[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6697786B2 - 船舶の前側部の設計 - Google Patents

船舶の前側部の設計 Download PDF

Info

Publication number
JP6697786B2
JP6697786B2 JP2017551022A JP2017551022A JP6697786B2 JP 6697786 B2 JP6697786 B2 JP 6697786B2 JP 2017551022 A JP2017551022 A JP 2017551022A JP 2017551022 A JP2017551022 A JP 2017551022A JP 6697786 B2 JP6697786 B2 JP 6697786B2
Authority
JP
Japan
Prior art keywords
water
ship
vessel
hull
bow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017551022A
Other languages
English (en)
Other versions
JP2018501150A (ja
Inventor
モエン、ロール・ヨハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rasmussen Maritime Design AS
Original Assignee
Rasmussen Maritime Design AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rasmussen Maritime Design AS filed Critical Rasmussen Maritime Design AS
Publication of JP2018501150A publication Critical patent/JP2018501150A/ja
Application granted granted Critical
Publication of JP6697786B2 publication Critical patent/JP6697786B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • B63B1/063Bulbous bows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/40Other means for varying the inherent hydrodynamic characteristics of hulls by diminishing wave resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/20Designing vessels; Predicting their performance using towing tanks or model basins for designing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Helmets And Other Head Coverings (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Body Structure For Vehicles (AREA)
  • Revetment (AREA)

