JP6696780B2 - Zoom lens and imaging device - Google Patents
Zoom lens and imaging device Download PDFInfo
- Publication number
- JP6696780B2 JP6696780B2 JP2016011114A JP2016011114A JP6696780B2 JP 6696780 B2 JP6696780 B2 JP 6696780B2 JP 2016011114 A JP2016011114 A JP 2016011114A JP 2016011114 A JP2016011114 A JP 2016011114A JP 6696780 B2 JP6696780 B2 JP 6696780B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- conditional expression
- line
- pct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title description 22
- 230000014509 gene expression Effects 0.000 claims description 250
- 230000003287 optical effect Effects 0.000 claims description 93
- 239000006185 dispersion Substances 0.000 claims description 45
- 230000004075 alteration Effects 0.000 description 144
- 238000010586 diagram Methods 0.000 description 49
- 230000000694 effects Effects 0.000 description 35
- 201000009310 astigmatism Diseases 0.000 description 27
- 230000002547 anomalous effect Effects 0.000 description 19
- 239000002131 composite material Substances 0.000 description 19
- 239000011521 glass Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 230000035945 sensitivity Effects 0.000 description 12
- 239000006059 cover glass Substances 0.000 description 9
- 206010010071 Coma Diseases 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 208000001644 thecoma Diseases 0.000 description 2
- 101100273797 Caenorhabditis elegans pct-1 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Lenses (AREA)
Description
本発明は、CCDやCMOS等の固体撮像素子が搭載された撮像装置に好適なズームレンズに関する。 The present invention relates to a zoom lens suitable for an image pickup apparatus equipped with a solid-state image pickup element such as CCD or CMOS.
一眼レフカメラ、デジタルスチルカメラ、ビデオカメラ、監視カメラ等、CCDやCOMS等の固体撮像素子が搭載された撮像措置が急速に普及している。これに伴い、CCDやCMOS等の固体撮像素子が搭載された撮像装置に用いることが可能なズームレンズが数多く提案されている(たとえば、特許文献1〜3を参照。)。
Imaging devices equipped with solid-state imaging devices such as CCDs and COMSs, such as single-lens reflex cameras, digital still cameras, video cameras, and surveillance cameras, are rapidly becoming widespread. Along with this, a large number of zoom lenses that can be used in image pickup devices equipped with solid-state image pickup devices such as CCDs and CMOSs have been proposed (see, for example,
近年、固体撮像素子の高画素、高感度化が進み、800万画素以上の固体撮像素子に対応した高解像で、明るい撮影レンズが求められている。また、撮像装置の小型化が進み、撮影レンズの小型、軽量化も望まれている。さらに、ビデオカメラや監視カメラ等、昼夜を問わず使用される撮像装置に搭載することが可能なように、可視光域に限らず、近赤外域を含む広範な波長の光に対応した高性能なズームレンズも求められている。 In recent years, the number of pixels and the sensitivity of solid-state image pickup devices have increased, and a high-resolution and bright photographing lens corresponding to a solid-state image pickup device of 8 million pixels or more has been demanded. Further, as the size of the image pickup apparatus has been reduced, it has been desired to reduce the size and weight of the taking lens. Furthermore, it can be installed in imaging devices such as video cameras and surveillance cameras that are used day and night, and it has high performance not only in the visible light range but also in a wide range of wavelengths including the near infrared range. There is also a need for a large zoom lens.
特許文献1,2に記載のズームレンズは、いずれも、物体側から順に、負・正の屈折力を有するレンズ群が配置されたタイプのレンズ群構成をもつズームレンズである。当該特許文献に記載のズームレンズは、2群構成のため近年ますます高画素化が進む固体撮像素子に対応可能な収差補正能力が十分ではない。
The zoom lenses described in
特許文献3に記載のズームレンズは、物体側から順に、負・正・正の屈折力を有するレンズ群が配置されたタイプのレンズ群構成をもつズームレンズである。このズームレンズは、高画素、高感度化が進んだ固体撮像素子に対応可能な光学性能を得るためには、第1レンズ群、第2レンズ群、第3レンズ群の焦点距離の設定が適切ではなく、問題がある。 The zoom lens described in Patent Document 3 is a zoom lens having a lens group configuration of a type in which lens groups having negative, positive, and positive refractive powers are arranged in order from the object side. In this zoom lens, the focal lengths of the first lens group, the second lens group, and the third lens group are appropriately set in order to obtain optical performance that can be applied to a solid-state image sensor with high pixels and high sensitivity. But not the problem.
高画素、高感度化が進んだ固体撮像素子を備えた撮像装置では、従来は問題とされなかったわずかな収差が発生しても画質の低下を招きやすいという問題がある。 An image pickup apparatus including a solid-state image pickup element with high pixel count and high sensitivity has a problem that deterioration of image quality is likely to occur even if a slight aberration, which has not been a problem in the past, occurs.
本発明は、上述した従来技術による問題点を解消するため、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを提供することを目的とする。さらに、昼夜を問わず、良好な画像が得られる高性能の撮像装置を提供することを目的とする。 The present invention, in order to solve the problems caused by the above-described conventional technology, has a simple structure, a large aperture ratio, high pixels, and high optical performance that can be applied to a solid-state imaging device with high sensitivity. In particular, it is an object of the present invention to provide a small-sized zoom lens capable of excellently correcting various aberrations generated for light having a wide range of wavelengths from the visible light region to the near infrared region over the entire zoom range. To do. Further, it is another object of the present invention to provide a high-performance image pickup device capable of obtaining a good image regardless of day or night.
上述した課題を解決し、目的を達成するため、本発明にかかるズームレンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、第3レンズ群と、から構成され、少なくとも前記第1レンズ群および前記第2レンズ群を光軸に沿って移動させて、前記各レンズ群の光軸上の間隔を変えることにより広角端から望遠端への変倍を行うズームレンズにおいて、前記第3レンズ群が、少なくとも1枚の正レンズと、少なくとも1枚の負レンズと、を備え、以下に示す条件式を満足することを特徴とする。
(1) 1.2≦|f1/fw|≦2.5
(2) 2.0≦f23w/fw≦3.4
ただし、f1は前記第1レンズ群の焦点距離、fwは広角端における無限遠物体合焦状態のレンズ全系の焦点距離、f23wは広角端における無限遠物体合焦状態の前記第2レンズ群と前記第3レンズ群との合成焦点距離を示す。
In order to solve the problems described above and achieve the object, a zoom lens according to the present invention includes a first lens group having a negative refractive power and a second lens having a positive refractive power, which are sequentially arranged from the object side. Lens group and a third lens group, and at least the first lens group and the second lens group are moved along the optical axis to change the distance between the lens groups on the optical axis to obtain a wide-angle lens. In the zoom lens that performs zooming from the end to the telephoto end, the third lens group includes at least one positive lens and at least one negative lens, and satisfies the following conditional expression. Characterize.
(1) 1.2 ≦ | f1 / fw | ≦ 2.5
(2) 2.0 ≦ f23w / fw ≦ 3.4
Here, f1 is the focal length of the first lens group, fw is the focal length of the entire lens system at the wide-angle end when the object is focused at infinity, and f23w is the second lens group when the object is focused at infinity at the wide-angle end. The composite focal length with the said 3rd lens group is shown.
本発明によれば、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを提供することができる。 According to the present invention, with a simple structure, a large aperture ratio, high pixels, and high optical performance that can be applied to a solid-state imaging device with improved sensitivity, particularly in the visible light range to the near infrared range. It is possible to provide a small-sized zoom lens capable of satisfactorily correcting various aberrations generated with respect to light of a wide range of wavelengths over the entire zoom range.
さらに、本発明にかかるズームレンズは、前記発明において、前記第1レンズ群と前記第2レンズ群との間に開口絞りが配置され、前記開口絞りおよび前記第3レンズ群は広角端から望遠端への変倍の際に固定されることを特徴とする。 Further, in the zoom lens according to the present invention, in the above invention, an aperture stop is arranged between the first lens group and the second lens group, and the aperture stop and the third lens group are from a wide-angle end to a telephoto end. It is characterized in that it is fixed when the magnification is changed to.
本発明によれば、開口絞りと第3レンズ群が変倍時でも固定されているため、変倍機構の簡素化の達成が可能になるとともに、レンズ系の全長を短く維持することができる。 According to the present invention, since the aperture stop and the third lens group are fixed even during zooming, simplification of the zooming mechanism can be achieved, and the total length of the lens system can be kept short.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(3) 10≦|f3/fw|≦200
ただし、f3は前記第3レンズ群の焦点距離を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(3) 10 ≦ | f3 / fw | ≦ 200
However, f3 indicates the focal length of the third lens group.
本発明によれば、高い光学性能を備えた、より小型のズームレンズを提供することができる。 According to the present invention, it is possible to provide a smaller zoom lens having high optical performance.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(4) 1.1≦|f23w/f1|≦2.1
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(4) 1.1 ≦ | f23w / f1 | ≦ 2.1
本発明によれば、レンズ系の全長を短く維持したまま、より光学性能を向上させることができる。 According to the present invention, the optical performance can be further improved while keeping the overall length of the lens system short.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(5) 5.0≦|νd3P−νd3n|
ただし、νd3Pは前記第3レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数、νd3nは前記第3レンズ群に含まれる、少なくとも1枚の負レンズのd線に対するアッベ数を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(5) 5.0 ≦ | νd3P−νd3n |
Here, νd3P is the Abbe number for the d-line of at least one positive lens included in the third lens group, and νd3n is the Abbe number for the d-line of at least one negative lens included in the third lens group. Show.
本発明によれば、第3レンズ群において、全変倍域に亘って、広い波長域の光に対する軸上色収差および倍率色収差を良好に補正することができる。 According to the present invention, in the third lens group, axial chromatic aberration and lateral chromatic aberration with respect to light in a wide wavelength range can be favorably corrected over the entire zoom range.
さらに、本発明にかかるズームレンズは、前記発明において、前記第2レンズ群の最も物体側に正レンズが配置され、以下に示す条件式を満足することを特徴とする。
(6) 65.0≦νd2P_ave
ただし、νd2P_aveは前記第2レンズ群に含まれる、全ての正レンズのd線に対するアッベ数の平均値を示す。
Further, the zoom lens according to the present invention is characterized in that, in the above-mentioned invention, a positive lens is arranged on the most object side of the second lens group, and the following conditional expression is satisfied.
(6) 65.0 ≦ νd2P_ave
However, νd2P_ave represents an average value of Abbe numbers for d lines of all positive lenses included in the second lens group.
本発明によれば、第2レンズ群において、全変倍域に亘って、可視光域から近赤外域の波長の光に対する軸上色収差および倍率色収差を良好に補正することができる。 According to the present invention, in the second lens group, it is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration with respect to light having a wavelength from the visible light region to the near infrared region over the entire zoom range.
さらに、本発明にかかるズームレンズは、前記発明において、前記第2レンズ群が少なくとも1枚の負レンズを備え、以下に示す条件式を満足することを特徴とする。
(7) 0.000≦PCt_2n_i−(0.546+0.00467×νd_2n_i)
ただし、PCt_2n_iは前記第2レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比、νd_2n_iは前記PCt_2n_iの値が算出された負レンズのd線に対するアッベ数を示す。
Furthermore, in the zoom lens according to the present invention, in the above invention, the second lens group includes at least one negative lens, and the following conditional expression is satisfied.
(7) 0.000 ≦ PCt_2n_i− (0.546 + 0.00467 × νd_2n_i)
Here, PCt_2n_i represents a partial dispersion ratio of at least one negative lens included in the second lens group with respect to C line and t line, and νd_2n_i represents an Abbe number of the negative lens for which the value of PCt_2n_i was calculated with respect to d line. ..
本発明によれば、第2レンズ群において、全変倍域に亘って、C線からt線までの近赤外域を含む波長域の光に対する軸上色収差および倍率色収差を良好に補正することができる。 According to the present invention, in the second lens group, axial chromatic aberration and lateral chromatic aberration with respect to light in a wavelength range including the near infrared range from the C line to the t line can be corrected well over the entire zoom range. it can.
さらに、本発明にかかるズームレンズは、前記発明において、前記第1レンズ群が、少なくとも1枚の正レンズと、少なくとも2枚の負レンズと、を備え、以下に示す条件式を満足することを特徴とする。
(8) νd1p≦40.0
(9) 0.000≦PCt_1n_i−(0.546+0.00467×νd_1n_i)
ただし、νd1pは前記第1レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数、PCt_1n_iは前記第1レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比、νd_1n_iは前記PCt_1n_iの値が算出された負レンズのd線に対するアッベ数を示す。
Further, in the zoom lens according to the present invention, in the above invention, the first lens group includes at least one positive lens and at least two negative lenses, and satisfies the following conditional expression. Characterize.
(8) νd1p ≦ 40.0
(9) 0.000≤PCt_1n_i- (0.546 + 0.00467 × νd_1n_i)
Where νd1p is the Abbe number of at least one positive lens included in the first lens group with respect to the d-line, and PCt_1n_i is the C-line and t-line of at least one negative lens included in the first lens group. The partial dispersion ratio, νd_1n_i, indicates the Abbe number for the d-line of the negative lens for which the value of PCt_1n_i has been calculated.
本発明によれば、第1レンズ群において、全変倍域に亘って、C線からt線までの近赤外域を含む波長域の光に対する軸上色収差および倍率色収差を良好に補正することができる。 According to the present invention, in the first lens group, axial chromatic aberration and lateral chromatic aberration with respect to light in a wavelength range including the near infrared range from the C line to the t line can be corrected well over the entire zoom range. it can.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(10) 0.000≦PCt_3n_i−(0.546+0.00467×νd_3n_i)
ただし、PCt_3n_iは前記第3レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比、νd_3n_iは前記PCt_3n_iの値が算出された負レンズのd線に対するアッベ数を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(10) 0.000 ≦ PCt — 3n_i− (0.546 + 0.00467 × νd — 3n_i)
Here, PCt_3n_i represents a partial dispersion ratio of at least one negative lens included in the third lens group with respect to C line and t line, and νd_3n_i represents an Abbe number of the negative lens for which the value of PCt_3n_i was calculated with respect to d line. ..
本発明によれば、第3レンズ群において、全変倍域に亘って、C線からt線までの近赤外域を含む波長域の光に対する軸上色収差および倍率色収差を良好に補正することができる。 According to the present invention, in the third lens group, axial chromatic aberration and lateral chromatic aberration can be favorably corrected for light in a wavelength range including the near infrared range from the C line to the t line in the entire zoom range. it can.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(11) 0.4≦|f1/f2|≦1.1
ただし、f2は前記第2レンズ群の焦点距離を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(11) 0.4 ≦ | f1 / f2 | ≦ 1.1
However, f2 represents the focal length of the second lens group.
本発明によれば、明るいレンズ系が得られるとともに、第1レンズ群の変倍に伴う移動量を適切に設定することができ、変倍に伴う非点収差や像面湾曲の発生を抑制することができる。 According to the present invention, a bright lens system can be obtained, and the amount of movement of the first lens group that accompanies zooming can be appropriately set, and astigmatism and field curvature associated with zooming can be suppressed. be able to.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(12) 0.2≦|X2/f2|≦0.9
ただし、X2は広角端から望遠端への変倍時における前記第2レンズ群の移動量、f2は前記第2レンズ群の焦点距離を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(12) 0.2 ≦ | X2 / f2 | ≦ 0.9
However, X2 represents the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end, and f2 represents the focal length of the second lens group.
本発明によれば、変倍時の第2レンズ群の移動量と第2レンズ群の屈折力とを適切に設定して、変倍時の球面収差、像面湾曲の変動を適切に補正することができる。 According to the present invention, the amount of movement of the second lens group and the refractive power of the second lens group at the time of zooming are appropriately set to appropriately correct variations in spherical aberration and field curvature during zooming. be able to.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(13) 1.1≦f23t/ft≦2.8
ただし、f23tは望遠端における無限遠物体合焦状態の前記第2レンズ群と前記第3レンズ群との合成焦点距離、ftは望遠端における無限遠物体合焦状態のレンズ全系の焦点距離を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(13) 1.1 ≦ f23t / ft ≦ 2.8
Here, f23t is a combined focal length of the second lens group and the third lens group in the infinity object focused state at the telephoto end, and ft is a focal length of the entire lens system in the infinity object focused state at the telephoto end. Show.
本発明によれば、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定して、レンズ系の望遠端における無限遠物体合焦状態で発生する球面収差、コマ収差、像面湾曲を適切に補正することができる。 According to the present invention, the combined focal length of the second lens unit and the third lens unit in the infinity object-focused state at the telephoto end is appropriately set so that the infinity object is focused at the telephoto end of the lens system. It is possible to appropriately correct the spherical aberration, the coma aberration, and the curvature of field that occur.
さらに、本発明にかかるズームレンズは、前記発明において、以下に示す条件式を満足することを特徴とする。
(14) 3.2≦|f3/f2|≦80
ただし、f2は前記第2レンズ群の焦点距離、f3は前記第3レンズ群の焦点距離を示す。
Furthermore, the zoom lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(14) 3.2 ≦ | f3 / f2 | ≦ 80
However, f2 indicates the focal length of the second lens group, and f3 indicates the focal length of the third lens group.
本発明によれば、変倍時の第2レンズ群の移動に伴って発生する非点収差や像面湾曲を効果的に抑制することができる。 According to the present invention, it is possible to effectively suppress astigmatism and field curvature that occur with the movement of the second lens group during zooming.
また、本発明にかかる撮像装置は、前記発明におけるズームレンズと、該ズームレンズによって形成された光学像を電気的信号に変換する固体撮像素子と、を備えたことを特徴とする。 An image pickup apparatus according to the present invention is characterized by including the zoom lens according to the above invention, and a solid-state image pickup element that converts an optical image formed by the zoom lens into an electrical signal.
本発明によれば、昼夜を問わず、良好な画像が得られる高性能の撮像装置を提供することができる。 According to the present invention, it is possible to provide a high-performance imaging device capable of obtaining a good image regardless of day or night.
本発明によれば、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを提供することができるという効果を奏する。 According to the present invention, with a simple structure, a large aperture ratio, high pixels, and high optical performance that can be applied to a solid-state imaging device with improved sensitivity, particularly in the visible light range to the near infrared range. It is possible to provide a small-sized zoom lens capable of satisfactorily correcting various aberrations generated with respect to light of a wide range of wavelengths over the entire zoom range.
さらに、本発明によれば、昼夜を問わず、良好な画像が得られる高性能の撮像装置を提供することができるという効果を奏する。 Further, according to the present invention, it is possible to provide a high-performance image pickup apparatus capable of obtaining a good image regardless of day or night.
以下、本発明にかかるズームレンズおよび撮像装置の好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of a zoom lens and an image pickup apparatus according to the present invention will be described in detail.
高画素、高感度化が進んだ固体撮像素子を備えた撮像装置では、従来は問題とされなかったわずかな収差が発生しても画質の低下を招きやすい。そこで、本発明では、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子を備えた撮像装置であっても画質の低下を招くことがない、高い光学性能を備えたズームレンズを提供しようとするものである。特に、監視カメラ等昼夜を問わず使用される撮像装置にも用いることができるように、可視光域のみならず近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、高い光学性能を備えたズームレンズを提供することを目的としている。そこで、かかる目的を達成すべく、本発明では、以下に示すような各種条件を設定している。 In an image pickup apparatus including a solid-state image pickup element with high pixels and high sensitivity, image quality is likely to be deteriorated even if a slight aberration, which has not been a problem in the past, occurs. Therefore, in the present invention, even though the image pickup apparatus has a simple structure, a large aperture ratio, a high pixel count, and a solid-state image pickup element with high sensitivity, image quality is not deteriorated and high optical performance is achieved. The objective is to provide a zoom lens with high performance. Especially, it can be used for imaging devices such as surveillance cameras that are used day and night, and all the aberrations that occur with respect to light of a wide range of wavelengths not only in the visible light region but also in the near infrared region are fully zoomed. It is an object of the present invention to provide a zoom lens having high optical performance, which is capable of excellent correction over a range. Therefore, in order to achieve such an object, the present invention sets various conditions as described below.
本発明にかかるズームレンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正または負の屈折力を有する第3レンズ群と、から構成される。そして、少なくとも第1レンズ群および第2レンズ群を光軸に沿って移動させて、各レンズ群の光軸上の間隔を変えることにより広角端から望遠端への変倍を行う。また、第1レンズ群を光軸に沿って移動させることにより、無限遠物体合焦状態から最至近距離物体合焦状態へのフォーカシングを行う。 A zoom lens according to the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power, which are arranged in order from the object side. And a lens group. Then, at least the first lens group and the second lens group are moved along the optical axis to change the distance between the lens groups on the optical axis, thereby varying the magnification from the wide-angle end to the telephoto end. Further, by moving the first lens group along the optical axis, focusing from the infinity object focused state to the closest object focused state is performed.
本発明では、第2レンズ群より像側に第3レンズ群を設けることで、より高い収差補正効果が得られ、非常に高い解像度を有するズームレンズを実現することが可能である。また、第3レンズ群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズと、を備えている。第3レンズ群は、正レンズと負レンズを最低1枚ずつ備えていることが必要である。この要件を満足しさえすれば、複数枚の正レンズと1枚の負レンズ、1枚の正レンズと複数枚の負レンズ、または複数枚の正レンズと複数枚の負レンズを備えた構成になってもよい。第3レンズ群が少なくとも1枚の正レンズと、少なくとも1枚の負レンズと、を備えていることにより、正レンズの正の屈折力と負レンズの負の屈折力とで球面収差、像面湾曲と軸上色収差、倍率色収差の補正を行い、中心と周辺像高の諸収差のバランスを整えることができる。 In the present invention, by providing the third lens group on the image side of the second lens group, a higher aberration correction effect can be obtained, and it is possible to realize a zoom lens having an extremely high resolution. The third lens group includes at least one positive lens and at least one negative lens. The third lens group needs to include at least one positive lens and at least one negative lens. As long as this requirement is satisfied, a configuration with multiple positive lenses and one negative lens, one positive lens and multiple negative lenses, or multiple positive lenses and multiple negative lenses is provided. May be. Since the third lens group includes at least one positive lens and at least one negative lens, the spherical aberration and the image surface can be obtained by the positive refractive power of the positive lens and the negative refractive power of the negative lens. By correcting the curvature, the axial chromatic aberration, and the chromatic aberration of magnification, it is possible to balance the various aberrations of the central and peripheral image heights.
なお、本発明では、レンズの実質枚数は、ほとんど屈折力を有していない光学フィルターや平行平面板や、収差補正能力をほとんど有していない焦点距離の長いレンズを除いて数えることとする。また、球面レンズに非球面形状の樹脂やフィルムを貼設することによって片面または両面に非球面が形成された複合レンズは1枚のレンズと考える。2枚のレンズが接合されている接合レンズは2枚のレンズと考える。 In the present invention, the substantial number of lenses is counted excluding an optical filter or a plane parallel plate having almost no refracting power, and a lens having a long focal length having almost no aberration correction capability. Further, a compound lens in which an aspherical surface is formed on one surface or both surfaces by adhering an aspherical resin or film to a spherical lens is considered to be one lens. A cemented lens in which two lenses are cemented is considered to be two lenses.
