[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6682366B2 - Method for manufacturing sliding member - Google Patents

Method for manufacturing sliding member Download PDF

Info

Publication number
JP6682366B2
JP6682366B2 JP2016113047A JP2016113047A JP6682366B2 JP 6682366 B2 JP6682366 B2 JP 6682366B2 JP 2016113047 A JP2016113047 A JP 2016113047A JP 2016113047 A JP2016113047 A JP 2016113047A JP 6682366 B2 JP6682366 B2 JP 6682366B2
Authority
JP
Japan
Prior art keywords
alloy
powder
phase
hypereutectic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016113047A
Other languages
Japanese (ja)
Other versions
JP2017218622A (en
Inventor
貴文 山内
貴文 山内
斉藤 康志
康志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2016113047A priority Critical patent/JP6682366B2/en
Publication of JP2017218622A publication Critical patent/JP2017218622A/en
Application granted granted Critical
Publication of JP6682366B2 publication Critical patent/JP6682366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、耐食性が高く、且つ、摺動層の樹脂組成物と多孔質部との接合が強い摺動部材の製造方法に関する。   The present invention relates to a method for producing a sliding member having high corrosion resistance and having a strong bond between the resin composition of the sliding layer and the porous portion.

従来、燃料噴射ポンプ用の摺動部材には、5〜25%程度の気孔率を有する焼結銅系材料が用いられている。この摺動部材は、摺動部材の内部に存在する気孔を介して、液体燃料を円筒形状の摺動部材の外周面側から内周面(摺動面)側に供給することにより、内周面(摺動面)に液体燃料の流体潤滑膜を形成し、高速回転する軸を支承するようになっている。このような焼結銅系材料は、燃料中に含まれる有機酸、硫黄成分による銅合金の腐食が起こり、この銅系腐食生成物が燃料に混入する問題がある。このため、耐食性を高めるためにNi、Al、Znを含有させた焼結銅系摺動材料が提案されている(例えば、特許文献1〜3参照)。   Conventionally, a sintered copper-based material having a porosity of about 5 to 25% has been used for a sliding member for a fuel injection pump. This sliding member supplies the liquid fuel from the outer peripheral surface side to the inner peripheral surface (sliding surface) side of the cylindrical sliding member through the pores existing inside the sliding member, and A fluid lubricating film of liquid fuel is formed on the surface (sliding surface) to support a shaft that rotates at high speed. Such a sintered copper-based material has a problem that the organic acid and sulfur components contained in the fuel cause corrosion of the copper alloy, and the copper-based corrosion product is mixed into the fuel. Therefore, a sintered copper-based sliding material containing Ni, Al, and Zn in order to improve corrosion resistance has been proposed (see, for example, Patent Documents 1 to 3).

また、従来、鋼裏金の表面に銅めっき層を介して銅合金からなる多孔質焼結層を設け、更に、多孔質焼結層の空孔および表面に樹脂組成物を含浸被覆した複層の摺動材料からなる摺動部材が用いられている(例えば、特許文献4,5参照)。そして、このような複層摺動材料を燃料噴射ポンプ用の摺動部材に適用したものが提案されている(例えば、特許文献6参照)。   Further, conventionally, a porous sintered layer made of a copper alloy is provided on the surface of a steel backing metal via a copper plating layer, and further, the pores and the surface of the porous sintered layer are impregnated with a resin composition to form a multilayered coating. A sliding member made of a sliding material is used (for example, see Patent Documents 4 and 5). Then, a material in which such a multilayer sliding material is applied to a sliding member for a fuel injection pump has been proposed (for example, refer to Patent Document 6).

また、腐食性環境下での耐食性の向上を目的とし、従来の鋼裏金および銅合金からなる多孔質焼結層に代えて、ステンレス鋼からなる裏金層の表面にステンレス鋼の粉を接合用ろう材を介して積み重ねて下地層を形成したものが提案されている(例えば、特許文献7参照)。   Also, for the purpose of improving corrosion resistance under corrosive environment, instead of the conventional porous backing layer made of steel back metal and copper alloy, stainless steel powder should be bonded to the surface of the back metal layer made of stainless steel. It is proposed that a base layer is formed by stacking the base materials (for example, see Patent Document 7).

特開2002−180162号公報JP, 2002-180162, A 特開2013−217493号公報JP, 2013-217493, A 特開2013−237898号公報JP, 2013-237898, A 特開2002−61653号公報JP, 2002-61653, A 特開2001−355634号公報JP, 2001-355634, A 特開2013−83304号公報JP, 2013-83304, A 特開2015−200021号公報JP, 2005-200021, A

ところで、特許文献1〜3の焼結銅系摺動材料は、Ni、Al、Znを含有させて耐食性を高めてはいるが、燃料中に含まれる有機酸、硫黄成分による銅合金の腐食を完全には防止できない。また、特許文献1〜3の焼結銅系摺動材料は、摺動部材の内部全体に気孔を形成するために強度が低く、特に特許文献6に示すようなコモンレール方式の燃料噴射ポンプ等に用いられる摺動部材としては負荷能力が不十分である。   By the way, although the sintered copper-based sliding materials of Patent Documents 1 to 3 have Ni, Al, and Zn contained therein to enhance corrosion resistance, corrosion of the copper alloy due to organic acids and sulfur components contained in the fuel It cannot be completely prevented. Further, the sintered copper-based sliding materials of Patent Documents 1 to 3 have low strength because they form pores in the entire sliding member, and are particularly useful for common rail fuel injection pumps and the like as shown in Patent Document 6. The load capacity of the sliding member used is insufficient.

また、特許文献4〜6の複層摺動材料では、鋼裏金の構成を有するので強度は高い。しかしながら、銅合金からなる多孔質焼結層は、燃料あるいは潤滑油中に含まれる有機酸や硫黄成分で銅合金の腐食が起こる。   Further, the multi-layer sliding materials of Patent Documents 4 to 6 have a structure of a steel backing metal, and therefore have high strength. However, in the porous sintered layer made of a copper alloy, the organic acid or the sulfur component contained in the fuel or the lubricating oil causes the corrosion of the copper alloy.

また、特許文献7の製造方法による摺動部材は、耐食性は向上するが、下地層と該下地層の表面に被覆した樹脂組成物との接合が弱くなることが判明した。まず、特許文献7の製造方法では、Niろう材等の接合用ろう材粉とステンレス鋼粉との混合粉をステンレス鋼からなる裏金層の表面に散布し、接合用ろう材が溶融する温度に加熱した後に冷却して下地層を形成する。なお、このNiろう材を含めて従来公知である接合用ろう材は、共晶点に近い組成の共晶合金である。この理由は、共晶点に近い組成の共晶合金は、液相温度が低く、且つ、固相温度と液相温度との差が少ないので、接合のための加熱温度を低くでき、また、急速に液相化することで接合用ろう材が流動しやすく、被接合物の表面に容易に広がるからである。すなわち、特許文献7の製造方法では、接合用ろう材を用いるため、焼結の加熱の過程で接合用ろう材が固相温度に達すると同時に急速に液相化し、重力の影響で混合粉と裏金層との界面側へ流動し、混合粉と裏金層との界面側付近では、ステンレス鋼粉どうしの間の隙間が、液相化した接合用ろう材により充填されやすい。   Further, it has been found that the sliding member manufactured by the manufacturing method of Patent Document 7 has improved corrosion resistance, but the bond between the underlayer and the resin composition coated on the surface of the underlayer is weak. First, in the manufacturing method of Patent Document 7, a mixed powder of a brazing filler metal powder such as a Ni brazing filler metal and stainless steel powder is sprinkled on the surface of a back metal layer made of stainless steel, and the temperature is raised to a temperature at which the brazing filler metal for bonding melts. After heating, it is cooled to form an underlayer. In addition, conventionally known brazing filler metals including this Ni brazing filler metal are eutectic alloys having a composition close to the eutectic point. The reason for this is that the eutectic alloy having a composition close to the eutectic point has a low liquidus temperature, and since the difference between the solidus temperature and the liquidus temperature is small, the heating temperature for bonding can be lowered, and This is because the brazing filler metal for bonding easily flows due to the rapid liquid phase and spreads easily on the surfaces of the objects to be bonded. That is, in the manufacturing method of Patent Document 7, since the brazing filler metal is used, the brazing filler metal rapidly becomes a liquid phase at the same time as reaching the solid phase temperature in the heating process of sintering, and becomes a mixed powder due to the influence of gravity. It flows to the interface side with the back metal layer, and near the interface side between the mixed powder and the back metal layer, the gap between the stainless steel powders is likely to be filled with the liquid phase brazing filler metal.