Description

本発明は、航洋船の設計に関し、及び速度の遅い船であるリグ(rigs)及びはしけから、滑走速度まで動作される高速の船及びボート並びにまた帆船及び複胴船まで、大多数の船体タイプに適用され得る。特に、本発明は、船舶の波抵抗を低下させ、且つ飛沫及び砕波抵抗を低下させるか又はなくす装置を含む、船舶の前側部(forepart)の構成に関する。
船舶が水塊(water mass)の表面で移動するとき、いくつもの異なる抵抗因子が船舶の動きに作用する。排水型船舶(displacement vessel)の個々の構成要素の抵抗係数を図1に示す。示されているように、摩擦抵抗C及び波抵抗Cは2つの大きい因子である。所与の船舶に関し、フルード数[F]は、速度が増加すると共に増加し、x軸に沿って次のように示される。
Figure 0006697786
このように抵抗係数C及びCに速度の二乗(v)を乗算して、前進運動に対する抵抗をニュートン[N]単位で得る。従って、波抵抗は、速度が増加するにつれて非常に急激に増加する。
ほとんどの船舶は、船舶が高速時に直面する水塊が船舶の横方向に実質的に側方に移動される船首構成を有する。船舶が水塊を移動するとき、船首の前方で水の局所的な減速、すなわち、船体に対する水の相対速度の減少が生じる。船体の幅が増大するさらに後方では、船体の形状の結果、水が強制的に両側へ及び場合により船舶の下側へ出されるため、水塊の相対的加速が発生する。水の速度におけるこれらの相対的変動は波形成及び圧力変化の原因であり、ベルヌーイの式
Figure 0006697786
によって与えられる。より低速の水の相対速度は、圧力の増大及び周囲の水塊に対する波の山を生じる一方、より高速の水の相対速度は、より低い圧力及び波の谷を与える。
従って、船舶は船舶の前方で波の山を作り、そこでは水の相対速度は低い。船体の幅が増大するさらに後方では、高速の水の相対速度に起因して波の谷が生じる。
船体の下側での水の速度の増加はまた、船舶の速度が増加するときに船体の下側でより低い圧力を生じ、従って浮力の損失を生じる。この抵抗は、波抵抗という用語に含まれる。
動いている船体によって生成され、且つ周囲の水塊に広がる波は、失われたエネルギーを表す。波抵抗に通常起因する、一様な速度での前進運動に対する全抵抗の割合は、船舶のタイプに依存して30〜70%であり、及び速度の増加と共に急激に増加する。
従って、前進運動に対する船舶の抵抗を低下させるために波抵抗を最小限にすることが極めて重要である。
バルブ(bulb)について説明する。
船舶からの全波形成を減少させるために、あるサイズの船舶の大多数は、今日では何らかの形態でバルブを備えている。バルブは、基本的に、周囲の水塊にそれ自体の波を生じさせることによって機能する。好ましい波干渉を得るために、この波を可能な限り多く船体の波系に対して逆位相で有しようとする試みがなされる。従来技術のバルブからの波形成の図及び水面5の位置が、図3A及びBに概略的に示されている。
図3Aは、従来技術によるバルブを備える船舶の側面図であり、ここでは、船舶は設計速度で動作される。船舶のバルブによって生成された波系31は、船体の船首部分によって生成された波系32に対して逆位相にあり、その結果得られる2つの波系31及び32の和である波33は実質的に平坦である。
従って、波長が速度の増加と共に長くなると、バルブによる問題は、加速時には船舶のさらに後方で、及び減速時にはさらに前方で波の谷が生じることである。他方では、波の山は同じ点で生じるため、バルブからの波及び船舶の船体からの波が好ましい波干渉を有するのは、制限された速度範囲内のみである。設計速度以外の速度では、バルブ及び船体からの波はもはや逆位相にない。これは、図3Bに示す概略図から明確に分かり、ここでは、波長が長くなったことにより、船体の船首部分によって生成された波系32をもはや打ち消さないバルブの波系31を生じて、結果として得られる波33が大きくなるようにしている。
実際には、バルブは、一般にF=0.23〜F=0.28の比較的低速で機能する。しかしながら、バルブが船体の船首部分の前側の遥か前方に位置決めされて、より高速で波消しを生じるようにする船舶がある。しかし、ほとんどの船舶に関し、そのように船首部分の遥か前方にバルブを配置することはほとんど好都合ではない。速度F=0.32では、バルブは、船首領域の前側の、船体の長さの約1/4の距離に配置されるべきであり、及び速度F=0.4では、バルブは、船首領域の前側の、船体の長さの約1/2の距離に配置されるべきである。
前から見ると、バルブはほとんど球形であることが多い。或いは、バルブはより三角形に作製され得る。従来のバルブの異なる構成が図4A、B及びCに概略的に示されている。破線5は水面を示す。全てのバルブに共通の特徴は、前部領域及び幅が水面の下側にある船体の前部領域及び幅よりも小さいことである。さらに、従来技術のバルブの幅/高さの比は約1である。バルブの位置及び構成は、基本的に、図4A、B及びCに示すように接近水塊(oncoming water masses)を水平面及び垂直平面で等しく移動させることを意味する。
次に、薄い造波板について説明する。
2つの本体間での波消しに基づく他の公知の解決法もある。
造波板と船体との間の波消しに基づく薄い造波底板について説明している米国特許第4,003,325号明細書を参照する。
米国特許第4,003,325号明細書には、造波板が船体幅の約1/3の最大幅を有し、及び軽荷重条件下での板の垂直方向の厚さが船首における船舶の喫水の1/3程度を占めてもよく、及びさらに板が船体の底部と実質的に同一平面上に配置されることが開示されている。従って、前から見た薄い板の表面領域は、水面の下側にある船体の前部領域と比べて非常に小さい(最大約11%)。
薄い板体の平面的な/直線状の上面、その制限された厚さ、及び水面の下側のある距離にある船体底部と実質的に同一平面上にあるその位置は、わずかに波を生成するのみであり、従って、この波は、後方にある船首によって生じる船首の波を打ち消すのにわずかに寄与するにすぎないことに留意されたい。
バルブに関連して上述したように、好ましい波の干渉に基づくこの解決法も、狭い速度範囲内でのみ、及び実際には比較的低速においてのみ最適化され得るにすぎない。
次に、翼断面形状フランジについて説明する。
実開昭58−43593号公報を参照する。
波抵抗に関して上述したように、船体が水塊を通過するとき、船首の前方で水塊の局所的な減速が生じる、すなわち、相対速度が減少する。水塊の相対速度が低くなると、圧力が増大して波の山(船首波)が生じる。
実開昭58−43593号公報における解決法は、船首領域によって生成される船首波の高さを小さくしようとするものであり、翼断面形状フランジが水面の下側の船体の船首領域に配置され、翼断面形状の湾曲した上面が速度を上昇させ、従って翼断面形状フランジの上面での船首波においてより低い圧力を生じさせ、それがさらに船首波の高さを小さくする。
次に、揚力水中翼(Lifting foils)について説明する。
いくつかある公知の抵抗減少装置の中で特に、水から出るように上方へ船体を持上げる、水中にある揚力水中翼について述べ得る。水中翼の湾曲した上面において、水の速度は上昇し、それにより水中翼の上面に水中翼の下面よりも低い圧力を生じさせる。従って、水中翼の上面は揚力を生じる。
図5Aは、位置1における白抜き矢印の方向に初速Vで水中翼へ向かって及びそれを越えて流れる水塊を示す。水中翼の上面から離れて90度を指している矢印は、水中翼の上面での典型的な圧力降下分布を示し、位置3にある水中翼断面形状のほぼ最大厚においてピーク圧力降下にある。ベルヌーイの式(式2)によれば、図5Aに示す圧力降下分布を有する水中翼は、図5Bに示すような水塊の速度分布を有し、位置3における水中翼断面形状のほぼ最大厚で最大速度VMAXに達する。従って、水塊の速度は、位置2における水中翼の前縁のわずかに後方から位置3にある最大断面形状厚まで上昇し、それに続いて、水の速度は、位置3から水中翼の後部上面の位置4を経由して位置5まで減少し、そこで、水塊は再びその初速Vに達する。この特定の圧力及び速度分布を達成するために、水中翼は、水面の下側で十分な深さに配置される必要がある。
水中翼が十分に水中にない場合、水中翼の上面に形成される負圧は、図7Bに示すように水面に波の谷を引き起こし、図7Bでは、破線5は、水中翼が存在しないときの水面を示す。従って、水中翼は波を生じ、それが次に抵抗を増大させる。波形成に加えて、不十分に水中にある水中翼はあまり揚力を発生しない。
十分に水中にある水中翼の場合でも、水中翼によって生成される揚力は抵抗となり、これは、揚力の増加と共に増大する。水中翼は、それ自体が摩擦抵抗及び揚力に起因する抵抗の両方を引き起こすため、全抵抗の減少は、船体が水からかなり持上げられるときに船体に対して達成されるにすぎない。かなりの重量の船体では、これは、それ自体多量のエネルギーを必要とするために不適当である。従って、水中翼は、主に、高速で移動することを意図した比較的低重量の船体に対し、前進運動に対してより低い抵抗を与える。
さらに、水中にある水中翼は、船舶の動きを無効にすることを意図し得ることも知られている。
さらに、動的揚力(水中翼の上面の圧力降下に起因する揚力)に加えて、容積浮力(水中翼の体積から生じる浮力)を与えることを意図する、あるフルネス(fullness)の水中にある水中翼も公知である。ここで、米国特許第7,191,725号明細書を参照する。
次に、翼板について説明する。
特開平1−314686号公報を参照して、船首の下部先端付近に取り付けられた誘導用翼板について説明する。造波抵抗を減少させ且つ船首領域における乱流を抑制する誘導用翼板が説明される。
特開平1−314686号公報の図6aは、翼板の上面における圧力分布、及びどのように翼板の上側での圧力降下が単独で作用するときに翼板の上側及び後方の水面を下げるかを示す(本明細書の図7Bも参照)。翼板の目的は、船舶の船首領域の前にある水面が膨らむのを防止することである、すなわち船首領域の位置で波の山又は波の谷を作らないようにすることである。これは、翼板を船首の下方先端に配置し、それにより、翼板の背面において強い負圧領域を生成することによって達成される。
さらに、翼板の目的は、特開平1−314686号公報の図5bに示すような誘導用翼板(参照符号8で示される)の機能を果たすことである。特開平1−314686号公報の図5aから分かるように、流れ方向に大きい変化を生成する湾曲した風洞11に風が吹くと、流れは分離される。しかしながら、流れの分離は、特開平1−314686号公報の図5bに示す誘導用翼板8の効果によって減少されるか又は防止される。従って、全流れ抵抗は減少する。特開平1−314686号公報による翼板の効果は、風洞における誘導用翼板と全く同じであると主張されている。
特開平1−314686号公報に示されるような船舶に取り付けられた翼板は、全て航空分野で「翼端渦」として公知のかなりの渦乱流を生じることに留意されたい。渦は、水中翼(又は飛行機の翼)の上面と下面との圧力差に起因して生じる。水中翼の下面の圧力は、水中翼の上面の圧力降下を均等化しようとする。そのような渦を図8A、B及びCに湾曲した矢印で示す(水中翼を、それぞれ上から、側面から及び前から見て)。そのような渦に起因して上昇されたドラグは有意であり得、及び水中翼の上面と底面との圧力差によって上昇する。渦によって達成される水粒子の速度ベクトルは、翼板の後縁において船舶の進行方向の約90度の軸の周りで回転しており、及び船舶の全抵抗に好ましくない。
従って、特開平1−314686号公報による翼板は、流れ全体の抵抗を減少させるのに寄与しない。
次に、渦を引き起こす翼(vortex inducing wing)について説明する。
特開昭60−42187号公報には、船舶の船首によって生成される砕波渦と反対の翼端渦を意図的に生成することによって砕波抵抗を減少させようとする、船舶の船首の前側での翼の配置が開示されている。
船舶が前方に移動しているとき、船首の周囲の水の圧力は増大し、船首波を生成する。この船首波の山が前方に崩壊する場合、砕波渦を生じる。特開昭60−42187号公報に開示されている解決法では、この船首において引き起こされた砕波渦は、水線付近に配置された翼により水中で生成された反対の回転方向の翼端渦によって打ち消される。さらに、翼は、船首の前方での水面の上昇を抑制するため、船首波の砕波の発生が減少する。主張される結果は、砕波抵抗を著しく減少することである。
翼端渦の生成に関し、図8A、B及びC、及びこの文献の前に出てきた説明を参照する。
特開昭60−42187号公報には、どのように船首波が抑制されるかを除いて、上述したものと同じ効果を有する第4の実施形態が説明されている(特開昭60−42187号公報の図14及び図15参照)。第4の実施形態では、翼体は、翼に向かって流れる水が方向を変え、従って船の船首波と逆位相の波を生じるように配置されている。その結果生じる波は、高さがかなり低くされると主張されている。さらにまた、この翼は、船舶によって生じた砕波渦と逆位相の渦を生じるように設計される。
従って、翼の目的は、船舶の船首領域からの砕波抵抗を減少させることである。
図1から、砕波抵抗[CWB]は、船舶の波抵抗[C]の重要でない部分を構成することが明らかである。波パターン抵抗[CWP]は、間違いなく波抵抗[C]の主要な寄与因子である。
本発明の目的は、広い速度範囲にわたる前進運動に対して船舶の抵抗を減少させる前側部を開発することである。さらに、本発明は、船舶の航海特性を改善でき、且つまた従来の船舶と比較してより幅広で長さがより短い船舶の設計を可能にする。上述の目的は、請求項1に記載の船舶によって達成される。さらに、有利な特徴は従属請求項に定義されている。
特に、本発明は、船舶が静止しており且つ水塊に浮いているとき、前から見て水面の下側で船体の領域として画定される船首領域を備える船体と、船首領域の近傍に、例えば船首領域の上流に配置された1つ(又は複数の)本体とを含む船舶を含む。「静止している」という表現は、厳密に解釈されるべきではなく、例えば、環境的影響力、例えば海流、風などからの小さい動きを含むことに留意されたい。本体は、1つ(又は複数の)前縁、1つ又は複数の前縁の下流にある1つ(又は複数の)後縁、1つ(又は複数の)下面、及び1つ(又は複数の)上面を含む。本体の上面は、前から見て、本体の前縁から本体の1つ(又は複数の)外側輪郭線まで延在する1つ(又は複数の)前部上面を含む。輪郭線は、追加的な基準として、船舶の進行方向における上面の接線が水平となる交点を通る線を引くことによって分かる。本体の最高点は、船舶が、ペイロードなし及びバラストなしで静止しており且つ水塊に浮いているとき、前から見て、船舶の最深喫水の半分よりも高く配置される。「本体の最高点」という表現はまた、上面上にいくつかの最高点がある及び/又は1つ以上の最高の平坦部分がある場合を網羅し得ることに留意されたい。船舶の最深喫水は、ペイロードなし及びバラストなしで船舶自体の燃料タンク及び潤滑油タンクが空であるときに測定される必要がある。最深喫水は、座礁することなく船舶が操舵できる最小水深によって定義される。好ましくは、本体の最高点は、前から見て、船舶の荷重条件の少なくとも1つにおいて、船舶の最深喫水の半分よりも高く配置される。一層好ましくは、本体の最高点は、前から見て、少なくとも1つの荷重条件で測定された船舶の最深喫水の2/3よりも高く、より好ましくは、少なくとも1つの荷重条件において船舶の最深喫水の5/6よりも高く、さらにより好ましくは、少なくとも1つの荷重条件において船舶の最深喫水の8/9よりも高く、例えば、乱されていない水線に又はその近くに配置される。
船舶の進行方向における本体の垂直区域及び船体の横断方向における本体の範囲は、船舶の荷重条件の少なくとも1つにおいて、船舶の最低速度として規定されるより低い設計速度以上である船舶の速度で接近水塊を本体の上面の上側で移動させることであって、船舶の進行方向に沿った垂直平面内で主に移動される接近水塊は、本体の前部上面、好ましくは本体の前部上面全体の上側で、一層好ましくは本体の上面全体の上側で実質的な層流となり、本体の上面の形状は、輪郭線の下流の重力場において又は重力場によって降下される接近水塊を加速させ、それにより、接近水塊は、本体の後縁において、水塊を船首領域から離れるように、又は船首領域に実質的に平行に、又はそれらの組み合わせで導く速度及び方向を得る、移動させることを行うようにさらに設計されている。従って、船首領域自体は、接近水塊の移動が最小限であり、これにより、船首領域からの波抵抗を低下させるか又はなくし、及び船舶に対する波抵抗を低下させる。ここでは、波抵抗を低下させるとは、従来の船首設計を備える船舶からの波抵抗と比較して低下させることを意味する。本明細書を通して、下流/上流という用語は、対象の位置にある水塊の流線を指すことに留意されたい。
有利な実施形態では、本体の上面は、接近水塊が輪郭線の下流に向かう方向になり、それにより、接近水塊が船首領域から離れるように、又は船首領域に実質的に平行に、又はそれらの組み合わせで導かれるようにさらに構成される。「船首領域に実質的に平行に」という表現は、本体の上面上にある水塊の全体が、船首領域での移動の場合に、船首領域が取り除かれたときに水塊が有したであろう流線に対して25度未満の迎え角で、より有利には15度未満の迎え角で、さらにより有利には10度未満の迎え角で、例えば正確に平行に移動されることを意味することに留意されたい。
別の有利な実施形態では、前記加速は、輪郭線の上流の重力場での接近水塊の持上げを含む。
別の有利な実施形態では、本体の前縁は、上から見て、本体の最大幅まで外側へ延在している。
別の有利な実施形態では、本体の前縁は、船首領域の上流に配置される。
別の有利な実施形態では、本体は、船舶が静止しており且つ水塊に浮いているとき、船舶の荷重条件の少なくとも1つにおいて、本体の前縁が水面の下側にあるか又は水面にあるように配置される。ここでは、「にある」という用語は、厳密に解釈されるべきではなく、前縁が水面より上にわずかに突出することができる。
別の有利な実施形態では、本体は、船舶がペイロードなし及びバラストなしで静止しており且つ水塊に浮いているとき、本体の最高点が、前から見て、船舶の最低点から計算して船舶の最深喫水の3/4よりも高く配置されるように位置決めされる。例えば、本体の最高点は、水面に配置されるか又はそれよりも高い位置に配置される。船舶の最深喫水は、船舶のかじ、プロペラ、本体、又は船舶の別の部分によって決定され得ることに留意されたい。
別の有利な実施形態では、本体の輪郭線及びその前縁は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上である船舶の速度で接近水塊の20%超が水面よりも上側に持上げられるように位置決めされる。
別の有利な実施形態では、本体の後縁は、1つの垂直区域で見て、尖頭的若しくはほとんど尖頭的であるか、又は本体の上面と下面との間に著しい境界を生じる任意の他の形状を有する。ここでは、「尖頭的」という用語は、厳密に解釈されるべきではなく、また、幾分非尖頭的な又は丸みを帯びた形状にできる。「尖頭的」の別の定義はまた、本体の後縁が、水塊が本体を離れる領域において生成される乱流がないか又は乱流が最小限となるような形状にされることであり得る。「尖頭的」の別の定義は、本体の後縁が垂直区域で本体の最大厚の5%未満、例えば3%未満である最大厚を有することであり得る。或いは、本体の後縁は、1つの垂直区域で見て、例えば米国特許第6,467,422号明細書又は英国特許第992375号明細書又は特開平06−56067号公報又は米国特許第4,335,671号明細書に説明されている1つ以上の水中翼の後縁のような水中翼の後縁と同一又はほとんど同一の形状を有し得る。これら全ての特許公報は参照により援用される。
別の有利な実施形態では、船舶の進行方向における本体の垂直区域及び船体の横断方向における本体の範囲は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上である船舶の速度で本体の上面の上側を通過する接近水塊の20%超、より有利には30%超、さらにより有利には40%超、さらにより有利には50%超、さらにより有利には60%超、さらにより有利には70%超、さらにより有利には80%超、さらにより有利には90%超、例えば100%が、船体の下側に導かれるように構成される。「船体の下側」という表現は、船舶を前から見たとき、船舶の進行方向に及び水面において船首領域の最大幅に対応する距離で離間した2つの垂直平面間における船体よりも下を意味する。船舶の進行方向における垂直区域の形状の例は、所望の速度ベクトルを得るまで本体の後縁の位置を調整することである。これは、本体の取り付け角度を変更することによって達成され得る。
別の有利な実施形態では、本体は、船首領域からある距離に配置され、それにより、本体と船首領域との間に少なくとも1つの通路が形成される。
別の有利な実施形態では、本体の後縁は、船首領域からある距離に配置され、それにより、船体は、船舶の荷重条件の少なくとも1つにおいて、船舶の速度がより低い設計速度以上であるときに、船体の下側へ導かれる接近水塊の一部が上昇するのを防止する。ここでは、船首領域からの後縁の距離は、水平面又は垂直平面のいずれかにあること又はそれらの組み合わせであり得ることに留意されたい。さらに、「接近水塊が上昇するのを防止する」という表現は、船体によってこの水塊が押さえ付けられるため、船体が、周囲の水塊に広がる波の形成を実質的に防止するか又は低減させることを意味するものとすることに留意されたい。
別の有利な実施形態では、本体の最大高さ(H)によって除算される本体の最大横断方向範囲(B)は、前から見て、1.5を上回るが、好ましくは8.0未満、例えば4.0である。