本発明にかかるズームレンズでは、上記構成を前提に、第1レンズ群の焦点距離をf1、広角端における無限遠物体合焦状態のレンズ全系の焦点距離をfw、広角端における無限遠物体合焦状態の前記第2レンズ群と前記第3レンズ群との合成焦点距離をf23wとするとき、次の条件式を満足することが好ましい。
(1) 1.2≦|f1/fw|≦2.5
(2) 2.0≦f23w/fw≦3.4
In the zoom lens according to the present invention, the focal length of the first lens unit is f1, the focal length of the entire lens system at infinity at the wide-angle end is fw, and the object at infinity at the wide-angle end is When the combined focal length of the second lens group and the third lens group in the focused state is f23w, it is preferable to satisfy the following conditional expression.
(1) 1.2 ≦ | f1 / fw | ≦ 2.5
(2) 2.0 ≦ f23w / fw ≦ 3.4
条件式(1),(2)を満足することにより、簡易な構成でありながら、大口径比で、高画素の固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを実現することができる。 By satisfying conditional expressions (1) and (2), it has a simple structure, yet has a large aperture ratio and high optical performance compatible with a high-pixel solid-state imaging device. It is possible to realize a small-sized zoom lens capable of satisfactorily correcting various aberrations generated with respect to light having a wide range of wavelengths up to the outer range over the entire zoom range.
条件式(1)は、広角端における無限遠合焦時のレンズ全系の焦点距離と、第1レンズ群の焦点距離との比の絶対値を規定するものである。条件式(1)を満足することで、第1レンズ群の焦点距離を適切に設定し、球面収差、像面湾曲を適切に補正して明るいレンズ系を得ることができる。 Conditional expression (1) defines the absolute value of the ratio between the focal length of the entire lens system at the time of focusing on infinity at the wide-angle end and the focal length of the first lens group. By satisfying conditional expression (1), the focal length of the first lens group can be appropriately set, spherical aberration and field curvature can be appropriately corrected, and a bright lens system can be obtained.
条件式(1)においてその下限を下回ると、第1レンズ群の焦点距離が短くなりすぎて、第1レンズ群において球面収差や像面湾曲の発生が顕著になり、明るく良好な光学性能を備えたレンズ系の実現が困難になる。一方、条件式(1)においてその上限を上回ると、第1レンズ群の焦点距離が長くなりすぎて、各収差の補正が不足し、またレンズ口径が拡大するとともにレンズ全長が長くなって、小型で高性能のレンズ系を得ることが困難になる。 If the lower limit of conditional expression (1) is not reached, the focal length of the first lens group will become too short, and spherical aberration and field curvature will become noticeable in the first lens group, providing bright and good optical performance. It becomes difficult to realize a lens system. On the other hand, when the upper limit of conditional expression (1) is exceeded, the focal length of the first lens group becomes too long, correction of each aberration is insufficient, and the lens aperture increases and the total lens length increases, resulting in a small size. Therefore, it becomes difficult to obtain a high-performance lens system.
なお、上記条件式(1)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(1a) 1.3≦|f1/fw|≦2.2
If the above conditional expression (1) satisfies the following range, a more preferable effect can be expected.
(1a) 1.3 ≦ | f1 / fw | ≦ 2.2
また、上記条件式(1a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(1b) 1.5≦|f1/fw|≦2.0
Further, if the conditional expression (1a) satisfies the following range, a further preferable effect can be expected.
(1b) 1.5 ≦ | f1 / fw | ≦ 2.0
また、条件式(2)は、広角端における無限遠合焦時のレンズ全系の焦点距離と、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離との比を規定するものである。条件式(2)を満足することで、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定し、小型で、広角端において明るいレンズ系が得られるとともに、球面収差、コマ収差、像面湾曲、軸上色収差を適切に補正することができる。 Further, the conditional expression (2) is the focal length of the entire lens system at the wide-angle end when focused on infinity, and the combined focal length of the second lens group and the third lens group at the wide-angle end when the object is focused at infinity. It defines the ratio with. By satisfying conditional expression (2), the composite focal length of the second lens group and the third lens group in the in-focus state of the object at infinity at the wide-angle end is appropriately set, and the lens system is compact and bright at the wide-angle end. It is possible to properly correct spherical aberration, coma, field curvature, and axial chromatic aberration.
条件式(2)においてその下限を下回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が短くなりすぎて、広角端において球面収差、コマ収差、像面湾曲の補正が過剰になるため、適切な収差補正を行うことが困難になる。一方、条件式(2)においてその上限を上回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなりすぎて、広角端において球面収差、コマ収差、像面湾曲、軸上色収差が補正不足になるとともにレンズ系の全長が長くなり、小型で良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (2) is not reached, the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the wide-angle end becomes too short, resulting in spherical aberration and coma aberration at the wide-angle end. However, since the curvature of field is excessively corrected, it becomes difficult to perform appropriate aberration correction. On the other hand, when the upper limit of conditional expression (2) is exceeded, the combined focal length of the second lens unit and the third lens unit in the object-focused state at infinity at the wide-angle end becomes too long, and spherical aberration at the wide-angle end, Coma aberration, field curvature, and axial chromatic aberration are insufficiently corrected, and the overall length of the lens system becomes long, making it difficult to obtain good optical performance in a small size.
なお、上記条件式(2)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(2a) 2.2≦f23w/fw≦3.3
It should be noted that if the conditional expression (2) satisfies the following range, a more preferable effect can be expected.
(2a) 2.2 ≦ f23w / fw ≦ 3.3
また、上記条件式(2a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(2b) 2.4≦f23w/fw≦2.7
Further, if the conditional expression (2a) satisfies the following range, a further preferable effect can be expected.
(2b) 2.4 ≦ f23w / fw ≦ 2.7
さらに、本発明にかかるズームレンズでは、第1レンズ群と第2レンズ群との間に開口絞りを配置する。そして、広角端から望遠端への変倍の際に、開口絞りおよび第3レンズ群は固定されることが好ましい。このようにすることで、変倍時に移動するのは第1レンズ群と第2レンズ群のみになり、変倍機構の簡略化が可能になるとともに、レンズ系の全長を短く維持することができる。 Further, in the zoom lens according to the present invention, the aperture stop is arranged between the first lens group and the second lens group. Then, it is preferable that the aperture stop and the third lens group be fixed during zooming from the wide-angle end to the telephoto end. By doing so, only the first lens group and the second lens group move during zooming, the zooming mechanism can be simplified, and the overall length of the lens system can be kept short. ..
さらに、本発明にかかるズームレンズでは、第3レンズ群の焦点距離をf3、広角端における無限遠物体合焦状態のレンズ全系の焦点距離をfwとするとき、次の条件式を満足することが好ましい。
(3) 10≦|f3/fw|≦200
Further, in the zoom lens according to the present invention, when the focal length of the third lens group is f3 and the focal length of the entire lens system at infinity at the wide angle end is fw, the following conditional expression must be satisfied. Is preferred.
(3) 10 ≦ | f3 / fw | ≦ 200
条件式(3)は、広角端における無限遠物体合焦状態のレンズ全系の焦点距離と、第3レンズ群の焦点距離との比の絶対値を規定するものである。条件式(3)を満足することで、第3レンズ群の屈折力の範囲を適切に設定し、球面収差、像面湾曲、軸上色収差を良好に補正することができる。 Conditional expression (3) defines the absolute value of the ratio between the focal length of the entire lens system in the in-focus state of the object at infinity at the wide-angle end and the focal length of the third lens group. By satisfying the conditional expression (3), it is possible to properly set the range of the refractive power of the third lens group, and satisfactorily correct spherical aberration, field curvature, and axial chromatic aberration.
条件式(3)においてその下限を下回ると、第3レンズ群の焦点距離が短くなりすぎて、球面収差、像面湾曲の補正が過剰になり、良好な光学性能を得ることが困難になる。一方、条件式(3)においてその上限を上回ると、第3レンズ群の焦点距離が長くなりすぎて、球面収差、像面湾曲、軸上色収差の補正が不足し、良好な光学性能を得ることが困難になる。加えて、第3レンズ群の焦点距離が長くなりすぎることでレンズ系の全長が伸び、レンズ系の小型化が困難になる。 If the lower limit of conditional expression (3) is not reached, the focal length of the third lens group becomes too short, and spherical aberration and field curvature are overcorrected, making it difficult to obtain good optical performance. On the other hand, when the upper limit of conditional expression (3) is exceeded, the focal length of the third lens group becomes too long, and correction of spherical aberration, field curvature, and axial chromatic aberration becomes insufficient, and good optical performance is obtained. Becomes difficult. In addition, since the focal length of the third lens group becomes too long, the total length of the lens system is extended, which makes it difficult to downsize the lens system.
なお、上記条件式(3)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(3a) 20≦|f3/fw|≦170
In addition, if the conditional expression (3) satisfies the following range, a more preferable effect can be expected.
(3a) 20 ≦ | f3 / fw | ≦ 170
また、上記条件式(3a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(3b) 50≦|f3/fw|≦100
Further, if the conditional expression (3a) satisfies the following range, a further preferable effect can be expected.
(3b) 50 ≦ | f3 / fw | ≦ 100
さらに、本発明にかかるズームレンズでは、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離をf23w、第1レンズ群の焦点距離をf1とするとき、次の条件式を満足することが好ましい。
(4) 1.1≦|f23w/f1|≦2.1
Further, in the zoom lens according to the present invention, when the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the wide-angle end is f23w and the focal length of the first lens unit is f1, It is preferable to satisfy the following conditional expression.
(4) 1.1 ≦ | f23w / f1 | ≦ 2.1
条件式(4)は、第1レンズ群の焦点距離と、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離との比の絶対値を規定するものである。条件式(4)を満足することで、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定して、第1レンズ群で発生する球面収差、非点収差、軸上色収差を第2レンズ群および第3レンズ群で適切に補正することができる。 Conditional expression (4) defines the absolute value of the ratio between the focal length of the first lens unit and the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the wide-angle end. Is. By satisfying conditional expression (4), the composite focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the wide-angle end is appropriately set, and the spherical surface generated by the first lens unit Aberration, astigmatism, and axial chromatic aberration can be properly corrected by the second lens group and the third lens group.
条件式(4)においてその下限を下回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が短くなりすぎて、球面収差、非点収差、軸上色収差の補正が過剰になるため、適切な収差補正を行うことが困難になる。一方、条件式(4)においてその上限を上回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなりすぎて、球面収差、非点収差、軸上色収差の補正が不足するため、良好な光学性能を得ることが困難になる。加えて、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなることでレンズ系の全長が伸び、レンズ系の小型化が困難になる。 If the lower limit of conditional expression (4) is not reached, the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the wide-angle end becomes too short, resulting in spherical aberration, astigmatism, and axial aberration. Since the upper chromatic aberration is excessively corrected, it becomes difficult to perform appropriate aberration correction. On the other hand, when the upper limit of conditional expression (4) is exceeded, the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the wide-angle end becomes too long, resulting in spherical aberration and astigmatism. However, it is difficult to obtain good optical performance because the correction of axial chromatic aberration is insufficient. In addition, since the combined focal length of the second lens group and the third lens group in the in-focus state of the object at infinity at the wide-angle end becomes long, the total length of the lens system is extended, and it becomes difficult to downsize the lens system.
なお、上記条件式(4)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(4a) 1.2≦|f23w/f1|≦1.8
In addition, if the conditional expression (4) satisfies the following range, a more preferable effect can be expected.
(4a) 1.2 ≦ | f23w / f1 | ≦ 1.8
また、上記条件式(4a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(4b) 1.3≦|f23w/f1|≦1.6
Further, if the conditional expression (4a) satisfies the following range, a further preferable effect can be expected.
(4b) 1.3 ≦ | f23w / f1 | ≦ 1.6
さらに、本発明にかかるズームレンズでは、第3レンズ群に含まれる、少なくとも1枚の正レンズのd線(587.56nm)に対するアッベ数をνd3P、第3レンズ群に含まれる、少なくとも1枚の負レンズのd線に対するアッベ数をνd3nとするとき、次の条件式を満足することが好ましい。
(5) 5.0≦|νd3P−νd3n|
Furthermore, in the zoom lens according to the present invention, the Abbe number of at least one positive lens included in the third lens group with respect to the d-line (587.56 nm) is νd3P, and at least one lens included in the third lens group When the Abbe number for the d line of the negative lens is νd3n, it is preferable that the following conditional expression is satisfied.
(5) 5.0 ≦ | νd3P−νd3n |
条件式(5)は、第3レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数と、第3レンズ群に含まれる、少なくとも1枚の負レンズのd線に対するアッベ数との差の絶対値を規定するものである。条件式(3)を満足することで、第3レンズ群において、全変倍域に亘って、可視光域のみならず近赤外域までの広範な波長の光に対して発生する軸上色収差、倍率色収差を良好に補正することができる。 Conditional expression (5) is defined by the Abbe number for the d-line of at least one positive lens included in the third lens group and the Abbe number for the d-line of at least one negative lens included in the third lens group. It defines the absolute value of the difference. By satisfying the conditional expression (3), in the third lens group, axial chromatic aberration that is generated not only in the visible light region but also in the near-infrared region over the entire zoom range, It is possible to excellently correct lateral chromatic aberration.
条件式(5)においてその下限を下回ると、軸上色収差、倍率色収差の補正が不足し、良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (5) is not reached, correction of axial chromatic aberration and lateral chromatic aberration will be insufficient, and it will be difficult to obtain good optical performance.
条件式(5)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(5)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第3レンズ群内に配置する正レンズと負レンズを形成する場合には、第3レンズ群に含まれる正レンズと負レンズのd線に対するアッベ数の差が大きくなりすぎる、すなわち条件式(5)の値が極めて大きくなってしまうこともあり得る。この場合、広い波長域の光に対する軸上色収差、倍率色収差の補正が過剰になって、良好な光学性能を得ることが困難になることが危惧される。 The reason why the upper limit is not set in the conditional expression (5) is that if a lens is made of a general glass material, it is extremely unlikely that an inconvenience will occur due to the upper limit value of the conditional expression (5) becoming too large. is there. However, when a special glass material is selected to form a positive lens and a negative lens arranged in the third lens group, the difference in Abbe number between the positive lens and the negative lens included in the third lens group with respect to the d-line is It may be too large, that is, the value of the conditional expression (5) may become extremely large. In this case, it is feared that the axial chromatic aberration and the lateral chromatic aberration with respect to light in a wide wavelength range are excessively corrected, and it becomes difficult to obtain good optical performance.
そこで、上記条件式(5)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(5a) 10.0≦|νd3P−νd3n|≦50.0
Therefore, if the conditional expression (5) satisfies the following range, a more preferable effect can be expected.
(5a) 10.0 ≦ | νd3P−νd3n | ≦ 50.0
また、上記条件式(5a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(5b) 12.0≦|νd3P−νd3n|≦20.0
Further, if the conditional expression (5a) satisfies the following range, a further preferable effect can be expected.
(5b) 12.0 ≦ | νd3P−νd3n | ≦ 20.0
また、本発明にかかるズームレンズにおいて、第3レンズ群を、物体側から順に配置された、正レンズと、負レンズと、からなる接合レンズで構成すると、少ないレンズ枚数で効果的に軸上色収差、倍率色収差の補正を行うことができる。また、当該接合レンズの接合面が像面側に凸形状になるようにすることで、ゴーストの発生を効果的に抑制することができる。 Further, in the zoom lens according to the present invention, when the third lens group is composed of a cemented lens composed of a positive lens and a negative lens arranged in order from the object side, the axial chromatic aberration can be effectively reduced with a small number of lenses. The chromatic aberration of magnification can be corrected. Further, by making the cemented surface of the cemented lens convex toward the image side, it is possible to effectively suppress the occurrence of ghost.
第3レンズ群は、接合レンズを用いて構成した方がレンズ系の小型化には好ましい。しかし、1枚の正レンズと1枚の負レンズとを含んでいることを前提に、間に空気層がある3枚もしくは4枚のレンズで第3レンズ群を構成しても良好な光学性能が得られる。さらに、第3レンズ群を構成するレンズの少なくとも1面に非球面を形成することにより、明るいレンズ系において球面収差と像面湾曲の補正をより効果的に行うことが可能になる。 It is preferable that the third lens group is configured by using a cemented lens in order to downsize the lens system. However, even if the third lens group is made up of three or four lenses having an air layer between them, it is assumed that the third lens group has good optical performance on the assumption that it includes one positive lens and one negative lens. Is obtained. Furthermore, by forming an aspherical surface on at least one surface of the lenses that form the third lens group, it becomes possible to more effectively correct spherical aberration and field curvature in a bright lens system.
以上のように第3レンズ群を構成することにより、第1レンズ群と第2レンズ群で発生する諸収差を第3レンズ群で良好に補正することができ、良好な性能が得られる。 By configuring the third lens group as described above, various aberrations generated in the first lens group and the second lens group can be favorably corrected by the third lens group, and good performance can be obtained.
さらに、本発明にかかるズームレンズでは、第2レンズ群の最も物体側に正レンズを配置することで、第2レンズ群のレンズ口径を小さくすることができる。加えて、当該第2レンズ群に含まれる、全ての正レンズのd線に対するアッベ数の平均値をνd2P_aveとするとき、次の条件式を満足することが好ましい。
(6) 65.0≦νd2P_ave
Further, in the zoom lens according to the present invention, the lens aperture of the second lens group can be reduced by disposing the positive lens on the most object side of the second lens group. In addition, when the average value of the Abbe numbers of all the positive lenses included in the second lens group with respect to the d-line is νd2P_ave, it is preferable that the following conditional expression is satisfied.
(6) 65.0 ≦ νd2P_ave
条件式(6)は、第2レンズ群に含まれる、すべての正レンズのd線に対するアッベ数の平均値を規定するものである。条件式(6)を満足することで、第2レンズ群において、全変倍域に亘って、可視光域から近赤外域の波長の光に対する軸上色収差および倍率色収差を良好に補正することができる。 Conditional expression (6) defines the average value of the Abbe numbers for the d-lines of all the positive lenses included in the second lens group. By satisfying the conditional expression (6), it is possible to satisfactorily correct the axial chromatic aberration and the chromatic aberration of magnification in the second lens group over the entire variable power range with respect to the light of the wavelength from the visible light region to the near infrared region. it can.
条件式(6)においてその下限を下回ると、第2レンズ群中の正レンズの分散が大きくなりすぎて、全変倍域で可視光域から近赤外域の波長に光に対する軸上色収差、倍率色収差の発生が顕著になり、良好な光学性能を得ることが困難になる。 When the lower limit of conditional expression (6) is not reached, the dispersion of the positive lens in the second lens group becomes too large, and the axial chromatic aberration and the magnification with respect to light in the wavelength range from the visible light region to the near infrared region in all variable power regions. The occurrence of chromatic aberration becomes remarkable, and it becomes difficult to obtain good optical performance.
条件式(6)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(6)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第2レンズ群内に配置する正レンズを形成する場合には、第2レンズ群に含まれるすべての正レンズのd線に対するアッベ数の平均値が大きくなりすぎる、すなわち条件式(6)の値が極めて大きくなってしまうこともあり得る。この場合、広い波長域の光に対する軸上色収差、倍率色収差の補正が過剰になって、良好な光学性能を得ることが困難になることが危惧される。 The reason why the upper limit is not set in the conditional expression (6) is that if a lens is made of a general glass material, it is extremely unlikely that an inconvenience will occur due to the upper limit value of the conditional expression (6) becoming too large. is there. However, when a special glass material is selected to form the positive lens to be arranged in the second lens group, the average value of the Abbe numbers for all d-lines of the positive lenses included in the second lens group becomes too large. That is, the value of conditional expression (6) may become extremely large. In this case, it is feared that the axial chromatic aberration and the lateral chromatic aberration with respect to light in a wide wavelength range are excessively corrected, and it becomes difficult to obtain good optical performance.
そこで、上記条件式(6)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(6a) 65.0≦νd2P_ave≦100.0
Therefore, if the conditional expression (6) satisfies the following range, a more preferable effect can be expected.
(6a) 65.0 ≦ νd2P_ave ≦ 100.0
また、上記条件式(6a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(6b) 70.0≦νd2P_ave≦85.0
Further, if the conditional expression (6a) satisfies the following range, a further preferable effect can be expected.
(6b) 70.0 ≦ νd2P_ave ≦ 85.0
なお、本発明にかかるズームレンズにおいて、第2レンズ群の最も物体側に配置される正レンズの少なくとも1面に非球面を形成することで、球面収差、コマ収差、像面湾曲をより良好に補正することができる。また、第2レンズ群に少なくとも1組の接合レンズを備えることで、軸上色収差、倍率色収差の補正効果がさらに向上する。さらに、第2レンズ群を、少なくとも3枚の正レンズと、少なくとも1枚の負レンズを備えて構成すれば、諸収差をより適切に補正して高解像化を実現することができる。 In the zoom lens according to the present invention, by forming an aspherical surface on at least one surface of the positive lens arranged closest to the object in the second lens group, spherical aberration, coma aberration, and field curvature can be improved. Can be corrected. Further, by providing at least one cemented lens in the second lens group, the effect of correcting axial chromatic aberration and lateral chromatic aberration is further improved. Furthermore, if the second lens group is configured to include at least three positive lenses and at least one negative lens, it is possible to more appropriately correct various aberrations and achieve high resolution.
ところで、レンズ系において、長波長領域の光に対する光学性能を維持するために最も危惧されるのは色収差である。色収差は、レンズ硝材の分散が原因となって色ズレとして発生する収差であり、長波長領域の光に対して良好な色収差補正を行うためには、長波長領域の光に対する部分分散比を適切に設定する必要がある。 By the way, in a lens system, chromatic aberration is most concerned in order to maintain the optical performance with respect to light in a long wavelength region. Chromatic aberration is an aberration that occurs as a color shift due to dispersion of the lens glass material. In order to perform good chromatic aberration correction for light in the long wavelength region, the partial dispersion ratio for light in the long wavelength region is appropriate. Must be set to.
部分分散比とは、部分分散を主分散で割った値である。主分散とは基準となる2つの波長での屈折率の差のことを云い、部分分散とは他の2つの波長の屈折率の差のことを云う。 The partial dispersion ratio is a value obtained by dividing the partial dispersion by the main dispersion. The main dispersion means a difference in refractive index between two reference wavelengths, and the partial dispersion means a difference in refractive index between other two wavelengths.