しかしながら、上記の混合粉中で液相化した接合用ろう材の裏金層との界面側への流動により、下地層の表面側ではステンレス鋼粉どうしを接合するための接合用ろう材が不足して、ステンレス鋼粉どうしの接合がなされないことがある。これを防ぐため、混合粉中の接合用ろう材の割合を多く(混合粉中の接合用ろう材が47質量%以上)すると、下地層の表面には微小な凹凸部が形成されるだけで、下地層の内部の空孔が少なく、その空孔のサイズも小さくなる。さらに、下地層の内部の空孔は、下地層の表面における微小な凹部と連通していない閉空孔(独立空孔)であるものが多い。このような下地層の表面に樹脂組成物を被覆した場合、樹脂組成物は、単に下地層の表面における凹凸部と接して保持されるだけであり、下地層の表面に被覆される樹脂組成物が、下地層の内部に三次元ネットワーク的に形成された空孔部にも含浸された場合と比べて、下地層と樹脂組成物との接合が弱くなる。   However, due to the flow of the brazing filler metal liquefied in the above mixed powder to the interface side with the back metal layer, there is not enough brazing filler metal for joining the stainless steel powders on the surface side of the underlayer. Therefore, the stainless steel powders may not be joined together. To prevent this, if the proportion of the brazing filler metal in the mixed powder is increased (47 mass% or more of the brazing filler metal in the mixed powder), only minute irregularities are formed on the surface of the underlayer. The number of holes inside the underlayer is small, and the size of the holes is also small. Further, the holes inside the underlayer are often closed holes (independent holes) that do not communicate with minute recesses on the surface of the underlayer. When the surface of the underlayer is coated with the resin composition, the resin composition is simply held in contact with the uneven portion on the surface of the underlayer, and the resin composition coated on the surface of the underlayer However, the bonding between the base layer and the resin composition becomes weaker than in the case where the holes formed in the base layer in a three-dimensional network are also impregnated.

本発明は、上記した事情に鑑みなされたものであり、その目的とするところは、耐食性が高く、且つ、摺動層の多孔質部と樹脂組成物との接合が強い摺動部材の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a method for producing a sliding member having high corrosion resistance and having strong bonding between the porous portion of the sliding layer and the resin composition. To provide.

上記した目的を達成するために、請求項1に係る発明においては、FeまたはFe合金裏金層上に多孔質部と樹脂組成物とからなる摺動層が設けられた摺動部材の製造方法において、FeまたはFe合金粉と、平均粒径が該FeまたはFe合金粉の平均粒径よりも小さく、組成が13〜16質量%のPと残部Niおよび不可避不純物である過共晶Ni−P合金粉と、平均粒径が該過共晶Ni−P合金粉の平均粒径よりも小さいNi粉と、からなり、混合粉における前記FeまたはFe合金粉の割合は、前記混合粉の100質量部に対して55〜95質量部であり、前記混合粉における前記過共晶Ni−P合金粉と前記Ni粉とからなる100質量部に対して、前記過共晶Ni−P合金粉に含まれるP成分が9.5〜12.5質量部となるように配合されている前記混合粉を準備する粉末混合工程と、前記混合粉を前記FeまたはFe合金裏金層上に散布して散布層を形成する散布工程と、前記散布層および前記FeまたはFe合金裏金層を前記過共晶Ni−P合金粉の液相温度以上、前記過共晶Ni−P合金粉の液相温度+20℃以下の焼結温度で焼結した後に冷却し、粒状のFeまたはFe合金相と、前記粒状のFeまたはFe合金相どうし及び前記粒状のFeまたはFe合金相と前記FeまたはFe合金裏金層とをつなぐバインダとして機能するNi−P合金相と、からなる前記多孔質部を形成する焼結工程と、前記多孔質部の内部の空孔および表面に前記樹脂組成物を含浸被覆した後に該樹脂組成物を焼成して前記摺動層を形成する樹脂焼成工程と、からなり、前記多孔質部における前記Ni−P合金相の組成は、9.5〜12.5質量%のPと残部Niおよび不可避不純物からなることを特徴とする。 In order to achieve the above object, in the invention according to claim 1, in a method for producing a sliding member, a sliding layer including a porous portion and a resin composition is provided on a Fe or Fe alloy backing metal layer. , Fe or Fe alloy powder, and hypereutectic Ni-P alloy having an average particle size smaller than that of the Fe or Fe alloy powder and having a composition of 13 to 16% by mass, the balance Ni, and inevitable impurities. a powder, the average particle diameter is small Ni powder than the average particle diameter of該過eutectic Ni-P alloy powder, Tona is, the ratio of the Fe or Fe alloy powder in the mixed powder is 100 mass of the mixed powder It is 55 to 95 parts by mass relative to 100 parts by mass, and is included in the hypereutectic Ni-P alloy powder with respect to 100 parts by mass of the hypereutectic Ni-P alloy powder and the Ni powder in the mixed powder. So that the content of P component is 9.5 to 12.5 parts by mass Powder mixing process of preparing the powder mixture is blended, a spraying step of forming a sprayed layer by spraying the mixed powder on the Fe or Fe alloy back metal layer, said distributing layer and the Fe or Fe alloy backing The layer is sintered at a sintering temperature not lower than the liquidus temperature of the hypereutectic Ni—P alloy powder and not higher than the liquidus temperature of the hypereutectic Ni—P alloy powder + 20 ° C. and then cooled to obtain granular Fe or Fe. The porous portion comprising an alloy phase, the granular Fe or Fe alloy phases, and a Ni-P alloy phase functioning as a binder that connects the granular Fe or Fe alloy phase and the Fe or Fe alloy backing metal layer. And a sintering step of forming a sliding layer by sintering the resin composition after impregnating and coating the pores and the surface of the inside of the porous portion with the resin composition. Do Ri, the porous portion The composition of definitive the Ni-P alloy phase is characterized by consisting of from 9.5 to 12.5 wt% of P and the balance Ni and unavoidable impurities.

請求項に係る発明においては、請求項1記載の摺動部材の製造方法において、前記多孔質部における前記Ni−P合金相の組成は、10〜12質量%のPと残部Niおよび不可避不純物からなることを特徴とする。 In the invention according to claim 2, in the manufacturing method of claim 1 Symbol mounting sliding member, the composition of the Ni-P alloy phase in the porous portion of 10 to 12 wt% P and the balance Ni and incidental It is characterized by comprising impurities.

請求項に係る発明においては、請求項1又は請求項2記載の摺動部材の製造方法において、前記多孔質部における前記Ni−P合金相の割合は、前記多孔質部の100質量部に対して前記Ni−P合金相が5〜45質量部であることを特徴とする。 In the invention according to claim 3 , in the method for producing a sliding member according to claim 1 or 2 , the ratio of the Ni-P alloy phase in the porous part is 100 parts by mass of the porous part. On the other hand, the Ni-P alloy phase is 5 to 45 parts by mass.

