-07-01 浙江三花汽车零部件有限公司 Thermal expansion valve
JP5933210B2 (en) * 2011-09-22 2016-06-08 株式会社不二工機 Valve device
JP5906371B2 (en) * 2012-01-11 2016-04-20 株式会社テージーケー Expansion valve and anti-vibration spring
CN202630539U (en) * 2012-05-31 2012-12-26 宁波松鹰汽车部件有限公司 Heating power expansion valve for vibration attenuation and noise elimination
JP6143500B2 (en) * 2013-03-08 2017-06-07 株式会社不二工機 Thermal expansion valve
JP6142181B2 (en) * 2013-03-12 2017-06-07 株式会社テージーケー Expansion valve and anti-vibration spring
JP6368895B2 (en) * 2014-10-01 2018-08-08 株式会社テージーケー Control valve
JP6031078B2 (en) * 2014-11-12 2016-11-24 株式会社鷺宮製作所 Throttle device and refrigeration cycle system including the same
US10436349B2 (en) * 2015-06-09 2019-10-08 Denso Corporation Pressure reduction valve
CN105485982B (en) * 2015-12-30 2018-04-06 浙江新劲空调设备有限公司 Vibration and noise reducing expansion valve
CN205262003U (en) * 2015-12-30 2016-05-25 浙江新劲空调设备有限公司 Thermostatic expansion valve that makes an uproar falls

Also Published As

Publication number Publication date
JP2018025331A (en) 2018-02-15
CN109564042A (en) 2019-04-02
EP3499150A1 (en) 2019-06-19
WO2018030115A1 (en) 2018-02-15
US20190178542A1 (en) 2019-06-13
CN116336703A (en) 2023-06-27
EP3499150A4 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP5246736B2 (en) Temperature expansion valve
CN105546208B (en) Pressure reducing valve
JP6697976B2 (en) Expansion valve
JP6779030B2 (en) Expansion valve
CN102588669B (en) Thermal expansion valve
JP6697975B2 (en) Expansion valve
JP6356644B2 (en) Throttle device and refrigeration cycle
JP2017198387A (en) Expansion valve
JP2018021717A (en) Expansion valve
US7373788B2 (en) Expansion valve
JP6961232B2 (en) Power element and expansion valve with it
JP6943379B2 (en) Expansion valve
JP6734595B2 (en) Expansion valve
JP6356645B2 (en) Throttle device and refrigeration cycle
WO2020022214A1 (en) Electric valve
JP4255892B2 (en) Expansion valve
JP2001012824A (en) Control valve
WO2018188512A1 (en) Thermal expansion valve
JP6788887B2 (en) Expansion valve
JP2017187225A (en) Expansion valve
JP6945249B2 (en) Expansion valve
JP2017172702A (en) Expansion valve
CN113574303A (en) Expansion valve
JP6846875B2 (en) Expansion valve
WO2018030364A1 (en) Expansion valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6697975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250