ここで、各スペクトル線とその波長をt線(1013.98nm)、C線(656.27nm)、d線(587.56nm)、F線(486.13nm)、g線(435.84nm)とし、任意の文字x,yを各スペクトル線に対応させたとき、x線,y線に対するそれぞれの屈折率をnx,nyと定義する。たとえば、d線に対する屈折率はnd、F線に対する屈折率はnFと表される。さらに、x線とy線に対する部分分散比をPxyとするとき、Pxy=(nx−ny)/(nF−nC)と定義する。たとえば、C線とt線に対する部分分散比PCtは、PCt=(nC−nt)/(nF−nC)と表される。 Here, each spectrum line and its wavelength are set to t line (1013.98 nm), C line (656.27 nm), d line (587.56 nm), F line (486.13 nm), and g line (435.84 nm). , When the arbitrary characters x and y are associated with the respective spectral lines, the respective refractive indices for the x-ray and the y-ray are defined as nx and ny. For example, the refractive index for the d line is represented by nd, and the refractive index for the F line is represented as nF. Further, when the partial dispersion ratio for the x-ray and the y-ray is Pxy, it is defined as Pxy = (nx-ny) / (nF-nC). For example, the partial dispersion ratio PCt for the C line and the t line is expressed as PCt = (nC-nt) / (nF-nC).
さらに、長波長領域の光に対する色収差補正を向上させるためには、各レンズ群に含まれる負レンズの長波長領域の光に対する異常分散性を適切に設定するとよい。一般の光学素子において、アッベ数を横軸に、部分分散比を縦軸にとったグラフを作成すると、ある直線上に乗る性質があるが、直線上に乗らないものを異常分散性という。 Further, in order to improve the correction of chromatic aberration with respect to light in the long wavelength region, it is preferable to appropriately set the anomalous dispersion of the negative lens included in each lens group with respect to light in the long wavelength region. In a general optical element, when a graph is created with the Abbe number on the horizontal axis and the partial dispersion ratio on the vertical axis, it has the property of riding on a certain straight line, but the one not riding on the straight line is called anomalous dispersion.
ここで、C線とt線に対する異常分散性について説明する。図1は、C線とt線に対する異常分散性について説明するためのグラフである。図1に示すように、まず、XY座標平面上において、d線に対するアッベ数νdをX軸、C線とt線に対する部分分散比PCtをY軸に取る。そして、C線とt線に関する2つの基準硝材に対して座標平面上の2点を定め、その2点を結ぶ直線を「C線とt線に関する標準線Ct」と定義する。本発明では、標準線Ctを傾き0.00467、切片0.546の直線として 「標準線Ct:Pct=0.546+0.00467×νd」と定める。これにより、C線とt線に関する異常分散性を、与えられた硝材の(νd,PCt)に対して、標準線CtからのPCtの偏差ΔPCtが異常分散性の値と定義できる。たとえば、任意の硝材iのd線に対するアッベ数をνd_i、C線とt線に対する部分分散比PCt_iとするとき、任意の硝材iのC線とt線に関する異常分散性ΔPCt_iは、ΔPCt_i=PCt_i−(0.546+0.0047×νd_i) と計算できる。このように定義したΔPCt_iが、C線とt線に関する異常分散性を表す。 Here, the anomalous dispersion for the C line and the t line will be described. FIG. 1 is a graph for explaining the anomalous dispersion of C line and t line. As shown in FIG. 1, first, on the XY coordinate plane, the Abbe number νd for the d line is taken as the X axis, and the partial dispersion ratio PCt for the C line and the t line is taken as the Y axis. Then, two points on the coordinate plane are defined with respect to the two reference glass materials regarding the C line and the t line, and a straight line connecting the two points is defined as a “standard line Ct regarding the C line and the t line”. In the present invention, the standard line Ct is defined as “a standard line Ct: Pct = 0.546 + 0.00467 × νd” as a straight line having a slope of 0.00467 and an intercept of 0.546. Thereby, the anomalous dispersion of the C line and the t line can be defined as the value of the anomalous dispersion of the deviation ΔPCt of the PCt from the standard line Ct with respect to (νd, PCt) of the given glass material. For example, assuming that the Abbe number for d line of any glass material i is νd_i and the partial dispersion ratio PCt_i for C line and t line, the anomalous dispersion ΔPCt_i for C line and t line of any glass material i is ΔPCt_i = PCt_i- It can be calculated as (0.546 + 0.0047 × νd_i). ΔPCt_i defined in this way represents the anomalous dispersion of the C line and the t line.
近赤外域の色収差補正まで考えたレンズ系の場合、各レンズ群で使用する負レンズの異常分散性に関して、ΔPCt=PCt−(0.546+0.00467×νd)≧0の硝材を用いることが望ましい。ΔPCt≧0の硝材は、νdが比較的大きな低分散側でC線からt線までの分散(nC−nt)が小さくなる傾向があるため、負レンズで発生するC線からt線までの色収差が抑えられ、色収差を補正するために配置する正レンズに適切な異常分散性をもたせることで可視光域から近赤外域までの広範囲の波長の光に対して色収差の補正が可能になるからである。 In the case of a lens system considering even the correction of chromatic aberration in the near infrared region, it is desirable to use a glass material of ΔPCt = PCt− (0.546 + 0.00467 × νd) ≧ 0 for the anomalous dispersion of the negative lens used in each lens group. .. A glass material with ΔPCt ≧ 0 tends to have a small dispersion (nC-nt) from the C line to the t line on the low dispersion side where νd is relatively large. Therefore, the chromatic aberration from the C line to the t line generated in the negative lens It is possible to correct chromatic aberration for light with a wide wavelength range from the visible light region to the near infrared region by providing a positive lens that is arranged to correct chromatic aberration with appropriate anomalous dispersion. is there.
そこで、本発明にかかるズームレンズでは、第2レンズ群が少なくとも1枚の負レンズを備えていることを前提に、第2レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比をPCt_2n_i、該PCt_2n_iの値が算出された負レンズのd線に対するアッベ数をνd_2n_iとするとき、次の条件式を満足することが好ましい。
(7) 0.000≦PCt_2n_i−(0.546+0.00467×νd_2n_i)
Therefore, in the zoom lens according to the present invention, assuming that the second lens group includes at least one negative lens, the C line and t line of at least one negative lens included in the second lens group are included. It is preferable that the following conditional expression is satisfied, where PCt_2n_i is the partial dispersion ratio and the Abbe number for the d line of the negative lens for which the value of PCt_2n_i is calculated is νd_2n_i.
(7) 0.000 ≦ PCt_2n_i− (0.546 + 0.00467 × νd_2n_i)
条件式(7)は、第2レンズ群に含まれる、負レンズのC線とt線に対する異常分散性を規定するものである。条件式(7)を満足することで、第2レンズ群においてC線からt線までの近赤外域を含む波長域の光に対する軸上色収差、倍率色収差を良好の補正することができる。なお、第2レンズ群が複数枚の負レンズを含んでいる場合は、いずれか1枚の負レンズを選択し、当該負レンズに対して算出したPCt_2n_i,νd_2n_iの値が条件式(7)を満足していればよい。 Conditional expression (7) defines the anomalous dispersion of the negative lens included in the second lens group with respect to the C line and the t line. By satisfying the conditional expression (7), it is possible to excellently correct axial chromatic aberration and lateral chromatic aberration with respect to light in a wavelength range including the near infrared range from the C line to the t line in the second lens group. When the second lens group includes a plurality of negative lenses, any one of the negative lenses is selected, and the calculated values of PCt_2n_i and νd_2n_i satisfy the conditional expression (7). If you are satisfied.
条件式(7)においてその下限を下回ると、第2レンズ群に含まれる負レンズの異常分散性が小さくなりすぎ、t線を含む波長域の光に対する軸上色収差、倍率色収差の発生が顕著になるため、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (7) is not reached, the anomalous dispersion of the negative lens element included in the second lens group becomes too small, and the axial chromatic aberration and the chromatic aberration of magnification with respect to the light in the wavelength range including the t-line are significantly generated. Therefore, it becomes difficult to obtain good optical performance for light in the wavelength range including the near infrared range.
条件式(7)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(7)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第2レンズ群に含まれる負レンズを形成する場合には、当該負レンズの異常分散性が大きくなりすぎる、すなわち条件式(7)の値が極めて大きくなってしまうこともあり得る。この場合、t線を含む波長域の光に値する色収差の補正が過剰になって、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になることが危惧される。 The reason why the upper limit is not set in the conditional expression (7) is that if the lens is made of a general glass material, there is very little possibility of causing a problem due to the upper limit value of the conditional expression (7) becoming too large. is there. However, when a special glass material is selected to form the negative lens included in the second lens group, the anomalous dispersion of the negative lens becomes too large, that is, the value of conditional expression (7) becomes extremely large. It can happen. In this case, it is feared that the correction of the chromatic aberration corresponding to the light in the wavelength range including the t-line becomes excessive, and it becomes difficult to obtain good optical performance for the light in the wavelength range including the near infrared range.
そこで、上記条件式(7)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(7a) 0.001≦PCt_2n_i−(0.546+0.00467×νd_2n_i)≦0.05
Therefore, if the conditional expression (7) satisfies the following range, a more preferable effect can be expected.
(7a) 0.001 ≦ PCt_2n_i− (0.546 + 0.00467 × νd_2n_i) ≦ 0.05
また、上記条件式(7a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(7b) 0.0015≦PCt_2n_i−(0.546+0.00467×νd_2n_i)≦0.04
Further, if the conditional expression (7a) satisfies the following range, a further preferable effect can be expected.
(7b) 0.0015 ≦ PCt_2n_i− (0.546 + 0.00467 × νd_2n_i) ≦ 0.04
また、上記条件式(7b)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(7c) 0.002≦PCt_2n_i−(0.546+0.00467×νd_2n_i)≦0.03
Further, if the conditional expression (7b) satisfies the following range, a further preferable effect can be expected.
(7c) 0.002 ≦ PCt_2n_i− (0.546 + 0.00467 × νd_2n_i) ≦ 0.03
さらに、本発明にかかるズームレンズでは、第1レンズ群が、少なくとも1枚の正レンズと、少なくとも2枚の負レンズと、を備えていることを前提に、第1レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数をνd1p、第1レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比をPCt_1n_i、該PCt_1n_iの値が算出された負レンズのd線に対するアッベ数をνd_1n_iとするとき、次の条件式を満足することが好ましい。
(8) νd1p≦40.0
(9) 0.000≦PCt_1n_i−(0.546+0.00467×νd_1n_i)
Furthermore, in the zoom lens according to the present invention, at least the first lens group includes at least one positive lens and at least two negative lenses. The Abbe number of one positive lens with respect to the d line is νd1p, the partial dispersion ratio of at least one negative lens included in the first lens group with respect to the C line and the t line is PCt_1n_i, and the value of the PCt_1n_i is negative. When the Abbe number of the lens with respect to the d-line is νd_1n_i, it is preferable that the following conditional expression is satisfied.
(8) νd1p ≦ 40.0
(9) 0.000≤PCt_1n_i- (0.546 + 0.00467 × νd_1n_i)
条件式(8)は、第1レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数を規定するものである。条件式(8)を満足することで、主に可視光域の波長の光に対する軸上色収差、倍率色収差を良好に補正することができる。第1レンズ群が複数枚の正レンズを備えている場合は、いずれか1枚が条件式(8)を満足していればよい。 Conditional expression (8) defines the Abbe number for the d-line of at least one positive lens included in the first lens group. By satisfying the conditional expression (8), it is possible to excellently correct axial chromatic aberration and lateral chromatic aberration mainly with respect to light having a wavelength in the visible light region. When the first lens group includes a plurality of positive lenses, any one of them should satisfy the conditional expression (8).
条件式(8)においてその下限を下回ると、可視光域の波長の光に対する軸上色収差、倍率色収差の発生が顕著になり、特に変倍の際に発生する色収差を抑えることが難しく、良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (8) is not reached, axial chromatic aberration and chromatic aberration of magnification with respect to light having a wavelength in the visible light range will be noticeable, and it will be difficult to suppress chromatic aberration that occurs during zooming in particular. It becomes difficult to obtain optical performance.
条件式(8)においてあえて下限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(8)の下限値が小さくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第1レンズ群に含まれる正レンズを形成する場合には、当該正レンズのd線に対するアッベ数が小さくなりすぎる、すなわち条件式(8)の値が極めて小さくなってしまうこともあり得る。この場合、可視光域の波長の光に対する軸上色収差、倍率色収差の補正が過剰になって、良好な光学性能を得ることが困難になることが危惧される。 The reason why the lower limit is not set in the conditional expression (8) is that if a lens is formed of a general glass material, it is extremely unlikely that an inconvenience will occur due to the lower limit value of the conditional expression (8) becoming too small. is there. However, when a special glass material is selected to form the positive lens included in the first lens group, the Abbe number of the positive lens with respect to the d-line becomes too small, that is, the value of the conditional expression (8) is extremely small. It can happen. In this case, it is feared that the axial chromatic aberration and the lateral chromatic aberration with respect to light having a wavelength in the visible light region are excessively corrected, and it becomes difficult to obtain good optical performance.
そこで、上記条件式(8)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(8a) 10.0≦νd1p≦38.0
Therefore, if the conditional expression (8) satisfies the following range, a more preferable effect can be expected.
(8a) 10.0 ≦ νd1p ≦ 38.0
また、上記条件式(8a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(8b) 17.0≦νd1p≦36.0
Further, if the conditional expression (8a) satisfies the following range, a further preferable effect can be expected.
(8b) 17.0 ≦ νd1p ≦ 36.0
条件式(9)は、第1レンズ群に含まれる、負レンズのC線とt線に対する異常分散性を規定するものである。条件式(9)を満足することで、第1レンズ群においてC線からt線までの近赤外域を含む波長域の光の軸上色収差、倍率色収差を良好に補正することができる。なお、第1レンズ群は少なくとも2枚の負レンズを備えているので、いずれか1枚の負レンズを選択し、当該負レンズに対して算出したPCt_1n_i、νd_1n_iの値が条件式(9)を満足していればよい。 Conditional expression (9) defines the anomalous dispersion of the negative lens included in the first lens group with respect to the C line and the t line. By satisfying conditional expression (9), it is possible to excellently correct axial chromatic aberration and lateral chromatic aberration of light in the wavelength range including the near infrared range from the C line to the t line in the first lens group. Since the first lens group includes at least two negative lenses, any one of the negative lenses is selected, and the calculated values of PCt_1n_i and νd_1n_i satisfy the conditional expression (9). If you are satisfied.
条件式(9)においてその下限を下回ると、第1レンズ群に含まれる負レンズのC線とt線に対する異常分散性が小さくなりすぎて、t線を含む波長域の光に対する軸上色収差、倍率色収差の発生が顕著になるため、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (9) is exceeded, the anomalous dispersion of the negative lens included in the first lens group with respect to the C-line and the t-line becomes too small, and axial chromatic aberration for light in the wavelength range including the t-line, Since chromatic aberration of magnification occurs remarkably, it becomes difficult to obtain good optical performance for light in a wavelength range including the near infrared range.
条件式(9)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(9)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第1レンズ群に含まれる負レンズを形成する場合には、当該負レンズの異常分散性が大きくなりすぎる、すなわち条件式(9)の値が極めて大きくなってしまうこともあり得る。この場合、t線を含む波長域の光に対する色収差の補正が過剰になって、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になることが危惧される。 The reason why the upper limit is not set in the conditional expression (9) is that if the lens is made of a general glass material, it is extremely unlikely that an inconvenience will occur due to the upper limit value of the conditional expression (9) becoming too large. is there. However, when a special glass material is selected to form the negative lens included in the first lens group, the anomalous dispersion of the negative lens becomes too large, that is, the value of the conditional expression (9) becomes extremely large. It can happen. In this case, it is feared that the correction of the chromatic aberration with respect to the light in the wavelength range including the t-line becomes excessive, and it becomes difficult to obtain good optical performance with respect to the light in the wavelength range including the near-infrared range.
そこで、上記条件式(9)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(9a) 0.001≦PCt_1n_i−(0.546+0.00467×νd_1n_i)≦0.05
Therefore, if the conditional expression (9) satisfies the following range, a more preferable effect can be expected.
(9a) 0.001 ≦ PCt_1n_i− (0.546 + 0.00467 × νd_1n_i) ≦ 0.05
また、上記条件式(9a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(9b) 0.0015≦PCt_1n_i−(0.546+0.00467×νd_1n_i)≦0.04
Further, if the conditional expression (9a) satisfies the following range, a further preferable effect can be expected.
(9b) 0.0015 ≦ PCt_1n_i− (0.546 + 0.00467 × νd_1n_i) ≦ 0.04
また、上記条件式(9b)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(9c) 0.002≦PCt_1n_i−(0.546+0.00467×νd_1n_i)≦0.03
Further, if the conditional expression (9b) satisfies the following range, a further preferable effect can be expected.
(9c) 0.002 ≦ PCt_1n_i− (0.546 + 0.00467 × νd_1n_i) ≦ 0.03
本発明にかかるズームレンズでは、第1レンズ群が、最低、1枚の正レンズと、2枚の負レンズと、を備えていれば、前述の効果が十分得られるが、3枚以上の負レンズを備えることでより良好な色収差の補正効果が得られる。 In the zoom lens according to the present invention, if the first lens group includes at least one positive lens and two negative lenses, the above-described effect can be sufficiently obtained, but three or more negative lenses are provided. By providing the lens, a better chromatic aberration correction effect can be obtained.
さらに、本発明にかかるズームレンズでは、第3レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比をPCt_3n_i、該PCt_3n_iの値が算出された負レンズのd線に対するアッベ数をνd_3n_iとするとき、次の条件式を満足することが好ましい。
(10) 0.000≦PCt_3n_i−(0.546+0.00467×νd_3n_i)
Further, in the zoom lens according to the present invention, the partial dispersion ratio of at least one negative lens included in the third lens group with respect to the C line and the t line is PCt_3n_i, and the value of the PCt_3n_i is calculated as the d line of the negative lens. It is preferable that the following conditional expression is satisfied, where the Abbe number with respect to is νd — 3n_i.
(10) 0.000 ≦ PCt — 3n_i− (0.546 + 0.00467 × νd — 3n_i)
条件式(10)は、第3レンズ群に含まれる、負レンズのC線とt線に対する異常分散性を規定するものである。条件式(10)を満足することで、第3レンズ群においてC線からt線までの近赤外域を含む波長域の光に対する軸上色収差、倍率色収差を良好に補正することができる。なお、第3レンズ群が複数枚の負レンズを含んでいる場合は、いずれか1枚の負レンズを選択し、当該負レンズに対して算出したPCt_3n_i、νd_3n_iの値が条件式(10)を満足していればよい。 Conditional expression (10) defines the anomalous dispersion of the negative lens included in the third lens group with respect to the C line and the t line. By satisfying conditional expression (10), it is possible to excellently correct axial chromatic aberration and lateral chromatic aberration with respect to light in a wavelength range including the near infrared range from the C line to the t line in the third lens group. When the third lens group includes a plurality of negative lenses, any one of the negative lenses is selected, and the calculated values of PCt_3n_i and νd_3n_i satisfy the conditional expression (10). If you are satisfied.
条件式(10)においてその下限を下回ると、第3レンズ群に含まれる、負レンズのC線とt線に対する異常分散性が小さくなりすぎて、t線を含む波長域の光に対する軸上色収差、倍率色収差の発生が顕著になり、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (10) is not reached, the anomalous dispersion of the negative lens included in the third lens group with respect to the C-line and the t-line becomes too small, and axial chromatic aberration for light in the wavelength range including the t-line is reduced. However, the occurrence of lateral chromatic aberration becomes remarkable, and it becomes difficult to obtain good optical performance for light in the wavelength range including the near infrared range.
条件式(10)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(10)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第3レンズ群に含まれる負レンズを形成する場合には、当該負レンズの異常分散性が大きくなりすぎる、すなわち条件式(10)の値が極めて大きくなってしまうこともあり得る。この場合、t線を含む波長域の光に対する色収差の補正が過剰になって、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になることが危惧される。 The reason why the upper limit is not set in the conditional expression (10) is that if a lens is made of a general glass material, it is extremely unlikely that an inconvenience will occur due to the upper limit value of the conditional expression (10) becoming too large. is there. However, when a special glass material is selected to form the negative lens included in the third lens group, the anomalous dispersion of the negative lens becomes too large, that is, the value of conditional expression (10) becomes extremely large. It can happen. In this case, it is feared that the correction of the chromatic aberration with respect to the light in the wavelength range including the t-line becomes excessive, and it becomes difficult to obtain good optical performance with respect to the light in the wavelength range including the near infrared range.
そこで、上記条件式(10)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(10a) 0.001≦PCt_3n_i−(0.546+0.00467×νd_3n_i)≦0.05
Therefore, if the conditional expression (10) satisfies the following range, a more preferable effect can be expected.
(10a) 0.001 ≦ PCt — 3n_i− (0.546 + 0.00467 × νd — 3n_i) ≦ 0.05
また、上記条件式(10a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(10b) 0.0015≦PCt_3n_i−(0.546+0.00467×νd_3n_i)≦0.04
Further, if the conditional expression (10a) satisfies the following range, a further preferable effect can be expected.
(10b) 0.0015 ≦ PCt — 3n_i− (0.546 + 0.00467 × νd — 3n_i) ≦ 0.04
また、上記条件式(10b)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(10c) 0.002≦PCt_3n_i−(0.546+0.00467×νd_3n_i)≦0.03
Further, if the conditional expression (10b) satisfies the following range, a further preferable effect can be expected.
(10c) 0.002 ≦ PCt — 3n_i− (0.546 + 0.00467 × νd — 3n_i) ≦ 0.03
さらに、本発明にかかるズームレンズでは、第1レンズ群の焦点距離をf1、第2レンズ群の焦点距離をf2とするとき、次の条件式を満足することが好ましい。
(11) 0.4≦|f1/f2|≦1.1
Further, in the zoom lens according to the present invention, when the focal length of the first lens group is f1 and the focal length of the second lens group is f2, it is preferable that the following conditional expression is satisfied.
(11) 0.4 ≦ | f1 / f2 | ≦ 1.1
条件式(11)は、第1レンズ群の焦点距離と第2レンズ群の焦点距離との比の絶対値を規定するものである。条件式(11)を満足することで、明るいレンズ系が得られるとともに、第1レンズ群の変倍に伴う移動量を適切に設定することができ、変倍に伴う非点収差や像面湾曲の発生を抑えることができる。 Conditional expression (11) defines the absolute value of the ratio between the focal length of the first lens group and the focal length of the second lens group. By satisfying conditional expression (11), a bright lens system can be obtained, and the amount of movement of the first lens group due to zooming can be appropriately set, and astigmatism and field curvature associated with zooming can be achieved. Can be suppressed.
条件式(11)においてその下限を下回ると、第1レンズ群の焦点距離が短くなりすぎて、像面湾曲の補正が過剰になるとともに、非点収差、歪曲収差を補正することが困難になる。特に、明るいレンズ系では変倍時の球面収差、像面湾曲、非点収差を含む諸収差の補正が極めて難しくなり、明るく良好な光学性能を備えたレンズ系を実現することが困難になる。一方、条件式(11)においてその上限を上回ると、第1レンズ群の焦点距離が長くなりすぎて、広角端から望遠端への変倍の際に第1レンズ群の移動量が増えるため、レンズ全系の小型化を維持したまま光学性能を向上させることが困難になる。 If the lower limit of conditional expression (11) is not reached, the focal length of the first lens group becomes too short, the field curvature is overcorrected, and it becomes difficult to correct astigmatism and distortion. .. In particular, in a bright lens system, it becomes extremely difficult to correct various aberrations including spherical aberration, field curvature, and astigmatism during zooming, and it is difficult to realize a bright lens system having good optical performance. On the other hand, if the upper limit of conditional expression (11) is exceeded, the focal length of the first lens group becomes too long, and the amount of movement of the first lens group increases during zooming from the wide-angle end to the telephoto end. It becomes difficult to improve the optical performance while maintaining the miniaturization of the entire lens system.