請求項に係る発明においては、請求項1乃至請求項のいずれかに記載の摺動部材の製造方法において、前記多孔質部の空孔率は、15〜60%であることを特徴とする。 According to a fourth aspect of the invention, in the method for manufacturing the sliding member according to any of the first to third aspects, the porosity of the porous portion is 15 to 60%. To do.

請求項1に係る発明においては、摺動層を構成する多孔質部は、FeまたはFe合金粉と、過共晶Ni−P合金粉と、Ni粉と、からなる混合粉をFeまたはFe合金裏金層上に散布した後、焼結のための加熱および冷却を施すことで形成する。また、多孔質部は、粒状のFeまたはFe合金相と、Ni−P合金相と、からなるが、Ni−P合金相は、混合粉の過共晶Ni−P合金粉と、Ni粉と、を反応させて形成する。   In the invention according to claim 1, the porous portion forming the sliding layer is made of a mixed powder of Fe or Fe alloy powder, hypereutectic Ni-P alloy powder, and Ni powder. After being sprinkled on the back metal layer, it is formed by heating and cooling for sintering. The porous portion is composed of granular Fe or Fe alloy phase and Ni—P alloy phase, and the Ni—P alloy phase includes hypereutectic Ni—P alloy powder of mixed powder and Ni powder. , Are reacted to form.

焼結工程の加熱の過程では、散布層中の過共晶Ni−P合金粉が固相温度に達すると、各過共晶Ni−P合金粉の一部(主に粉の表面)が液相化するが、このNi−P合金液相(液相化したNi−P合金)のP成分がNi−P合金液相と接するNi粉の表面へ拡散し、且つ、Ni−P合金液相と接するNi粉の表面のNi成分がNi−P合金液相へ拡散することで、Ni−P合金液相の融点が上昇し、Ni−P合金液相の一部が再度、凝固して固相となる。このNi−P合金液相は、一部、固相となったNi−P合金を含むため、流動が抑制される。そして、焼結工程の加熱の過程では、混合粉が過共晶Ni−P合金粉の固相温度から焼結温度(最高温度)に達するまでの間、Ni−P合金液相とNi粉の表面での相互拡散現象が繰り返し起こり、Ni−P合金液相の発生や流動が抑制される。このため、粒状のFeまたはFe合金相どうしの間の隙間に多量のNi−P合金液相が流れ込み、焼結後の多孔質部の空孔のサイズが小さくなることや、空孔率が低くなることが防がれる。   In the heating process of the sintering process, when the hypereutectic Ni-P alloy powder in the scatter layer reaches the solid phase temperature, a part (mainly the surface of the powder) of each hypereutectic Ni-P alloy powder becomes liquid. Although it is phased, the P component of the Ni-P alloy liquid phase (the liquid-phased Ni-P alloy) diffuses to the surface of the Ni powder in contact with the Ni-P alloy liquid phase, and the Ni-P alloy liquid phase The Ni component on the surface of the Ni powder that contacts with the Ni-P alloy liquid phase diffuses into the Ni-P alloy liquid phase, so that the melting point of the Ni-P alloy liquid phase rises, and a part of the Ni-P alloy liquid phase solidifies and solidifies again. Be in phase. Since the Ni-P alloy liquid phase partially contains the Ni-P alloy that has become a solid phase, the flow is suppressed. In the heating process of the sintering step, the Ni-P alloy liquid phase and the Ni powder are mixed until the mixed powder reaches the sintering temperature (maximum temperature) from the solid phase temperature of the hypereutectic Ni-P alloy powder. The mutual diffusion phenomenon occurs repeatedly on the surface, and the generation and flow of the Ni-P alloy liquid phase are suppressed. For this reason, a large amount of Ni-P alloy liquid phase flows into the gaps between the granular Fe or Fe alloy phases, the pore size of the porous part after sintering becomes small, and the porosity is low. Can be prevented.

なお、上記の相互拡散現象を起こさせるには、原材料として過共晶Ni−P合金粉及びNi粉を使用する必要がある。過共晶Ni−P合金は、固相温度と液相温度との差が大きいので、焼結工程の加熱の過程で過共晶Ni−P合金粉が固相温度に達しても、一部が液相化するだけであり、その後も加熱温度の上昇に応じて、徐々に液相の割合が増加するので、上記の相互拡散現象によるNi−P合金液相の発生や流動を抑制する効果が得られる。本発明とは異なり、過共晶Ni−P合金粉及びNi粉に代えて、共晶組成(Ni−11質量%P)あるいは共晶組成付近の組成(Ni−9〜12質量%P)のNi−P合金粉のみを用いた場合には、固相温度と液相温度との差が無い、あるいは差が小さいため、焼結工程の加熱の過程で共晶Ni−P合金粉が固相温度に達すると同時に、各共晶Ni−P合金粉の全て、あるいは大部分が液相化してしまい、上記の相互拡散現象によるNi−P合金液相の発生や流動を抑制する効果が得られない。   In order to cause the above mutual diffusion phenomenon, it is necessary to use hypereutectic Ni—P alloy powder and Ni powder as raw materials. Since the hypereutectic Ni-P alloy has a large difference between the solid-phase temperature and the liquid-phase temperature, even if the hypereutectic Ni-P alloy powder reaches the solid-phase temperature during the heating process in the sintering process, some Is only in the liquid phase, and thereafter, the proportion of the liquid phase gradually increases as the heating temperature rises. Therefore, the effect of suppressing the generation and flow of the Ni-P alloy liquid phase due to the above mutual diffusion phenomenon Is obtained. Unlike the present invention, instead of the hypereutectic Ni-P alloy powder and Ni powder, a eutectic composition (Ni-11 mass% P) or a composition near the eutectic composition (Ni-9 to 12 mass% P) is used. When only Ni-P alloy powder is used, there is no difference between the solid-phase temperature and the liquid-phase temperature, or the difference is small, so that the eutectic Ni-P alloy powder is solid-phase during the heating process in the sintering process. At the same time when the temperature is reached, all or most of each eutectic Ni-P alloy powder is liquefied, and the effect of suppressing the generation and flow of the Ni-P alloy liquid phase due to the above mutual diffusion phenomenon can be obtained. Absent.

また、本発明の製造方法による多孔質部のNi−P合金相は、組織中のP成分の濃度が均一になる。詳しくは、上記のNi−P合金液相とNi粉の表面での相互拡散現象が起きている間、過共晶Ni−P合金粉は、粒子の内部と表面付近でのP成分、Ni成分の濃度差が無くなるようにP成分およびNi成分の拡散現象が起こり、同じく、Ni粉は、粒子の内部と表面付近でのP成分、Ni成分の濃度差が無くなるようにP成分およびNi成分の拡散現象が起こるからである。   In addition, the Ni-P alloy phase in the porous portion produced by the production method of the present invention has a uniform P component concentration in the structure. Specifically, while the above-mentioned mutual diffusion phenomenon occurs between the Ni-P alloy liquid phase and the surface of the Ni powder, the hypereutectic Ni-P alloy powder contains P component and Ni component inside and near the surface of the particle. The diffusion phenomenon of the P component and the Ni component occurs so that the concentration difference between the P component and the Ni component is eliminated. This is because the diffusion phenomenon occurs.