別の有利な実施形態では、本体の領域は、前から見て、船舶の最大喫水において船首領域の20%超、より有利には30%超、さらにより有利には40〜100%、例えば50%を構成する。本体の領域は、前から見て、i)本体の最大断面領域として、又は好ましくはまたii)本体のトリムを考慮して計算され得る。
別の有利な実施形態では、船舶が中立に釣り合いを取られ且つその最大ペイロードの10%を積み込まれているとき、船舶の進行方向における本体の垂直区域は、垂直平面において、船体の喫水の少なくとも40%、より有利には船体の喫水の少なくとも50%、さらにより有利には少なくとも60%、さらにより有利には少なくとも70%、例えば船体の喫水の75%を構成する最大範囲を有する。垂直平面内での最大範囲は、船舶の進行方向における垂直区域に沿って本体の最高点からその最低点を引いたものを意味する。
別の有利な実施形態では、前から見て、本体は、前から見て船体の最大幅の少なくとも3/8、より有利には船体の最大幅の少なくとも5/8、さらにより有利には船体の最大幅の少なくとも7/8、例えば、船体の最大幅の全体である最大横断方向範囲を有する。
別の有利な実施形態では、本体の上面は、上面の10%超、より有利には上面の20%超を構成する少なくとも1つの凸部分を含む。
別の有利な実施形態では、本体の下面は、船舶の進行方向に沿った垂直区域内で見て直線である。或いは、本体の下面は、少なくとも1つの凸部分又は少なくとも1つの凹部分、又はそれらの組み合わせを備えて構成され得る。
別の有利な実施形態では、本体は、船舶の進行方向に非対称的な断面形状を形成する。
別の有利な実施形態では、輪郭線の下流での本体の上面は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上で、本体の上面上を通過する接近水塊が、接近水塊が船体に当たる前に本体の前縁の高さ位置まで又はそれよりも下側に降下されるようにする構成を有する。
別の有利な実施形態では、本体の前縁は、上から見て、直線形状、又は湾曲した形状、又はそれらの組み合わせを有する。
別の有利な実施形態では、本体の後縁は、上から見て、直線形状、又は湾曲した形状、又はそれらの組み合わせを有する。
別の有利な実施形態では、船舶の進行方向における本体の垂直区域及び船体の横断方向の本体の範囲は、船舶の荷重条件の少なくとも1つにおいて、本体による移動によって引きこされた持上げられた水塊の大部分、すなわち50%超が、より低い設計速度以上である船舶の速度で本体の前部上面の上側に導かれるように設計される。従って、本体の前部上面上に導かれる持上げられた水塊の割合の量は、位置エネルギーが与えられ、これは、上面の輪郭線の下流で利用されて、本体の後縁において水塊に速度増加を与え得る。ここでは、速度増加は、水塊が水面より上に持ち上げられなかった場合よりも高い速度を意味することに留意されたい。持上げられた水塊の前記割合の量は、より有利には60%超、さらにより有利には70%超、例えば80%を構成し得る。
別の有利な実施形態では、本体の領域は、前から見て、船舶の荷重条件の少なくとも1つにおいて、船舶の進行方向における且つ本体の最大幅に対応する距離で離間した2つの垂直平面間で、本体の後方に配置された船首領域の部分の20%超を構成する。さらに有利には、前記表面領域は、30%超、さらにより有利には40%超、さらにより有利には50%超、さらにより有利には60%超、さらにより有利には70%超、さらにより有利には80%超、例えば90%を構成する。
別の有利な実施形態では、本体の横断方向範囲及び水面に対するその位置は、船舶の荷重条件の少なくとも1つにおいて、本体の上面の上側を通過する接近水塊の大部分、すなわち50%超が、より低い設計速度以上である船舶の速度で周囲の水塊から分離されるように選択される。この種の分離は、著しい圧力低下及び周囲の水塊において波形成のない状態で、分離された水塊が加速され得る結果をもたらす。周囲の水塊から分離される接近水塊の前記割合の量は、より有利には60%超、さらにより有利には70%超、さらにより有利には80%超、例えば100%を構成し得る。
別の有利な実施形態では、本体の下面は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上である船舶の速度で動的揚力をもたらすような形状にされ及び/又はそのような角度にされ、それにより、本体は、船舶が静止しており且つ水塊に浮いているときと比較して、変化しない又はほとんど変化しない浮力を得る。
別の有利な実施形態では、水面に対する本体の垂直位置は、少なくとも1つの荷重条件において、船舶の進行方向に沿って及び本体の翼弦線において90度で測定された本体の最大厚の下流の、本体の上面における接近水塊が、より低い設計速度以上である船舶の速度で、実質的に一定の又は増加する速度を得るようなものである。
別の有利な実施形態では、水面に対する本体の垂直位置は、接近水塊における圧力が、より低い設計速度以上である船舶の速度で、外側輪郭線の下流の上面の上側で実質的に一定であるようなものである。
別の有利な実施形態では、本体の断面領域は、前から見て、本体の横断方向に外周縁へ向かって高さが減少し、それにより、本体の下面で上昇する圧力及び本体の上面で上昇する圧力が本体の外周縁で実質的に均等化され、それにより、渦の生成を抑制する。
別の有利な実施形態では、本体の各横方向側面の外周縁は、船舶の進行方向に沿って本体の大部分、すなわち50%超にわたって延在するプレートを含み、プレートの幾何学的形状は、本体の下面の圧力が本体の上面の圧力に対して影響を有さないか又は著しい影響を有さず、それにより渦の生成を抑制するように設計されている。或いは、プレートは、本体の大部分にわたって本体の外周縁の曲率に従い得る、又はそれらの組み合わせであり得る。プレートは、垂直に、すなわち垂直方向の主成分で方向付けられ得る。本明細書では、「垂直」という用語は、本体が船舶の船首領域に位置決めされた後の、本体の横断方向に対して垂直な方向であると定義される。
別の実施形態では、本体は船首領域に組み込まれる。
別の実施形態では、本体は、船舶の進行方向に見るとき、本体の横断方向範囲の少なくとも20%、好ましくは本体の横断方向範囲の少なくとも30%、一層好ましくは少なくとも40%、例えば100%にわたり、本体の前縁及び/又は本体の後縁へ向かってテーパが付けられたセクションを備えて構成される。
別の実施形態では、本体は、少なくとも1つの水中翼が取り付けられており、その水中翼は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上である船舶の速度で動的揚力をもたらし、それにより、本体は、船舶が静止しており且つ水塊に浮いているときと比較して、変化しない又はほとんど変化しない浮力を有する。
別の実施形態では、本体の上面は、船舶の進行方向に沿って垂直区域で見ると、少なくとも1つの凸部分及び少なくとも1つの凹部分を含む。
別の実施形態では、本体は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上で、本体の下面における水の加速から生じる負圧が、本体の上面からの接近水塊により本体の後縁において完全に又はかなりの程度中立化されるように構成される。
別の実施形態では、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上で、本体の上面の上側に導かれる接近水塊は、本体の後縁において超臨界流を形成する。
別の実施形態では、本体は、その前部において、より低い設計速度超で本体の上流において圧力波をわずかに形成するのみであるような形状にされる。
別の実施形態では、本体は、船舶の荷重条件の少なくとも1つにおいて、より低い設計速度以上で、定常波の谷が本体の後縁において船舶の幅の20〜100%、より有利には30〜100%、さらにより有利には40%超、さらにより有利には60%超、例えば100%に沿って形成されるような形状にされる。別の実施形態では、船舶の荷重条件の少なくとも1つにおいて、例えば、ペイロードなし及びバラストなしで、本体の最低点は、水面よりも下の、船体の最深喫水の2/3〜3/2に対応する距離に配置される。
別の実施形態では、本体は、船舶の進行方向において本体の長さの少なくとも20%にわたり、例えば、本体の長さの少なくとも50%にわたり、横断方向に本体の外周縁へ外側に向かってテーパが付けられた横断面を備えて形成される。
より低い設計速度の代替的な定義は、速度が増加すると、接近水塊の流れ特性が本体の前部上面において実質的に乱流から実質的な層流に変化する速度であり、それぞれ図20A及びBを参照されたい。
より低い設計速度の別の代替的な定義は、本体の前部上面の上側の接近水塊の平均速度が船舶の速度よりも著しく遅くない速度であり、図20Bを参照されたい。図20Aでは、本体の前部上面の前記平均速度は著しく遅い。
より低い設計速度の別の代替的な定義は、接近水塊の平均速度が本体の前部上面において著しく遅い状態から(図20A参照)船舶の速度とほぼ同じ状態(図20B参照)へと変化する速度である。
より低い設計速度の別の代替的な定義は、船舶のエネルギー消費が著しい低下をきたす船舶の速度である。ここで、試験Bの模型ボートが、約0.99m/sの速度で前進運動に対する抵抗において著しい低下をきたすと推定され、図2にグラフで与えられた模型試験からの結果を参照する。この推定は、図20A及びBに示す流れパターンの変化と同様の流れパターンの変化の目視観測に基づき、試験Bのこの変化は、まさに1.00m/sより下がった速度で発生した。
本体及び/又は船体の周りの任意の流体の流れパターン、すなわち流体の流れ方向及び/又は流速が観測され、及び多数の測定技術によって決定され得ることに留意されたい。そのような測定技術の例は、本体及び船体を通過する水に着色剤を使用すること及び/又は本体及び/又は船体に取り付けられた軽量のネジ(セールボート用のセールに使用されるような)を使用することである。これらの測定技術は、流体流れデータシミュレーションによって補足され得るか、又はそれによって置き換えられる。
本発明の一般的な動作モード
本発明は、少なくとも1つの荷重条件において、船舶が静止しているときに完全に又は部分的に水塊中にあり、後方の船体の前方に位置決めされた流線形の本体を含み、本体は、後方の船体と相互作用するように機能する。本体は、接近水塊を垂直平面で実質的に移動させ、その後、水塊を後方の船体の下側へ及び/又は外側にその両側へ向かって導き、それにより、本体の後方の船体自体が接近水塊を最小限に移動させるように形成及び位置決めされる。
そのようにして上述の目的は達成され、すなわち、船舶は、
1)波抵抗を低下させること;及び/又は
2)飛沫及び砕波抵抗を低下させるか又はなくすこと
により、広い速度範囲にわたって前進運動に対するその抵抗を低下させる。さらに、船舶の航海特性が改善される。
接近水塊が船体の下側へ導かれる特定の実施形態に関する本発明の一般的な動作モード、及び本体と船体との間の相互作用について、図9A及び図9Bを用いて、このセクションの残りの部分で説明される。水面の位置を破線で示す。
本発明は、船舶が上述のより低い設計速度超で動作するときの船舶の前進運動に対する抵抗を低下させる。より低い設計速度超で、本発明は、船体の前方に幅広い流線形の本体を位置決めすることにより、船体の幅の大部分に沿って波の谷の形成を引き起こす。波の谷の底は、本体の境界が明確な後縁によって実質的に決定される。
波の谷は、接近水塊のかなり大きい割合の量を本体の前縁の上側で移動させることによって生じ、移動される水塊は、本体の湾曲した上面の上側で加速される。水塊の全体又は一部は、好ましくは水面よりも上に持ち上げられる。本体の後部上面では、水塊は重力場において降下され、及び本体の後縁において船舶に対する相対速度が増加する。本体の上面の水塊が本体の後縁において相対速度を増加させたため、垂直平面内における水塊の範囲が減少する。これが本体の後縁にある水塊の速度ベクトルと共に波の谷を形成する。
本体の断面形状及びその横断方向範囲のために、本体の前側で持上げられる水塊の大部分は(本体による接近水塊の移動に起因して)、周囲の水塊へ波として逃げる代わりに本体の上面の上側に導かれる。本体の上面の上側に導かれる水塊の全体が加速され、及び大部分が周囲の水塊から分離される。従って、接近する水の移動及び本体の上面における水の速度の変化は、本体の後方で生じた意図した波の谷を越えて周囲の水塊にわずかに波を生じるにすぎない。
本体の下面は、本体の上面を通過する水塊からの重量の全体又は一部を釣り合わせるような形状にされ及び/又はそのような角度にされているため、前側部は、高速である間、最小限の喫水の変化を受ける。
船体の船首領域は本体の後縁で生じた波の谷に位置するため、船首領域自体は、本体によって移動された水塊の移動を行わない。船首領域は、高速である間、乾いた又は基本的に乾いたままである。さらに、船舶の船体は、本体によって生じた波の谷が上昇するのを防止し、それにより、波の谷が周囲の水塊に波としてさらに伝播するのを防止する。
接近水塊を船首領域から離れるように導くようにするために、波の谷を形成するために本体に加えられた力は、船舶に対して抵抗を生じる。しかしながら、適切に設計された本体は、従来の設計の船舶に加えられる波抵抗よりも船舶に加える抵抗が少ないことは事実である。
波状的に高速である間、本体は、船舶に対するピッチング運動を無効にすることによって安定装置の機能を果たす。接近する波は、大部分、本体の上面によって平らにされ、及び船首領域に対するスラミングを生じることなく、船首領域の下側へ導かれる。本体の上面に加わる波の山の重量は、その重みで船舶を押し下げようとし、従って、波の山は、従来の船首に関するものと同じ方法で容積浮力を引き起こさない。同様に、波の谷は、本体の上面での水塊の重量を減少させる。
本体はまた、波の山が本体の後部上面において重力場において降下されるときに、又は船舶の船体の下側へ導かれる水塊の速度が増加するため、接近する波の山が前進運動を示す位置エネルギーの一部を用いることができる。
船舶の航海特性が改善されるため、波はそれほど波状的に船舶の速度の制限をしない。
関連する物理学的過程及びどのように本発明が機能するかを理解するのを補助するために、水面の近くに配置された水中翼の上面を通過する水塊の速度分布が、本発明の場合のように、水面の下側のより深くに配置された同じ水中翼と根本的に異なることに留意する必要がある。図6A及びBは、これを説明するのに役立ち得る。図6Aには、図5Aに示す水中翼と実質的に同じ形状を有する断面形状にわたって空中で転がる球を示している。球は、位置1において及び位置2にある断面形状における「前縁」において初速Vを有する。重力に起因して、速度は、球が位置3にある本体の断面形状の最も厚い部分において最小速度Vminに達するまで次第に低下する。位置3から、断面形状の後部上面にある位置4を経由して位置5まで、球の速度は、位置5において初速Vを取り戻すまで増加する。図6Bは、位置1〜5の球の速度Vをグラフで示す。図6Bを図5Bと比較すると(十分に水中にある水中翼)、2つの例の速度分布は根本的に異なることが分かる。
図7A、B及びCは、白抜き矢印の方向に初速Vで水中翼の上側を流れる水塊の流線形を概略的に示す。図面には直線状の水面5を示す。 図7Aでは、本体は、水面の下側の水中深くにある。従って、水中翼は揚力を発生し、及び水中翼の上側面を通過する水塊の速度は、水中翼断面形状の最も厚い部分から水中翼の後縁へ向かって低下する。 図7Bでは、本体は、水面の下側で中間位置において水中にある。水中翼は依然として揚力を発生し、及び水中翼の上側面を通過する水塊の速度は、依然として水中翼断面形状の最も厚い部分から水中翼の後縁へ向かって低下する。従って、水中翼の上側面での圧力降下は、図示の通り水面で波の谷において生じる。 図7Cでは、本体は、水面に又はその近くに配置される。水中翼の上面のこの配置構成では、揚力は発生せず、及び水中翼の上側面を通過する水塊の速度は、水中翼断面形状の最も厚い部分から水中翼の後縁へ向かって増加し、そこで、水塊は後縁において超臨界流を形成し得る。
従来技術との相違
上述の説明を参照すると、本発明は、以下の領域で従来技術と異なる。
バルブ
1.バルブは、周囲の水塊に波を生成するように設計され、これは、所与の速度において船体の波系に対して可能な限り逆位相である。しかしながら、本発明は、船舶のより低い設計速度超では、船舶の速度とは無関係に、船体幅の大部分において定常波の谷を生じるように設計され、及び船体の船首領域は、船首領域自体が可能な限り少ない水を移動させるように配置されている。 2.バルブは狭い速度範囲内で機能するが、本発明は、広い速度範囲にわたって機能する。 3.バルブは、実際には、バルブと後方の船体との間の距離によって決定されるより低速においてのみ機能するが、本発明はまた、本体がさらに前方に動かされることなく、より高速でも機能する。 4.バルブを備える船舶に関し、前から見てバルブの領域が限定されているため、接近水塊を移動させるのは実質的に船舶の船首領域であるが、本発明の場合、接近水塊の全て又はかなり大きい割合の量を移動させ、且つそれらを船首領域から離れるように導くのは、本体である。 5.バルブは、垂直平面におけるのとほぼ等しい大きさの水塊を水平面において移動させるが、本発明による本体は、前から見て、本体がバルブよりも著しく大きい幅/高さの比を有するため、実質的に水塊を垂直平面内において移動させる。 6.バルブは、境界が明確な後縁を有する本体と異なり、境界が明確な後縁を有さない。 7.バルブは、本発明と異なり、その上面の上側を通過する水粒子に、その後縁において水粒子を船首領域から離れるように及び/又は船首領域に実質的に平行に導く速度及び方向を与え、それにより、船首領域自体が可能な限り少ない水を移動させるように設計されていない。
薄い造波板(米国特許第4,003,325号明細書)
1.米国特許第4,003,325号明細書による薄い板は、周囲の水塊に波を作るように構成され、これは、所与の速度で船体の船首波に対して可能な限り逆位相にある。他方で、本発明は、船舶のより低い設計速度超では、船舶の速度とは無関係に、船体幅の大部分において定常波の谷を生じるように設計され、ここでは、船首領域は、船首領域自体が可能な限り少ない水を移動させるように配置される。 2.米国特許第4,003,325号明細書による薄い板は、狭い速度範囲内で機能するが、本発明は広い速度範囲にわたって機能する。 3.米国特許第4,003,325号明細書による薄い板は、実際には、薄い板の前縁と後方の船体との間の距離によって決定されるより低速においてのみ機能するが、本発明は、本体がさらに前方に動かされることなく、より高速においても機能する。 4.米国特許第4,003,325号明細書による薄い板を備える船舶に関し、前から見て薄い板の領域が限定されているため、接近水塊を移動させるのは実質的に船舶の船首領域であり、米国特許第4,003,325号明細書及び付属の図5を参照されたく、一方、本発明の場合、接近水塊の全て又はかなり大きい割合の量を移動させ、且つそれらを船首領域から離れるように導くのは本体である。 5.米国特許第4,003,325号明細書による薄い板は、直線状の/平面的な上面を有する。従って、板の直線状の/平面的な上面は、薄い板の上面上を通過する水塊を加速させない。他方で、本発明による本体は、本体の上面上を通過する水を加速させるように構成される上面を有する。 6.本発明による本体と異なり、米国特許第4,003,325号明細書による薄い板の最高点は、船舶がペイロードなし及びバラストなしで静止しており且つ水塊に浮いているとき、前から見て、船舶の最深喫水の半分よりも低く配置される。 7.米国特許第4,003,325号明細書による板の直線状の/平面的な上面は、その上面の上側を通過する水塊を非常に制限された程度でのみ制御し得るが、他方で、本体の上面の主目的は、本体の上面上の水塊が制御され、且つ本体の後縁において所望の速度ベクトルが与えられるように構成されることである。
8.本発明と異なり、米国特許第4,003,325号明細書による薄い板は、その上面が上面を通過する水粒子を加速させて、水粒子に、その後縁において水粒子を船首領域から離れるように及び/又は船首領域に実質的に平行に導く速度及び方向を与え、それにより、船首領域自体が可能な限り少ない水を移動させるように構成されていない。
翼断面形状フランジ(実開昭58−43593号公報)
1.実開昭58−43593号公報による翼断面形状フランジは、翼断面形状の上面において船首波を形成する水塊に速度増加を与えることにより、船舶の船首領域によって既に形成されている船首波の高さを低下させようとしている。他方で、本発明による本体は、その後縁において、水塊に、水塊が船首領域に当たる前に水塊を船首領域から離れるように及び/又は船首領域に実質的に平行に導く速度及び方向を与え、それにより、船首領域自体が可能な限り少ない水を移動させるように構成される。 2.実開昭58−43593号公報の説明では、「翼断面形状フランジ」という用語が使用されており、これは、翼断面形状のサイズが限定されていることを意味する。実開昭58−43593号公報によれば、接近水塊を移動させるのは主に船舶の船首領域であり、翼断面形状フランジは、船舶が移動させる必要がある接近水塊の一部のみを移動させるにすぎず、実開昭58−43593号公報及び付属の図3を参照されたい。他方で、本発明の場合、本体は、接近水塊の全て又はかなり大きい割合の量を移動させ、且つそれらを船首領域から離れるように導く。 3.翼断面形状フランジの上面は、前から見て外側輪郭線を有し、これは船首領域に隣接しており、実開昭58−43593号公報及び付属の図3及び図1を参照されたい。従って、本発明とは対照的に、フランジの上面の上側を通過する水塊は、この輪郭線の下流で重力場において降下されない。 4.本発明の少なくとも一実施形態と異なり、実開昭58−43593号公報によれば、翼断面形状フランジの上面は、上面の上側を通過する接近水塊が輪郭線の下流の方向になり、それにより、水塊を船首領域から離れるように及び/又は船首領域に実質的に平行に導くように構成されていない。 5.実開昭58−43593号公報によれば、翼断面形状フランジの前縁は、フランジの最大幅まで外側に直接延在する。従って、翼断面形状フランジは、境界が明確な後縁を有さない。