なお、上記条件式(11)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(11a) 0.5≦|f1/f2|≦0.9
It should be noted that, if the conditional expression (11) satisfies the following range, a more preferable effect can be expected.
(11a) 0.5 ≦ | f1 / f2 | ≦ 0.9
また、上記条件式(11a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(11b) 0.6≦|f1/f2|≦0.8
Further, if the conditional expression (11a) satisfies the following range, a further preferable effect can be expected.
(11b) 0.6 ≦ | f1 / f2 | ≦ 0.8
さらに、本発明にかかるズームレンズでは、広角端から望遠端への変倍時における第2レンズ群の移動量をX2、第2レンズ群の焦点距離をf2とするとき、次の条件式を満足することが好ましい。
(12) 0.2≦|X2/f2|≦0.9
Further, in the zoom lens according to the present invention, when the moving amount of the second lens unit is X2 and the focal length of the second lens unit is f2 during zooming from the wide-angle end to the telephoto end, the following conditional expression is satisfied. Preferably.
(12) 0.2 ≦ | X2 / f2 | ≦ 0.9
条件式(12)は、広角端から望遠端への変倍時における第2レンズ群の移動量と第2レンズ群の焦点距離との比を規定するものである。条件式(12)を満足することで、変倍時の第2レンズ群の移動量と第2レンズ群の屈折力を適切に設定して、変倍時の球面収差、像面湾曲の変動を適切に補正することができる。 Conditional expression (12) defines the ratio between the movement amount of the second lens unit and the focal length of the second lens unit during zooming from the wide-angle end to the telephoto end. By satisfying the conditional expression (12), the amount of movement of the second lens unit and the refractive power of the second lens unit at the time of zooming can be appropriately set, and spherical aberration and field curvature fluctuations at the time of zooming can be suppressed. It can be corrected appropriately.
条件式(12)においてその下限を下回ると、変倍時の第2レンズ群の移動量が少なくなりすぎ、変倍時の球面収差、像面湾曲の補正が過剰になって、良好な光学性能を得ることが困難になる。一方、条件式(12)においてその上限を上回ると、変倍時の第2レンズ群の移動量が増えすぎて、球面収差、像面湾曲の補正が不足するとともに、レンズ系の全長が伸びてしまう。 If the lower limit of conditional expression (12) is not reached, the amount of movement of the second lens group during zooming becomes too small, and spherical aberration and field curvature during zooming become excessively corrected, resulting in good optical performance. Will be difficult to obtain. On the other hand, when the upper limit of conditional expression (12) is exceeded, the amount of movement of the second lens unit during zooming increases too much, correction of spherical aberration and field curvature is insufficient, and the overall length of the lens system increases. I will end up.
なお、上記条件式(12)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(12a) 0.3≦|X2/f2|≦0.8
In addition, if the conditional expression (12) satisfies the following range, a more preferable effect can be expected.
(12a) 0.3 ≦ | X2 / f2 | ≦ 0.8
また、上記条件式(12a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(12b) 0.4≦|X2/f2|≦0.7
Further, if the conditional expression (12a) satisfies the following range, a further preferable effect can be expected.
(12b) 0.4 ≦ | X2 / f2 | ≦ 0.7
さらに、本発明にかかるズームレンズでは、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離をf23t、望遠端における無限遠物体合焦状態のレンズ全系の焦点距離をftとするとき、次の条件式を満足することが好ましい。
(13) 1.1≦f23t/ft≦2.8
Further, in the zoom lens according to the present invention, the combined focal length of the second lens group and the third lens group in the infinity object focused state at the telephoto end is f23t, and the entire lens system in the infinity object focused state at the telephoto end is f23t. When the focal length of is ft, it is preferable to satisfy the following conditional expression.
(13) 1.1 ≦ f23t / ft ≦ 2.8
条件式(13)は、望遠端における無限遠物体合焦状態のレンズ全系の焦点距離と、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離との比を規定するものである。条件式(13)を満足することで、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定して、レンズ系の望遠端における球面収差、コマ収差、像面湾曲を適切に補正することができる。 Conditional expression (13) is the focal length of the entire lens system in the in-focus state of the object at infinity at the telephoto end, and the combined focal length of the second lens group and the third lens group in the state of the in-focus object at the telephoto end. It defines the ratio of. By satisfying conditional expression (13), the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the telephoto end is appropriately set, and spherical aberration at the telephoto end of the lens system is set. It is possible to properly correct coma and field curvature.
条件式(13)においてその下限を下回ると、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が短くなりすぎて、レンズ系の望遠端における球面収差、コマ収差、像面湾曲の補正が過剰になるため、適切な収差補正を行うことが困難になる。一方、条件式(13)においてその上限を上回ると、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなりすぎて、レンズ系の望遠端における球面収差、コマ収差、像面湾曲の補正が不足し、良好な光学性能を得ることが困難になる。 If the lower limit of conditional expression (13) is not reached, the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the telephoto end becomes too short, resulting in spherical aberration at the telephoto end of the lens system. However, since the coma aberration and the curvature of field are excessively corrected, it becomes difficult to appropriately correct the aberration. On the other hand, when the upper limit of conditional expression (13) is exceeded, the combined focal length of the second lens unit and the third lens unit in the in-focus state of the object at infinity at the telephoto end becomes too long, and at the telephoto end of the lens system. Correction of spherical aberration, coma, and field curvature is insufficient, and it becomes difficult to obtain good optical performance.
なお、上記条件式(13)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(13a) 1.2≦f23t/ft≦2.2
In addition, if the conditional expression (13) satisfies the following range, a more preferable effect can be expected.
(13a) 1.2 ≦ f23t / ft ≦ 2.2
また、上記条件式(13a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(13b) 1.3≦f23t/ft≦1.8
Further, if the conditional expression (13a) satisfies the following range, a further preferable effect can be expected.
(13b) 1.3 ≦ f23t / ft ≦ 1.8
さらに、本発明にかかるズームレンズでは、第2レンズ群の焦点距離をf2、第3レンズ群の焦点距離をf3とするとき、次の条件式を満足することが好ましい。
(14) 3.2≦|f3/f2|≦80.0
Furthermore, in the zoom lens according to the present invention, when the focal length of the second lens group is f2 and the focal length of the third lens group is f3, it is preferable that the following conditional expressions be satisfied.
(14) 3.2 ≦ | f3 / f2 | ≦ 80.0
条件式(14)は、第2レンズ群の焦点距離と第3レンズ群の焦点距離との比の絶対値を規定するものである。条件式(14)を満足することで、変倍時の第2レンズ群の移動に伴って発生する非点収差や像面湾曲を効果的に抑制することができる。 Conditional expression (14) defines the absolute value of the ratio between the focal length of the second lens group and the focal length of the third lens group. By satisfying the conditional expression (14), it is possible to effectively suppress the astigmatism and the field curvature that are generated due to the movement of the second lens group during zooming.
条件式(14)においてその下限を下回ると、第2レンズ群の焦点距離が長くなりすぎて、像面湾曲を補正することが難しくなり、特に、広角端から望遠端への変倍時に良好な光学性能を得ることが困難になる。一方、条件式(14)においてその上限を上回ると、第2レンズ群の焦点距離が短くなりすぎて、像面湾曲の補正が過剰になるとともに、非点収差を良好に補正することが困難になる。特に、明るいレンズ系では変倍時の球面収差、像面湾曲、非点収差を含む諸収差の補正が極めて難しくなり、良好な光学性能を備えたレンズ系の実現が困難になる。 If the lower limit of conditional expression (14) is not reached, the focal length of the second lens unit becomes too long, making it difficult to correct field curvature. Particularly, when zooming from the wide-angle end to the telephoto end, it is preferable. It becomes difficult to obtain optical performance. On the other hand, when the upper limit of conditional expression (14) is exceeded, the focal length of the second lens group becomes too short, the field curvature is overcorrected, and it becomes difficult to satisfactorily correct astigmatism. Become. Particularly in a bright lens system, it becomes extremely difficult to correct various aberrations including spherical aberration, field curvature, and astigmatism during zooming, and it becomes difficult to realize a lens system having good optical performance.
なお、上記条件式(14)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(14a) 4.0≦|f3/f2|≦70.0
In addition, if the conditional expression (14) satisfies the following range, a more preferable effect can be expected.
(14a) 4.0 ≦ | f3 / f2 | ≦ 70.0
また、上記条件式(14a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(14b) 7.5≦|f3/f2|≦37.0
Further, if the conditional expression (14a) satisfies the following range, a further preferable effect can be expected.
(14b) 7.5 ≦ | f3 / f2 | ≦ 37.0
以上説明したように、本発明によれば、上記構成を備えることにより、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを実現することができる。 As described above, according to the present invention, by providing the above-described configuration, it has a high optical performance capable of supporting a solid-state imaging device with a large aperture ratio, high pixel count, and high sensitivity, while having a simple configuration. And to realize a small zoom lens that can satisfactorily correct various aberrations that occur for light with a wide range of wavelengths from the visible light region to the near infrared region over the entire zoom range. You can
このような特徴を備えた本発明にかかるズームレンズは、主に可視光域の光を用いる写真用のカメラはもとより、夜間撮影も行う監視カメラ等、様々な撮像装置に用いることができる。特に、高画素、高感度化が進んだ固体撮像素子を備えた撮像装置に好適な高い光学性能を備えている。 The zoom lens according to the present invention having such features can be used not only in a camera for photography that mainly uses light in the visible light range, but also in various imaging devices such as a surveillance camera that also performs nighttime shooting. In particular, it has a high optical performance suitable for an image pickup apparatus including a solid-state image pickup element with high pixels and high sensitivity.
さらに、本発明は、昼夜を問わず、良好な画像が得られる高性能の撮像装置を提供することを目的とする。この目的を達成するためには、上記構成を備えたズームレンズと、このズームレンズによって形成された光学像を電気的信号に変換する固体撮像素子と、を備えて撮像装置を構成すればよい。このようにすることで、可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能になり、昼夜を問わず、良好な画像が得られる高性能の撮像装置を実現することができる。 A further object of the present invention is to provide a high-performance image pickup device capable of obtaining a good image regardless of day or night. In order to achieve this object, an image pickup apparatus may be configured to include a zoom lens having the above configuration and a solid-state image pickup element that converts an optical image formed by this zoom lens into an electrical signal. By doing so, it becomes possible to satisfactorily correct various aberrations that occur with respect to light having a wide range of wavelengths from the visible light region to the near-infrared region over the entire zoom range, regardless of day or night. Thus, it is possible to realize a high-performance image pickup device that can obtain a good image.
以下、本発明にかかるズームレンズの実施例を図面に基づき詳細に説明する。なお、以下の実施例により本発明が限定されるものではない。 Embodiments of a zoom lens according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the examples below.
図2は、実施例1にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G11と、正の屈折力を有する第2レンズ群G12と、正の屈折力を有する第3レンズ群G13と、が配置されて構成される。第1レンズ群G11と第2レンズ群G12との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G13と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 2 is a sectional view taken along the optical axis showing the configuration of the zoom lens according to the first example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side (not shown), a first lens group G 11 having a negative refractive power, a second lens group G 12 having a positive refractive power, and a third lens group having a positive refractive power. G 13 and are arranged. An aperture stop STP that defines a predetermined aperture is arranged between the first lens group G 11 and the second lens group G 12 . A cover glass CG is arranged between the third lens group G 13 and the image plane IMG.
第1レンズ群G11は、物体側から順に、負レンズL111と、負レンズL112と、負レンズL113と、正レンズL114と、が配置されて構成される。負レンズL113の物体側面には、非球面が形成されている。負レンズL113と正レンズL114とは、接合されている。 The first lens group G 11 is configured by arranging a negative lens L 111 , a negative lens L 112 , a negative lens L 113, and a positive lens L 114 in order from the object side. An aspherical surface is formed on the object side surface of the negative lens L 113 . The negative lens L 113 and the positive lens L 114 are cemented together.
第2レンズ群G12は、物体側から順に、正レンズL121と、負レンズL122と、正レンズL123と、負レンズL124と、正レンズL125と、が配置されて構成される。正レンズL121の両面には、非球面が形成されている。負レンズL122と正レンズL123とは、接合されている。負レンズL124と正レンズL125とは、接合されている。 The second lens group G 12 is configured by arranging a positive lens L 121 , a negative lens L 122 , a positive lens L 123 , a negative lens L 124, and a positive lens L 125 in order from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 121 . The negative lens L 122 and the positive lens L 123 are cemented together. The negative lens L 124 and the positive lens L 125 are cemented together.
第3レンズ群G13は、物体側から順に、正レンズL131と、負レンズL132と、が配置されて構成される。正レンズL131の物体側面には、非球面が形成されている。正レンズL131と負レンズL132とは、接合されている。正レンズL131と負レンズL132との接合面は、像面IMG側に凸形状になっている。 The third lens group G 13 is configured by arranging a positive lens L 131 and a negative lens L 132 in this order from the object side. An aspherical surface is formed on the object side surface of the positive lens L 131 . The positive lens L 131 and the negative lens L 132 are cemented together. The cemented surface between the positive lens L 131 and the negative lens L 132 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G13を像面IMGに対して固定したまま、第1レンズ群G11を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させ、第2レンズ群G12を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図2中の実線の矢印を参照)。また、第1レンズ群G11を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図2中の破線の矢印を参照)。 In this zoom lens, the first lens group G 11 forms a small convex locus along the optical axis on the image plane IMG side while the aperture stop STP and the third lens group G 13 are fixed with respect to the image plane IMG. And the second lens group G 12 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid line arrow in FIG. 2). reference). Further, the first lens group G 11 is moved along the optical axis so as to form a small convex locus on the image plane IMG side, and focusing from the infinity object focus state to the closest object focus state is performed. Do (see the dashed arrow in FIG. 2).
以下、実施例1にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the example 1 will be shown.
(面データ)
r1=28.560
d1=0.70 nd1=1.65844 νd1=50.86 PCt1=0.7742
r2=6.875
d2=2.74
r3=19.908
d3=0.50 nd2=1.56883 νd2=56.04 PCt2=0.8080
r4=9.323
d4=3.73
r5=-10.508(非球面)
d5=0.60 nd3=1.62263 νd3=58.16 PCt3=0.8464
r6=13.006
d6=1.89 nd4=1.91082 νd4=35.25 PCt4=0.7131
r7=-44.951
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=10.758(非球面)
d9=3.59 nd5=1.55332 νd5=71.68 PCt5=0.8164
r10=-16.500(非球面)
d10=0.15
r11=228.575
d11=0.50 nd6=1.51680 νd6=64.20 PCt6=0.8682
r12=9.700
d12=4.22 nd7=1.49700 νd7=81.65 PCt7=0.8305
r13=-10.326
d13=0.15
r14=-195.147
d14=0.50 nd8=1.80610 νd8=40.73 PCt8=0.7464
r15=7.112
d15=3.49 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-16.606
d16=D(16)(可変)
r17=-22.555(非球面)
d17=2.26 nd10=1.82080 νd10=42.71 PCt10=0.7536
r18=-9.150
d18=0.50 nd11=1.72825 νd11=28.32 PCt11=0.6855
r19=-26.098
d19=5.49
r20=∞
d20=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 28.560
d 1 = 0.70 nd 1 = 1.65844 νd 1 = 50.86 PCt 1 = 0.7742
r 2 = 6.875
d 2 = 2.74
r 3 = 19.908
d 3 = 0.50 nd 2 = 1.56883 νd 2 = 56.04 PCt 2 = 0.8080
r 4 = 9.323
d 4 = 3.73
r 5 = -10.508 (aspherical surface)
d 5 = 0.60 nd 3 = 1.62263 νd 3 = 58.16 PCt 3 = 0.8464
r 6 = 13.006
d 6 = 1.89 nd 4 = 1.91082 νd 4 = 35.25 PCt 4 = 0.7131
r 7 = -44.951
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 10.758 (aspherical surface)
d 9 = 3.59 nd 5 = 1.55332 νd 5 = 71.68 PCt 5 = 0.8164
r 10 = -16.500 (aspherical surface)
d 10 = 0.15
r 11 = 228.575
d 11 = 0.50 nd 6 = 1.51680 νd 6 = 64.20 PCt 6 = 0.8682
r 12 = 9.700
d 12 = 4.22 nd 7 = 1.49700 νd 7 = 81.65 PCt 7 = 0.8305
r 13 = -10.326
d 13 = 0.15
r 14 = -195.147
d 14 = 0.50 nd 8 = 1.80610 νd 8 = 40.73 PCt 8 = 0.7464
r 15 = 7.112
d 15 = 3.49 nd 9 = 1.49700
r 16 = -16.606
d 16 = D (16) (variable)
r 17 = -22.555 (aspherical surface)
d 17 = 2.26 nd 10 = 1.82080
r 18 = -9.150
d 18 = 0.50 nd 11 = 1.72825 νd 11 = 28.32 PCt 11 = 0.6855
r 19 = -26.098
d 19 = 5.49
r 20 = ∞
d 20 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=1.09677×10-6,C=-4.85235×10-6,
D=1.74189×10-7,E=-4.16360×10-9
(第9面)
k=0,
A=0,B=-1.91613×10-4,C=3.26425×10-6,
D=3.00419×10-8,E=-2.56440×10-9
(第10面)
k=0,
A=0,B=4.25683×10-4,C=1.04005×10-6,
D=1.78047×10-7,E=-4.32383×10-9
(第17面)
k=0,
A=0,B=-3.89074×10-5,C=7.70391×10-7,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = 1.009677 × 10 -6 , C = -4.85235 × 10 -6 ,
D = 1.74189 × 10 -7 , E = -4.16360 × 10 -9
(9th surface)
k = 0,
A = 0, B = -1.916 13 × 10 -4 , C = 3.26425 × 10 -6 ,
D = 3.00419 x 10 -8 , E = -2.56440
(10th surface)
k = 0,
A = 0, B = 4.25683 × 10 -4 , C = 1.004005 × 10 -6 ,
D = 1.78047 × 10 -7 , E = -4.32383 × 10 -9
(17th surface)
k = 0,
A = 0, B = -3.89074 × 10 -5 , C = 7.70391 × 10 -7 ,
D = 0, E = 0
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.42 5.82 8.34
Fナンバー 1.55 1.78 2.43
半画角(ω) 66.99 47.79 32.55
像高 4.75 4.75 4.75
レンズ系全長 46.58 44.00 43.18
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 5.68 3.08 2.26
D(8) 6.16 4.28 0.85
D(16) 1.23 3.11 6.55
(Various data)
Magnification ratio: 1.88
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.42 5.82 8.34
F number 1.55 1.78 2.43
Half angle of view (ω) 66.99 47.79 32.55
Image height 4.75 4.75 4.75
Lens system total length 46.58 44.00 43.18
Back focus (BF) 2.00 2.00 2.00
D (7) 5.68 3.08 2.26
D (8) 6.16 4.28 0.85
D (16) 1.23 3.11 6.55
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -7.61 3.42
2 9 10.56 -5.31
3 17 281.39 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -7.61 3.42
2 9 10.56 -5.31
3 17 28 1.39 0.00
(条件式(1)に関する数値)
|f1/fw|=1.72
(Numerical value regarding conditional expression (1))
| F1 / fw | = 1.72
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G12と第3レンズ群G13との合成焦点距離)=11.06
f23w/fw=2.50
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 12 and the third lens group G 13 in the in- focus state of an object at infinity at the wide-angle end) = 11.06
f23w / fw = 2.50
(条件式(3)に関する数値)
|f3/fw|=63.48
(Numerical value regarding conditional expression (3))
| F3 / fw | = 63.48
(条件式(4)に関する数値)
|f23w/f1|=1.45
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.45
(条件式(5)に関する数値)
|νd3P−νd3n|=14.4
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 14.4
(条件式(6)に関する数値)
νd2P_ave=78.3
(Numerical value regarding conditional expression (6))
νd2P_ave = 78.3
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0224
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0224
(条件式(8)に関する数値)
νd1p=35.3
(Numerical value regarding conditional expression (8))
νd1p = 35.3
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0288
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0072
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0072
(条件式(11)に関する数値)
|f1/f2|=0.72
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.72
(条件式(12)に関する数値)
|X2/f2|=0.50
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.50
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G12と第3レンズ群G13との合成焦点距離)=11.28
f23t/ft=1.35
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 12 and the third lens group G 13 in the in- focus state of an object at infinity at the telephoto end) = 11.28
f23t / ft = 1.35
(条件式(14)に関する数値)
|f3/f2|=26.66
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 26.66
図3は、実施例1にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 3 is a diagram of various types of aberration of the zoom lens according to the first example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
図4は、実施例2にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G21と、正の屈折力を有する第2レンズ群G22と、正の屈折力を有する第3レンズ群G23と、が配置されて構成される。第1レンズ群G21と第2レンズ群G22との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G23と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 4 is a sectional view taken along the optical axis, showing the configuration of the zoom lens according to the second example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side, not shown, a first lens group G 21 having a negative refractive power, a second lens group G 22 having a positive refractive power, and a third lens group having a positive refractive power. G 23 and are arranged. An aperture stop STP that defines a predetermined aperture is arranged between the first lens group G 21 and the second lens group G 22 . A cover glass CG is arranged between the third lens group G 23 and the image plane IMG.
第1レンズ群G21は、物体側から順に、負レンズL211と、負レンズL212と、正レンズL213と、が配置されて構成される。負レンズL211の両面と正レンズL213の像面IMG側面には、非球面が形成されている。負レンズL212と正レンズL213とは、接合されている。 The first lens group G 21 includes a negative lens L 211 , a negative lens L 212, and a positive lens L 213 , which are arranged in this order from the object side. Aspherical surfaces are formed on both surfaces of the negative lens L 211 and on the image surface IMG side surface of the positive lens L 213 . The negative lens L 212 and the positive lens L 213 are cemented together.
第2レンズ群G22は、物体側から順に、正レンズL221と、負レンズL222と、正レンズL223と、負レンズL224と、正レンズL225と、が配置されて構成される。正レンズL221の両面には、非球面が形成されている。負レンズL222と正レンズL223とは、接合されている。負レンズL224と正レンズL225とは、接合されている。 The second lens group G 22 is configured by arranging a positive lens L 221 , a negative lens L 222 , a positive lens L 223 , a negative lens L 224, and a positive lens L 225 in this order from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 221 . The negative lens L 222 and the positive lens L 223 are cemented together. The negative lens L 224 and the positive lens L 225 are cemented together.