また、多孔質部のNi−P合金相は、組織を均一にするために焼結工程での焼結温度(最高温度)を、原材料である過共晶Ni−P合金粉の液相温度以上の温度とする必要がある。本発明の製造方法とは異なり、焼結温度を、原材料である過共晶Ni-P合金粉の液相温度未満の温度とした場合には、焼結後の多孔質部のNi−P合金相の組織中に、P成分を含まないNi相部が残留することがある。Ni−P合金相の組織中にP成分を含まないNi相部が形成されると、多孔質部の強度が低くなる。   In addition, the Ni-P alloy phase in the porous portion has a sintering temperature (maximum temperature) in the sintering step that is equal to or higher than the liquidus temperature of the hypereutectic Ni-P alloy powder as a raw material in order to make the structure uniform. The temperature should be Unlike the production method of the present invention, when the sintering temperature is set to a temperature lower than the liquidus temperature of the hypereutectic Ni-P alloy powder as the raw material, the Ni-P alloy in the porous portion after sintering is used. The Ni phase portion containing no P component may remain in the phase structure. When the Ni phase portion containing no P component is formed in the structure of the Ni-P alloy phase, the strength of the porous portion becomes low.

また、焼結工程での焼結温度は、過共晶Ni−P合金粉の液相温度+20℃以下の温度とする必要があるが、これは、過共晶Ni−P合金粉の液相温度+20℃を超える温度で焼結を行うと、焼結中にNi−P合金液相の量が多くなり、焼結後の多孔質部の空孔率が小さくなるからである。より好ましい焼結温度は、過共晶Ni−P合金粉の液相温度+10℃以下の温度である。   Further, the sintering temperature in the sintering step needs to be set to a liquid phase temperature of the hypereutectic Ni—P alloy powder + 20 ° C. or less, which is the liquid phase of the hypereutectic Ni—P alloy powder. This is because if the sintering is performed at a temperature higher than + 20 ° C., the amount of the Ni—P alloy liquid phase increases during the sintering, and the porosity of the porous portion after the sintering decreases. A more preferable sintering temperature is a liquid phase temperature of the hypereutectic Ni-P alloy powder + 10 ° C or lower.

本発明の製造方法による多孔質部は、粒状のFeまたはFe合金相とNi−P合金相とからなり、Cu成分が含まれないので、有機酸や硫黄成分に対する耐食性が高い。多孔質部のNi−P合金相は、粒状のFeまたはFe合金相どうしをつなぐバインダとして機能している。また、多孔質部は、表面および内部に多くの空孔を有し、これら空孔は、多孔質部の内部で三次元的なネットワークを形成する。そして、樹脂組成物は、多孔質部の内部の空孔および表面に含浸被覆されるため、樹脂組成物と多孔質部との接合が強くなる。   The porous portion produced by the production method of the present invention is composed of granular Fe or Fe alloy phase and Ni—P alloy phase, and contains no Cu component, and therefore has high corrosion resistance to organic acids and sulfur components. The Ni-P alloy phase in the porous portion functions as a binder that connects granular Fe or Fe alloy phases together. In addition, the porous portion has many pores on the surface and inside, and these pores form a three-dimensional network inside the porous portion. Since the resin composition impregnates and coats the pores and the surface inside the porous portion, the resin composition and the porous portion are strongly bonded.

また、過共晶Ni−P合金粉の組成は、13〜16質量%のPと残部Niおよび不可避不純物からなることで、過共晶Ni−P合金粉の液相温度と固相温度との差が大きくなり、焼結工程でのNi−P合金液相の発生や流動を抑制しやすくなる。 Further, the composition of the hypereutectic Ni-P alloy powder, of 13 to 16 wt% by comprising P and the balance Ni and unavoidable impurities, the hypereutectic Ni-P alloy powder liquidus temperature and solidus temperature and the The difference becomes large, and it becomes easy to suppress the generation and flow of the Ni-P alloy liquid phase in the sintering process.

また、請求項に係る発明のように、多孔質部におけるNi−P合金相の組成は、10〜12質量%のPと残部Niおよび不可避不純物からなることで、多孔質部の組織が共晶組織を主体とするようになり、多孔質部の強度が強くなる。多孔質部におけるNi−P合金相のP成分の含有量が10質量%未満の場合には、Ni−P合金相中のα相(P成分を固溶したNi相)の割合が多くなり、多孔質部の強度が低くなる。一方、多孔質部におけるNi−P合金相のP成分が12質量%を超える場合には、Ni−P合金相が硬くなりすぎて、多孔質部が脆くなる。 Further, as in the invention according to claim 2 , the composition of the Ni-P alloy phase in the porous portion is 10 to 12% by mass of P, the balance is Ni, and inevitable impurities, so that the structure of the porous portion is the same. The crystal structure is mainly formed, and the strength of the porous portion is increased. When the content of the P component of the Ni-P alloy phase in the porous portion is less than 10% by mass, the proportion of the α phase (the Ni phase in which the P component is a solid solution) in the Ni-P alloy phase increases. The strength of the porous part becomes low. On the other hand, when the P component of the Ni-P alloy phase in the porous portion exceeds 12% by mass, the Ni-P alloy phase becomes too hard and the porous portion becomes brittle.

また、請求項に係る発明のように、多孔質部におけるNi−P合金相の割合は、多孔質部の100質量部に対してNi−P合金相が5〜45質量部であると、多孔質部の強度が強く、且つ、多孔質部の内部に十分な量の空孔が形成されやすくなる。多孔質部におけるNi−P合金相の割合は、多孔質部の100質量部に対してNi−P合金相が5質量部未満であると、多孔質部の強度が低くなり、多孔質部の100質量部に対してNi−P合金相が45質量部を超えると、多孔質部の内部の空孔の量が少なくなり、樹脂組成物と多孔質部との接合が弱くなる。 Further, as in the invention according to claim 3 , the proportion of the Ni-P alloy phase in the porous portion is 5 to 45 parts by mass with respect to 100 parts by mass of the porous portion. The strength of the porous portion is high, and a sufficient amount of holes are likely to be formed inside the porous portion. Regarding the proportion of the Ni-P alloy phase in the porous portion, when the Ni-P alloy phase is less than 5 parts by mass with respect to 100 parts by mass of the porous portion, the strength of the porous portion becomes low and When the Ni-P alloy phase exceeds 45 parts by mass with respect to 100 parts by mass, the amount of voids inside the porous part becomes small, and the bonding between the resin composition and the porous part becomes weak.

また、請求項に係る発明のように、多孔質部の空孔率は、15〜60%であることで、多孔質部と樹脂組成物との接合が特に強くなる。
Further, as in the invention according to claim 4 , since the porosity of the porous portion is 15 to 60%, the bonding between the porous portion and the resin composition becomes particularly strong.

本発明の製造方法による摺動部材の断面を示す模式図である。It is a schematic diagram which shows the cross section of the sliding member by the manufacturing method of this invention. 散布層の断面を示す模式図である。It is a schematic diagram which shows the cross section of a spreading layer.

本実施形態に係る製造方法によるFeまたはFe合金裏金層2上に多孔質部4と樹脂組成物5とからなる摺動層3が設けられた摺動部材1について、図1を参照して説明する。図1は、FeまたはFe合金裏金層2の表面に多孔質部4と樹脂組成物5とからなる摺動層3が設けられた摺動部材1の断面を示す模式図である。   The sliding member 1 in which the sliding layer 3 including the porous portion 4 and the resin composition 5 is provided on the Fe or Fe alloy backing metal layer 2 by the manufacturing method according to the present embodiment will be described with reference to FIG. To do. FIG. 1 is a schematic view showing a cross section of a sliding member 1 in which a sliding layer 3 composed of a porous portion 4 and a resin composition 5 is provided on the surface of an Fe or Fe alloy backing metal layer 2.