揚力水中翼(例えば米国特許第7,191,725号明細書):
1.米国特許第7,191,725号明細書における解決法では、揚力を生じるように構成される本体(「揚力本体」)が説明されている。本発明による本体の目的は、揚力を生じることではなく、船首領域における波の形成を防止することである。 2.米国特許第7,191,725号明細書における解決法では、高速である間、船舶の喫水を低減させる揚力を生じて、船舶の全抵抗が低下されるようにする。本発明による本体は、高速である間、船舶の喫水を低減させ、従って船舶の全抵抗を低下させるように構成されていない。 3.米国特許第7,191,725号明細書による揚力本体を備える船舶では、前から見て、揚力本体の領域が限定されており、及び船首領域に対するその位置のため、接近水塊を移動させるのは主に船舶の船首領域であるが、本発明の場合、接近水塊のかなり大きい割合の量を移動させ、且つそれらを船首領域から離れるように導くのは本体である。 4.本発明による本体と異なり、米国特許第7,191,725号明細書によれば、揚力本体の最高点は、船舶がペイロードなし及びバラストなしで静止しており且つ水塊に浮いているとき、前から見て、船舶の最深喫水の半分よりも低く配置される。 5.本発明と異なり、米国特許第7,191,725号明細書による揚力本体は、その上面の上側を通過する水粒子に、その後縁において水粒子を船首領域から離れるように及び/又は船首領域に実質的に平行に導く速度及び方向を与え、それにより、船首領域自体が可能な限り少ない水を移動させるように構成されていない。 6.米国特許第7,191,725号明細書による揚力本体の上面にある水塊は、その後部上面にわたって速度が低下し、図7A及びBを参照されたい。本発明による本体の上面にある水塊は、その後部上面にわたって速度が増加し、図7Cを参照されたい。
翼板(特開平1−314686号公報)
1.特開平1−314686号公報による翼板は、水面の下側で十分な深さに配置されて、翼板の背面に強い負圧領域を得る。これは、本体の上面が、本体の上面での相当な圧力降下を回避するために水面に対して十分な高い位置に配置される本発明とは対照的である。
2.特開平1−314686号公報による翼板は、水塊に強い圧力降下を生じるように設計及び配置され、これは、船体の船首領域によって生じた超過圧力を均等化する(すなわち、波の山を生じず、及び波の谷を生じない)。それとは反対に、船舶のより低い設計速度超では、本発明による本体は、船舶の速度とは無関係に、船体の幅のかなりの部分において定常波の谷を生じるように設計され、船首領域は、船首領域自体が可能な限り少ない水を移動させるように配置される。 3.本発明による本体とは対照的に、特開平1−314686号公報による翼板は、船舶がペイロードなし及びバラストなしで静止しており且つ水塊に浮いているときに、船舶の最深喫水の半分よりも低く配置される。 4.特開平1−314686号公報による翼板を備える船舶に関し、前から見て翼板の領域が限定されているため、接近水塊を移動させるのは実質的に船舶の船首領域である。一方、本発明の場合、接近水塊の全て又はかなり大きい割合の量を移動させ、且つそれらを船首領域から離れるように導くのは本体である。 5.特開平1−314686号公報による翼板は、かなりの渦を生成する。本発明による本体は、渦が生じないように又は可能な限り少なくするように設計及び配置される。 6.本発明とは対照的に、特開平1−314686号公報による翼板は、その上面の上側を通過する水粒子に、その後縁において水粒子を船首領域から離れるように及び/又は船首領域に実質的に平行に導く速度及び方向を与え(特開平1−314686号公報によって生じた渦も参照)、それにより、船首領域自体が可能な限り少ない水を移動させるように設計されていない。 7.特開平1−314686号公報による翼板の上面における水塊は、その後部上面にわたって低下する速度を有し、図7Bを参照されたい。本発明による本体の上面における水塊は、その後部上面にわたって増加する速度を有し、図7Cを参照されたい。
渦を引き起こす翼(特開昭60−42187号公報)
1.特開昭60−42187号公報における解決法による翼は、船の船首によって生成された砕波渦に対して反対の回転方向を有する渦を生成するように設計されている。他方で、本発明の本体は、渦の生成を防止するように設計及び配置される。
2.特開昭60−42187号公報による解決法は、船舶の船首領域からの砕波抵抗[CWB]を低下させるように設計される。本発明は、他方では、船舶の波パターン抵抗[CWP]、砕波抵抗[CWB]及び飛沫抵抗[CS]を低下させるように設計される(図1参照)。 3.特開昭60−42187号公報に開示される解決法では、翼の領域は、前から見て非常に限定されているため、接近水塊を移動させるのは主に船舶の船首領域である(特開昭60−42187号公報の図5〜14参照)が、本発明の場合、接近水塊の全て又はかなり大きい割合の量を移動させ、且つそれらを船首領域から離れるように導くのは本体である。 4.本発明者らの発明とは対照的に、特開昭60−42187号公報に開示される翼は、その上面の上側を通過する水粒子に、その後縁において水粒子を船首領域から離れるように及び/又は船首領域に実質的に平行に導く速度及び方向を与え、それにより、船首領域自体が可能な限り少ない水を移動させるように設計されていない(特開昭60−42187号公報によって生じた渦も参照)。
本発明の好ましい実施形態について、以下で添付図面を参照して説明する。
水塊の表面で移動する典型的な従来技術の船舶に作用する、フルード数[F]に応じた異なる抵抗係数を示すグラフである。 Aは、従来技術による従来の船首を備える船舶、Bは、V字状ウェッジのない、本発明の第3の実施形態による修正された船首を備える船舶、そしてCは、V字状ウェッジのない、本発明の第7の実施形態による修正された船首を備える船舶を使用する模型試験の速度に応じた、前進運動に対する抵抗を示すグラフである。 設計速度で動作される従来技術によるバルブを備える船舶の側面図である。 設計速度超で動作される図3Aによる船舶の側面図である。 どのようなバルブ形状が接近水塊を移動させるかを示す、異なるバルブ形状を備える従来技術の船舶の前面図である。 どのようなバルブ形状が接近水塊を移動させるかを示す、異なるバルブ形状を備える従来技術の船舶の前面図である。 どのようなバルブ形状が接近水塊を移動させるかを示す、異なるバルブ形状を備える従来技術の船舶の前面図である。 十分に水中にあるとき、及び水塊が初速Vで白抜き矢印の方向に水中翼に向かって及びそれを横切って流れているときの、その上面の上側の典型的な圧力降下の分布を示す、水中翼断面形状の図である。 図5Aに示す圧力降下の分布を有する、水中翼断面形状の上面を通過する水塊の対応する速度分布を示すグラフである。 図5Aに示す水中翼断面形状と同様の断面形状の上側を空中で転がる球の速度ベクトルを示す図である。 断面形状に沿った異なる位置における、図6Aに示す空中で転がる球の速度を示すグラフである。 本体が水面の下側で異なる深さに配置されるときの、同じ迎え角を有する本体、及び結果として得られる白抜き矢印の方向に本体に向かって及びそれを横切って流れる水の流れパターンを示す。図7Aは、本体が水面の下側深くに配置されているときの流れパターンを示す。 本体が水面の下側で異なる深さに配置されるときの、同じ迎え角を有する本体、及び結果として得られる白抜き矢印の方向に本体に向かって及びそれを横切って流れる水の流れパターンを示す。図7Bは、本体が中間の深さに配置されているときの流れパターンを示す。 本体が水面の下側で異なる深さに配置されるときの、同じ迎え角を有する本体、及び結果として得られる白抜き矢印の方向に本体に向かって及びそれを横切って流れる水の流れパターンを示す。図7Cは、本体が水面の近くに又は水面に配置されているときの流れパターンを示す。 それぞれ上、横及び前から見た水中翼を示す。水塊は、白抜き矢印の方向に水中翼に向かって流れる。湾曲した矢印は、水中翼の両側で生成された渦を示している。 それぞれ上、横及び前から見た水中翼を示す。水塊は、白抜き矢印の方向に水中翼に向かって流れる。湾曲した矢印は、水中翼の両側で生成された渦を示している。 それぞれ上、横及び前から見た水中翼を示す。水塊は、白抜き矢印の方向に水中翼に向かって流れる。湾曲した矢印は、水中翼の両側で生成された渦を示している。 本発明による本体の概略的な縦断面図であり、及び船舶が水塊中をより低い設計速度超で移動するときに本体単独によって生じた波を示す。 船舶が水塊中をより低い設計速度超で移動するときの、本発明による本体と船体との間の相互作用を概略的に示す。 本発明の第1の実施形態による船舶の前側部を示し、ここで、図10Aは前側部の上面図である。 本発明の第1の実施形態による船舶の前側部を示し、ここで、図10Bは前側部の縦断面図である。 本発明の第1の実施形態による船舶の前側部を示し、ここで、図10Cは前側部の前面図である。 本発明の第1の実施形態による船舶の前側部を示し、ここで、図10Dは前側部の底面図である。 本発明の第2の実施形態による船舶の前側部を示し、ここで、図11Aは前側部の上面図である。 本発明の第2の実施形態による船舶の前側部を示し、ここで、図11Bは前側部の側面図である。 本発明の第2の実施形態による船舶の前側部を示し、ここで、図11Cは前側部の前面図である。 本発明の第2の実施形態による船舶の前側部を示し、ここで、図11Dは前側部の底面図である。 本発明の第3の実施形態による船舶の前側部を示し、ここでは、図12Aは前側部の上面図である。 本発明の第3の実施形態による船舶の前側部を示し、ここでは、図12Bは前側部の側面図である。 本発明の第3の実施形態による船舶の前側部を示し、ここでは、図12Cは前側部の前面図である。 本発明の第3の実施形態による船舶の前側部を示し、ここでは、図12Dは前側部の底面図である。 本発明の第1の実施形態による船舶の前側部を示し(図10A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図13Aは前側部の上面図である。 本発明の第1の実施形態による船舶の前側部を示し(図10A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図13Bは前側部の縦断面図である。 本発明の第1の実施形態による船舶の前側部を示し(図10A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図13Cは前側部の前面図である。 本発明の第2の実施形態による船舶の前側部を示し(図11A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図14Aは前側部の上面図である。 本発明の第2の実施形態による船舶の前側部を示し(図11A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図14Bは前側部の側面図である。 本発明の第2の実施形態による船舶の前側部を示し(図11A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図14Cは前側部の前面図である。 本発明の第2の実施形態による船舶の前側部を示し(図11A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図14Dは前側部の底面図である。 本発明の第3の実施形態による船舶の前側部を示し(図12A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図15Aは前側部の上面図である。 本発明の第3の実施形態による船舶の前側部を示し(図12A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図15Bは前側部の側面図である。 本発明の第3の実施形態による船舶の前側部を示し(図12A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図15Cは前側部の前面図である。 本発明の第3の実施形態による船舶の前側部を示し(図12A〜Dにも示す)、これは、より詳細に本発明の動作モードを示し、ここで、図15Dは前側部の底面図である。 従来技術による従来の船首を備える、船尾からある角度で見た模型試験で使用された模型ボートの写真を示す。 図16Aの模型ボートの前面図の写真を示す。 図16Aの模型ボートの前面斜視図の写真を示す。 船首セクションが本発明の第7の実施形態による修正された船首によって置き換えられた、模型ボートの前面図の写真を示す。 図17Aの模型ボートの前面斜視図の写真である。 船首セクションが、V字状ウェッジを備える本発明の第3の実施形態による修正された船首によって置き換えられた、模型ボートの前面図の写真である。 図18Aの模型ボートの前面斜視図の写真である。 模型ボートが図16A〜Cに示す従来技術による従来の船首を有し、及び測定速度が1.25m/sである写真である。 模型ボートが、V字状ウェッジはないが、図18A及びBに示すような本発明の第3の実施形態による修正された船首を有し、及び測定速度が1.25m/sである写真である。 模型ボートが、V字状ウェッジはないが、図18A及びBに示すような本発明の第3の実施形態による修正された船首を有し、及び測定速度が1.34m/sである写真である。 V字状ウェッジはないが、図18A及びBに示すような本発明の第3の実施形態による修正された船首を備える模型ボートの船首部分の、それぞれ模型ボートのより低い設計速度を下回る及びそれを上回る速度での写真である。 V字状ウェッジはないが、図18A及びBに示すような本発明の第3の実施形態による修正された船首を備える模型ボートの船首部分の、それぞれ模型ボートのより低い設計速度を下回る及びそれを上回る速度での写真である。 本発明の第4の実施形態による船舶の前側部を示し、ここで、図21Aは前側部の上面図である。 本発明の第4の実施形態による船舶の前側部を示し、ここで、図21Bは前側部の側面図である。 本発明の第4の実施形態による船舶の前側部を示し、ここで、図21Cは前側部の前面図である。 本発明の第4の実施形態による船舶の前側部を示し、ここで、図21Dは前側部の底面図である。 本発明の第5の実施形態による船舶の前側部を示し、ここで、図22Aは前側部の上面図である。 本発明の第5の実施形態による船舶の前側部を示し、ここで、図22Bは前側部の側面図である。 本発明の第5の実施形態による船舶の前側部を示し、ここで、図22Cは前側部の前面図である。 本発明の第5の実施形態による船舶の前側部を示し、ここで、図22Dは前側部の底面図である。 本発明の第6の実施形態による船舶の前側部を示し、ここで、図23Aは前側部の上面図である。 本発明の第6の実施形態による船舶の前側部を示し、ここで、図23Bは前側部の側面図である。 本発明の第6の実施形態による船舶の前側部を示し、ここで、図23Cは前側部の前面図である。 本発明の第6の実施形態による船舶の前側部を示し、ここで、図23Dは前側部の底面図である。 本発明の第7の実施形態による船舶の前側部を示し、ここで、図24Aは前側部の上面図である。 本発明の第7の実施形態による船舶の前側部を示し、ここで、図24Bは前側部の側面図である。 本発明の第7の実施形態による船舶の前側部を示し、ここで、図24Cは前側部の前面図である。 本発明の第7の実施形態による船舶の前側部を示し、ここで、図24Dは前側部の底面図である。 本発明による船舶の前側部の側面図であり、ここで、本体の後縁は、それぞれ船体の底部よりも高い位置及び船体の底部よりも深い位置に配置されている。 本発明による船舶の前側部の側面図であり、ここで、本体の後縁は、それぞれ船体の底部よりも高い位置及び船体の底部よりも深い位置に配置されている。 本体の縦断面が本発明に従ってどのように形成されているかの異なる構成を示す。 本体の縦断面が本発明に従ってどのように形成されているかの異なる構成を示す。 本体の縦断面が本発明に従ってどのように形成されているかの異なる構成を示す。 本体の縦断面が本発明に従ってどのように形成されているかの異なる構成を示す。 本体の縦断面が本発明に従ってどのように形成されているかの異なる構成を示し、図26Eは、一方の本体が他方の本体の上側に配置されている2つの本体の例を示す。 本体の縦断面が本発明に従ってどのように形成されているかの異なる構成を示し、図26Fは、2つの部分を含む本体を示す。 本発明による異なる実施形態の縦断面図であり、及び本体の動的揚力がどのように変更され得るかを示す。 本発明による異なる実施形態の縦断面図であり、及び本体の動的揚力がどのように変更され得るかを示し、ここで、図27Bは、本体の後縁での流れがフラップ/制御面によってどのように変更され得るかを示す。 本発明による異なる実施形態の縦断面図であり、及び本体の動的揚力がどのように変更され得るかを示し、ここで、図27Cは、本体の後縁での流れがフラップ/制御面によってどのように変更され得るかを示す。 本発明による異なる実施形態の縦断面図であり、及び本体の動的揚力がどのように変更され得るかを示し、ここで、図27Dは、本体の後縁での流れがフラップ/制御面によってどのように変更され得るかを示す。 本発明による異なる実施形態の縦断面図であり、及び本体の動的揚力がどのように変更され得るかを示す。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。 本発明に従って、本体がどのように変更され得るかを示す異なる構成の上面図である。
定義
この文献を通して、以下の定義が適用される。
船舶1:
全ての排水型船舶及び滑走速度まで動作する船舶。船体2:
高速時に水と接触しているか又は接触でき、且つ船舶を航海に適するようにするが、本発明による本体4又は従来の船舶1用のバルブなどを含まない船舶1の部分。船首領域3:
船舶1が水塊に浮いているときに水面5の下側にあるが、本発明による本体4、又は従来の船舶1用のバルブなどを含まない、前から見る船体2の領域。本体4:
船首領域3に配置される本体。水面5:
波がないときに海面又は水が作る平らな面。船舶の前側部6:
船舶1の長手方向において船体中央部から船舶1の最も前の点まで、すなわち、本発明による本体4、又は従来の船舶1用のバルブなどを含む。
船首波:
接近水塊を船体2が減速させることによって船首領域3の前方に形成された波の山。本体の前縁41:
飛行機の翼の「前縁」と等しい本体4の最前縁。本体の後縁42:
飛行機の翼の「後縁」に等しい、本体の上面47からの水塊が本体4を離れる、本体4に画成された最後縁。本体の前部上面43:
前から見て、本体の前縁41から本体4の輪郭線53まで延在する本体4の上面領域。本体の後部上面44:
本体の前部上面43が終端する場所から始まって、本体の後縁42へと後方に延在する本体4の上面領域。本体の下面45:
本体の前縁41からその後縁42まで延在する本体4の下面領域。
本体の前部46:
本体の前縁41から後方へ輪郭線53を通る垂直断面まで延在する本体4の体積部。本体の上面47:
本体の前縁41から後方へその後縁42まで延在する本体4の上面領域。輪郭線53:
本体4が前から見られるときに、本体の横断方向に沿って本体4の最も高い見える点によって形成される、本体の上面47での本体4の幅を横切って延在する線。従って、船舶1の進行方向における本体4への接線は、輪郭線全体に沿った交点において水平である。インターフェース54:
本体の前縁41とその後縁42との境界。
インターフェース55:
本体の上面47と船首領域3又はV字状ウェッジ65との間の境界。インターフェース56:
船体2の底部と船首領域3との間の境界。V字状ウェッジ65:
本体4を船体2に固定するための及び/又は本体の後縁42における流動条件を改善するための装置であり、上から見ると、V字状又はほぼV字状を有する装置。持上げられた水塊80:
船舶1が高速であるときに、本体4による接近水塊の移動の結果として、水面5よりも上方へ持上げられた、逃げた水塊80Aを含む全水塊。逃げた水塊80A:
船舶1が高速であるときに、本体4による接近水塊の移動の結果として、水面5よりも上方へ持上げられ、且つ周囲の水塊へ波として逃げる水塊の部分。速度ベクトル85:
本体の上面47の上側を通過する水塊が、本体の後縁42において、速度ベクトルの形態で与えられ得る速度及び方向を有する。この速度ベクトルは、同様に、個々の各水分子の速度ベクトルの結果である。
図9A及びBは、接近水塊が船体の下側に導かれる特定の実施形態に関する、本発明の一般的な動作モードを示す。水面5の位置を破線で示す。図9Aは、本体4がより低い設計速度超で水塊を通過するときのみに、本体4の後方に形成される波31を示す。図9Bは、本体4と船体2との間の相互作用、及び船舶1がより低い設計速度を上回って動作されるときにどのように船体2は波31が上昇しないようにするかを示す。