第3レンズ群G23は、物体側から順に、正レンズL231と、負レンズL232と、が配置されて構成される。正レンズL231と負レンズL232とは、接合されている。正レンズL231と負レンズL232との接合面は、像面IMG側に凸形状になっている。 The third lens group G 23 is configured by arranging a positive lens L 231 and a negative lens L 232 in order from the object side. The positive lens L 231 and the negative lens L 232 are cemented together. The cemented surface between the positive lens L 231 and the negative lens L 232 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G23を像面IMGに対して固定したまま、第1レンズ群G21を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させ、第2レンズ群G22を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図4中の実線の矢印を参照)。また、第1レンズ群G21を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図4中の破線の矢印を参照)。 In this zoom lens, the first lens group G 21 forms a small convex locus along the optical axis on the image plane IMG side while the aperture stop STP and the third lens group G 23 are fixed with respect to the image plane IMG. And the second lens group G 22 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid arrow in FIG. 4). reference). Further, the first lens group G 21 is moved along the optical axis so as to form a small convex locus on the image plane IMG side to perform focusing from the infinity object focused state to the closest object focused state. Do (see the dashed arrow in FIG. 4).
以下、実施例2にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the second embodiment will be shown.
(面データ)
r1=131.432(非球面)
d1=0.80 nd1=1.82080 νd1=42.71 PCt1=0.7536
r2=7.500(非球面)
d2=6.41
r3=-7.511
d3=0.52 nd2=1.59349 νd2=67.00 PCt2=0.8494
r4=14.710
d4=1.78 nd3=1.88202 νd3=37.22 PCt3=0.7227
r5=-27.238(非球面)
d5=D(5)(可変)
r6=∞(開口絞り)
d6=D(6)(可変)
r7=9.752(非球面)
d7=4.00 nd4=1.55332 νd4=71.68 PCt4=0.8164
r8=-17.883(非球面)
d8=0.53
r9=55.332
d9=0.50 nd5=1.62041 νd5=60.34 PCt5=0.8383
r10=7.902
d10=3.74 nd6=1.49700 νd6=81.65 PCt6=0.8305
r11=-11.975
d11=0.15
r12=-226.211
d12=0.50 nd7=1.80610 νd7=40.73 PCt7=0.7464
r13=7.900
d13=3.55 nd8=1.49700 νd8=81.65 PCt8=0.8305
r14=-15.426
d14=D(14)(可変)
r15=-54.287
d15=2.77 nd9=1.74400 νd9=44.90 PCt9=0.7459
r16=-7.290
d16=0.50 nd10=1.69895 νd10=30.05 PCt10=0.6936
r17=-81.768
d17=4.80
r18=∞
d18=1.50 nd11=1.51680 νd11=64.20 PCt11=0.8682
r19=∞
d19=BF
r20=∞(像面)
(Surface data)
r 1 = 131.432 (aspherical surface)
d 1 = 0.80 nd 1 = 1.82080 νd 1 = 42.71 PCt 1 = 0.7536
r 2 = 7.500 (aspherical surface)
d 2 = 6.41
r 3 = -7.511
d 3 = 0.52 nd 2 = 1.59349 νd 2 = 67.00 PCt 2 = 0.8494
r 4 = 14.710
d 4 = 1.78 nd 3 = 1.88202 νd 3 = 37.22 PCt 3 = 0.7227
r 5 = -27.238 (aspherical surface)
d 5 = D (5) (variable)
r 6 = ∞ (aperture stop)
d 6 = D (6) (variable)
r 7 = 9.752 (aspherical surface)
d 7 = 4.00 nd 4 = 1.55332 νd 4 = 71.68 PCt 4 = 0.8164
r 8 = -17.883 (aspherical surface)
d 8 = 0.53
r 9 = 55.332
d 9 = 0.50 nd 5 = 1.62041 νd 5 = 60.34 PCt 5 = 0.8383
r 10 = 7.902
d 10 = 3.74 nd 6 = 1.49700 νd 6 = 81.65 PCt 6 = 0.8305
r 11 = -11.975
d 11 = 0.15
r 12 = -226.211
d 12 = 0.50 nd 7 = 1.80610 νd 7 = 40.73 PCt 7 = 0.7464
r 13 = 7.900
d 13 = 3.55 nd 8 = 1.49700 νd 8 = 81.65 PCt 8 = 0.8305
r 14 = -15.426
d 14 = D (14) (variable)
r 15 = -54.287
d 15 = 2.77 nd 9 = 1.74400
r 16 = -7.290
d 16 = 0.50 nd 10 = 1.69895 νd 10 = 30.05 PCt 10 = 0.6936
r 17 = -81.768
d 17 = 4.80
r 18 = ∞
d 18 = 1.50 nd 11 = 1.51680 νd 11 = 64.20 PCt 11 = 0.8682
r 19 = ∞
d 19 = BF
r 20 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第1面)
k=0,
A=0,B=2.13175×10-4,C=-4.85138×10-7,
D=-1.09051×10-8,E=1.18921×10-10
(第2面)
k=0,
A=0,B=1.17722×10-4,C=4.20431×10-7,
D=2.28582×10-7,E=-4.06642×10-9
(第5面)
k=0,
A=0,B=2.95068×10-5,C=3.66591×10-6,
D=-2.18995×10-7,E=5.67556×10-9
(第7面)
k=0,
A=0,B=-1.72280×10-4,C=4.22093×10-6,
D=-4.83929×10-8,E=7.48395×10-10
(第8面)
k=0,
A=0,B=4.19117×10-4,C=2.50848×10-6,
D=2.80895×10-8,E=1.14497×10-10
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(First side)
k = 0,
A = 0, B = 2.13175 × 10 -4 , C = -4.85138 × 10 -7 ,
D = -1.09051
(Second side)
k = 0,
A = 0, B = 1.17722 × 10 -4 , C = 4.20431 × 10 -7 ,
D = 2.28582 × 10 -7 , E = -4.06642 × 10 -9
(5th surface)
k = 0,
A = 0, B = 2.95068 × 10 -5 , C = 3.66591 × 10 -6 ,
D = -2.18995 × 10 -7 , E = 5.67556 × 10 -9
(Seventh surface)
k = 0,
A = 0, B = -1.72280 × 10 -4 , C = 4.22093 × 10 -6 ,
D = -4.83929
(Eighth surface)
k = 0,
A = 0, B = 4.19117 × 10 -4 , C = 2.50848 × 10 -6 ,
D = 2.80895 x 10 -8 , E = 1.14497 x 10 -10
(各種データ)
変倍比:1.89
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.42 5.83 8.36
Fナンバー 1.54 1.79 2.50
半画角(ω) 63.96 47.71 32.79
像高 4.75 4.75 4.75
レンズ系全長 46.39 44.08 43.65
バックフォーカス(BF) 1.00 1.00 1.00
D(5) 4.42 2.11 1.67
D(6) 7.09 5.05 1.35
D(14) 1.83 3.88 7.58
(Various data)
Magnification ratio: 1.89
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.42 5.83 8.36
F number 1.54 1.79 2.50
Half angle of view (ω) 63.96 47.71 32.79
Image height 4.75 4.75 4.75
Lens system total length 46.39 44.08 43.65
Back focus (BF) 1.00 1.00 1.00
D (5) 4.42 2.11 1.67
D (6) 7.09 5.05 1.35
D (14) 1.83 3.88 7.58
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -7.27 2.74
2 7 10.81 -5.74
3 15 734.04 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -7.27 2.74
2 7 10.81 -5.74
3 15 734.04 0.00
(条件式(1)に関する数値)
|f1/fw|=1.64
(Numerical value regarding conditional expression (1))
| f1 / fw | = 1.64
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G22と第3レンズ群G23との合成焦点距離)=11.06
f23w/fw=2.50
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 22 and the third lens group G 23 in the in- focus state of the object at infinity at the wide-angle end) = 11.06
f23w / fw = 2.50
(条件式(3)に関する数値)
|f3/fw|=165.95
(Numerical value regarding conditional expression (3))
| F3 / fw | = 165.95
(条件式(4)に関する数値)
|f23w/f1|=1.52
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.52
(条件式(5)に関する数値)
|νd3P−νd3n|=14.9
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 14.9
(条件式(6)に関する数値)
νd2P_ave=78.3
(Numerical value regarding conditional expression (6))
νd2P_ave = 78.3
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0105
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0105
(条件式(8)に関する数値)
νd1p=37.2
(Numerical value regarding conditional expression (8))
νd1p = 37.2
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0081
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0081
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0073
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0073
(条件式(11)に関する数値)
|f1/f2|=0.67
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.67
(条件式(12)に関する数値)
|X2/f2|=0.53
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.53
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G22と第3レンズ群G23との合成焦点距離)=11.15
f23t/ft=1.33
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 22 and the third lens group G 23 in the in- focus state at infinity at the telephoto end) = 11.15
f23t / ft = 1.33
(条件式(14)に関する数値)
|f3/f2|=67.92
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 67.92
図5は、実施例2にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 5 is a diagram of various types of aberration of the zoom lens according to the second example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
図6は、実施例3にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G31と、正の屈折力を有する第2レンズ群G32と、正の屈折力を有する第3レンズ群G33と、が配置されて構成される。第1レンズ群G31と第2レンズ群G32との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G33と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 6 is a sectional view taken along the optical axis, showing the configuration of the zoom lens according to the third example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side (not shown), a first lens group G 31 having a negative refractive power, a second lens group G 32 having a positive refractive power, and a third lens group having a positive refractive power. G 33 and are arranged. An aperture stop STP that defines a predetermined aperture is arranged between the first lens group G 31 and the second lens group G 32 . A cover glass CG is arranged between the third lens group G 33 and the image plane IMG.
第1レンズ群G31は、物体側から順に、負レンズL311と、負レンズL312と、負レンズL313と、正レンズL314と、が配置されて構成される。負レンズL313の物体側面には、非球面が形成されている。負レンズL313と正レンズL314とは、接合されている。 The first lens group G 31 is composed of, in order from the object side, a negative lens L 311 , a negative lens L 312 , a negative lens L 313, and a positive lens L 314 . An aspherical surface is formed on the object side surface of the negative lens L 313 . The negative lens L 313 and the positive lens L 314 are cemented together.
第2レンズ群G32は、物体側から順に、正レンズL321と、負レンズL322と、正レンズL323と、負レンズL324と、正レンズL325と、が配置されて構成される。正レンズL321の両面には、非球面が形成されている。負レンズL322と正レンズL323とは、接合されている。負レンズL324と正レンズL325とは、接合されている。 The second lens group G 32 is configured such that a positive lens L 321 , a negative lens L 322 , a positive lens L 323 , a negative lens L 324, and a positive lens L 325 are arranged in this order from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 321 . The negative lens L 322 and the positive lens L 323 are cemented together. The negative lens L 324 and the positive lens L 325 are cemented together.
第3レンズ群G33は、物体側から順に、正レンズL331と、負レンズL332と、が配置されて構成される。正レンズL331の物体側面には、非球面が形成されている。正レンズL331と負レンズL332とは、接合されている。正レンズL331と負レンズL332との接合面は、像面IMG側に凸形状になっている。 The third lens group G 33 includes a positive lens L 331 and a negative lens L 332 , which are arranged in this order from the object side. An aspherical surface is formed on the object side surface of the positive lens L 331 . The positive lens L 331 and the negative lens L 332 are cemented together. The cemented surface between the positive lens L 331 and the negative lens L 332 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G33を像面IMGに対して固定したまま、第1レンズ群G31を光軸に沿って像面IMG側に凸の軌跡を形成するように移動させ、第2レンズ群G32を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図6中の実線の矢印を参照)。また、第1レンズ群G31を光軸に沿って像面IMG側に凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図6中の破線の矢印を参照)。 In this zoom lens, the first lens group G 31 forms a convex locus along the optical axis on the image plane IMG side while the aperture stop STP and the third lens group G 33 are fixed with respect to the image plane IMG. And the second lens group G 32 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid arrow in FIG. 6). ). Further, the first lens group G 31 is moved along the optical axis so as to form a convex locus on the image plane IMG side, and focusing is performed from the infinity object focused state to the closest object focused state. (See dashed arrow in FIG. 6).
以下、実施例3にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the third embodiment will be shown.
(面データ)
r1=22.334
d1=0.70 nd1=1.88300 νd1=40.80 PCt1=0.7381
r2=6.875
d2=2.79
r3=21.150
d3=0.50 nd2=1.48749 νd2=70.45 PCt2=0.8988
r4=12.931
d4=5.34
r5=-10.100(非球面)
d5=0.60 nd3=1.69350 νd3=53.20 PCt3=0.8135
r6=24.955
d6=1.41 nd4=1.84666 νd4=23.78 PCt4=0.6600
r7=-35.784
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=11.750(非球面)
d9=3.87 nd5=1.55332 νd5=71.68 PCt5=0.8164
r10=-18.393(非球面)
d10=0.15
r11=32.202
d11=0.50 nd6=1.62299 νd6=58.12 PCt6=0.8107
r12=9.700
d12=4.73 nd7=1.49700 νd7=81.65 PCt7=0.8305
r13=-11.842
d13=0.15
r14=167.012
d14=0.50 nd8=1.80610 νd8=40.73 PCt8=0.7464
r15=7.822
d15=4.27 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-32.434
d16=D(16)(可変)
r17=-21.608(非球面)
d17=2.77 nd10=1.55332 νd10=71.68 PCt10=0.8164
r18=-9.150
d18=0.50 nd11=1.84666 νd11=23.78 PCt11=0.6600
r19=-14.586
d19=6.36
r20=∞
d20=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 22.334
d 1 = 0.70 nd 1 = 1.88300 νd 1 = 40.80 PCt 1 = 0.7381
r 2 = 6.875
d 2 = 2.79
r 3 = 21.150
d 3 = 0.50 nd 2 = 1.48749
r 4 = 12.931
d 4 = 5.34
r 5 = -10.100 (aspherical surface)
d 5 = 0.60 nd 3 = 1.69350 νd 3 = 53.20 PCt 3 = 0.8135
r 6 = 24.955
d 6 = 1.41 nd 4 = 1.84666 νd 4 = 23.78 PCt 4 = 0.6600
r 7 = -35.784
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 11.750 (aspherical surface)
d 9 = 3.87 nd 5 = 1.55332 νd 5 = 71.68 PCt 5 = 0.8164
r 10 = -18.393 (aspherical surface)
d 10 = 0.15
r 11 = 32.202
d 11 = 0.50 nd 6 = 1.62299 νd 6 = 58.12 PCt 6 = 0.8107
r 12 = 9.700
d 12 = 4.73 nd 7 = 1.49700 νd 7 = 81.65 PCt 7 = 0.8305
r 13 = -11.842
d 13 = 0.15
r 14 = 167.012
d 14 = 0.50 nd 8 = 1.80610 νd 8 = 40.73 PCt 8 = 0.7464
r 15 = 7.822
d 15 = 4.27 nd 9 = 1.49700
r 16 = -32.434
d 16 = D (16) (variable)
r 17 = -21.608 (aspherical surface)
d 17 = 2.77 nd 10 = 1.55332 νd 10 = 71.68 PCt 10 = 0.8164
r 18 = -9.150
d 18 = 0.50 nd 11 = 1.84666 νd 11 = 23.78 PCt 11 = 0.6600
r 19 = -14.586
d 19 = 6.36
r 20 = ∞
d 20 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=9.65920×10-5,C=-1.19171×10-5,
D=9.17092×10-7,E=-2.98439×10-8
(第9面)
k=0,
A=0,B=-1.57570×10-4,C=2.33471×10-6,
D=3.86574×10-9,E=-6.82758×10-10
(第10面)
k=0,
A=0,B=2.76164×10-4,C=1.16104×10-6,
D=6.71701×10-8,E=-1.34735×10-9
(第17面)
k=0,
A=0,B=1.43511×10-5,C=1.78962×10-7,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = 9.65920 × 10 -5 , C = -1.19171 × 10 -5 ,
D = 9.17092 × 10 -7 , E = -2.98439 × 10 -8
(9th surface)
k = 0,
A = 0, B = -1.57570 × 10 -4 , C = 2.33471 × 10 -6 ,
D = 3.86574 × 10 -9 , E = -6.82758 × 10 -10
(10th surface)
k = 0,
A = 0, B = 2.76164 × 10 -4 , C = 1.16104 × 10 -6 ,
D = 6.71701 × 10 -8 , E = -1.34735 × 10 -9
(17th surface)
k = 0,
A = 0, B = 1.43511 x 10 -5 , C = 1.78962 x 10 -7 ,
D = 0, E = 0
(各種データ)
変倍比:1.89
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.43 5.83 8.36
Fナンバー 1.65 2.02 3.09
半画角(ω) 66.72 48.20 32.79
像高 4.75 4.75 4.75
レンズ系全長 50.69 49.53 50.62
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 3.53 2.36 3.44
D(8) 7.97 5.45 0.85
D(16) 1.53 4.06 8.66
(Various data)
Magnification ratio: 1.89
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.43 5.83 8.36
F number 1.65 2.02 3.09
Half angle of view (ω) 66.72 48.20 32.79
Image height 4.75 4.75 4.75
Lens system total length 50.69 49.53 50.62
Back focus (BF) 2.00 2.00 2.00
D (7) 3.53 2.36 3.44
D (8) 7.97 5.45 0.85
D (16) 1.53 4.06 8.66
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -5.89 2.25
2 9 11.09 -7.12
3 17 400.00 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -5.89 2.25
2 9 11.09 -7.12
3 17 400.00 0.00
(条件式(1)に関する数値)
|f1/fw|=1.33
(Numerical value regarding conditional expression (1))
| F1 / fw | = 1.33
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G32と第3レンズ群G33との合成焦点距離)=11.78
f23w/fw=2.66
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 32 and the third lens group G 33 in the in- focus state of an object at infinity at the wide-angle end) = 11.78
f23w / fw = 2.66
(条件式(3)に関する数値)
|f3/fw|=90.25
(Numerical value regarding conditional expression (3))
| F3 / fw | = 90.25
(条件式(4)に関する数値)
|f23w/f1|=2.00
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 2.00
(条件式(5)に関する数値)
|νd3P−νd3n|=47.9
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 47.9
(条件式(6)に関する数値)
νd2P_ave=78.3
(Numerical value regarding conditional expression (6))
νd2P_ave = 78.3
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0102
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0102
(条件式(8)に関する数値)
νd1p=23.8
(Numerical value regarding conditional expression (8))
νd1p = 23.8
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0191
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0191
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0029
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0029
(条件式(11)に関する数値)
|f1/f2|=0.53
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.53
(条件式(12)に関する数値)
|X2/f2|=0.64
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.64
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G32と第3レンズ群G33との合成焦点距離)=12.00
f23t/ft=1.44
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 32 and the third lens group G 33 in the object-focused state at infinity at the telephoto end) = 12.00
f23t / ft = 1.44
(条件式(14)に関する数値)
|f3/f2|=36.08
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 36.08
図7は、実施例3にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 7 is a diagram of various types of aberration of the zoom lens according to the third example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
図8は、実施例4にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G41と、正の屈折力を有する第2レンズ群G42と、正の屈折力を有する第3レンズ群G43と、が配置されて構成される。第1レンズ群G41と第2レンズ群G42との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G43と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 8 is a sectional view taken along the optical axis to show the configuration of the zoom lens according to the fourth example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side, not shown, a first lens group G 41 having a negative refractive power, a second lens group G 42 having a positive refractive power, and a third lens group having a positive refractive power. G 43 and are arranged. An aperture stop STP defining a predetermined aperture is arranged between the first lens group G 41 and the second lens group G 42 . A cover glass CG is arranged between the third lens group G 43 and the image plane IMG.
第1レンズ群G41は、物体側から順に、負レンズL411と、負レンズL412と、負レンズL413と、正レンズL414と、が配置されて構成される。負レンズL413の物体側面には、非球面が形成されている。負レンズL413と正レンズL414とは、接合されている。 The first lens group G 41 includes, in order from the object side, a negative lens L 411 , a negative lens L 412 , a negative lens L 413, and a positive lens L 414 . An aspherical surface is formed on the object side surface of the negative lens L 413 . The negative lens L 413 and the positive lens L 414 are cemented together.
第2レンズ群G42は、物体側から順に、正レンズL421と、負レンズL422と、正レンズL423と、負レンズL424と、正レンズL425と、が配置されて構成される。正レンズL421の両面には、非球面が形成されている。負レンズL422と正レンズL423とは、接合されている。負レンズL424と正レンズL425とは、接合されている。 The second lens group G 42 is configured by arranging a positive lens L 421 , a negative lens L 422 , a positive lens L 423 , a negative lens L 424, and a positive lens L 425 in this order from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 421 . The negative lens L 422 and the positive lens L 423 are cemented. The negative lens L 424 and the positive lens L 425 are cemented together.
第3レンズ群G43は、物体側から順に、正レンズL431と、負レンズL432と、が配置されて構成される。正レンズL431の物体側面には、非球面が形成されている。正レンズL431と負レンズL432とは、接合されている。正レンズL431と負レンズL432との接合面は、像面IMG側に凸形状になっている。 The third lens group G 43 is configured by sequentially arranging a positive lens L 431 and a negative lens L 432 from the object side. An aspherical surface is formed on the object side surface of the positive lens L 431 . The positive lens L 431 and the negative lens L 432 are cemented together. The cemented surface between the positive lens L 431 and the negative lens L 432 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G43を像面IMGに対して固定したまま、第1レンズ群G41を光軸に沿って物体側から像面IMG側へ移動させ、第2レンズ群G42を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図8中の実線の矢印を参照)。また、第1レンズ群G41を光軸に沿って物体側から像面IMG側へ移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図8中の破線の矢印を参照)。 This zoom lens moves the first lens group G 41 from the object side to the image surface IMG side along the optical axis while fixing the aperture stop STP and the third lens group G 43 with respect to the image surface IMG. By moving the second lens group G 42 along the optical axis from the image plane IMG side to the object side, zooming is performed from the wide-angle end to the telephoto end (see the solid line arrow in FIG. 8). Further, the first lens group G 41 is moved along the optical axis from the object side to the image plane IMG side to perform focusing from the in-focus object state to the closest object state (in FIG. 8). See the dashed arrow).
以下、実施例4にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the fourth embodiment will be shown.