図1に示すように、摺動部材1は、FeまたはFe合金裏金層2と摺動層3とからなり、摺動層3は、FeまたはFe合金裏金層2上に形成された多孔質部4と樹脂組成物5とからなる。また、多孔質部4は、粒状のFeまたはFe合金相6とNi−P合金相7とからなる。このNi−P合金相7は、FeまたはFe合金相6の粒どうし、あるいは、FeまたはFe合金相6の粒とFeまたはFe合金裏金層2の表面とをつなぐバインダとなっている。また、図1に示すように、FeまたはFe合金相6の粒どうし、あるいは、FeまたはFe合金相6の粒とFeまたはFe合金裏金層2の表面とは、Ni−P合金相7を介して接合している。なお、FeまたはFe合金相6の粒どうし、あるいは、FeまたはFe合金相6の粒とFeまたはFe合金裏金層2の表面とは、直接、接触、あるいは、焼結により接合している部分が形成されていてもよい。また、FeまたはFe合金相6の粒は、表面の一部がNi−P合金相7により覆われていない部分が形成されていてもよい。また、多孔質部4は、樹脂組成物5を含浸させるための空孔を有し、その空孔率は10〜60%である。より好ましくは、空孔率は15〜45%である。   As shown in FIG. 1, the sliding member 1 comprises an Fe or Fe alloy backing metal layer 2 and a sliding layer 3, and the sliding layer 3 is a porous portion formed on the Fe or Fe alloy backing metal layer 2. 4 and the resin composition 5. The porous portion 4 is composed of granular Fe or Fe alloy phase 6 and Ni—P alloy phase 7. The Ni—P alloy phase 7 serves as a binder that connects the grains of the Fe or Fe alloy phase 6 or the grains of the Fe or Fe alloy phase 6 and the surface of the Fe or Fe alloy backing layer 2. In addition, as shown in FIG. 1, the grains of Fe or Fe alloy phase 6 or the grains of Fe or Fe alloy phase 6 and the surface of Fe or Fe alloy backing layer 2 are interleaved with Ni—P alloy phase 7. Are joined together. It should be noted that the grains of the Fe or Fe alloy phase 6 or the grains of the Fe or Fe alloy phase 6 and the surface of the Fe or Fe alloy back metal layer 2 are directly or directly contacted with each other, or the portion bonded by sintering is It may be formed. Further, the grains of the Fe or Fe alloy phase 6 may have a part of the surface not covered with the Ni—P alloy phase 7. The porous portion 4 has pores for impregnating the resin composition 5, and the porosity is 10 to 60%. More preferably, the porosity is 15 to 45%.

Ni−P合金相7の組成は、9.5〜12.5質量%のPと残部Niおよび不可避不純物からなる。このNi−P合金相7の組成は、Ni−P合金相7の強度が高くなる組成範囲である。なお、Ni−P合金相7の組成は、10〜12質量%のPと残部Niおよび不可避不純物からなることがより望ましい。   The composition of the Ni-P alloy phase 7 consists of 9.5 to 12.5 mass% P, the balance Ni, and inevitable impurities. The composition of the Ni-P alloy phase 7 is in a composition range in which the strength of the Ni-P alloy phase 7 becomes high. The composition of the Ni-P alloy phase 7 is more preferably 10 to 12 mass% P, the balance Ni, and unavoidable impurities.

多孔質部4におけるNi−P合金相7の割合は、多孔質部4の100質量部に対してNi−P合金相7が5〜45質量部であり、より好ましくは、10〜40質量部である。このNi−P合金相7の割合は、FeまたはFe合金相6の粒どうし、FeまたはFe合金相6の粒とFeまたはFe合金裏金層2の表面とを結びつけるバインダとなる形態の多孔質部4を形成するために好適な範囲である。Ni−P合金相7の割合が5質量部未満であると、多孔質部4の強度や、多孔質部4とFeまたはFe合金裏金層2との接合が不十分となる。一方、Ni−P合金相7の割合が45質量部を超えると、焼結時、空孔となるべき部分がNi−P合金液相(液相化したNi−P合金)で充填されてしまうので、焼結後の多孔質部4の空孔率が小さくなりすぎる。   The proportion of the Ni-P alloy phase 7 in the porous part 4 is 5 to 45 parts by mass, more preferably 10 to 40 parts by mass, relative to 100 parts by mass of the porous part 4. Is. The proportion of the Ni-P alloy phase 7 is such that the particles of the Fe or Fe alloy phase 6 are mixed with each other, or the particles of the Fe or Fe alloy phase 6 and the surface of the Fe or Fe alloy backing layer 2 are combined to form a binder. 4 is a preferable range for forming No. 4. If the proportion of the Ni—P alloy phase 7 is less than 5 parts by mass, the strength of the porous part 4 and the bonding between the porous part 4 and the Fe or Fe alloy backing layer 2 will be insufficient. On the other hand, if the proportion of the Ni-P alloy phase 7 exceeds 45 parts by mass, the portions that should become pores during sintering will be filled with the Ni-P alloy liquid phase (liquefied Ni-P alloy). Therefore, the porosity of the porous portion 4 after sintering becomes too small.

多孔質部4における粒状のFeまたはFe合金相6は、平均粒径が45〜180μmであればよい。また、粒状のFe合金の組成は限定されない。一般市販される、純鉄、亜共析鋼、共析鋼、過共析鋼、鋳鉄、高速度鋼、工具鋼、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼等の粒を用いることができる。いずれのFe合金を用いても、有機酸や硫黄成分に対する耐食性は、従来の銅合金を用いるよりも優れている。なお、多孔質部4を構成する粒状のFeまたはFe合金相6は、その表面(Ni−P合金相7との界面となる表面)に、Ni−P合金相7の成分との反応相が形成されていてもよい。そして、このような粒状のFeまたはFe合金相6とNi−P合金相7とから多孔質部4が構成されており、Cu成分が含まれないため、有機酸や硫黄成分に対する耐食性に優れている。   The granular Fe or Fe alloy phase 6 in the porous portion 4 may have an average particle size of 45 to 180 μm. Further, the composition of the granular Fe alloy is not limited. General commercially available pure iron, hypo-eutectoid steel, eutectoid steel, hyper-eutectoid steel, cast iron, high speed steel, tool steel, austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, etc. Can be used. Whichever Fe alloy is used, the corrosion resistance to organic acids and sulfur components is superior to that of the conventional copper alloy. The granular Fe or Fe alloy phase 6 forming the porous portion 4 has a reaction phase with the components of the Ni—P alloy phase 7 on its surface (the surface which becomes an interface with the Ni—P alloy phase 7). It may be formed. Since the porous portion 4 is composed of such granular Fe or Fe alloy phase 6 and Ni—P alloy phase 7 and contains no Cu component, it has excellent corrosion resistance to organic acids and sulfur components. There is.

樹脂組成物5は、多孔質部4の内部の空孔および表面に含浸被覆される。樹脂組成物5としては、一般的な摺動用樹脂組成物を用いることができる。具体的には、フッ素樹脂、ポリエーテルエーテルケトン、 ポリアミド、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール、エポキシ、フェノール、ポリアセタール、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリフェニレンサルファイドのいずれか一種以上の樹脂に、さらに、固体潤滑剤としてグラファイト、グラフェン、フッ化黒鉛、二硫化モリブデン、フッ素樹脂、ポリエチレン、ポリオレフィン、窒化ホウ素、二硫化錫のいずれか一種以上を含む樹脂組成物を用いることができる。また、樹脂組成物5には、さらに充填剤として、粒状、あるいは、繊維状の金属、金属化合物、セラミック、無機化合物、有機化合物のいずれか一種以上を含有させることができる。なお、樹脂組成物5を構成する樹脂、固体潤滑剤、充填剤は、ここで例示したものに限定されない。   The resin composition 5 impregnates and coats the pores and the surface inside the porous portion 4. As the resin composition 5, a general sliding resin composition can be used. Specifically, any one or more of fluororesin, polyetheretherketone, polyamide, polyimide, polyamideimide, polybenzimidazole, epoxy, phenol, polyacetal, polyethylene, polypropylene, polyolefin, polyphenylene sulfide, and solid A resin composition containing one or more of graphite, graphene, fluorinated graphite, molybdenum disulfide, fluororesin, polyethylene, polyolefin, boron nitride, and tin disulfide can be used as a lubricant. The resin composition 5 may further contain, as a filler, one or more of granular or fibrous metal, metal compound, ceramic, inorganic compound and organic compound. The resin, solid lubricant, and filler constituting the resin composition 5 are not limited to those exemplified here.