本発明は、いくつかの方法で構成され得るが、動作モードの主な原理は全ての実施形態に対して共通である。
第1の実施形態
このセクションは、本発明による船舶1の第1の実施形態の構造及び動作モードを説明する。図10A、B、C及びD並びに図13A、B及びCを参照されたい。
図10A〜D及び図13A〜Cは、船首領域3を備える船体2と、本発明による本体4とを含む船舶1の前側部6を示し、本体4は、船舶1が静止しているとき、部分的に水塊中にある。水面5の位置は、図10B及びC並びに図13B及びCに示されている。本体4は、船首領域3からある距離に配置されて、本体4と船首領域3との間に通路60が形成される。図10A〜Dに最もよく示すように、本体4は、前縁41、後縁42、前部上面43、輪郭線53、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44とを合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との間の境界を示す。図10Aの本体の後縁42、輪郭線53及びインターフェース56の破線は、上からは見えないが、船体2及び本体4の構成をより良く示すために、図示されている。
図13A〜Cを特に参照して説明すると、船舶1が高速であり、及びより低い設計速度よりも速く動くとき、水塊は、層流において本体の前部上面43の上側で移動される。本体の後縁42の方へテーパ付きの断面形状を備える本体4の湾曲した上面47は、水塊を加速させ、及び重力場において降下できるようにする。本体の後縁42では、水塊は高速度を有し、垂直方向の範囲がより小さい水塊となる。これは、本体の後縁42における水塊の速度ベクトル85と共に船首領域3の下側に水量を導き、船首領域3が接近水塊を移動させないようにする。従って、船首領域3は、高速である間、乾燥しているか又は基本的に乾燥している。
本体4の前方又は上流で、水塊は、従来のスキップの船首の前方と同じ方法で減速される。これは、本体4の前方に持上げられた水塊80を生じる。本体4の横断方向範囲及び本体4の両側に配置された側板70(図13A〜C参照)は、持上げられた水塊80の大部分を本体4の上側に導いて、本体4の前方の持上げられた水塊80のわずかな割合の量80Aのみが周囲の水塊へ波として逃げるようにする。逃げた水塊80Aを含む、本体4によって形成される持上げられた水塊80を図13A〜Cに示す。
本体4は、側板70によって境界を定められる大きい横断方向範囲を有し、及び接近水塊を垂直平面において持上げるため、水塊が本体の上面47上で加速されると、本体の上面47上の水塊は周囲の水塊から分離され、周囲の水塊に波がほとんど又は全く生じないようにされる。従って、水塊は、点200から点400まで加速され、周囲の水塊に著しい波を生じさせずに水塊に好ましい速度ベクトル85を与え得る(図13B参照)。
本体4の前方の水塊80を持上げるのを補助するエネルギーの部分は、本体の上面47の上側を覆う位置エネルギーとしての水塊を伴い、ここでは、水塊は、本体の後部上面44で重力場において降下される。従って、周囲の水塊へ波として失う代わりに、持上げられた水塊80の増大した位置エネルギーの部分を前進運動に用いるか、又は本体の後縁42において本体の上面47の水塊の速度を増加させる。
本体4が水面5の近くに配置される場合、十分に水中にある揚力水中翼によって行われるような揚力は得られない。本体の上面47上の水塊の重量は、その重みで船舶1の前側部6を押し下げる。その対策のために、本体の下面45は、本体の上面47上の水塊の全体又は部分の重量と釣り合う動的揚力を与えるような形状にされ及び/又はそのような角度にされ得る。図13Bから分かるように、本体の下面45が水平面に対して迎え角αを形成することで、動的揚力が生じる。そのように本体の後縁42が下げられるため、本体の上面47上の水塊の速度はさらに増加する。
本体の後縁42と、水塊が船体2に衝突する領域との間の距離は、水塊が可能な限り多くの層流で本体の後部上面44の上側を、及びさらに可能な限り多くの層流で点500及び600(図13B)の下側に流れるように適合され、ここで、後方の船体2の波形成を防止する。点100及び300は、それぞれ前縁41の上流(すなわち、点200の上流)及び流線に沿った本体4の最高点にある水塊の位置である。点100、200、300、400、500及び600はまた、図13Aに印が付けられる。
従って、本発明は、船舶1から周囲の水塊に広がる波の形成を減少させた。
速度が増加すると、本体の上面47上の実質的に層流の速度は、船舶1の速度の増加に比例して増加し、従って、本体4の前方の水塊80がさらに蓄積されるのを防止する。本体4の前方で持上げられた水塊80の波として逃げる割合の量80Aは、比較的一定のままである。同様に、本体4の前方で持上げられた水塊80の高さは、比較的一定のままであり、従って、船舶1の前側部6によって形成された波の高さは、従来の船舶1の場合のようには高くならない。
本体の上面47上の水塊は、コアンダ効果のために同様に高速の本体の上面47に従う。
従って、本発明は、広い速度範囲内で船舶1の波抵抗を低下させる。
本体の前部上面43上の層流は、飛沫及び砕波抵抗を防止し、従ってまた、これらの抵抗成分を低減させるか又は消滅させる。
この第1の実施形態では、本体4は、図13A〜Cに示すような側板70によって船体2に固定され得る。本体4はまた、船首領域3と本体の上面47との間にある1つ以上のV字状ウェッジ65によって船体2に固定され得る(例えば図12A〜D参照)。船舶1のより低速では、模型試験により、ある幅のV字状ウェッジ65を有することが好ましくてもよいことが示されている。その理由は、水塊が船体の下側へ導かれるときに簡単に生じる乱流が減少すること、及び/又は乱流が形成される領域が減少することによる。より高速では、締結手段が本体の上面47上を流れる水塊の減速を可能な限り小さくするように構成され得る。
第2の実施形態
このセクションは、本発明による第2の実施形態の構造及び動作モードについて説明する。図11A、B、C及びD並びに図14A、B、C及びDを参照されたい。
動作モードの主要原理は全ての実施形態に共通であるため、以下の説明は、上記のセクションで与えられた説明と同様である。
図11A〜D及び図14A〜Dは、船体2及び本発明による本体4を含む船舶1の前側部6を示し、ここでは、本体4は船首領域3に組み込まれている。さらに、本体4は、船舶1が静止しているときに部分的に水塊中にある。水面5の位置を図11B及びC並びに図14B及びCに示す。
図11A〜Dに最もよく示すように、本体4は、前縁41、2つの後縁42、前部上面43、輪郭線53、インターフェース55、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44とを合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との間の境界を示し、及びインターフェース54は、本体の前縁41と本体の後縁42との間の境界を示す。本体の後縁42、輪郭線53及びインターフェース55を示す図11Aの破線は、上からは見えないが、船体2及び本体4の設計をより良く示すために図示されている。
特に図14A〜Dを参照すると、船舶1が高速であり、及びより低い設計速度よりも高速で動作すると、水塊は、層流において本体の前部上面43の上側で移動される。本体の湾曲した上面47は水塊を加速させる。本体の後部上面44が本体4の外側に外周縁へ向かって横断方向にテーパ状の横断面を有する構成とされるため、水塊は、船首領域3と接触せずに、重力場において本体の後縁42で外側へ降下され、本体の上面47上での水塊の不所望な減速が防止されるようにする。船首領域3の構成は、V字状ウェッジ65のように、本体の上面47において水塊を制御するのを助長し得る。本体の後縁42では、水塊は高速度を有し、それにより垂直方向範囲の小さい水塊を生じ得る。これは、本体の後縁42における水塊の速度ベクトル85と共に水塊を船首領域3の下側へ及び/又は船体2の側面に向かって外側へ導く。これは、船舶1の前側部6が移動させる必要のある接近水塊のごく一部のみを船首領域3が移動させることを意味し、船舶1の前面図を示す図14Cを参照されたい。
本体の上面47からの水塊の全体又は一部が船首領域3の下側へ導かれない場合、本体4は、本体の後縁42における水塊の速度ベクトル85、及び本体4によって移動されない接近水塊の速度ベクトルが、船首領域3に対して可能な限り平行な速度ベクトルを得るように構成され得る。
本体4の前方又は上流では、水塊は、従来の船の船首の前方と同じ方法で減速される。このために、本体4の前方で持上げられた水塊80を生じる。本体の前部上面43は、本体4の外側に外周縁へ向かって横断方向にテーパが付けられた横断面を有している。これが原因で、主に前から見て、本体4の中心の方へ向かい及びわずかに外側に本体4の外周縁へ向かって水塊80の持上げを生じる。従って、本体4の横断方向範囲は、持上げられた水塊80の大部分を本体4の上側へ導き、本体4の前方で持上げられた水塊80のわずかな割合の量80Aのみが波として周囲の水塊へ逃げるようにする。本体4によって形成された持上げられた水塊80及び80Aを図14A及びBに示す。
本体4は大きい横断方向範囲を有し、且つまた接近水塊を垂直平面内で持上げるため、本体47の上面上の水塊は、大部分が周囲の水塊から分離され、水塊が本体の上面47上で加速される結果、著しい波が周囲の水塊に生じないようにする。従って、著しい波が周囲の水塊に生じることなく、水塊は、点200から点400まで(図14A〜D参照)加速され得る。水塊は、船体2の下側を点500まで可能な限り多くの層流で流れる。点100及び点300は、それぞれ前縁41の上流(すなわち、点200の上流)及び流線に沿って本体4の最高点にある、水塊の位置である。
本体4の前方で水塊80を持上げるのを助長したエネルギーの一部は、本体の上面47の上側、及び本体の後部上面44において重力場で降下される位置エネルギーとしての水塊を伴う。従って、持上げられた水塊80の増大した位置エネルギーの一部は、周囲の水塊へ波として消失される代わりに、前進運動に用いられるか、又は本体の後縁42において、本体の上面47上の水塊に速度増加を与えるために用いられる。
本体4が水面5の近くに配置されているため、十分に水中にある揚力水中翼によって得られるような揚力は得られない。本体の上面47上の水塊の重量は、その重みで前側部6を押し下げる。その対策のために、本体の下面45は、本体の上面47上の水塊の全体又は一部の重量と釣り合う動的揚力を与えるような形状にされ及び/又はそのような角度にされ得る。図14B及びCから分かるように、動的揚力は、本体の後縁42がその前縁41よりも低く位置決めされるために生じる。従って、本体の上面47上の水塊の速度はさらに増加する。
このようにして、本発明は、周囲の水塊に広がる船舶1からの波の形成を減少させた。
船舶1が、高速で移動するように設計される場合、本体4の横断方向範囲を、上から見て、本体4の最大幅から及び後方へ(すなわちインターフェース54の下流)減少させることができるようにし、従って、本体の上面47上を通過する水塊のより大きい割合の量を、船体2の外側に両側へ向かわせる代わりに、船首領域3の下側へ導くようにすることが好都合である。
本体の前部上面43上の層流は、飛沫及び砕波抵抗を防止し、従ってまた、これらの抵抗成分を減少させる。
この第2の実施形態では、本体4は、船首領域3に組み込まれ、且つ船体2に固定されて、船体2のビーム及び支持システムが延在され、且つ本体4の内部へと続く。従って、この実施形態は、任意の形態の外部ストラット又は他の形態の外部取付部品を必要としない。
第3の実施形態
図12A、B、C及びD並びに図15A、B、C及びDに示す、本発明によるこの第3の実施形態は、ほぼ上述の2つの実施形態の間の構造及び動作モードを有する。模型試験の表題のセクション下で本明細書において後述する模型ボートは、試験Bにおいて、この第3の実施形態に従って作製される(図18A及び図18B参照)が、V字状ウェッジ65がない。
図12A〜D及び図15A〜Dは、船首領域3を含む船体2と、本発明による本体4とを含む船舶1の前側部6を示し、本体4は、船舶1が静止しているときに部分的に水塊中にある。水面5の位置は、図12B及びC並びに図15B及びCに示されている。
本体4は、船首領域3からある距離に配置されて、本体4と船首領域3との間に通路60が形成されるようにする。図12A〜Dに最もよく示すように、本体4は、前縁41、後縁42、前部上面43、輪郭線53、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44とを合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との境界を示し、及びインターフェース54は、本体の前縁41とその後縁42との境界を示す。本体4は、船首領域3からある距離に配置されて、本体4と船首領域3との間に通路60が形成されるようにする。図12Aの本体の後縁42、輪郭線53、インターフェース55及びインターフェース56の破線は、上からは見えないが、船舶1の構成をより良く示すために図示されている。
特に図15A〜Dを参照して説明すると、船舶1が高速であり、且つより低い設計速度よりも速く動作するとき、水塊は、層流において本体の前部上面43の上側で移動される。本体の後縁42に向かってテーパ状にされた断面形状を備える本体の湾曲した上面47は、水塊を加速させ、且つ重力場において降下されることができるようにする。本体の後縁42では、水塊は高速度を有し、これにより水塊がより小さい垂直範囲を有するようにする。これにより、本体の後縁42における水塊の速度ベクトル85と共に水塊を船首領域3に導いて、船首領域3が船首領域3の両側において接近水塊の一部のみを移動させ、図15Cを参照されたい。従って、船首領域3の大部分は、移動中、乾燥しているか又は基本的に乾燥している。
本体4の前方又は上流では、水塊は、従来の船の船首の前方と同じ方法で減速される。これは、本体4の前方に持上げられた水塊80を生じさせる。本体の前部上面43は、本体4の外側に外周縁へ向かって横断方向にテーパが付けられた横断面を有する。これが原因で、主に、本体4の中心の方に向かって及びわずかにのみで外側に横断方向に本体4の外周縁へ向かって水塊80の持上げを引き起こす。従って、本体4の横断方向範囲は、持上げられた水塊80の大部分を本体4の上側へ導いて、本体4の前方で持上げられた水塊80のわずかな割合の量80Aのみが波として周囲の水塊に逃げるようにする。逃げた水塊80Aを含む、本体4によって形成された持上げられた水塊80を図15A及びBに示す。
本体4は、大きい横断方向範囲を有し、及び接近水塊を垂直平面内で持上げるため、本体の上面47上の水塊は、大部分が周囲の水塊から分離されて、水塊が本体の上面47上で加速されるときに著しい波が周囲の水塊に生じないようにされる。従って、水塊は、点200から点400まで加速され得、及びここでは、著しい波が周囲の水塊に生じることなく、水塊は好ましい速度ベクトル85が与えられ得る(図15A〜D参照)。
本体4の前方の水塊80を持上げるのを助長するエネルギーの一部は、本体の上面47の上側に位置エネルギーとして水塊を伴い、水塊は、本体の後部上面44で重力場において降下される。従って、持上げられた水塊80における増大した位置エネルギーの一部は、周囲の水塊へ波として消失される代わりに、前進運動に用いられるか、又は本体42の後縁において、本体の上面47上の水塊の速度を増加させるために用いられる。
本体4は水面5の近くに配置されるため、十分に水中にある揚力水中翼によって達成されるような揚力は得られない。本体の上面47上の水塊の重量は、その重みで前側部6を押し下げる。その対策のために、本体の下面45は、本体の上面47上の水塊の全体又は一部の重量に釣り合う動的揚力を与えるような形状にされ及び/又はそのような角度にされ得る。図15B及び図14Cから分かるように、本体の後縁42がその前縁41よりも低く位置決めされているために動的揚力が生じる。従って、本体の上面47上の水塊の速度はさらに増加する。
本体の後縁42と、水塊が船体2と接触する領域との間の距離は、水塊が可能な限り多くの層流で本体の後部上面44の上側を、及びさらに可能な限り多くの層流で船体2の下側を点500及び600(図15A〜D)まで流れ、そこで、後方の船体2が波形成を防止するように適合される。点100及び300は、それぞれ前縁41の上流(すなわち、点200の上流)、及び流線に沿って本体4の最高点にある水塊の位置である。
従って、本発明は、船舶1から周囲の水塊へ広がる波の形成を減少させた。
速度が上昇している状態では、本体の上面47上の実質的に層流の速度は、船舶1の速度の増加に比例して増加するため、本体4の前方で水塊80がさらに蓄積されるのを防止する。本体4の前方で持上げられた水塊80の波として逃げる割合の量80Aは、比較的一定のままである。同様に、本体4の前方で持上げられた水塊80の高さは、速度が増加していても比較的一定のままであり、従って、前側部6によって形成された波の高さは、従来の船舶1の場合のようには高くならず、模型試験からの図19A〜Cを参照されたい。
本体の上面47上の水塊は、コアンダ効果のために同様により高速の本体の上面47に従う。
従って、本発明は、広い速度範囲内で波抵抗を低下させる。
本体の前部上面43上の層流は、飛沫及び砕波抵抗を防止し、従ってまた、これらの抵抗成分を減少させるか又は消滅させる。これは、本体の前部上面43の上側へ持上げられる移動される水塊のそれぞれ非層流及び層流特性を示し、図20A及びBから明確に分かる。
この第3の実施形態では、本体4は、図12A〜Dに示すように、図18A及びBからも分かるように、上から見て、1つ以上のV字状ウェッジ65によって船体2に固定され得る。船舶1がより低速であるとき、模型試験により、ある幅のV字状ウェッジ65を有することが好ましくてもよいことが示されている。これは、水塊が船体の下側へ導かれるときに簡単に生じる乱流が減少するため、及び/又は乱流が形成される領域が減少するためである。より高速では、本体4は、ストラット又はプレートを使用して船体2に締結され得るため、本体の上面47上の水塊の減速を可能な限り小さくする。
一般設計基準 その他
本体4及び船体2は、船舶1に対する全抵抗が可能な限り低くされるように構成される。本体4の構成及び位置は、大部分が船体2の喫水、幅/喫水の比、喫水の変化(荷重/バラスト)、及び速度範囲によって決定される。さらに、航海特性、及び船舶の使用に関して他の何が実用となる設計であるかに関して注意する必要がある。
本体4は、最大層流が本体の上面47において、より低い設計速度から達成されるように構成される必要がある。
概して、接近水塊の大部分を本体の上面47の上側へ導く試みが行われ得る。従って、本体の下面45及び/又は船体2によって移動される必要がある水塊の割合の量はより少ない。これは、本体の下面45及び/又は船体2によって移動される水塊が水の速度を増加させ、それが次に負圧及び浮力の損失及びまた波形成を引き起こすために有利であり得る。
低速から適度な速度、一般にF0.1〜0.25で動作する船舶1の場合、本体の前部上面43の上側へ持上げられる接近水塊の割合の量を制限するのは接近水塊での動的圧力であり得る。
従って、より低い設計速度において、本体の前部上面43の上側で層流を得るために、本体4は、本体4の断面形状が本体の前部46においてほとんどフルネスを有さないように構成され得、及びここでは、本体4の前部下面は、小さい迎え角を有し得、図26B、図26C、図26D及び図26Fを参照されたい。これにより、本体4の前方の水塊をほとんど減速させない。本体4の後部下面は、次第に大きくなる迎え角を有して、より簡単に水塊を船舶1の下側へ導き、図26C、図26D及び図26Fを参照されたい。
図26Fは間隙を有し、本体の下面45からの一部の水が間隙を通って本体の後部上面上まで流れることができるようにし、それにより、本体の後縁42の周りの領域における流動条件を向上させ、それにより、いずれの乱流の問題も低下させる。本体4内のそのような間隙は、とりわけ航空機業界で使用される従来技術である。
図26Eは、異なる高さに配置される2つの本体4の例を示す。この種の構成は、船舶1が異なる荷重条件で動作するときに使用され得る。船舶1が軽い荷重又はバラストで動作するとき、上方本体4は、水塊がこの本体の上側に導かれないような高さに配置され得るが、下方本体4は、本明細書の他の箇所で説明されるように機能する。船舶1が重い荷重をかけられているとき、水塊は、両本体4の上側を通過し、及びここでも、本体4の効果は本明細書の他の箇所で説明されている。
動的圧力がより高い、より高速では、接近する水のより大きい割合の量が本体の上面47の上側へ導かれるようにすることが好都合であり得る。
中速からより高速、一般にF=0.25からF=1.0超で動作する船舶1の場合、本体4に船体2とほぼ同じ幅を与えることが好都合であり得る。
喫水と比較してより大きい幅を備える船体2、一般にはしけの場合、本体4に船体2の幅とほぼ同じ幅を与え、それにより、船体の前における持上げられた水塊80が実質的に船体2の下側へ導かれるようにすることも好都合であり得る。
船舶1に関する幅/喫水の比が低いと、本体4は、幅/喫水の比が大きい場合よりも、接近水塊を大きい割合の量で側方に移動させるように構成され得る。
本体4の外側に外周縁へ向かって横断方向における本体4の横断面は、より細く作製され、従って本体4の外周縁の上流の水塊80の揚力が減少し得、図11C、図12C、図21C、図22C及び図23Cを参照されたい。