(面データ)
r1=63.338
d1=0.70 nd1=1.58913 νd1=61.25 PCt1=0.8368
r2=6.875
d2=2.83
r3=54.504
d3=0.50 nd2=1.76182 νd2=26.61 PCt2=0.6762
r4=15.319
d4=2.94
r5=-13.227(非球面)
d5=0.60 nd3=1.62263 νd3=58.16 PCt3=0.8464
r6=13.671
d6=1.99 nd4=1.91082 νd4=35.25 PCt4=0.7131
r7=-29.046
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=10.260(非球面)
d9=3.74 nd5=1.55332 νd5=71.68 PCt5=0.8164
r10=-16.500(非球面)
d10=0.74
r11=-37.016
d11=0.50 nd6=1.56732 νd6=42.84 PCt6=0.7639
r12=61.389
d12=3.40 nd7=1.49700 νd7=81.65 PCt7=0.8305
r13=-10.017
d13=0.15
r14=195.108
d14=0.50 nd8=1.80610 νd8=40.73 PCt8=0.7464
r15=7.000
d15=3.73 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-21.218
d16=D(16)(可変)
r17=-424.877(非球面)
d17=2.51 nd10=1.82080 νd10=42.71 PCt10=0.7536
r18=-11.198
d18=0.50 nd11=1.72825 νd11=28.32 PCt11=0.6855
r19=-153.514
d19=4.43
r20=∞
d20=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 63.338
d 1 = 0.70 nd 1 = 1.58913 νd 1 = 61.25 PCt 1 = 0.8368
r 2 = 6.875
d 2 = 2.83
r 3 = 54.504
d 3 = 0.50 nd 2 = 1.76182 νd 2 = 26.61 PCt 2 = 0.6762
r 4 = 15.319
d 4 = 2.94
r 5 = -13.227 (aspherical surface)
d 5 = 0.60 nd 3 = 1.62263 νd 3 = 58.16 PCt 3 = 0.8464
r 6 = 13.671
d 6 = 1.99 nd 4 = 1.91082 νd 4 = 35.25 PCt 4 = 0.7131
r 7 = -29.046
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 10.260 (aspherical surface)
d 9 = 3.74 nd 5 = 1.55332 νd 5 = 71.68 PCt 5 = 0.8164
r 10 = -16.500 (aspherical surface)
d 10 = 0.74
r 11 = -37.016
d 11 = 0.50 nd 6 = 1.56732 νd 6 = 42.84 PCt 6 = 0.7639
r 12 = 61.389
d 12 = 3.40 nd 7 = 1.49700 νd 7 = 81.65 PCt 7 = 0.8305
r 13 = -10.017
d 13 = 0.15
r 14 = 195.108
d 14 = 0.50 nd 8 = 1.80610 νd 8 = 40.73 PCt 8 = 0.7464
r 15 = 7.000
d 15 = 3.73 nd 9 = 1.49700
r 16 = -21.218
d 16 = D (16) (variable)
r 17 = -424.877 (aspherical surface)
d 17 = 2.51 nd 10 = 1.82080 νd 10 = 42.71 PCt 10 = 0.7536
r 18 = -11.198
d 18 = 0.50 nd 11 = 1.72825 νd 11 = 28.32 PCt 11 = 0.6855
r 19 = -153.514
d 19 = 4.43
r 20 = ∞
d 20 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=1.61829×10-5,C=-3.79476×10-6,
D=1.79040×10-7,E=-4.30180×10-9
(第9面)
k=0,
A=0,B=-1.70485×10-4,C=2.57665×10-6,
D=3.91896×10-8,E=-2.43028×10-9
(第10面)
k=0,
A=0,B=4.38937×10-4,C=4.74978×10-8,
D=2.06665×10-7,E=-4.60654×10-9
(第17面)
k=0,
A=0,B=-4.36169×10-5,C=-3.16374×10-8,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = 1.61829 × 10 -5 , C = -3.79476 × 10 -6 ,
D = 1.79040 × 10 -7 , E = -4.30180 × 10 -9
(9th surface)
k = 0,
A = 0, B = -1.70485 × 10 -4 , C = 2.57665 × 10 -6 ,
D = 3.91896 × 10 -8 , E = -2.43028 × 10 -9
(10th surface)
k = 0,
A = 0, B = 4.38937 × 10 -4 , C = 4.74978 × 10 -8 ,
D = 2.06665 × 10 -7 , E = -4.60654 × 10 -9
(17th surface)
k = 0,
A = 0, B = -4.36169 × 10 -5 , C = -3.16374 × 10 -8 ,
D = 0, E = 0
(各種データ)
変倍比:1.87
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.45 6.10 8.33
Fナンバー 1.55 1.79 2.26
半画角(ω) 66.34 45.39 32.52
像高 4.75 4.75 4.75
レンズ系全長 47.58 43.40 41.73
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 8.29 4.09 2.41
D(8) 5.87 3.76 0.85
D(16) 1.20 3.31 6.22
(Various data)
Magnification ratio: 1.87
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.45 6.10 8.33
F number 1.55 1.79 2.26
Half angle of view (ω) 66.34 45.39 32.52
Image height 4.75 4.75 4.75
Lens system total length 47.58 43.40 41.73
Back focus (BF) 2.00 2.00 2.00
D (7) 8.29 4.09 2.41
D (8) 5.87 3.76 0.85
D (16) 1.20 3.31 6.22
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -9.74 5.88
2 9 11.52 -5.02
3 17 90.06 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -9.74 5.88
2 9 11.52 -5.02
3 17 90.06 0.00
(条件式(1)に関する数値)
|f1/fw|=2.19
(Numerical value regarding conditional expression (1))
| F1 / fw | = 2.19
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G42と第3レンズ群G43との合成焦点距離)=11.32
f23w/fw=2.54
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 42 and the third lens group G 43 in the in- focus state at infinity at the wide-angle end) = 11.32
f23w / fw = 2.54
(条件式(3)に関する数値)
|f3/fw|=20.23
(Numerical value regarding conditional expression (3))
| F3 / fw | = 20.23
(条件式(4)に関する数値)
|f23w/f1|=1.16
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.16
(条件式(5)に関する数値)
|νd3P−νd3n|=14.4
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 14.4
(条件式(6)に関する数値)
νd2P_ave=78.3
(Numerical value regarding conditional expression (6))
νd2P_ave = 78.3
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0178
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0178
(条件式(8)に関する数値)
νd1p=35.3
(Numerical value regarding conditional expression (8))
νd1p = 35.3
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0288
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0072
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0072
(条件式(11)に関する数値)
|f1/f2|=0.85
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.85
(条件式(12)に関する数値)
|X2/f2|=0.44
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.44
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G42と第3レンズ群G43との合成焦点距離)=11.98
f23t/ft=1.44
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 42 and the third lens group G 43 in the in- focus state at infinity at the telephoto end) = 11.98
f23t / ft = 1.44
(条件式(14)に関する数値)
|f3/f2|=7.82
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 7.82
図9は、実施例4にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 9 is a diagram of various types of aberration of the zoom lens according to the fourth example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
図10は、実施例5にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G51と、正の屈折力を有する第2レンズ群G52と、正の屈折力を有する第3レンズ群G53と、が配置されて構成される。第1レンズ群G51と第2レンズ群G52との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G53と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 10 is a sectional view taken along the optical axis showing the configuration of the zoom lens according to the fifth example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side (not shown), a first lens group G 51 having a negative refractive power, a second lens group G 52 having a positive refractive power, and a third lens group having a positive refractive power. G 53 and are arranged. An aperture stop STP that defines a predetermined aperture is arranged between the first lens group G 51 and the second lens group G 52 . A cover glass CG is arranged between the third lens group G 53 and the image plane IMG.
第1レンズ群G51は、物体側から順に、負レンズL511と、負レンズL512と、負レンズL513と、正レンズL514と、が配置されて構成される。負レンズL513の物体側面には、非球面が形成されている。負レンズL513と正レンズL514とは、接合されている。 The first lens group G 51 includes a negative lens L 511 , a negative lens L 512 , a negative lens L 513, and a positive lens L 514 , which are arranged in this order from the object side. An aspherical surface is formed on the object side surface of the negative lens L 513 . The negative lens L 513 and the positive lens L 514 are cemented together.
第2レンズ群G52は、物体側から順に、正レンズL521と、負レンズL522と、正レンズL523と、負レンズL524と、正レンズL525と、が配置されて構成される。正レンズL521の両面には、非球面が形成されている。負レンズL522と正レンズL523とは、接合されている。負レンズL524と正レンズL525とは、接合されている。 The second lens group G 52 is composed of, in order from the object side, a positive lens L 521 , a negative lens L 522 , a positive lens L 523 , a negative lens L 524, and a positive lens L 525. . Aspherical surfaces are formed on both surfaces of the positive lens L 521 . The negative lens L 522 and the positive lens L 523 are cemented together. The negative lens L 524 and the positive lens L 525 are cemented.
第3レンズ群G53は、物体側から順に、正レンズL531と、負レンズL532と、が配置されて構成される。正レンズL531の物体側面には、非球面が形成されている。正レンズL531と負レンズL532とは、接合されている。正レンズL531と負レンズL532との接合面は、像面IMG側に凸形状になっている。 The third lens group G 53 is configured by arranging a positive lens L 531 and a negative lens L 532 in this order from the object side. An aspherical surface is formed on the object side surface of the positive lens L 531 . The positive lens L 531 and the negative lens L 532 are cemented together. The cemented surface between the positive lens L 531 and the negative lens L 532 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G53を像面IMGに対して固定したまま、第1レンズ群G51を光軸に沿って物体側から像面IMG側へなだらかに移動させ、第2レンズ群G52を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図10中の実線の矢印を参照)。また、第1レンズ群G51を光軸に沿って物体側から像面IMG側へなだらかに移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図10中の破線の矢印を参照)。 This zoom lens moves the first lens group G 51 along the optical axis from the object side to the image surface IMG side while keeping the aperture stop STP and the third lens group G 53 fixed with respect to the image surface IMG. , The second lens group G 52 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid arrow in FIG. 10). Further, the first lens group G 51 is gently moved from the object side to the image plane IMG side along the optical axis to perform focusing from the infinity object focused state to the closest object focused state (FIG. 10). See the dashed arrow inside).
以下、実施例5にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the fifth example will be shown.
(面データ)
r1=22.840
d1=0.70 nd1=1.62299 νd1=58.12 PCt1=0.8107
r2=6.875
d2=2.32
r3=12.903
d3=0.50 nd2=1.48749 νd2=70.45 PCt2=0.8988
r4=7.319
d4=3.73
r5=-13.671(非球面)
d5=0.60 nd3=1.62263 νd3=58.16 PCt3=0.8464
r6=8.019
d6=1.77 nd4=1.91082 νd4=35.25 PCt4=0.7131
r7=72.433
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=12.789(非球面)
d9=3.50 nd5=1.59201 νd5=67.02 PCt5=0.8184
r10=-18.012(非球面)
d10=0.15
r11=3031.500
d11=0.50 nd6=1.56732 νd6=42.84 PCt6=0.7639
r12=13.079
d12=4.07 nd7=1.59282 νd7=68.63 PCt7=0.7960
r13=-10.671
d13=0.15
r14=47.455
d14=0.50 nd8=1.91082 νd8=35.25 PCt8=0.7131
r15=7.000
d15=3.47 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-39.000
d16=D(16)(可変)
r17=-96.750(非球面)
d17=2.52 nd10=1.88202 νd10=37.22 PCt10=0.7227
r18=-13.905
d18=0.50 nd11=1.67270 νd11=32.17 PCt11=0.7030
r19=-99.333
d19=4.38
r20=∞
d20=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 22.840
d 1 = 0.70 nd 1 = 1.62299 νd 1 = 58.12 PCt 1 = 0.8107
r 2 = 6.875
d 2 = 2.32
r 3 = 12.903
d 3 = 0.50 nd 2 = 1.48749
r 4 = 7.319
d 4 = 3.73
r 5 = -13.671 (aspherical surface)
d 5 = 0.60 nd 3 = 1.62263 νd 3 = 58.16 PCt 3 = 0.8464
r 6 = 8.019
d 6 = 1.77 nd 4 = 1.91082 νd 4 = 35.25 PCt 4 = 0.7131
r 7 = 72.433
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 12.789 (aspherical surface)
d 9 = 3.50 nd 5 = 1.59201 νd 5 = 67.02 PCt 5 = 0.8184
r 10 = -18.012 (aspherical surface)
d 10 = 0.15
r 11 = 3031.500
d 11 = 0.50 nd 6 = 1.56732 νd 6 = 42.84 PCt 6 = 0.7639
r 12 = 13.079
d 12 = 4.07 nd 7 = 1.59282 νd 7 = 68.63 PCt 7 = 0.7960
r 13 = -10.671
d 13 = 0.15
r 14 = 47.455
d 14 = 0.50 nd 8 = 1.91082 νd 8 = 35.25 PCt 8 = 0.7131
r 15 = 7.000
d 15 = 3.47 nd 9 = 1.49700
r 16 = -39.000
d 16 = D (16) (variable)
r 17 = -96.750 (aspherical surface)
d 17 = 2.52 nd 10 = 1.88202 νd 10 = 37.22 PCt 10 = 0.7227
r 18 = -13.905
d 18 = 0.50 nd 11 = 1.67270
r 19 = -99.333
d 19 = 4.38
r 20 = ∞
d 20 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=-4.20167×10-5,C=-6.77937×10-6,
D=1.63124×10-7,E=-2.05645×10-9
(第9面)
k=0,
A=0,B=-2.65859×10-4,C=-3.36618×10-6,
D=1.22589×10-7,E=-7.65284×10-9
(第10面)
k=0,
A=0,B=2.80382×10-4,C=-1.68536×10-6,
D=2.93515×10-8,E=-3.58703×10-9
(第17面)
k=0,
A=0,B=-2.21084×10-5,C=7.95255×10-8,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = -4.20167 × 10 -5 , C = -6.77937 × 10 -6 ,
D = 1.63124 × 10 -7 , E = -2.05645 × 10 -9
(9th surface)
k = 0,
A = 0, B = -2.65859 × 10 -4 , C = -3.36618 × 10 -6 ,
D = 1.22589 × 10 -7 , E = -7.65284 × 10 -9
(10th surface)
k = 0,
A = 0, B = 2.80382 × 10 -4 , C = -1.68536 × 10 -6 ,
D = 2.93515 x 10 -8 , E = -3.58703
(17th surface)
k = 0,
A = 0, B = -2.21084 × 10 -5 , C = 7.95255 × 10 -8 ,
D = 0, E = 0
(各種データ)
変倍比:1.87
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.44 6.16 8.34
Fナンバー 1.55 1.89 2.56
半画角(ω) 66.62 44.71 32.43
像高 4.75 4.75 4.75
レンズ系全長 44.42 42.24 42.22
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 4.98 2.78 2.75
D(8) 6.38 3.93 0.85
D(16) 1.22 3.66 6.75
(Various data)
Magnification ratio: 1.87
Wide angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.44 6.16 8.34
F number 1.55 1.89 2.56
Half angle of view (ω) 66.62 44.71 32.43
Image height 4.75 4.75 4.75
Lens system total length 44.42 42.24 42.22
Back focus (BF) 2.00 2.00 2.00
D (7) 4.98 2.78 2.75
D (8) 6.38 3.93 0.85
D (16) 1.22 3.66 6.75
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -7.84 2.23
2 9 10.13 -5.53
3 17 77.14 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -7.84 2.23
2 9 10.13 -5.53
3 17 77.14 0.00
(条件式(1)に関する数値)
|f1/fw|=1.77
(Numerical value regarding conditional expression (1))
| F1 / fw | = 1.77
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G52と第3レンズ群G53との合成焦点距離)=10.10
f23w/fw=2.28
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 52 and the third lens group G 53 in the in- focus state of the object at infinity at the wide angle end) = 10.10.
f23w / fw = 2.28
(条件式(3)に関する数値)
|f3/fw|=17.39
(Numerical value regarding conditional expression (3))
| f3 / fw | = 17.39
(条件式(4)に関する数値)
|f23w/f1|=1.29
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.29
(条件式(5)に関する数値)
|νd3P−νd3n|=5.1
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 5.1
(条件式(6)に関する数値)
νd2P_ave=71.4
(Numerical value regarding conditional expression (6))
νd2P_ave = 71.4
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0178
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0178
(条件式(8)に関する数値)
νd1p=35.3
(Numerical value regarding conditional expression (8))
νd1p = 35.3
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0288
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0068
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0068
(条件式(11)に関する数値)
|f1/f2|=0.77
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.77
(条件式(12)に関する数値)
|X2/f2|=0.55
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.55
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G52と第3レンズ群G53との合成焦点距離)=10.88
f23t/ft=1.30
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 52 and the third lens group G 53 in the in- focus state of the object at infinity at the telephoto end) = 10.88
f23t / ft = 1.30
(条件式(14)に関する数値)
|f3/f2|=7.62
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 7.62
図11は、実施例5にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 11 is a diagram of various types of aberration of the zoom lens according to the fifth example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
図12は、実施例6にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G61と、正の屈折力を有する第2レンズ群G62と、正の屈折力を有する第3レンズ群G63と、が配置されて構成される。第1レンズ群G61と第2レンズ群G62との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G63と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 12 is a sectional view taken along the optical axis showing the configuration of the zoom lens according to the sixth example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side (not shown), a first lens group G 61 having a negative refractive power, a second lens group G 62 having a positive refractive power, and a third lens group having a positive refractive power. G 63 and are arranged. An aperture stop STP that defines a predetermined aperture is arranged between the first lens group G 61 and the second lens group G 62 . A cover glass CG is arranged between the third lens group G 63 and the image plane IMG.
第1レンズ群G61は、物体側から順に、負レンズL611と、負レンズL612と、負レンズL613と、正レンズL614と、が配置されて構成される。負レンズL613の物体側面には、非球面が形成されている。負レンズL613と正レンズL614とは、接合されている。 The first lens group G 61 includes, in order from the object side, a negative lens L 611 , a negative lens L 612 , a negative lens L 613, and a positive lens L 614 . An aspherical surface is formed on the object side surface of the negative lens L 613 . The negative lens L 613 and the positive lens L 614 are cemented together.
第2レンズ群G62は、物体側から順に、正レンズL621と、負レンズL622と、正レンズL623と、負レンズL624と、正レンズL625と、が配置されて構成される。正レンズL621の両面には、非球面が形成されている。負レンズL622と正レンズL623とは、接合されている。負レンズL624と正レンズL625とは、接合されている。 The second lens group G 62 includes a positive lens L 621 , a negative lens L 622 , a positive lens L 623 , a negative lens L 624, and a positive lens L 625 , which are arranged in this order from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 621 . The negative lens L 622 and the positive lens L 623 are cemented together. The negative lens L 624 and the positive lens L 625 are cemented together.
第3レンズ群G63は、物体側から順に、正レンズL631と、負レンズL632と、が配置されて構成される。正レンズL631の物体側面には、非球面が形成されている。正レンズL631と負レンズL632とは、接合されている。正レンズL631と負レンズL632との接合面は、像面IMG側に凸形状になっている。 The third lens group G 63 is configured by arranging a positive lens L 631 and a negative lens L 632 in this order from the object side. An aspherical surface is formed on the object side surface of the positive lens L 631 . The positive lens L 631 and the negative lens L 632 are cemented together. The cemented surface between the positive lens L 631 and the negative lens L 632 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G63を像面IMGに対して固定したまま、第1レンズ群G61を光軸に沿って物体側から像面IMG側へなだらかに移動させ、第2レンズ群G62を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図12の実線の矢印を参照)。また、第1レンズ群G61を光軸に沿って物体側から像面IMG側へなだらかに移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図12中の破線の矢印を参照)。 This zoom lens moves the first lens group G 61 gently along the optical axis from the object side to the image surface IMG side while keeping the aperture stop STP and the third lens group G 63 fixed with respect to the image surface IMG. , The second lens group G 62 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid arrow in FIG. 12). Further, the first lens group G 61 is gently moved from the object side to the image plane IMG side along the optical axis to perform focusing from the infinity object focus state to the closest object focus state (FIG. 12). See the dashed arrow inside).
以下、実施例6にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the sixth embodiment will be shown.
(面データ)
r1=29.683
d1=0.70 nd1=1.88300 νd1=40.80 PCt1=0.7381
r2=6.875
d2=3.36
r3=85.894
d3=0.50 nd2=1.48749 νd2=70.45 PCt2=0.8988
r4=15.316
d4=3.44
r5=-11.913(非球面)
d5=0.60 nd3=1.62263 νd3=58.16 PCt3=0.8464
r6=12.850
d6=3.45 nd4=1.91082 νd4=35.25 PCt4=0.7131
r7=-30.637
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=12.164(非球面)
d9=4.00 nd5=1.59201 νd5=67.02 PCt5=0.8499
r10=-18.102(非球面)
d10=1.52
r11=-778.309
d11=0.50 nd6=1.56883 νd6=56.04 PCt6=0.8080
r12=9.700
d12=3.88 nd7=1.49700 νd7=81.65 PCt7=0.8305
r13=-13.485
d13=0.16
r14=288.955
d14=0.50 nd8=1.91082 νd8=35.25 PCt8=0.7131
r15=8.053
d15=3.50 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-20.581
d16=D(16)(可変)
r17=-20.841(非球面)
d17=2.79 nd10=1.82080 νd10=42.71 PCt10=0.7536
r18=-9.150
d18=0.50 nd11=1.91082 νd11=35.25 PCt11=0.7131
r19=-14.353
d19=4.00
r20=∞
d20=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 29.683
d 1 = 0.70 nd 1 = 1.88300 νd 1 = 40.80 PCt 1 = 0.7381
r 2 = 6.875
d 2 = 3.36
r 3 = 85.894
d 3 = 0.50 nd 2 = 1.48749
r 4 = 15.316
d 4 = 3.44
r 5 = -11.913 (aspherical surface)
d 5 = 0.60 nd 3 = 1.62263 νd 3 = 58.16 PCt 3 = 0.8464
r 6 = 12.850
d 6 = 3.45 nd 4 = 1.91082 νd 4 = 35.25 PCt 4 = 0.7131
r 7 = -30.637
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 12.164 (aspherical surface)
d 9 = 4.00 nd 5 = 1.59201 νd 5 = 67.02 PCt 5 = 0.8499
r 10 = -18.102 (aspherical surface)
d 10 = 1.52
r 11 = -778.309
d 11 = 0.50 nd 6 = 1.56883 νd 6 = 56.04 PCt 6 = 0.8080
r 12 = 9.700
d 12 = 3.88 nd 7 = 1.49700 νd 7 = 81.65 PCt 7 = 0.8305
r 13 = -13.485
d 13 = 0.16
r 14 = 288.955
d 14 = 0.50 nd 8 = 1.91082 νd 8 = 35.25 PCt 8 = 0.7131
r 15 = 8.053
d 15 = 3.50 nd 9 = 1.49700
r 16 = -20.581
d 16 = D (16) (variable)
r 17 = -20.841 (aspherical surface)
d 17 = 2.79 nd 10 = 1.82080 νd 10 = 42.71 PCt 10 = 0.7536
r 18 = -9.150
d 18 = 0.50 nd 11 = 1.91082 νd 11 = 35.25 PCt 11 = 0.7131
r 19 = -14.353
d 19 = 4.00
r 20 = ∞
d 20 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=-1.06724×10-5,C=-2.37407×10-6,
D=7.20137×10-8,E=-1.81348×10-9
(第9面)
k=0,
A=0,B=-1.07086×10-4,C=1.71366×10-6,
D=-2.23618×10-8,E=4.85325×10-10
(第10面)
k=0,
A=0,B=2.35304×10-4,C=7.93066×10-7,
D=-7.58119×10-10,E=4.17355×10-10
(第17面)
k=0,
A=0,B=-1.87934×10-5,C=1.51794×10-7,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = -1.06724 × 10 -5 , C = -2.37407 × 10 -6 ,
D = 7.20137 x 10 -8 , E = -1.81348
(9th surface)
k = 0,
A = 0, B = -1.07086 × 10 -4 , C = 1.71366 × 10 -6 ,
D = -2.23618 × 10 -8 , E = 4.85325 × 10 -10
(10th surface)
k = 0,
A = 0, B = 2.35304 × 10 -4 , C = 7.93066 × 10 -7 ,
D = -7.58119 × 10 -10 , E = 4.17355 × 10 -10
(17th surface)
k = 0,
A = 0, B = -1.87934 × 10 -5 , C = 1.51794 × 10 -7 ,
D = 0, E = 0
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.43 5.83 8.35
Fナンバー 1.65 1.91 2.58
半画角(ω) 66.04 47.83 32.80
像高 4.75 4.75 4.75
レンズ系全長 56.18 52.70 51.30
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 8.95 5.44 4.04
D(8) 7.27 4.97 0.85
D(16) 4.10 6.40 10.52
(Various data)
Magnification ratio: 1.88
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.43 5.83 8.35
F number 1.65 1.91 2.58
Half angle of view (ω) 66.04 47.83 32.80
Image height 4.75 4.75 4.75
Lens system total length 56.18 52.70 51.30
Back focus (BF) 2.00 2.00 2.00
D (7) 8.95 5.44 4.04
D (8) 7.27 4.97 0.85
D (16) 4.10 6.40 10.52
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -8.44 4.91
2 9 13.22 -6.42
3 17 54.65 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -8.44 4.91
2 9 13.22 -6.42
3 17 54.65 0.00
(条件式(1)に関する数値)
|f1/fw|=1.90
(Numerical value regarding conditional expression (1))
| F1 / fw | = 1.90
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G62と第3レンズ群G63との合成焦点距離)=14.51
f23w/fw=3.27
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 62 and the third lens group G 63 in the in- focus state of an object at infinity at the wide-angle end) = 14.51
f23w / fw = 3.27
(条件式(3)に関する数値)
|f3/fw|=12.33
(Numerical value regarding conditional expression (3))
| F3 / fw | = 12.33
(条件式(4)に関する数値)
|f23w/f1|=1.72
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.72
(条件式(5)に関する数値)
|νd3P−νd3n|=7.5
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 7.5
(条件式(6)に関する数値)
νd2P_ave=76.8
(Numerical value regarding conditional expression (6))
νd2P_ave = 76.8
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0025
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0025
(条件式(8)に関する数値)
νd1p=35.3
(Numerical value regarding conditional expression (8))
νd1p = 35.3
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0288
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0025
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0025
(条件式(11)に関する数値)
|f1/f2|=0.64
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.64
(条件式(12)に関する数値)
|X2/f2|=0.49
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.49
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G62と第3レンズ群G63との合成焦点距離)=16.65
f23t/ft=2.00
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 62 and the third lens group G 63 in the in- focus state of an object at infinity at the telephoto end) = 16.65
f23t / ft = 2.00
(条件式(14)に関する数値)
|f3/f2|=4.13
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 4.13
図13は、実施例6にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 13 is a diagram of various types of aberration of the zoom lens according to the sixth example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
図14は、実施例7にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G71と、正の屈折力を有する第2レンズ群G72と、正の屈折力を有する第3レンズ群G73と、が配置されて構成される。第1レンズ群G71と第2レンズ群G72との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G73と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 14 is a sectional view taken along the optical axis to show the configuration of the zoom lens according to the seventh example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side, not shown, a first lens group G 71 having a negative refractive power, a second lens group G 72 having a positive refractive power, and a third lens group having a positive refractive power. G 73 and are arranged. An aperture stop STP that defines a predetermined aperture is arranged between the first lens group G 71 and the second lens group G 72 . A cover glass CG is arranged between the third lens group G 73 and the image plane IMG.