FeまたはFe合金裏金層2には、一般市販される、純鉄、亜共析鋼、共析鋼、過共析鋼、鋳鉄、高速度鋼、工具鋼、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼等の板や条を用いることができる。なお、FeまたはFe合金裏金層2は、その表面(Ni−P合金相7との界面となる表面)に、Ni−P合金相7の成分との反応相が形成されていてもよい。   For the Fe or Fe alloy back metal layer 2, commercially available pure iron, hypoeutectoid steel, eutectoid steel, hypereutectoid steel, cast iron, high speed steel, tool steel, austenitic stainless steel, ferritic stainless steel. Plates or strips of martensitic stainless steel or the like can be used. The Fe or Fe alloy back metal layer 2 may have a reaction phase with the components of the Ni-P alloy phase 7 formed on its surface (the surface that becomes the interface with the Ni-P alloy phase 7).

次に、本実施形態に係る摺動部材1の製造方法について説明する。   Next, a method for manufacturing the sliding member 1 according to this embodiment will be described.

(粉末混合工程)
粉末混合工程では、FeまたはFe合金粉61と、過共晶Ni−P合金粉71と、Ni粉72と、を、Vブレンダ―等の混合機を用いて混合して、混合粉を準備する。FeまたはFe合金粉61の平均粒径は、45〜180μmであればよい。また、粒状のFe合金の組成は限定されない。一般市販される、純鉄、亜共析鋼、共析鋼、過共析鋼、鋳鉄、高速度鋼、工具鋼、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼等の粒状の粉末を用いることができる。また、過共晶Ni−P合金粉71は、アトマイズ法により製造された過共晶Ni−P合金粉を用いることができる。過共晶Ni−P合金粉71の組成は、13〜16質量%のPと残部Niおよび不可避不純物であるものが好ましい。また、Ni粉72は、アトマイズ法や電解法、カルボニルニッケル法等により製造されたNiおよび不可避不純物からなるものを用いることができる。
(Powder mixing process)
In the powder mixing step, Fe or Fe alloy powder 61, hypereutectic Ni-P alloy powder 71, and Ni powder 72 are mixed using a mixer such as a V blender to prepare mixed powder. . The average particle size of the Fe or Fe alloy powder 61 may be 45 to 180 μm. Further, the composition of the granular Fe alloy is not limited. Generally commercially available granular iron such as pure iron, hypo-eutectoid steel, eutectoid steel, hyper-eutectoid steel, cast iron, high speed steel, tool steel, austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, etc. Powders can be used. As the hypereutectic Ni-P alloy powder 71, a hypereutectic Ni-P alloy powder manufactured by the atomization method can be used. The composition of the hypereutectic Ni-P alloy powder 71 is preferably 13 to 16% by mass of P, the balance Ni, and unavoidable impurities. Further, as the Ni powder 72, it is possible to use one made of Ni and unavoidable impurities produced by an atomizing method, an electrolytic method, a carbonyl nickel method, or the like.

混合粉におけるFeまたはFe合金粉61の割合は、混合粉の100質量部に対して55〜95質量部であり、より好ましくは、60〜90質量部である。また、混合粉における過共晶Ni−P合金粉71とNi粉72とは、後述する焼結工程においてP成分、Ni成分が相互拡散して多孔質部4のNi−P合金相7を形成する。混合粉における過共晶Ni−P合金粉71の割合およびNi粉72の割合は、過共晶Ni−P合金粉71とNi粉72とからなる100質量部に対して、過共晶Ni−P合金粉71に含まれるP成分が9.5〜12.5質量%、より好ましくは、10〜12質量%となるように決められる。   The proportion of Fe or Fe alloy powder 61 in the mixed powder is 55 to 95 parts by mass, and more preferably 60 to 90 parts by mass, relative to 100 parts by mass of the mixed powder. Further, the hypereutectic Ni—P alloy powder 71 and the Ni powder 72 in the mixed powder form the Ni—P alloy phase 7 of the porous portion 4 due to mutual diffusion of the P component and the Ni component in the sintering step described later. To do. The proportion of the hypereutectic Ni—P alloy powder 71 and the proportion of the Ni powder 72 in the mixed powder are 100% by mass of the hypereutectic Ni—P alloy powder 71 and the Ni powder 72, and the hypereutectic Ni— The P component contained in the P alloy powder 71 is determined to be 9.5 to 12.5 mass%, and more preferably 10 to 12 mass%.

過共晶Ni−P合金粉71は、平均粒径がFeまたはFe合金粉61の平均粒径よりも小さいものを用い、Ni粉72は、平均粒径が過共晶Ni−P合金粉71の平均粒径よりも小さいものを用いる。なお、過共晶Ni−P合金粉71は、FeまたはFe合金粉61の平均粒径に対して10〜30%の平均粒径であるものを用い、Ni粉72は、過共晶Ni−P合金粉71の平均粒径に対して10〜50%の平均粒径であるものを用いることが好ましい。   As the hypereutectic Ni-P alloy powder 71, one having an average particle diameter smaller than that of Fe or the Fe alloy powder 61 is used, and the Ni powder 72 has an average particle diameter of the hypereutectic Ni-P alloy powder 71. The average particle size is smaller than the average particle size. As the hypereutectic Ni-P alloy powder 71, one having an average particle size of 10 to 30% with respect to the average particle size of Fe or Fe alloy powder 61 is used, and the Ni powder 72 is hypereutectic Ni-. It is preferable to use one having an average particle diameter of 10 to 50% with respect to the average particle diameter of the P alloy powder 71.

(散布工程)
散布工程では、室温で、準備した混合粉をFeまたはFe合金裏金層2の表面に散布して散布層を形成する。図2は、FeまたはFe合金裏金層2上の散布層の断面を示す模式図である。図2に示すように、過共晶Ni−P合金粉71およびNi粉72は、FeまたはFe合金粉61の平均粒径よりも小さい平均粒径を有するので、主にFeまたはFe合金粉61どうしの間の隙間に共存する状態にある。なお、FeまたはFe合金裏金層2には、一般市販される、純鉄、亜共析鋼、共析鋼、過共析鋼、鋳鉄、高速度鋼、工具鋼、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼等の板や条を用いることができる。
(Spraying process)
In the spraying step, the prepared mixed powder is sprayed on the surface of the Fe or Fe alloy backing metal layer 2 at room temperature to form a spray layer. FIG. 2 is a schematic view showing a cross section of the dispersion layer on the Fe or Fe alloy backing layer 2. As shown in FIG. 2, the hypereutectic Ni—P alloy powder 71 and the Ni powder 72 have an average particle size smaller than the average particle size of the Fe or Fe alloy powder 61. They are in a state of coexisting in the gap between them. The Fe or Fe alloy backing layer 2 is generally commercially available as pure iron, hypoeutectoid steel, eutectoid steel, hypereutectoid steel, cast iron, high speed steel, tool steel, austenitic stainless steel, ferritic steel. Plates or strips of stainless steel, martensitic stainless steel, etc. can be used.