別の実施形態に関し、本体の後縁42はまた、船体2の両側面に平行となるように構成され得るため、より多くの水が船体2の外側に両側へ向かって導かれる。
船舶1がバラストで安定にされているとき、本体4は、その下面45又はその前縁41が水面5の直上に位置決めされるように適合されており、それにより、本体の下面45が船首波の形成を物理的に防止し得、図21A、B、C及びDを参照されたい。船舶1が荷重のかけられた条件にある場合、本明細書の他の箇所で説明されているように、本体4は全体的に又は部分的に水中にある。
本体4は、船体2に定位置で固定され得る。取付はまた、移動の最中に垂直平面、水平面における本体4の位置及び/又は迎え角を変更できるように行われ得る。さらに、本体4は、本体の後縁42に1つ以上の受動又は能動フラップを備えて、異なる深さ/速度での船舶1に対する全抵抗を最小限にし得る。さらに、能動フラップを使用して波状的に船舶1の動きを低減させ得る。
本体の下面45は、高速では、動的揚力が本体の下面45から生成されるような形状にされ及び/又はそのような角度にされ得、ここでは、動的揚力は、船舶1が高速であると、本体の上面にある水塊が本体4に加える余分な重量の全体又は一部に釣り合う。本体の上面47における流れの水塊からの重量は、実質的に、より低い設計速度を上回って一定であるが、本体の下面45からの動的揚力は、速度が増加するにつれて増大し、より高速では、より小さい迎え角を必要とする。従って、図27Aに矢印で示すように、本体4の前記迎え角が高速で調整され得るように、本発明による船舶1を構築することが有利であり得る。さらに、図27Bは、矢印で示すように動くことができる1つ以上の遠隔操作されるフラップが取り付けられた本体4を示す。従って、本体の後縁42における動的揚力及び流れの状況が高速において変えられることができる。図27Cは、1つ以上の矢印が示すように動くことができる1つ以上の遠隔操作されるフラップが取り付けられた本体4を示す。従って、本体の後縁42における動的揚力及び流れの状況が高速において変えられることができる。図27Dは、1つ以上の矢印が示すように動くことができる1つ以上の遠隔操作されるフラップが取り付けられた本体4を示す。従って、本体の後縁42における動的揚力及び流れの状況が高速において変えられることができる。動的揚力はまた、本体の下面45において本体4に1つ以上の固定及び/又は可動揚力水中翼を取り付けることによって提供され得る。これを、図27Eの取り得る実施形態に示す。矢印は、どのように揚力水中翼の迎え角が高速において変えられることができるかを示す。
本体の下面45はまた、小さい迎え角で又は迎え角がない状態で取り付けられることができ、ここでは、本体の下面において必要な揚力は、接近水塊が移動する結果、本体4の下側の船首領域3における圧力を増大させることによって生成され、図21B〜Dを参照されたい。従って、本体の下面45も、少なくとも1つの荷重条件において船首波の形成を抑制する。
図21A〜Dは、本発明の第4の実施形態による船体2及び本体4を含む船舶1の前側部6を示す。ここで分かるように、本体4は、前縁41、2つの後縁42、前部上面43、輪郭線53、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44とを合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との間の境界を示し、及びインターフェース54は、本体の前縁41とその後縁42との間の境界を示す。船舶の水面5は、2つの荷重条件で示されており、従ってまた、2つの荷重条件に対して船首領域3が規定されている。図21Aの本体の後縁42、輪郭線53及びインターフェース55の破線は、上からは見えないが、船体2及び本体4の構成をより良く示すために図示されている。
十分な水塊が本体の上面47の上側へ導いて、本体の後縁42に速度ベクトル85を生じさせて、本体の後縁42と船首領域3との間に生じ得る乱流が最小限となるようにする必要がある。
本体の後縁42と船首領域3との間の距離を長くすることにより、特により低速で乱流の問題を増大させ得る。船首領域3と本体の後縁42との間の距離はまた、本体の上面47からの水塊が船体2の下側を流れるのを防止するほどに狭くする必要はない。
本体4と船首領域3との間の通路又はチャネル60は、本体4の上側を通過する水塊が、最大層流でさらに船体2の下側で及び任意選択的に船首領域3の外側に両側へと自由に流れる(すなわち、ほとんど又は全く減速しない)ような寸法にされる必要がある。最も深い喫水では、本体の上面47及び本体の後縁42から船首領域3まで十分な距離があり、本体の上面47上の水塊が自由に流れることができるようにする必要がある。
本体の後縁42において水塊を側方に移動させる本体4の後方の乱流に対抗するために(例えば、図14A参照)、水塊も本体の下面45によるのと同様の方法で側方に移動されることが有利であり得、例えば、破線が本体の下面45における流線を示す図14Dを参照されたい。
本体4は(例えば第1の実施形態参照)、側板70を備えて又は備えずに構成され得る。側板70は、本体の前縁41まで延在され得るか、又は本体の前縁41を越えてさらに前方に延在され得る。概して、側板70をさらに前方に延在させるほど、本体4の前方で持上げられた水塊80の周囲の水塊に波として逃げる割合の量80Aは、より少なくなると言われ得る。本体4が側板70を備えずに構成される場合、本体4は、前から見て、本体4の両側を出て直ちに固定されないストラット又はプレートを使用して船首領域に締結され得る。さらに、本体4は、第1及び第3の実施形態で説明されるような1つ以上のV字状ウェッジ65を使用して固定され得る。図22A、B、C及びDに示すように、本体4はまた、これらの取付部品を備えて、前から見て本体4の外側に両側へ向かってテーパが付けられた横断面を備えて構成され得る。
図22A〜Dは、本発明の第5の実施形態による船体2及び本体4を含む船舶1の前側部6を示し、船舶1が静止しているとき、本体4は完全に水塊中にある。水面5の位置は図22B及びCに示される。本体4は、船首領域3からある距離に配置されて、本体4と船首領域3との間に通路60が形成されるようにする。本体4は、前縁41、後縁42、前部上面43、輪郭線53、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44を合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との間の境界を示す。図22Aの本体の後縁42、輪郭線53、インターフェース56及び締結手段の破線は、上からは見えないが、船体2及び本体4の構成をより良く示すために図示されている。
図23A〜Dは、本発明の第6の実施形態による船体2及び本体4を含む、船舶1の前側部6を示し、船舶1が静止しているとき、本体4は完全に水塊中にある。水面5の位置は図23B及びCに示されている。本体4は、船首領域3からある距離に配置されて、本体4と船首領域3との間に通路60が形成されるようにする。本体4は、前縁41、後縁42、前部上面43、輪郭線53、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44とを合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との間の境界を示し、及びインターフェース54は、本体の前縁41とその後縁42との間の境界を示す。本体の後縁42、輪郭線53及びインターフェース55及び56を示す図23Aの破線は、上からは見えないが、船体2及び本体4の構成をより良く示すために図示されている。
図24A〜Dは、本発明の第7の実施形態による船体2及び本体4を含む船舶1の前側部6を示す。模型試験の表題のセクション下で、本明細書で後述する模型ボートは、この第7の実施形態に従って作製された試験Cにあり、図17A及びBを参照されたい。この実施形態は、第1の実施形態で説明されたような特性と、尖頭的な従来の船首の特性とを組み合わせる。水面5の位置は図24B及びCに示されている。この実施形態では、本体4は、前から見て、船舶1の最大幅まで外側へと延在していない。本体4は、後方の船首領域3からある距離に位置決めされて、本発明の第1の実施形態に説明されているように、本体4と船首領域3との間に通路60が形成されるようにする。本体4は、前縁41、後縁42、前部上面43、輪郭線53、後部上面44、下面45及び前部46を含む。前部上面43と後部上面44とを合わせたものが本体の上面47を構成する。輪郭線53は、前部上面43と後部上面44との間の境界を示す。図24Aの本体の後縁42、通路60、輪郭線53及びインターフェース56の破線は、上からは見えないが、船体2及び本体4の構成をより良く示すために図示されている。さらに、図24Dの破線は本体4と船体2との間の境界を印す。
荒海では、本体の上面47は、接近する波を平らにし、及びそれら波を船体2の下側へ導いて、船首領域3が波からの抵抗に直面する程度をより少なくする。従って、本体の上面47と船首領域3との間を十分な距離にして、ある高さの波が、本体の上面47と船首領域3との間の通路60に自由に通過できるようにし、その後、船体2の下側へ導かれるようにすることが有利であり得る。
さらに、より高波の海では、船体2を図23A〜D及び図24A〜Dに示すような船首構成にし、接近する高波の海が本体4と船首領域3との間の通路60を自由に通過できないようにすることにより、可能な限り自由に側方に移動され得ることが有利であり得る。
高波の海では、本体の下面45でスラミングが発生し得る。これを弱めるために、本体の下面45は、前から見て、湾曲して又はV字状に作製され得、それぞれ図14B〜C及び図23B〜Cを参照されたい。さらに、本体の前縁41が丸みを帯びるようにされ得るか(図14A及びD参照)、又は本体4が「後方に続く」構成を備えて作製され得、図23A〜Dを参照されたい。下面における本体4の面積も面積が小さいほど与えるスラミングが少なくなり得るために重要であり得る。本体4を水塊中により深く位置決めすることにより、本体の下面45もスラミングにあまり曝されないことができる。
図25A及びBは、本発明による船体2及び本体4を含む船舶1の前側部6を示し、ここでは、本体4の最高点は水面5に配置される。本体の後縁42は、船体2の底部よりも高く及び低くそれぞれ配置される。低速では、本体の後縁42は、船体2の底部よりも低い位置に配置されることが有利であり得るが、これは、一部には、本体の上面47からの水塊が船体2の下側へ導かれるときに生じ得る乱流の問題がそのために小さくなるためである。
本体の前縁41において、船舶1の進行方向において垂直区域内で見て、本体4の半径は、本体4の航海特性に重要であり得る。本体4の半径がここでは過度に尖頭的である、すなわち、本体の前縁41の半径が小さい場合(例えば、図26B、C及びD参照)、船舶1が高速であるとき及び/又は波に曝されるとき、キャビテーション及び乱流が発生し得る。図26Aに示すような本体の前縁41の構成は、キャビテーションに関してより有利となり得る。さらに、キャビテーションの問題は、上面47及び/又は下面45上に曲率半径の小さい他の領域がある場合に発生し得る。ここでは、小さいとは、本体4の典型的な寸法よりも実質的に小さいこと、例えば、曲率半径が本体の長さの20%未満であることを意味する。
本発明に従って設計された船舶1は、従来の船舶1と比較して速度増加時の波抵抗を低下させたため、及び船舶1の波抵抗は船舶1の長さに依存して小さくなるため、本発明による船舶1を従来の船舶1と比較して幅が広く且つ長さが短くなるように設計することが有利であり得る。従って、従来の船舶1と同じ積載量の本発明による船舶1は、建造するためのコストが削減され得る。
本体の上面47は、それぞれ図26A、B及びCに示すように、単、二重又は三重曲率を有し得る。上面47はまた、1つ以上の直線部分を有し得る。さらに、本体4の輪郭線53は、図26A〜Dに示されているものを参照すると、本体4の長手方向において前方又は後方へ動かされ得る。本体4は、本体4の横断方向範囲を横断する異なる断面形状及び断面形状の厚さを有し得る。本体の下面45は直線であり得るか(図26B参照)、又は単曲率を有し得るか(図26A及びD参照)、又は二重曲率を有し得る(図26C参照)。本体4は、図26A〜Dの1つ以上の組み合わせとして作製され得る。
しかしながら、図26A〜Dに図示する構成は、本体4の全ての取り得る構成を示すことに関して徹底していない。
水塊を本体4の中心の方へ向けることが望ましい場合、本体4は、代替的な実施形態では、前から見て、本体4の外側に外周縁へ向かって横断方向においてフルネスが最大であり、及び中心軸の周りでフルネスが最小であるように作製され得る。
さらに、本体の後部上面44は、境界が明確な/際立った、例えば、尖頭的な又はほとんど尖頭的な後縁42を備えて作製され得、ここでは、境界が明確な後縁42は、本体の前縁41よりも低い位置に配置され得る。
本体の前縁41は、上から見て、直線、凹状、凸状、「後方に続いて」、「前方に続いて」又はそれらの組み合わせで作製され得る。同じことが本体の後縁42に当てはまる。図28A〜Jは、これらの例を示し、及び上から見た本体の上面47を示す。矢印は水塊の流れの方向を示す。本体の前縁41、後縁42及びインターフェース54を示す。しかしながら、図28A〜Jは、本体4の全ての取り得る構成を示すことに関して徹底していない。
本体の上面47及び下面45は、船舶1が静止しているとき、前から見てV又はU字形状を備えて構成されて傾斜に適合し得る。これは特に帆船に適している。
第1、第2、第3、第4、第5及び第6の実施形態では、本体4の幅は、前から見て、通常、船体2の幅の50〜100%である必要がある。第7の実施形態では、本体4の幅はまた前から見て船体2の幅の50%未満であり得る。
本体4は、前から見て、好ましくは1.5を上回る幅/高さの比を有する必要がある。
模型試験
本発明及びその行動様式を実証するために、及び前進運動に対する抵抗の変化を検証するために、本発明者は、模型ボートを使用して試験を実施した。
船舶1の前側部6の異なる構成についての、前進運動に対する抵抗の比較を最適にできるようにするために、模型ボートは、交換可能な船首セクションを有する。従って、異なる船首セクション間で簡単に切り替えられるが、模型ボートの残りの部分は同じ構造を有する。従って、その他は同一の条件下で繰り返し実験が実施され得る。
模型ボートは、電気推進エンジンを使用して無線操縦される。バッテリーは、電圧損失がわずかとなるように良好に寸法が決定されている。模型のプロペラ軸は、水平に又はほぼ水平に取り付けられ、及び推力を吸収しない単純な真鍮製の軸受によって支持されている。プロペラ軸は電気モータに直接取り付けられ、これは、同様にプロペラ軸の方向に滑らかに転がるキャリッジに取り付けられている。キャリッジは、プロペラ及び電気モータのねじりモーメントを吸収するが、プロペラの推力は吸収しない。キャリッジは、圧力センサーに当たるため、プロペラの推力が記録を取られ得る(ニュートン[N]を単位として)。模型ボートが一定速度で駆動されるとき、プロペラからの推力は、模型ボートの推進抵抗と等しい。模型ボートの速度はGPSロガーによって測定される。達成した速度[m/s]及び推進抵抗[N]の試験結果は、試験A、B及びCとして図2に表示されている3つの模型試験のそれぞれに関する。模型の長さ及び速度に基づいて、模型のフルード数[F]もx軸に沿って提供される。各測定点に関し、平均推力が5〜10秒の時間期間を通して登録され、対応して同じ時間期間中の速度に対して表示される。
試験Aでは、模型ボートは、図16A、B及びCに示すような従来技術による従来の船首構成を使用して駆動される。
試験Bでは、模型ボートは、本明細書で前述したように、V字状ウェッジ65を備えない、本発明の第3の実施形態に従って修正された船首構成を使用して駆動される。試験Bの船首セクションは、図18A及びBの修正された船首構成がV字状ウェッジ65を備えて示されていることを除いて、図18A及びBに示すものと同じである。試験Bでは、本体4は、図20Aに示され得るように、薄い板を使用して模型ボートに固定されている。
試験Cでは、模型ボートは、図17A及びBに示すような本発明の第7の実施形態に従って、及び本明細書で前述したような修正された船首構成を使用して駆動され、図24A、B、C及びDを参照されたい。
試験Aでは、従来の船首を備える模型ボートは、典型的な排水型船体として建造される。模型は、最大長154cm及び幅33cmを有する。模型ボートの船体側面と船首領域3との間の移行部は、模型ボートの船尾から約115cmである。模型試験の最中、模型ボートは34.5kgの重さがあり、これにより喫水を約9.7cmにする。模型ボートは、静止しており且つ水中に浮いているとき、ほぼ中立トリムを有するように釣り合いを取られた。中立トリムは、模型ボートの底部が水面5に平行となるように模型ボートが向けられることを言うことを意味する。
試験Bの模型ボートの最大長は153.5cmである。その他の模型の幅、重量及びトリムは試験Aから変更されない。模型ボートの喫水は約10.2cmである。本体4の最大幅は、前から見て33.0cmであり、及び本体4の最大長は、横から見て31.0cmである。本体4の垂直方向の最大厚は8.0cmであり、及び本体の前縁41上の最前点から約13cmに配置されている。本体の後縁42は、模型ボートの底部の上側1.0cmに位置決めされる。船舶1の進行方向において、本体の前縁41上の最前点は、模型ボートの底部よりも4.9cm高くに配置される。模型ボートの底部と船首領域3との間の移行部の曲率半径は約15.0cmである。水平面において測定された本体の後縁42と船体2との間の通路60の距離は約11.0cmである。本体の上面47に対して垂直に測定された本体の上面47と船体2との間の通路60の距離は約6.0cmである。模型ボートの側面と船首領域3との間の移行部の曲率半径は約5.5cmである。
試験Cでは、模型ボートの最大長は154cmである。その他の模型の幅、重量及びトリムは試験Aから変更されない。模型ボートの喫水は約9.8cmであった。本体4の幅は、前から見て16cmであり、及び本体4の長さは、横から見て26.5cmである。本体4の垂直方向の最大厚は4.0cmであり、及び本体の前縁41から12cmに配置される。本体の後縁42は、模型ボートの底部と同じ高さに配置される。本体の前縁41上の最前点は、模型ボートの底部よりも4.7cm高くに配置される。通路60を形成する模型ボートの底部と船首領域3との間の曲率半径は約10cmである。水平面において測定した本体の後縁42と船体2との間の通路60の距離は約7.0cmである。本体の上面47に対して垂直に測定された本体の上面47と船体2との間の通路60の距離は約8cmである。模型ボートの船体の側面と船首領域3との間の移行部は、模型ボートの船尾から約110cmであり、ここで、船首領域3は凸形で始まり、その後、図17Aから分かるように凹形になる。
図2の推定曲線から分かるように、試験Bの修正された船首は、約1.23m/sを上回る速度において前進運動に対する抵抗が最低であるが、試験Cの修正された船首は、約1.03m/s〜1.23m/sの速度範囲において前進運動に対してより低い抵抗を与える。試験Aの従来の船首に関する推進抵抗は、約1.03m/s未満において、修正された船首を備える2つの代替形態よりも低い。
図19A、B及びCは、模型試験の最中に撮られた写真を示す。図19Aは、試験Aのように模型が従来の船首構成を備えているときに撮られる一方、図19B及びCは、試験Bのように模型が修正された船首構成を備えているときに撮られている。図19A、B及びCの測定速度は、それぞれ1.25m/s、1.25m/s及び1.34m/sである。本発明による修正された船首を備える模型からの波形成が、従来の船首構成を備える同じ模型よりも実質的に少ないことが図19A、B及びCに可視的に示されている。
図19A及びBの模型ボートの速度である速度1.25m/sにおける図2の推定曲線から、試験Aにおける従来の船首構成を備える模型ボートは、試験Bの修正された船首を備える模型ボートよりも約38.3%多い推進抵抗を与えられる(推定推進抵抗は、それぞれ10.44N及び7.55Nである)と読まれ得る。
模型ボートを50倍に拡大する場合、長さ77メートルの実物大の船が得られる。模型ボートの速度1.25m/sは、上記で与えられた式(1)を使用することにより、実物大の船の速度8.84m/sに対応し、17.2ノットに対応する。この速度では、模型試験は、試験Aで使用された模型に従って従来の船首を備えて建造された実物大の船は、試験Bで使用された模型に従う修正された船首を備えて建造された実物大の船よりも47.1%多い推進抵抗を与えられることを示す(計算推進抵抗は、それぞれ、1,158KN及び787KNである)。測定データは、Havard Holm及びSverre Steen −Motstand og framdrift − NTNU(Norway)によって説明されている手順に従って模型から実物大に変換された。従来の船首を備える模型ボート及び修正された船首を備える模型ボートは、浸水面S=0.71mを有し、及びさらに両方とも水線の長さLvl,m=1.54mを有すると仮定される。
上記の説明では、本発明による船舶の異なる態様について、例示的な実施形態を参照して説明した。船舶及びその動作モードを完全に理解するために、説明、特定の数字、システム及び構成が提示された。しかしながら、この説明は、限定であると解釈されるものではない。例示的な実施形態の異なる修正形態及び変形形態、並びに説明した内容に関して当業者に明らかである船舶の他の実施形態は本発明の範囲内にある。