第1レンズ群G71は、物体側から順に、負レンズL711と、負レンズL712と、負レンズL713と、正レンズL714と、が配置されて構成される。負レンズL713の物体側面には、非球面が形成されている。負レンズL713と正レンズL714とは、接合されている。 The first lens group G 71 includes, in order from the object side, a negative lens L 711 , a negative lens L 712 , a negative lens L 713, and a positive lens L 714 . An aspherical surface is formed on the object side surface of the negative lens L 713 . The negative lens L 713 and the positive lens L 714 are cemented together.
第2レンズ群G72は、物体側から順に、正レンズL721と、負レンズL722と、正レンズL723と、負レンズL724と、正レンズL725と、が配置されて構成される。正レンズL721の両面には、非球面が形成されている。負レンズL722と正レンズL723とは、接合されている。負レンズL724と正レンズL725とは、接合されている。 The second lens group G 72 is configured by sequentially arranging a positive lens L 721 , a negative lens L 722 , a positive lens L 723 , a negative lens L 724, and a positive lens L 725 from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 721 . The negative lens L 722 and the positive lens L 723 are cemented. The negative lens L 724 and the positive lens L 725 are cemented.
第3レンズ群G73は、物体側から順に、正レンズL731と、負レンズL732と、が配置されて構成される。正レンズL731の物体側面には、非球面が形成されている。正レンズL731と負レンズL732とは、接合されている。正レンズL731と負レンズL732との接合面は、像面IMG側に凸形状になっている。 The third lens group G 73 is configured by arranging a positive lens L 731 and a negative lens L 732 in this order from the object side. An aspherical surface is formed on the object side surface of the positive lens L 731 . The positive lens L 731 and the negative lens L 732 are cemented together. The cemented surface between the positive lens L 731 and the negative lens L 732 has a convex shape on the image plane IMG side.
このズームレンズは、開口絞りSTPおよび第3レンズ群G73を像面IMGに対して固定したまま、第1レンズ群G71を光軸に沿って物体側から像面IMG側へなだらかに移動させ、第2レンズ群G72を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図14の実線の矢印を参照)。また、第1レンズ群G71を光軸に沿って物体側から像面IMG側へなだらかに移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図14中の破線の矢印を参照)。 This zoom lens moves the first lens group G 71 gently from the object side to the image plane IMG side along the optical axis while fixing the aperture stop STP and the third lens group G 73 with respect to the image plane IMG. , The second lens group G 72 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid arrow in FIG. 14). Further, the first lens group G 71 is gently moved from the object side to the image plane IMG side along the optical axis to perform focusing from the infinity object focused state to the closest object focused state (FIG. 14). See the dashed arrow inside).
以下、実施例7にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data relating to the zoom lens according to the example 7 will be shown.
(面データ)
r1=36.110
d1=0.70 nd1=1.88300 νd1=40.80 PCt1=0.7381
r2=6.875
d2=3.49
r3=269.543
d3=0.50 nd2=1.48749 νd2=70.45 PCt2=0.8988
r4=14.782
d4=3.23
r5=-18.843(非球面)
d5=0.60 nd3=1.62263 νd3=58.16 PCt3=0.8464
r6=11.664
d6=3.36 nd4=1.91082 νd4=35.25 PCt4=0.7131
r7=-44.582
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=12.085(非球面)
d9=4.00 nd5=1.59201 νd5=67.02 PCt5=0.8499
r10=-19.491(非球面)
d10=1.36
r11=309.911
d11=0.50 nd6=1.56883 νd6=56.04 PCt6=0.8080
r12=10.063
d12=3.87 nd7=1.49700 νd7=81.65 PCt7=0.8305
r13=-13.895
d13=0.36
r14=929.336
d14=0.50 nd8=1.91082 νd8=35.25 PCt8=0.7131
r15=7.835
d15=3.77 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-21.378
d16=D(16)(可変)
r17=-22.644(非球面)
d17=2.81 nd10=1.82080 νd10=42.71 PCt10=0.7536
r18=-9.159
d18=0.50 nd11=1.91082 νd11=35.25 PCt11=0.7131
r19=-14.459
d19=4.00
r20=∞
d20=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 36.110
d 1 = 0.70 nd 1 = 1.88300 νd 1 = 40.80 PCt 1 = 0.7381
r 2 = 6.875
d 2 = 3.49
r 3 = 269.543
d 3 = 0.50 nd 2 = 1.48749
r 4 = 14.782
d 4 = 3.23
r 5 = -18.843 (aspherical surface)
d 5 = 0.60 nd 3 = 1.62263 νd 3 = 58.16 PCt 3 = 0.8464
r 6 = 11.664
d 6 = 3.36 nd 4 = 1.91082 νd 4 = 35.25 PCt 4 = 0.7131
r 7 = -44.582
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 12.085 (aspherical surface)
d 9 = 4.00 nd 5 = 1.59201 νd 5 = 67.02 PCt 5 = 0.8499
r 10 = -19.491 (aspherical surface)
d 10 = 1.36
r 11 = 309.911
d 11 = 0.50 nd 6 = 1.56883 νd 6 = 56.04 PCt 6 = 0.8080
r 12 = 10.063
d 12 = 3.87 nd 7 = 1.49700 νd 7 = 81.65 PCt 7 = 0.8305
r 13 = -13.895
d 13 = 0.36
r 14 = 929.336
d 14 = 0.50 nd 8 = 1.91082 νd 8 = 35.25 PCt 8 = 0.7131
r 15 = 7.835
d 15 = 3.77 nd 9 = 1.49700
r 16 = -21.378
d 16 = D (16) (variable)
r 17 = -22.644 (aspherical surface)
d 17 = 2.81 nd 10 = 1.82080 νd 10 = 42.71 PCt 10 = 0.7536
r 18 = -9.159
d 18 = 0.50 nd 11 = 1.91082 νd 11 = 35.25 PCt 11 = 0.7131
r 19 = -14.459
d 19 = 4.00
r 20 = ∞
d 20 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=1.62760×10-5,C=-1.42083×10-6,
D=6.60166×10-8,E=-8.80582×10-10
(第9面)
k=0,
A=0,B=-1.02549×10-4,C=1.52216×10-6,
D=-2.31244×10-8,E=3.62557×10-10
(第10面)
k=0,
A=0,B=2.17744×10-4,C=9.00649×10-7,
D=-8.24436×10-9,E=3.18041×10-10
(第17面)
k=0,
A=0,B=-3.48413×10-5,C=-3.50512×10-8,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = 1.62760 × 10 -5 , C = -1.42083 × 10 -6 ,
D = 6.60166 × 10 -8 , E = -8.80582 × 10 -10
(9th surface)
k = 0,
A = 0, B = -1.02549 × 10 -4 , C = 1.52216 × 10 -6 ,
D = -2.31244 × 10 -8 , E = 3.62557 × 10 -10
(10th surface)
k = 0,
A = 0, B = 2.17744 × 10 -4 , C = 9.00649 × 10 -7 ,
D = -8.24436 × 10 -9 , E = 3.18041 × 10 -10
(17th surface)
k = 0,
A = 0, B = -3.48413 × 10 -5 , C = -3.50512 × 10 -8 ,
D = 0, E = 0
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.42 5.82 8.33
Fナンバー 1.65 1.91 2.57
半画角(ω) 64.86 47.51 32.69
像高 4.75 4.75 4.75
レンズ系全長 57.42 53.69 52.09
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 10.06 6.33 4.73
D(8) 7.35 5.02 0.85
D(16) 3.95 6.28 10.45
(Various data)
Magnification ratio: 1.88
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.42 5.82 8.33
F number 1.65 1.91 2.57
Half angle of view (ω) 64.86 47.51 32.69
Image height 4.75 4.75 4.75
Lens system total length 57.42 53.69 52.09
Back focus (BF) 2.00 2.00 2.00
D (7) 10.06 6.33 4.73
D (8) 7.35 5.02 0.85
D (16) 3.95 6.28 10.45
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -8.74 5.33
2 9 13.59 -6.50
3 17 48.39 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -8.74 5.33
2 9 13.59 -6.50
3 17 48.39 0.00
(条件式(1)に関する数値)
|f1/fw|=1.98
(Numerical value regarding conditional expression (1))
| F1 / fw | = 1.98
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G72と第3レンズ群G73との合成焦点距離)=14.85
f23w/fw=3.36
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 72 and the third lens group G 73 in the in- focus state of the object at infinity at the wide-angle end) = 14.85
f23w / fw = 3.36
(条件式(3)に関する数値)
|f3/fw|=10.95
(Numerical value regarding conditional expression (3))
| F3 / fw | = 10.95
(条件式(4)に関する数値)
|f23w/f1|=1.70
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.70
(条件式(5)に関する数値)
|νd3P−νd3n|=7.5
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 7.5
(条件式(6)に関する数値)
νd2P_ave=76.8
(Numerical value regarding conditional expression (6))
νd2P_ave = 76.8
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0025
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0025
(条件式(8)に関する数値)
νd1p=35.3
(Numerical value regarding conditional expression (8))
νd1p = 35.3
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0288
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0025
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0025
(条件式(11)に関する数値)
|f1/f2|=0.64
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.64
(条件式(12)に関する数値)
|X2/f2|=0.48
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.48
(条件式(13)に関する数値)
f23t(望遠端における第2レンズ群G72と第3レンズ群G73との合成焦点距離)=17.40
f23t/ft=2.09
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens group G 72 and the third lens group G 73 at the telephoto end) = 17.40
f23t / ft = 2.09
(条件式(14)に関する数値)
|f3/f2|=3.56
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 3.56
図15は、実施例7にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(λ=587.56nm)、短破線はg線(λ=435.84nm)、長破線はIR線(λ=850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 15 is a diagram of various types of aberration of the zoom lens according to the seventh example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (λ = 587.56 nm), the short broken line is the g line (λ = 435.84 nm), and the long broken line is IR. The characteristic of the wavelength corresponding to the line (λ = 850.00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the diagram of astigmatism, the solid line shows the characteristics of the sagittal plane (indicated by S in the figure) and the broken line shows the characteristics of the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line.
図16は、実施例8にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G81と、正の屈折力を有する第2レンズ群G82と、負の屈折力を有する第3レンズ群G83と、が配置されて構成される。第1レンズ群G81と第2レンズ群G82との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G83と像面IMGとの間には、カバーガラスCGが配置される。 FIG. 16 is a cross-sectional view taken along the optical axis, showing the configuration of the zoom lens according to the eighth example. This figure shows the in-focus state of an object at infinity at the wide-angle end of the lens system. This zoom lens comprises, in order from the object side (not shown), a first lens group G 81 having a negative refractive power, a second lens group G 82 having a positive refractive power, and a third lens group having a negative refractive power. G83 and are arranged. An aperture stop STP defining a predetermined aperture is arranged between the first lens group G 81 and the second lens group G 82 . A cover glass CG is arranged between the third lens group G 83 and the image plane IMG.
第1レンズ群G81は、物体側から順に、負レンズL811と、負レンズL812と、負レンズL813と、正レンズL814と、が配置されて構成される。負レンズL813の物体側面には、非球面が形成されている。負レンズL813と正レンズL814とは、接合されている。 The first lens group G 81 includes, in order from the object side, a negative lens L 811 , a negative lens L 812 , a negative lens L 813, and a positive lens L 814 . An aspherical surface is formed on the object side surface of the negative lens L 813 . The negative lens L 813 and the positive lens L 814 are cemented together.
第2レンズ群G82は、物体側から順に、正レンズL821と、負レンズL822と、正レンズL823と、負レンズL824と、正レンズL825と、が配置されて構成される。正レンズL821の両面には、非球面が形成されている。負レンズL822と正レンズL823とは、接合されている。負レンズL824と正レンズL825とは、接合されている。 The second lens group G 82 is configured by arranging a positive lens L 821 , a negative lens L 822 , a positive lens L 823 , a negative lens L 824, and a positive lens L 825 in this order from the object side. .. Aspherical surfaces are formed on both surfaces of the positive lens L 821 . The negative lens L 822 and the positive lens L 823 are cemented. The negative lens L 824 and the positive lens L 825 are cemented together.
第3レンズ群G83は、物体側から順に、正レンズL831と、負レンズL832と、が配置されて構成される。正レンズL831の両面には、非球面が形成されている。 The third lens group G 83 is composed of a positive lens L 831 and a negative lens L 832 arranged in order from the object side. Aspherical surfaces are formed on both surfaces of the positive lens L 831 .
このズームレンズは、開口絞りSTPおよび第3レンズ群G83を像面IMGに対して固定したまま、第1レンズ群G81を光軸に沿って像面IMG側に凸の軌跡を形成するように移動させ、第2レンズ群G82を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(図16の実線の矢印を参照)。また、第1レンズ群G81を光軸に沿って像面IMG側に緩い凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(図16中の破線の矢印を参照)。 In this zoom lens, the first lens group G 81 forms a convex locus along the optical axis on the image plane IMG side while the aperture stop STP and the third lens group G 83 are fixed with respect to the image plane IMG. And the second lens group G 82 is moved along the optical axis from the image plane IMG side to the object side to perform zooming from the wide-angle end to the telephoto end (see the solid arrow in FIG. 16). .. Further, the first lens group G 81 is moved along the optical axis so as to form a locus of a gentle convex toward the image plane IMG side to perform focusing from the infinity object focus state to the closest object focus state. (Refer to the broken arrow in FIG. 16).
以下、実施例8にかかるズームレンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the zoom lens according to the eighth example will be shown.
(面データ)
r1=21.133
d1=0.70 nd1=1.63854 νd1=55.45 PCt1=0.7991
r2=6.875
d2=2.69
r3=9.922
d3=0.50 nd2=1.88300 νd2=40.80 PCt2=0.7381
r4=6.150
d4=3.97
r5=-11.017(非球面)
d5=0.60 nd3=1.62263 νd3=58.16 PCt3=0.8464
r6=7.873
d6=1.74 nd4=1.91082 νd4=35.25 PCt4=0.7131
r7=67.749
d7=D(7)(可変)
r8=∞(開口絞り)
d8=D(8)(可変)
r9=11.518(非球面)
d9=4.00 nd5=1.55332 νd5=71.68 PCt5=0.8164
r10=-16.500(非球面)
d10=0.15
r11=32.578
d11=0.50 nd6=1.88300 νd6=40.80 PCt6=0.7381
r12=19.905
d12=3.90 nd7=1.49700 νd7=81.65 PCt7=0.8305
r13=-11.291
d13=0.15
r14=-238.272
d14=0.50 nd8=1.80610 νd8=40.73 PCt8=0.7464
r15=7.799
d15=4.36 nd9=1.49700 νd9=81.65 PCt9=0.8305
r16=-17.677
d16=D(16)(可変)
r17=-21.317(非球面)
d17=2.82 nd10=1.49710 νd10=81.56 PCt10=0.8349
r18=-9.150(非球面)
d18=0.30
r19=-8.426
d19=0.50 nd11=1.90366 νd11=31.32 PCt11=0.6968
r20=-13.212
d20=6.04
r21=∞
d21=0.50 nd12=1.51680 νd12=64.20 PCt12=0.8682
r21=∞
d21=BF
r22=∞(像面)
(Surface data)
r 1 = 21.133
d 1 = 0.70 nd 1 = 1.63854
r 2 = 6.875
d 2 = 2.69
r 3 = 9.922
d 3 = 0.50 nd 2 = 1.88300
r 4 = 6.150
d 4 = 3.97
r 5 = -11.017 (aspherical surface)
d 5 = 0.60 nd 3 = 1.62263 νd 3 = 58.16 PCt 3 = 0.8464
r 6 = 7.873
d 6 = 1.74 nd 4 = 1.91082 νd 4 = 35.25 PCt 4 = 0.7131
r 7 = 67.749
d 7 = D (7) (variable)
r 8 = ∞ (aperture stop)
d 8 = D (8) (variable)
r 9 = 11.518 (aspherical surface)
d 9 = 4.00 nd 5 = 1.55332 νd 5 = 71.68 PCt 5 = 0.8164
r 10 = -16.500 (aspherical surface)
d 10 = 0.15
r 11 = 32.578
d 11 = 0.50 nd 6 = 1.88300 νd 6 = 40.80 PCt 6 = 0.7381
r 12 = 19.905
d 12 = 3.90 nd 7 = 1.49700 νd 7 = 81.65 PCt 7 = 0.8305
r 13 = -11.291
d 13 = 0.15
r 14 = -238.272
d 14 = 0.50 nd 8 = 1.80610 νd 8 = 40.73 PCt 8 = 0.7464
r 15 = 7.799
d 15 = 4.36 nd 9 = 1.49700
r 16 = -17.677
d 16 = D (16) (variable)
r 17 = -21.317 (aspherical surface)
d 17 = 2.82 nd 10 = 1.49710 νd 10 = 81.56 PCt 10 = 0.8349
r 18 = -9.150 (aspherical surface)
d 18 = 0.30
r 19 = -8.426
d 19 = 0.50 nd 11 = 1.90366 νd 11 = 31.32 PCt 11 = 0.6968
r 20 = -13.212
d 20 = 6.04
r 21 = ∞
d 21 = 0.50 nd 12 = 1.51680 νd 12 = 64.20 PCt 12 = 0.8682
r 21 = ∞
d 21 = BF
r 22 = ∞ (image plane)
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=-3.75950×10-5,C=-1.72154×10-5,
D=9.06529×10-7,E=-2.94817×10-8
(第9面)
k=0,
A=0,B=-1.77587×10-4,C=2.23866×10-6,
D=1.17470×10-8,E=-1.15419×10-9
(第10面)
k=0,
A=0,B=3.51196×10-4,C=1.23946×10-6,
D=8.50737×10-8,E=-1.85413×10-9
(第17面)
k=0,
A=0,B=2.94890×10-5,C=1.18346×10-6,
D=0,E=0
(第18面)
k=0,
A=0,B=-4.83274×10-5,C=-5.27841×10-8,
D=0,E=0
Cone coefficient (k) and aspherical coefficient (A, B, C, D, E)
(5th surface)
k = 0,
A = 0, B = -3.75950 × 10 -5 , C = -1.72154 × 10 -5 ,
D = 9.06529 × 10 -7 , E = -2.94817 × 10 -8
(9th surface)
k = 0,
A = 0, B = -1.77587 × 10 -4 , C = 2.23866 × 10 -6 ,
D = 1.17470 × 10 -8 , E = -1.15419 × 10 -9
(10th surface)
k = 0,
A = 0, B = 3.51196 × 10 -4 , C = 1.23946 × 10 -6 ,
D = 8.50737 × 10 -8 , E = -1.85413 × 10 -9
(17th surface)
k = 0,
A = 0, B = 2.94890 × 10 -5 , C = 1.18346 × 10 -6 ,
D = 0, E = 0
(Eighteenth surface)
k = 0,
A = 0, B = -4.83274 × 10 -5 , C = -5.27841 × 10 -8 ,
D = 0, E = 0
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.43 5.83 8.35
Fナンバー 1.65 2.00 3.06
半画角(ω) 65.46 47.68 32.57
像高 4.75 4.75 4.75
レンズ系全長 48.26 47.11 48.05
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 3.68 2.53 3.47
D(8) 7.47 5.14 0.85
D(16) 1.20 3.53 7.82
(Various data)
Magnification ratio: 1.88
Wide-angle end Intermediate focal position Telephoto end focal length (at infinity object focused state) 4.43 5.83 8.35
F number 1.65 2.00 3.06
Half angle of view (ω) 65.46 47.68 32.57
Image height 4.75 4.75 4.75
Lens system total length 48.26 47.11 48.05
Back focus (BF) 2.00 2.00 2.00
D (7) 3.68 2.53 3.47
D (8) 7.47 5.14 0.85
D (16) 1.20 3.53 7.82
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -5.65 2.10
2 9 10.41 -6.62
3 17 -186.14 0.00
(Zoom lens group data)
Group Start surface Focal length Lens movement amount (+ on image plane IMG side)
1 1 -5.65 2.10
2 9 10.41 -6.62
3 17 -186.14 0.00
(条件式(1)に関する数値)
|f1/fw|=1.27
(Numerical value regarding conditional expression (1))
| F1 / fw | = 1.27
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G82と第3レンズ群G83との合成焦点距離)=10.96
f23w/fw=2.47
(Numerical value regarding conditional expression (2))
f23w (composite focal length of the second lens group G 82 and the third lens group G 83 in the in- focus state of an object at infinity at the wide-angle end) = 10.96
f23w / fw = 2.47
(条件式(3)に関する数値)
|f3/fw|=41.97
(Numerical value regarding conditional expression (3))
| F3 / fw | = 41.97
(条件式(4)に関する数値)
|f23w/f1|=1.94
(Numerical value regarding conditional expression (4))
| F23w / f1 | = 1.94
(条件式(5)に関する数値)
|νd3P−νd3n|=50.2
(Numerical value regarding conditional expression (5))
│νd3P-νd3n | = 50.2
(条件式(6)に関する数値)
νd2P_ave=78.3
(Numerical value regarding conditional expression (6))
νd2P_ave = 78.3
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0102
(Numerical value regarding conditional expression (7))
PCt_2n_i- (0.546 + 0.00467 × νd_2n_i) = 0.0102
(条件式(8)に関する数値)
νd1p=35.3
(Numerical value regarding conditional expression (8))
νd1p = 35.3
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
(Numerical value regarding conditional expression (9))
PCt_1n_i- (0.546 + 0.00467 × νd_1n_i) = 0.0288
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0045
(Numerical value regarding conditional expression (10))
PCt_3n_i- (0.546 + 0.00467 × νd_3n_i) = 0.0045
(条件式(11)に関する数値)
|f1/f2|=0.54
(Numerical value regarding conditional expression (11))
| F1 / f2 | = 0.54
(条件式(12)に関する数値)
|X2/f2|=0.64
(Numerical value regarding conditional expression (12))
| X2 / f2 | = 0.64
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G82と第3レンズ群G83との合成焦点距離)=10.57
f23t/ft=1.27
(Numerical value regarding conditional expression (13))
f23t (composite focal length of the second lens unit G 82 and the third lens unit G 83 in the in- focus state at infinity at the telephoto end) = 10.57
f23t / ft = 1.27
(条件式(14)に関する数値)
|f3/f2|=17.88
(Numerical value regarding conditional expression (14))
| F3 / f2 | = 17.88
図17は、実施例8にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。 FIG. 17 is a diagram of various types of aberration of the zoom lens according to the eighth example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the short broken line is the g line (435.84 nm), and the long broken line is the IR line (850. The characteristic of the wavelength corresponding to (00 nm) is shown. In the astigmatism diagram, the vertical axis represents the half angle of view (indicated by ω in the figure), and shows the characteristic of the wavelength corresponding to the d line. In the astigmatism diagram, the solid line represents the sagittal plane (indicated by S in the figure) and the broken line represents the meridional plane (indicated by M in the figure). In the distortion diagram, the vertical axis represents the half angle of view (indicated by ω in the figure) and shows the characteristic of the wavelength corresponding to the d line.