(焼結工程)
焼結工程では、散布層およびFeまたはFe合金裏金層2を、焼結炉を用いて還元性雰囲気中、又は、不活性雰囲気中で加熱して焼結した後に冷却し、FeまたはFe合金裏金層2の表面上に多孔質部4を形成する。焼結温度(最高温度)は、過共晶Ni−P合金粉71の液相温度以上、過共晶Ni−P合金粉71の液相温度+20℃以下の範囲内の温度である。液相温度は、原料として用いる過共晶Ni−P合金粉71のP成分の含有量により異なるが、一般的な示差熱分析法により液相温度を測定したり、又は、公知のNi−P合金二元状態図の液相温度を参照して、焼結温度(最高温度)を設定することができる。例えば、過共晶Ni−P合金粉71として組成がNi−15質量%Pであるものを用いる場合、焼結温度(最高温度)は、1065〜1085℃である。
(Sintering process)
In the sintering step, the scatter layer and the Fe or Fe alloy backing layer 2 are heated in a reducing atmosphere in a sintering furnace or in an inert atmosphere and sintered and then cooled, and then the Fe or Fe alloy backing layer is cooled. The porous portion 4 is formed on the surface of the layer 2. The sintering temperature (maximum temperature) is a temperature within the range of the liquidus temperature of the hypereutectic Ni—P alloy powder 71 or more and the liquidus temperature of the hypereutectic Ni—P alloy powder 71 + 20 ° C. or less. Although the liquidus temperature varies depending on the content of the P component of the hypereutectic Ni-P alloy powder 71 used as a raw material, the liquidus temperature is measured by a general differential thermal analysis method, or the known Ni-P is used. The sintering temperature (maximum temperature) can be set with reference to the liquidus temperature of the alloy binary phase diagram. For example, when a hypereutectic Ni-P alloy powder 71 having a composition of Ni-15 mass% P is used, the sintering temperature (maximum temperature) is 1065 to 1085 ° C.

上記したように、散布層(混合粉)は、固相温度と液相温度との差が大きい過共晶Ni−P合金粉71とNi粉72とを含み、これら粉末は、FeまたはFe合金粉61の間の隙間に共存するため、焼結工程の加熱の過程では、過共晶Ni−P合金粉71とNi粉72との間に相互拡散現象が起こり、Ni−P合金液相の発生や流動が抑制される。このため、FeまたはFe合金粒61どうしの間の隙間に多量のNi−P合金液相が流れ込み、焼結工程後の多孔質部4の空孔のサイズが小さくなることや、空孔率が低くなることが防がれる。また、Ni粉72の平均粒径は、過共晶Ni−P合金粉71の平均粒径よりも小さくすることで、焼結工程での加熱の過程では、Ni−P合金液相と接するNi粉72の表面積が大きくなり、上記の相互拡散現象が促進される。このため、焼結工程後の多孔質部4のNi−P合金相7は、均一な組織となり、Ni−P合金相7の組成は、9.5〜12.5質量%のPと残部Niおよび不可避不純物からなるようになる。このNi−P合金相7の組成は、Ni−P合金相7の強度が高くなる組成範囲である。なお、Ni−P合金相7の組成は、10〜12質量%のPと残部Niおよび不可避不純物からなることがより望ましい。   As described above, the dispersion layer (mixed powder) contains the hypereutectic Ni-P alloy powder 71 and the Ni powder 72 having a large difference between the solid phase temperature and the liquid phase temperature, and these powders are Fe or Fe alloy. Since they coexist in the gaps between the powders 61, a mutual diffusion phenomenon occurs between the hypereutectic Ni-P alloy powder 71 and the Ni powder 72 in the heating process of the sintering process, and the Ni-P alloy liquid phase Generation and flow are suppressed. For this reason, a large amount of Ni-P alloy liquid phase flows into the gaps between the Fe or Fe alloy grains 61, the size of the pores of the porous portion 4 after the sintering step becomes small, and the porosity is It is prevented from becoming low. Further, the average particle size of the Ni powder 72 is made smaller than the average particle size of the hypereutectic Ni—P alloy powder 71, so that Ni that comes into contact with the Ni—P alloy liquid phase is heated in the sintering process. The surface area of the powder 72 is increased, and the above mutual diffusion phenomenon is promoted. Therefore, the Ni-P alloy phase 7 of the porous portion 4 after the sintering step has a uniform structure, and the composition of the Ni-P alloy phase 7 is 9.5 to 12.5 mass% P and the balance Ni. And unavoidable impurities. The composition of the Ni-P alloy phase 7 is in a composition range in which the strength of the Ni-P alloy phase 7 becomes high. The composition of the Ni-P alloy phase 7 is more preferably 10 to 12 mass% P, the balance Ni, and unavoidable impurities.

多孔質部4は、粒状のFeまたはFe合金相6とNi−P合金相7とからなり、Ni−P合金相7は、粒状のFeまたはFe合金相6どうし、あるいは、粒状のFeまたはFe合金相6とFeまたはFe合金裏金層2の表面とをつなぐバインダとして機能している。多孔質部4におけるNi−P合金相7の割合は、多孔質部4の100質量部に対して5〜45質量部であり、より好ましくは、10〜40質量部である。また、多孔質部4は、表面および内部に多くの空孔を有し、これら空孔は、多孔質部4の内部で三次元的なネットワークを形成する。多孔質部4の空孔率は、10〜60%であり、より好ましくは、空孔率は15〜45%である。   The porous portion 4 is composed of granular Fe or Fe alloy phase 6 and Ni-P alloy phase 7, and the Ni-P alloy phase 7 is granular Fe or Fe alloy phases 6 or granular Fe or Fe. It functions as a binder that connects the alloy phase 6 and the surface of the Fe or Fe alloy backing metal layer 2. The proportion of the Ni-P alloy phase 7 in the porous part 4 is 5 to 45 parts by mass, and more preferably 10 to 40 parts by mass, relative to 100 parts by mass of the porous part 4. In addition, the porous portion 4 has many pores on the surface and inside, and these pores form a three-dimensional network inside the porous portion 4. The porosity of the porous portion 4 is 10 to 60%, more preferably the porosity is 15 to 45%.

(樹脂焼成工程)
樹脂焼成工程では、FeまたはFe合金裏金層2の表面上に多孔質部4が形成された部材に対して、予め準備された樹脂組成物5(有機溶剤にて希釈してもよい)が、多孔質部4の空孔を充填し、多孔質部4の表面を被覆するように含浸される。そして、この部材は、樹脂組成物5の乾燥、焼成のための加熱が施され、FeまたはFe合金裏金層2の表面上に多孔質部4と樹脂組成物5とからなる摺動層3が形成される。なお、樹脂組成物5としては、上記の樹脂組成物を用いることができる。また、樹脂組成物5は、多孔質部4の内部で三次元的なネットワークを形成した空孔および表面に含浸被覆されるため、樹脂焼成工程後に樹脂組成物5と多孔質部4との接合が強くなる。
(Resin firing process)
In the resin firing step, the resin composition 5 (which may be diluted with an organic solvent) prepared in advance is applied to the member having the porous portion 4 formed on the surface of the Fe or Fe alloy backing metal layer 2. The pores of the porous portion 4 are filled and impregnated so as to cover the surface of the porous portion 4. Then, this member is heated for drying and firing the resin composition 5, and the sliding layer 3 including the porous portion 4 and the resin composition 5 is formed on the surface of the Fe or Fe alloy backing metal layer 2. It is formed. The above resin composition can be used as the resin composition 5. Further, since the resin composition 5 is impregnated and coated on the pores and the surface forming the three-dimensional network inside the porous portion 4, the resin composition 5 and the porous portion 4 are bonded after the resin firing step. Becomes stronger.

本発明の製造方法による摺動部材1は、各種形状(円筒形状等)に成形して使用することができる。   The sliding member 1 produced by the manufacturing method of the present invention can be molded into various shapes (cylindrical shape, etc.) for use.

1 摺動部材
2 FeまたはFe合金裏金層
3 摺動層
4 多孔質部
5 樹脂組成物
6 FeまたはFe合金相
7 Ni−P合金相
61 FeまたはFe合金粉
71 過共晶Ni−P合金粉
72 Ni粉
1 Sliding member 2 Fe or Fe alloy back metal layer 3 Sliding layer 4 Porous part 5 Resin composition 6 Fe or Fe alloy phase 7 Ni-P alloy phase 61 Fe or Fe alloy powder 71 Hypereutectic Ni-P alloy powder 72 Ni powder

Claims (4)

FeまたはFe合金裏金層上に多孔質部と樹脂組成物とからなる摺動層が設けられた摺動部材の製造方法において、
FeまたはFe合金粉と、平均粒径が該FeまたはFe合金粉の平均粒径よりも小さく、組成が13〜16質量%のPと残部Niおよび不可避不純物である過共晶Ni−P合金粉と、平均粒径が該過共晶Ni−P合金粉の平均粒径よりも小さいNi粉と、からなり、混合粉における前記FeまたはFe合金粉の割合は、前記混合粉の100質量部に対して55〜95質量部であり、前記混合粉における前記過共晶Ni−P合金粉と前記Ni粉とからなる100質量部に対して、前記過共晶Ni−P合金粉に含まれるP成分が9.5〜12.5質量部となるように配合されている前記混合粉を準備する粉末混合工程と、
前記混合粉を前記FeまたはFe合金裏金層上に散布して散布層を形成する散布工程と、
前記散布層および前記FeまたはFe合金裏金層を前記過共晶Ni−P合金粉の液相温度以上、前記過共晶Ni−P合金粉の液相温度+20℃以下の焼結温度で焼結した後に冷却し、粒状のFeまたはFe合金相と、前記粒状のFeまたはFe合金相どうし及び前記粒状のFeまたはFe合金相と前記FeまたはFe合金裏金層とをつなぐバインダとして機能するNi−P合金相と、からなる前記多孔質部を形成する焼結工程と、
前記多孔質部の内部の空孔および表面に前記樹脂組成物を含浸被覆した後に該樹脂組成物を焼成して前記摺動層を形成する樹脂焼成工程と、からなり、
前記多孔質部における前記Ni−P合金相の組成は、9.5〜12.5質量%のPと残部Niおよび不可避不純物からなることを特徴とする摺動部材の製造方法。
In a method for producing a sliding member, in which a sliding layer composed of a porous portion and a resin composition is provided on an Fe or Fe alloy back metal layer,
Fe or Fe alloy powder, hypereutectic Ni-P alloy powder having an average particle size smaller than that of the Fe or Fe alloy powder and having a composition of 13 to 16 mass%, the balance Ni, and inevitable impurities When the average particle diameter is small Ni powder than the average particle diameter of該過eutectic Ni-P alloy powder, Ri Tona, the ratio of the Fe or Fe alloy powder in the mixed powder is 100 parts by weight of the mixed powder To 55 parts by mass relative to 100 parts by mass of the hypereutectic Ni—P alloy powder and the Ni powder in the mixed powder, and included in the hypereutectic Ni—P alloy powder. A powder mixing step of preparing the mixed powder in which the P component is mixed so as to be 9.5 to 12.5 parts by mass ;
A spraying step of spraying the mixed powder on the Fe or Fe alloy backing metal layer to form a spray layer;
Sintering the dispersion layer and the Fe or Fe alloy backing metal layer at a sintering temperature not lower than the liquidus temperature of the hypereutectic Ni—P alloy powder and not higher than the liquidus temperature of the hypereutectic Ni—P alloy powder + 20 ° C. After cooling, the Ni-P functions as a binder for connecting the granular Fe or Fe alloy phase, the granular Fe or Fe alloy phases to each other, and the granular Fe or Fe alloy phase and the Fe or Fe alloy backing layer. An alloy phase, and a sintering step of forming the porous portion consisting of,
A sintered resin forming the sliding layer by baking the resin composition after impregnation coating the resin composition into the pores and the surface of the interior of the porous part, Ri Tona,
The method for manufacturing a sliding member, wherein the composition of the Ni-P alloy phase in the porous portion is 9.5 to 12.5 mass% P, the balance Ni, and inevitable impurities .
前記多孔質部における前記Ni−P合金相の組成は、10〜12質量%のPと残部Niおよび不可避不純物からなることを特徴とする請求項1記載の摺動部材の製造方法。 The composition of the Ni-P alloy phase in the porous portion, the production method according to claim 1 Symbol mounting sliding member characterized by comprising the 10-12 mass% of P and the balance Ni and unavoidable impurities. 前記多孔質部における前記Ni−P合金相の割合は、前記多孔質部の100質量部に対して前記Ni−P合金相が5〜45質量部であることを特徴とする請求項1又は請求項2記載の摺動部材の製造方法。 The ratio of the Ni-P alloy phase in the porous part, the Ni-P alloy phase claim 1 or claim, characterized in that 5 to 45 parts by weight per 100 parts by weight of the porous portion Item 3. A method for manufacturing a sliding member according to item 2 . 前記多孔質部の空孔率は、15〜60%であることを特徴とする請求項1乃至請求項のいずれかに記載の摺動部材の製造方法。 The porosity of the said porous part is 15-60%, The manufacturing method of the sliding member in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
JP2016113047A 2016-06-06 2016-06-06 Method for manufacturing sliding member Active JP6682366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113047A JP6682366B2 (en) 2016-06-06 2016-06-06 Method for manufacturing sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113047A JP6682366B2 (en) 2016-06-06 2016-06-06 Method for manufacturing sliding member

Publications (2)

Publication Number Publication Date
JP2017218622A JP2017218622A (en) 2017-12-14
JP6682366B2 true JP6682366B2 (en) 2020-04-15

Family

ID=60658726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113047A Active JP6682366B2 (en) 2016-06-06 2016-06-06 Method for manufacturing sliding member

Country Status (1)

Country Link
JP (1) JP6682366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156363A (en) * 2020-03-27 2021-10-07 中西金属工業株式会社 Nut for sensor cap, and sensor cap

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821311B2 (en) * 1986-09-17 1996-03-04 株式会社日立製作所 Impregnated cathode assembly
JP2003039195A (en) * 2001-07-25 2003-02-12 Taiho Kogyo Co Ltd Brazing material for joining battery members
JP6198653B2 (en) * 2014-03-24 2017-09-20 大同メタル工業株式会社 Sliding member
JP6258139B2 (en) * 2014-07-07 2018-01-10 大同メタル工業株式会社 Sliding member

Also Published As

Publication number Publication date
JP2017218622A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
CN102202816B (en) Metallurgical composites, the self-lubricating sintered product of bulk material and obtain the method for self-lubricating sintered product
JP6779600B2 (en) Multi-layer sliding member
JP6488876B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
CN105555452A (en) Method for joining metal parts
JP2018016844A (en) Multilayer sintered plate and multilayer sliding member and method for producing multilayer sintered plate
JP6488875B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
EP2944708B1 (en) Sliding member
JP6328043B2 (en) Sliding member
US9957457B2 (en) Sliding member
JP6466268B2 (en) Sliding member
JP6682366B2 (en) Method for manufacturing sliding member
JP6347733B2 (en) Sliding member
JP6705631B2 (en) Multi-layer sliding member
JP6198653B2 (en) Sliding member
JP6198652B2 (en) Sliding member
JP6258121B2 (en) Sliding member
JP6381430B2 (en) Sliding member
JP5403707B2 (en) Cu-based infiltration powder
JP6258139B2 (en) Sliding member
JP6466246B2 (en) Sliding member
JP6466245B2 (en) Sliding member
JP4167011B2 (en) Method for producing composite material comprising non-ferrous metal alloy containing low melting point material and steel
JP6343418B2 (en) Carrier part forming sliding bearing, sliding bearing, method for manufacturing carrier part, and reciprocating piston combustion engine having sliding bearing
JPH0645859B2 (en) Abrasion resistant ceramic spraying method
US20200171576A1 (en) Multilayered sintered plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250