Claims (23)

  1. 船舶(1)が静止しており且つ水塊に浮いているとき、前から見て、水面(5)の下側で船体(2)の表面領域として画定される船首領域(3)を備える船体(2)と、
    前記船首領域(3)に配置された本体(4)とを含む船舶(1)であって、
    前記本体(4)は、
    前縁(41)と、
    前記前縁(41)の下流に配置された後縁(42)と、
    下面(45)と、
    上面(47)とをさらに含み、
    前記上面(47)は、前から見て、前記本体の前縁(41)から前記本体(4)の外側輪郭線(53)まで延在する前部上面(43)をさらに含み、
    前記本体(4)の最高点は、前記船舶(1)がペイロードなし及びバラストなしで静止しており且つ水塊に浮いているとき、前から見て、前記船舶(1)の最深喫水の半分よりも高く配置され、
    前記船舶(1)の進行方向を通る前記本体(4)の垂直区域及び前記船体(2)の横断方向における前記本体(4)の範囲は、前記船舶(1)の荷重条件の少なくとも1つにおいて、
    前記船舶(1)の最低速度として規定されたより低い設計速度以上である前記船舶(1)の速度において、接近水塊を前記本体の上面(47)の上側で移動させることであって、前記船舶(1)の進行方向に沿って垂直平面で主に移動される前記接近水塊は、前記本体の前記前部上面(43)の上側で実質的な層流になり、前記本体の上面(47)の形状は、前記外側輪郭線(53)の下流の重力場において降下される前記接近水塊を加速させ、それにより、前記接近水塊は、前記本体の後縁(42)において、前記接近水塊を前記船首領域(3)から離れるように、又は前記船首領域(3)に実質的に平行に、又はそれらの組み合わせで導く速度及び方向に達し、前記本体(4)の領域は、前から見て、前記船舶(1)の進行方向において2つの垂直平面間で、前記本体(4)の最大幅に対応する空間を備えて、前記本体(4)の後方に配置される前記船首領域(3)の部分の20%超を構成するように設計されていることを特徴とする、船舶。
  2. 前記本体の上面(47)は、前記接近水塊が前記外側輪郭線(53)の下流に向かう方向になり、それにより、前記接近水塊が前記船首領域(3)から離れるように、又は前記船首領域(3)に実質的に平行に、又はそれらの組み合わせで導かれるようにさらに構成されることを特徴とする、請求項1に記載の船舶。
  3. 前記加速は、前記外側輪郭線(53)の上流の前記重力場での前記接近水塊の持上げを含むことを特徴とする、請求項1又は2に記載の船舶。
  4. 前記本体の前縁(41)は、上から見て、前記本体(4)の最大幅まで外側へ延在していることを特徴とする、請求項1〜3のいずれか一項に記載の船舶。
  5. 前記本体(4)は、前記船舶(1)が静止しており且つ水塊に浮いているとき、前記船舶(1)の荷重条件の少なくとも1つにおいて、前記本体(4)の前縁(41)が前記水面(5)の下側にあるか又は前記水面(5)にあるように配置されることを特徴とする、請求項1〜4のいずれか一項に記載の船舶。
  6. 前記本体(4)は、前記船舶(1)がペイロードなし及びバラストなしで静止しており且つ水塊に浮いているとき、前記本体(4)の前記最高点が、前から見て、前記船舶(1)の最低点から計算して前記船舶(1)の最深喫水の3/4よりも高く位置決めされるように位置決めされることを特徴とする、請求項1〜5のいずれか一項に記載の船舶。
  7. 前記本体の外側輪郭線(53)及び前記本体の前記前縁(41)は、前記船舶(1)の荷重条件の少なくとも1つにおいて、前記より低い設計速度以上である前記船舶(1)の速度で前記接近水塊の20%超が前記水面(5)よりも上側に持上げられるように位置決めされることを特徴とする、請求項1〜6のいずれか一項に記載の船舶。
  8. 前記本体の前記後縁(42)は、1つの垂直区域で見て、水中翼の後縁と同一の又はほぼ同一の形状を有することを特徴とする、請求項1〜7のいずれか一項に記載の船舶。
  9. 前記船舶(1)の進行方向における前記本体(4)の垂直区域及び前記船体(2)の前記横断方向における前記本体(4)の範囲は、前記船舶(1)の荷重条件の少なくとも1つにおいて、前記より低い設計速度以上である前記船舶(1)の速度で前記本体の上面(47)の上側を通過する前記接近水塊の20%超が、前記船体(2)の下側へ導かれるように構成されることを特徴とする、請求項1〜8のいずれか一項に記載の船舶。
  10. 前記本体(4)は、前記船首領域(3)からある距離に配置され、それにより、前記本体(4)と前記船首領域(3)との間に少なくとも1つの通路(60)が形成されることを特徴とする、請求項1〜9のいずれか一項に記載の船舶。
  11. 前記本体の前記後縁(42)は、前記船首領域(3)からある距離に配置され、それにより、前記船体(2)は、前記船舶(1)の荷重条件の少なくとも1つにおいて、前記船舶(1)の速度が前記より低い設計速度以上であるときに、前記船体(2)の下側へ導かれる前記接近水塊の一部が上昇するのを防止することを特徴とする、請求項1〜10のいずれか一項に記載の船舶。
  12. 前記本体(4)の最大高さ(H)によって除算される前記本体(4)の最大横断方向範囲(B)は、前から見て、1.5を上回ることを特徴とする、請求項1〜11のいずれか一項に記載の船舶。
  13. 本体(4)の領域は、前から見て、前記船舶(1)の最大喫水において前記船首領域(3)の20%超を構成することを特徴とする、請求項1〜12のいずれか一項に記載の船舶。
  14. 前記船舶(1)が中立に釣り合いを取られ且つその最大ペイロードの10%を積み込まれているとき、前記船舶(1)の進行方向における前記本体(4)の垂直区域は、前記垂直平面において、前記船体(2)の喫水の少なくとも40%を構成する最大範囲を有することを特徴とする、請求項1〜13のいずれか一項に記載の船舶。
  15. 前から見て、前記本体(4)は、前から見て前記船体(2)の最大幅の少なくとも3/8である最大横断方向範囲を有することを特徴とする、請求項1〜14のいずれか一項に記載の船舶。
  16. 前記本体の前記上面(47)は、前記本体の上面(47)の10%超を構成する少なくとも1つの凸部分を含むことを特徴とする、請求項1〜15のいずれか一項に記載の船舶。
  17. 前記外側輪郭線(53)の下流の前記本体の前記上面(47)は、前記本体の上面(47)の上側を通過する前記接近水塊が、前記接近水塊が前記船体(2)に衝突する前に前記本体の前縁(41)の高さ位置まで又はそれよりも下側に降下されるようにする構成を有することを特徴とする、請求項1〜16のいずれか一項に記載の船舶。
  18. 前記本体(4)の横断方向範囲及び前記水面(5)に対するその位置は、前記船舶(1)の荷重条件の少なくとも1つにおいて、前記本体の上面(47)の上側を通過する前記接近水塊の大部分が、前記より低い設計速度以上である前記船舶(1)の速度で周囲の水塊から分離されるように選択されることを特徴とする、請求項1〜17のいずれか一項に記載の船舶。
  19. 前記本体の前記下面(45)は、前記船舶(1)の荷重条件の少なくとも1つにおいて、前記より低い設計速度以上である前記船舶(1)の速度で動的揚力をもたらすような形状にされ及び/又はそのような角度にされ、それにより、前記本体(4)は、前記船舶(1)が静止しており且つ水塊に浮いているときと比較して、変化しない又は実質的に変化しない浮力を得ることを特徴とする、請求項1〜18のいずれか一項に記載の船舶。
  20. 水面(5)に対する前記本体(4)の垂直位置は、少なくとも1つの荷重条件において、前記船舶(1)の進行方向に沿って及び前記本体(4)の翼弦線において90度で測定された前記本体(4)の最大厚の下流の、前記本体の上面(47)における前記接近水塊が、前記より低い設計速度以上である前記船舶(1)の速度で、実質的に一定の又は増加する速度を得るようなものであることを特徴とする、請求項1〜19のいずれか一項に記載の船舶。
  21. 水面(5)に対する前記本体(4)の垂直位置は、少なくとも1つの荷重条件において、前記接近水塊における圧力が、前記より低い設計速度以上である前記船舶(1)の速度で、前記外側輪郭線(53)の下流の前記上面(47)の上側で実質的に一定であるようなものであることを特徴とする、請求項1〜19のいずれか一項に記載の船舶。
  22. 前記本体(4)の断面領域は、前から見て、前記本体の横断方向に外周縁へ向かって高さが減少し、それにより、前記本体(4)の下面(4)で上昇する圧力及び前記本体(4)の上面(47)で上昇する圧力が前記本体(4)の外周縁で実質的に均等化されることを特徴とする、請求項1〜21のいずれか一項に記載の船舶。
  23. 前記本体(4)の各横方向側面の前記外周縁は、前記船舶の進行方向に沿って前記本体(4)の大部分にわたって延在するプレートを含み、前記プレートの幾何学的形状は、前記本体(4)の下面(45)の圧力が前記本体(4)の上面(47)の圧力に対して影響を有さないか又は著しい影響を有さないように設計されていることを特徴とする、請求項1〜21のいずれか一項に記載の船舶。
JP2017551022A 2014-12-22 2015-12-21 船舶の前側部の設計 Active JP6697786B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14199833.6A EP3037338A1 (en) 2014-12-22 2014-12-22 Design of forepart of a vessel
EP14199833.6 2014-12-22
PCT/EP2015/080842 WO2016102497A1 (en) 2014-12-22 2015-12-21 Design of forepart of a vessel

Publications (2)

Publication Number Publication Date
JP2018501150A JP2018501150A (ja) 2018-01-18
JP6697786B2 true JP6697786B2 (ja) 2020-05-27

Family

ID=52292670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017551022A Active JP6697786B2 (ja) 2014-12-22 2015-12-21 船舶の前側部の設計

Country Status (19)

Country Link
US (1) US10414464B2 (ja)
EP (2) EP3037338A1 (ja)
JP (1) JP6697786B2 (ja)
KR (1) KR102461779B1 (ja)
CN (1) CN107406121B (ja)
AU (1) AU2015371072B2 (ja)
CA (1) CA2971771C (ja)
CL (1) CL2017001639A1 (ja)
DK (1) DK3247620T5 (ja)
EA (1) EA201791459A1 (ja)
ES (1) ES2733699T3 (ja)
MX (1) MX380156B (ja)
MY (1) MY186843A (ja)
NZ (1) NZ732720A (ja)
PE (1) PE20171392A1 (ja)
PH (1) PH12017501036B1 (ja)
PL (1) PL3247620T3 (ja)
TR (1) TR201909861T4 (ja)
WO (1) WO2016102497A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017227B2 (en) * 2016-12-13 2018-07-10 Naviform Consulting & Research Ltd. Minimum wave bow
CN108545145A (zh) * 2018-06-14 2018-09-18 哈尔滨工业大学 一种抑制水下航行体结构物表面空化现象的流动控制方法
EP3885245A1 (en) 2020-03-26 2021-09-29 Rasmussen Maritime Design AS Vessel with stern positioned foil to reduce wave resistance
CN112591029B (zh) * 2020-11-27 2022-05-20 英辉南方造船(广州番禺)有限公司 一种用于调整高速船舶浮态的线型设计方法
DE102021004029A1 (de) 2021-08-03 2023-02-09 Hans-Martin Striebel Wellenreiter - Schiffsrumpf mit Luftschmierung und verlängerten oder verlängerbaren Schürzen
DE102022002844A1 (de) 2022-08-05 2024-02-08 Hans-Martin Striebel Wellenreiter - Schiffsrumpf mit Abrisskanten - Schwelle
US20250033746A1 (en) * 2023-07-25 2025-01-30 Naiad Maritime Group, Inc. Active bow foil for ship motion control

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB992375A (en) 1963-12-03 1965-05-19 Richard Throop Headrick Hydrofoil apparatus
USRE26997E (en) * 1968-12-17 1970-12-08 Ship s hull construction
JPS5012674B1 (ja) * 1970-06-17 1975-05-13
US3946687A (en) * 1974-08-06 1976-03-30 Newport News Shipbuilding And Drydock Company Conical bulbous bow
US4003325A (en) 1975-03-24 1977-01-18 Allen Rudolph A Cargo vessel low resistance bow
JPS52137897A (en) * 1976-05-13 1977-11-17 Kawasaki Heavy Ind Ltd Method of testing model of ship or the like
US4335671A (en) 1980-07-17 1982-06-22 The Boeing Company Flap leading edge for hydrofoil vessels and the like
JPS5843593U (ja) 1981-09-18 1983-03-23 日立造船株式会社 船舶
JPS59174990U (ja) * 1983-05-11 1984-11-22 三菱重工業株式会社 模型船
US4550673A (en) * 1983-06-02 1985-11-05 Sigurdur Ingvason Hull construction for seagoing vessels
JPS6042187A (ja) * 1983-08-18 1985-03-06 Ishikawajima Harima Heavy Ind Co Ltd 船舶
US4658746A (en) * 1985-08-09 1987-04-21 Sigurdur Ingvason Seagoing vessel having a bulb
JPS62153197U (ja) * 1986-03-24 1987-09-29
US5090352A (en) * 1987-02-24 1992-02-25 Corwin R. Horton Bow foil
US4776294A (en) * 1987-06-15 1988-10-11 Childs John M Ship stabilizer assembly
JPH01314686A (ja) * 1988-06-16 1989-12-19 Uinsuru:Kk 船首の下部先端構造
JPH0616189U (ja) * 1992-08-03 1994-03-01 三井造船株式会社 双胴水中翼船
JP3040608B2 (ja) 1992-08-07 2000-05-15 三菱重工業株式会社 水中翼船の操舵装置
US5280761A (en) * 1992-08-17 1994-01-25 The United States Of America As Represented By The Secretary Of The Navy Combined bulbous bow and sonar dome for a vessel
JPH07251787A (ja) * 1994-03-15 1995-10-03 Hiroki Nakamura 水中翼付双胴型滑走艇
US5711239A (en) * 1994-04-21 1998-01-27 Petroleum Geo-Services As Propeller configuration for sinusoidal waterline ships
US5598802A (en) * 1994-04-21 1997-02-04 Ramde; Roar R. Hull configuration
GR1007178B (el) * 1995-02-22 2011-01-31 Πετρομανωλακης Εμμ. Πρωραιος αγωγος σκαφους με διατομην αεροτομης.
US5566634A (en) * 1995-02-22 1996-10-22 Petromanolakis; Emanuel E. Ship's stem duct with airfoil section
JP3294517B2 (ja) * 1996-12-13 2002-06-24 墨田川造船株式会社 高速艇船体
US6467422B1 (en) 1998-05-06 2002-10-22 Elms Austrialia Pty Ltd. Hydrofoil device
DK1177129T3 (da) * 1999-05-11 2004-08-02 Siemens Ag Kursstabilt, hurtigt og södygtigt skib med et til en rorpropeller optimeret skrog
US6457422B1 (en) 2000-11-07 2002-10-01 Jofco, Inc. Grommet assembly with hutch attachment and lateral wire routing capabilities
JP2002316687A (ja) * 2001-04-25 2002-10-29 Hitachi Zosen Corp 船舶の水中翼装置
JP2003182682A (ja) 2001-12-20 2003-07-03 Ishikawajima Harima Heavy Ind Co Ltd 超高速船型及び超高速船
FI115763B (fi) * 2003-01-30 2005-07-15 Aker Finnyards Oy Laivan ohjaus- ja propulsiojärjestely
US7191725B2 (en) 2004-04-30 2007-03-20 Navatek, Ltd. Bow lifting body
DE102005028447B4 (de) * 2005-06-17 2009-12-17 Wobben, Aloys Schiff
EP1992558A1 (en) 2007-05-15 2008-11-19 Mondo Marine Eng. Srl Tiltable bow bulb and corresponding hull
US20090223431A1 (en) * 2008-03-06 2009-09-10 Steven Loui Bow lifting body with deadrise
NO334428B1 (no) * 2009-01-27 2014-03-03 Vard Design As Anordning ved skrog for et flytende fartøy
DE102010003662A1 (de) * 2010-04-06 2011-10-06 Aloys Wobben Schiff
GR1007687B (el) * 2011-07-18 2012-09-12 Εμμανουηλ Ευαγγελου Πετρομανωλακης Υδροδυναμικος αγωγος διαχειρισης της ροης στην πλωρη του πλοιου
GR20120100643A (el) * 2012-12-12 2014-07-18 Εμμανουηλ Ευαγγελου Πετρομανωλακης Πλοιο εφοδιασμενο με πρωραιο υδροδυναμικο αγωγο διαχειρισης της ροης
WO2015125033A1 (en) * 2014-02-18 2015-08-27 Fincantieri S.P.A. Ship for navigating in icy waters having improved propulsion performances
KR20150134115A (ko) * 2014-05-21 2015-12-01 정영재 선박용 유선형 선수장치
NL2013178B1 (en) * 2014-07-14 2016-09-13 Van Oossanen & Ass B V Vessel comprising an aft foil oriented to provide a forwardly directed component of lift force.
US9908589B1 (en) * 2016-04-26 2018-03-06 Stephen Lee Bailey Hull shape for improved powering and seakeeping

Also Published As

Publication number Publication date
EP3247620B1 (en) 2019-05-15
CN107406121B (zh) 2019-03-26
CA2971771C (en) 2023-02-21
MX380156B (es) 2025-03-12
MX2017008217A (es) 2017-10-18
JP2018501150A (ja) 2018-01-18
EP3037338A1 (en) 2016-06-29
TR201909861T4 (tr) 2019-07-22
PH12017501036A1 (en) 2017-11-27
CL2017001639A1 (es) 2018-02-02
AU2015371072B2 (en) 2019-02-14
PH12017501036B1 (en) 2020-06-05
WO2016102497A1 (en) 2016-06-30
CN107406121A (zh) 2017-11-28
BR112017013488A2 (pt) 2018-02-27
AU2015371072A1 (en) 2017-08-03
PL3247620T3 (pl) 2019-09-30
CA2971771A1 (en) 2016-06-30
EP3247620A1 (en) 2017-11-29
MY186843A (en) 2021-08-25
US10414464B2 (en) 2019-09-17
NZ732720A (en) 2023-04-28
KR20170096052A (ko) 2017-08-23
PE20171392A1 (es) 2017-09-20
ES2733699T3 (es) 2019-12-02
EA201791459A1 (ru) 2017-12-29
DK3247620T5 (da) 2019-08-26
US20170341712A1 (en) 2017-11-30
KR102461779B1 (ko) 2022-10-31
DK3247620T3 (da) 2019-07-15

Similar Documents

Publication Publication Date Title
JP6697786B2 (ja) 船舶の前側部の設計
US8122840B2 (en) Transom stern hull form and appendages for improved hydrodynamics
US10518842B1 (en) Boat hull
US10293886B2 (en) Watercraft vessel with a planing hull
KR100216452B1 (ko) 다중 선체 선박
US8955451B2 (en) Foil structure for providing buoyancy and lift
JP6541575B2 (ja) 水流偏向用流体力学的船首フィン配置を有する船
KR20140029546A (ko) 배 선수에서의 유동 관리를 위한 유체역학적 덕트
KR20080043357A (ko) 수중익선
US20230150610A1 (en) Vessel with stern positioned foil to reduce wave resistance
Duan et al. Study on force characteristics and resistance for water by amphibious vehicle
AU2015206001B2 (en) Marine propulsion multihull ship
WO2013162474A1 (en) A hull appendage
CN113677590B (zh) 具有安装于船首上的带有表面波管理的水平壁部分的流动管理流体动力导管的船舶
EP3050792A1 (en) Wave piercing ship hull
BR112017013488B1 (pt) Embarcação
US20060137591A1 (en) Watercraft hull with adjustable keel
JP4565125B2 (ja) 浮体構造物
KR100544899B1 (ko) 에어포일형 핀이 구비된 차인 선형
NO348590B1 (en) A hydrofoil vessel
Wong et al. Studies on the control effectiveness of vortex generators for hull body applications
JPH08244675A (ja) 翼付双胴船
JP2014129064A (ja) 波浪中推進性能向上装置及び船舶

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20170817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200421

R150 Certificate of patent or registration of utility model

Ref document number: 6697786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250