なお、上記各実施例中の数値データにおいて、r1,r2,・・・・はレンズ面等の曲率半径、d1,d2,・・・・はレンズ等の肉厚またはそれらの面間隔、nd1,nd2,・・・・はレンズ等のd線(λ=587.56nm)に対する屈折率、νd1,νd2,・・・・はレンズ等のd線(λ=587.56nm)に対するアッベ数、PCt1,PCt2,・・・・はレンズ等のC線とt線に関する部分分散比を示している。そして、長さの単位はすべて「mm」、角度の単位はすべて「°」である。 In the numerical data in each of the above-mentioned embodiments, r 1 , r 2 , ... Are radii of curvature of the lens surface and the like, d 1 , d 2 ,. , Nd 1 , nd 2 , ... Denote the refractive index for the d line (λ = 587.56 nm) of the lens or the like, and νd 1 , νd 2 , ... Are the d line of the lens (λ = 587. 56 nm), Abbe numbers, PCt 1 , PCt 2 , ... Show the partial dispersion ratios for the C line and t line of the lens or the like. The unit of length is “mm” and the unit of angle is “°”.
また、上記各非球面形状は、光軸に垂直な方向の高さをH、レンズ面頂を原点としたときの高さHにおける光軸方向の変位量をX(H)、近軸曲率半径をR、円錐係数をk、2次,4次,6次,8次,10次の非球面係数をそれぞれA,B,C,D,Eとし、光の進行方向を正とするとき、以下に示す式により表される。 In each of the aspherical shapes, the height in the direction perpendicular to the optical axis is H, the amount of displacement in the optical axis direction at the height H when the lens surface apex is the origin is X (H), and the paraxial radius of curvature is Is R, the conic coefficient is k, the second-order, fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients are A, B, C, D, and E, respectively, and when the traveling direction of light is positive, It is represented by the formula shown in.
上記各実施例に示したように、本発明によれば、上記各条件式を満足することにより、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを実現することができる。 As shown in each of the above embodiments, according to the present invention, by satisfying each of the above conditional expressions, a solid-state imaging device having a large aperture ratio, high pixels, and high sensitivity while having a simple configuration. It has a high optical performance that is compatible with all types, and is capable of correcting various aberrations that occur for light with a wide range of wavelengths from the visible light region to the near-infrared region satisfactorily over the entire zoom range. The zoom lens can be realized.
このような特徴を備えたズームレンズは、主に可視光域の光を用いる写真用のカメラはもとより、夜間撮影も行う監視カメラ等、様々な撮像装置に用いることができる。特に、高画素、高感度化が進んだ固体撮像素子を備えた撮像装置に好適である。 The zoom lens having such characteristics can be used not only in a camera for photography that mainly uses light in the visible light range, but also in various imaging devices such as a surveillance camera that also performs nighttime shooting. In particular, it is suitable for an image pickup apparatus including a solid-state image pickup element with high pixels and high sensitivity.
<適用例>
次に、本発明にかかるズームレンズを撮像装置に適用した例を示す。図18は、本発明にかかるズームレンズを備えた撮像装置の一例を示す図である。図18に示すように、撮像装置100は、ズームレンズ10と、レンズ鏡筒20と、固体撮像素子101と、を備えて構成される。ズームレンズ10はレンズ鏡筒20に収容され、図示しない駆動機構の駆動によって変倍やズーミングが実行される。なお、図18では、ズームレンズ10として実施例1(図2を参照)のものを示したが、実施例2〜8に示したズームレンズであっても同様に撮像装置100に搭載可能である。
<Application example>
Next, an example in which the zoom lens according to the present invention is applied to an image pickup apparatus will be shown. FIG. 18 is a diagram showing an example of an image pickup apparatus including a zoom lens according to the present invention. As shown in FIG. 18, the
ズームレンズ10と固体撮像素子101とを備えた撮像装置100において、図2に示した像面IMGが固体撮像素子101の撮像面に相当する。固体撮像素子101としては、たとえば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサなどの光電変換素子を用いることができる。
In the
撮像装置100において、ズームレンズ10の物体側から入射した光が最終的に固体撮像素子101の撮像面に結像する。そして、固体撮像素子101は受像した光を光電変換して電気信号として出力する。この出力信号が図示しない信号処理回路によって演算処理され、物体像に対応したデジタル画像が生成される。デジタル画像は、たとえばHDD(Hard Disk Drive)やメモリカード、光ディスク、磁気テープなどの記録媒体に記録することが可能である。
In the
上記のように構成することで、可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能になり、昼夜を問わず、良好な画像が得られる高性能の撮像装置を実現することができる。 By configuring as described above, it becomes possible to satisfactorily correct various aberrations that occur with respect to light having a wide range of wavelengths from the visible light region to the near infrared region over the entire zooming range, and change the day and night. Regardless, it is possible to realize a high-performance image pickup device that can obtain a good image.
図18では、本発明にかかるズームレンズを監視カメラに用いた例を示した。しかし、本発明にかかるズームレンズは、監視カメラのみならず、ビデオカメラ、デジタルスチルカメラ、一眼レフカメラ、ミラーレス一眼カメラ等に用いることも可能である。 FIG. 18 shows an example in which the zoom lens according to the present invention is used in a surveillance camera. However, the zoom lens according to the present invention can be used not only for surveillance cameras but also for video cameras, digital still cameras, single-lens reflex cameras, mirrorless single-lens cameras, and the like.
以上のように、本発明にかかるズームレンズは、CCDやCMOS等の固体撮像素子が搭載された小型の撮像装置に有用であり、特に、高い光学性能を要求される撮像装置に適している。 As described above, the zoom lens according to the present invention is useful for a small-sized image pickup device equipped with a solid-state image pickup device such as a CCD or CMOS, and is particularly suitable for an image pickup device that requires high optical performance.
G11,G21,G31,G41,G51,G61,G71,G81 第1レンズ群
G12,G22,G32,G42,G52,G62,G72,G82 第2レンズ群
G13,G23,G33,G43,G53,G63,G73,G83 第3レンズ群
L111,L112,L113,L122,L124,L132,L211,L212,L222,L224,L232,L311,L312,L313,L322,L324,L332,L411,L412,L413,L422,L424,L432,L511,L512,L513,L522,L524,L532,L611,L612,L613,L622,L624,L632,L711,L712,L713,L722,L724,L732,L811,L812,L813,L822,L824,L832 負レンズ
L114,L121,L123,L125,L131,L213,L221,L223,L225,L231,L314,L321,L323,L325,L331,L414,L421,L423,L425,L431,L514,L521,L523,L525,L531,L614,L621,L623,L625,L631,L714,L721,L723,L725,L731,L814,L821,L823,L825,L831 正レンズ
STP 開口絞り
CG カバーガラス
IMG 像面
10 ズームレンズ
20 レンズ鏡筒
100 撮像装置
101 固体撮像素子
G 11 , G 21 , G 31 , G 41 , G 51 , G 61 , G 71 , G 81 First lens group G 12 , G 22 , G 32 , G 42 , G 52 , G 62 , G 72 , G 82 the second lens group G 13, G 23, G 33 , G 43, G 53, G 63, G 73, G 83 third lens group L 111, L 112, L 113 , L 122, L 124, L 132, L 211 , L 212 , L 222 , L 224 , L 232 , L 311 , L 312 , L 313 , L 322 , L 324 , L 332 , L 411 , L 412 , L 413 , L 422 , L 424 , L 432 , L 511 , L 512 , L 513 , L 522 , L 524 , L 532 , L 611 , L 612 , L 613 , L 622 , L 624 , L 632 , L 711 , L 712 , L 713 , L 722 , L 724 , L 732 , L 811 , L 812 , L 813 , L 822 , L 824 , L 832 negative lens L 114 , L 121 , L 123 , L 125 , L 131 , L 213 , L 221 , L 223 , L 225 , L 231 , L 314 , L 321 , L 323 , L 325 , L 331 , L 414 , L 421 , L 423 , L 425 , L 431 , L 514 , L 521 , L 523 , L 525 , L 531 , L 614 , L 621 , L 623 , L 625 , L 631 , L 714 , L 721 , L 723 , L 725 , L 731 , L 814 , L 821 , L 823 , L 825 , L 831 Positive lens STP aperture stop CG cover glass IMG image plane 10 zoom lens 20 lens barrel 100 imaging device 101 solid-state imaging device
Claims (11)
少なくとも前記第1レンズ群および前記第2レンズ群を光軸に沿って移動させて、前記各レンズ群の光軸上の間隔を変えることにより広角端から望遠端への変倍を行うズームレンズにおいて、
前記第2レンズ群の最も物体側には正レンズが配置され、
前記第3レンズ群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズと、を備え、
以下に示す条件式を満足することを特徴とするズームレンズ。
(1) 1.2≦|f1/fw|≦2.5
(2) 2.0≦f23w/fw≦3.4
(3) 10≦|f3/fw|≦200
(6) 65.0≦νd2P_ave
(11) 0.4≦|f1/f2|≦0.77
ただし、f1は前記第1レンズ群の焦点距離、fwは広角端における無限遠物体合焦状態のレンズ全系の焦点距離、f23wは広角端における無限遠物体合焦状態の前記第2レンズ群と前記第3レンズ群との合成焦点距離、f3は前記第3レンズ群の焦点距離、νd2P_aveは前記第2レンズ群に含まれる、全ての正レンズのd線に対するアッベ数の平均値、f2は前記第2レンズ群の焦点距離を示す。 It is composed of a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group, which are arranged in order from the object side.
A zoom lens for performing zooming from a wide-angle end to a telephoto end by moving at least the first lens group and the second lens group along an optical axis to change a distance between the lens groups on the optical axis. ,
A positive lens is disposed on the most object side of the second lens group,
The third lens group includes at least one positive lens and at least one negative lens,
A zoom lens characterized by satisfying the following conditional expression.
(1) 1.2 ≦ | f1 / fw | ≦ 2.5
(2) 2.0 ≦ f23w / fw ≦ 3.4
(3) 10 ≦ | f3 / fw | ≦ 200
(6) 65.0 ≦ νd2P_ave
(11) 0.4 ≦ | f1 / f2 | ≦ 0.77
Here, f1 is the focal length of the first lens group, fw is the focal length of the entire lens system at the wide-angle end when the object is focused at infinity, and f23w is the second lens group when the object is focused at infinity at the wide-angle end. F3 is a focal length of the third lens group, νd2P_ave is an average value of Abbe numbers for d lines of all positive lenses included in the second lens group, and f2 is the above The focal length of the second lens group is shown.
前記開口絞りおよび前記第3レンズ群は広角端から望遠端への変倍の際に固定されることを特徴とする請求項1に記載のズームレンズ。 An aperture stop is arranged between the first lens group and the second lens group,
The zoom lens according to claim 1, wherein the aperture stop and the third lens group are fixed during zooming from the wide-angle end to the telephoto end.
(4) 1.1≦|f23w/f1|≦2.1 The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
(4) 1.1 ≦ | f23w / f1 | ≦ 2.1
(5) 5.0≦|νd3P−νd3n|
ただし、νd3Pは前記第3レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数、νd3nは前記第3レンズ群に含まれる、少なくとも1枚の負レンズのd線に対するアッベ数を示す。 The zoom lens according to claim 1, wherein the zoom lens satisfies the following conditional expression.
(5) 5.0 ≦ | νd3P−νd3n |
Here, νd3P is the Abbe number for the d-line of at least one positive lens included in the third lens group, and νd3n is the Abbe number for the d-line of at least one negative lens included in the third lens group. Show.
以下に示す条件式を満足することを特徴とする請求項1〜4のいずれか一つに記載のズームレンズ。The zoom lens according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
(7) 0.000≦PCt_2n_i−(0.546+0.00467×νd_2n_i)(7) 0.000 ≦ PCt_2n_i− (0.546 + 0.00467 × νd_2n_i)
ただし、PCt_2n_iは前記第2レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比、νd_2n_iは前記PCt_2n_iの値が算出された負レンズのd線に対するアッベ数を示す。Here, PCt_2n_i represents a partial dispersion ratio of at least one negative lens included in the second lens group with respect to C line and t line, and νd_2n_i represents an Abbe number for the d line of the negative lens for which the value of PCt_2n_i was calculated. ..
以下に示す条件式を満足することを特徴とする請求項1〜5のいずれか一つに記載のズームレンズ。The zoom lens according to claim 1, wherein the zoom lens satisfies the following conditional expression.
(8) νd1p≦40.0(8) νd1p ≦ 40.0
(9) 0.000≦PCt_1n_i−(0.546+0.00467×νd_1n_i)(9) 0.000≤PCt_1n_i- (0.546 + 0.00467 × νd_1n_i)
ただし、νd1pは前記第1レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数、PCt_1n_iは前記第1レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比、νd_1n_iは前記PCt_1n_iの値が算出された負レンズのd線に対するアッベ数を示す。Where νd1p is the Abbe number of at least one positive lens included in the first lens group with respect to the d-line, and PCt_1n_i is the C-line and t-line of at least one negative lens included in the first lens group. The partial dispersion ratio, νd_1n_i, indicates the Abbe number for the d-line of the negative lens for which the value of PCt_1n_i has been calculated.
(10) 0.000≦PCt_3n_i−(0.546+0.00467×νd_3n_i)(10) 0.000 ≦ PCt — 3n_i− (0.546 + 0.00467 × νd — 3n_i)
ただし、PCt_3n_iは前記第3レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比、νd_3n_iは前記PCt_3n_iの値が算出された負レンズのd線に対するアッベ数を示す。Here, PCt_3n_i represents a partial dispersion ratio of at least one negative lens included in the third lens group with respect to the C line and the t line, and νd_3n_i represents an Abbe number for the d line of the negative lens for which the value of PCt_3n_i was calculated. .
(12) 0.2≦|X2/f2|≦0.9(12) 0.2 ≦ | X2 / f2 | ≦ 0.9
ただし、X2は広角端から望遠端への変倍時における前記第2レンズ群の移動量を示す。However, X2 represents the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end.
(13) 1.1≦f23t/ft≦2.8(13) 1.1 ≦ f23t / ft ≦ 2.8
ただし、f23tは望遠端における無限遠物体合焦状態の前記第2レンズ群と前記第3レンズ群との合成焦点距離、ftは望遠端における無限遠物体合焦状態のレンズ全系の焦点距離を示す。Here, f23t is a combined focal length of the second lens group and the third lens group in the infinity object focused state at the telephoto end, and ft is a focal length of the entire lens system in the infinity object focused state at the telephoto end. Show.
(14) 3.2≦|f3/f2|≦80(14) 3.2 ≦ | f3 / f2 | ≦ 80
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016011114A JP6696780B2 (en) | 2016-01-22 | 2016-01-22 | Zoom lens and imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016011114A JP6696780B2 (en) | 2016-01-22 | 2016-01-22 | Zoom lens and imaging device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020076910A Division JP6876850B2 (en) | 2020-04-23 | 2020-04-23 | Zoom lens and imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017129825A JP2017129825A (en) | 2017-07-27 |
JP6696780B2 true JP6696780B2 (en) | 2020-05-20 |
Family
ID=59394749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016011114A Active JP6696780B2 (en) | 2016-01-22 | 2016-01-22 | Zoom lens and imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6696780B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7256957B2 (en) * | 2019-02-22 | 2023-04-13 | 株式会社ニコン | Variable magnification optical system and optical equipment |
JP2020134805A (en) * | 2019-02-22 | 2020-08-31 | 株式会社ニコン | Variable magnification optical system, optical instrument, and production method of variable magnification optical system |
JP7261388B2 (en) * | 2019-02-22 | 2023-04-20 | 株式会社ニコン | Variable magnification optical system and optical equipment |
JP7189505B2 (en) * | 2019-02-22 | 2022-12-14 | 株式会社ニコン | Variable magnification optical system and optical equipment |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63135913A (en) * | 1986-11-27 | 1988-06-08 | Canon Inc | Wide angle zoom lens with long back focus |
US5253114A (en) * | 1993-02-09 | 1993-10-12 | Industrial Technology Research Institute | Zoom lens system |
JP3433734B2 (en) * | 2000-03-29 | 2003-08-04 | ミノルタ株式会社 | Imaging lens device |
JP2004287150A (en) * | 2003-03-24 | 2004-10-14 | Fuji Photo Optical Co Ltd | Size conversion adapter, lens for camera and camera body using same size conversion adapter, and camera |
JP2004318104A (en) * | 2003-03-31 | 2004-11-11 | Konica Minolta Photo Imaging Inc | Zoom lens device |
JP2004318098A (en) * | 2003-03-31 | 2004-11-11 | Konica Minolta Photo Imaging Inc | Zoom lens device |
JP4892892B2 (en) * | 2004-09-15 | 2012-03-07 | 株式会社ニコン | Wide angle zoom lens |
JP2007256711A (en) * | 2006-03-24 | 2007-10-04 | Brother Ind Ltd | Zoom lens |
JP2009276622A (en) * | 2008-05-15 | 2009-11-26 | Olympus Imaging Corp | Zoom lens and imaging apparatus equipped therewith |
JP5320224B2 (en) * | 2009-09-03 | 2013-10-23 | 富士フイルム株式会社 | Projection variable focus lens and projection display device |
JP5510784B2 (en) * | 2009-09-24 | 2014-06-04 | 株式会社ニコン | Zoom lens, optical equipment |
JP2011075613A (en) * | 2009-09-29 | 2011-04-14 | Fujifilm Corp | Variable-magnification optical system and image pickup device |
JP5478421B2 (en) * | 2010-08-25 | 2014-04-23 | オリンパス株式会社 | Imaging optical system for endoscope and endoscope having the same |
JP6177549B2 (en) * | 2013-03-13 | 2017-08-09 | 株式会社タムロン | Super wide-angle zoom lens |
-
2016
- 2016-01-22 JP JP2016011114A patent/JP6696780B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017129825A (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101124504B (en) | Zoom lens system, imaging apparatus and camera | |
JP5550475B2 (en) | Zoom lens and imaging device | |
US6751030B2 (en) | Zoom lens and image-taking apparatus | |
CN104635327A (en) | Zoom lens and imaging apparatus | |
JP5706798B2 (en) | Zoom lens | |
JP5745188B2 (en) | Zoom lens and imaging device | |
JPWO2012101959A1 (en) | Zoom lens system, imaging device and camera | |
JP6437901B2 (en) | Zoom lens and imaging device | |
JP7266403B2 (en) | Zoom lens and imaging device | |
JP2013130676A (en) | Zoom lens and imaging apparatus including the same | |
CN112578542B (en) | Zoom lens and image pickup apparatus including the same | |
JP6696780B2 (en) | Zoom lens and imaging device | |
JP5186034B2 (en) | Zoom lens and image pickup apparatus including the same | |
JP2005134746A (en) | Zoom lens and imaging unit having the same | |
JP6720131B2 (en) | Zoom lens and imaging device | |
JP2015152900A (en) | Zoom lens and image capturing device using the same | |
JP5854978B2 (en) | Zoom lens | |
JP2017116702A (en) | Zoom lens and imaging apparatus including the same | |
JP2016153862A (en) | Zoom lens | |
JP4537114B2 (en) | Zoom lens | |
WO2014061391A1 (en) | Zoom lens and image pickup device provided therewith | |
JP2005062227A (en) | Zoom lens and imaging unit having same | |
JP5785333B2 (en) | Zoom lens and imaging device | |
CN110095855B (en) | Variable power optical system and imaging apparatus having the same | |
JP6549762B2 (en) | Zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190717 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200225 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6696780 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |