[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6676877B2 - 食事時間推定方法、食事時間推定装置及び食事時間推定プログラム - Google Patents

食事時間推定方法、食事時間推定装置及び食事時間推定プログラム Download PDF

Info

Publication number
JP6676877B2
JP6676877B2 JP2015046237A JP2015046237A JP6676877B2 JP 6676877 B2 JP6676877 B2 JP 6676877B2 JP 2015046237 A JP2015046237 A JP 2015046237A JP 2015046237 A JP2015046237 A JP 2015046237A JP 6676877 B2 JP6676877 B2 JP 6676877B2
Authority
JP
Japan
Prior art keywords
breathing
meal time
section
meal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015046237A
Other languages
English (en)
Other versions
JP2016165362A (ja
Inventor
拓郎 大谷
拓郎 大谷
中田 康之
康之 中田
明大 猪又
明大 猪又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015046237A priority Critical patent/JP6676877B2/ja
Publication of JP2016165362A publication Critical patent/JP2016165362A/ja
Application granted granted Critical
Publication of JP6676877B2 publication Critical patent/JP6676877B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、食事時間推定方法、食事時間推定装置及び食事時間推定プログラムに関する。
メタボリック症候群や糖尿病を始めとする生活習慣病の予防や、ダイエット、医療サービスなどのヘルスケアが注目されている。かかるヘルスケアを行う場合には、日頃の運動や食事などの生活習慣を記録することにより、自己の生活習慣の問題点に気付き、改善していくプロセスが求められる。
例えば、「食事」に関する予防策として、下記の通り、「いつ」、「何を」、「どれだけ」などの食事のコントロール方法が挙げられている。具体的には、規則正しく三食を摂る(いつ)、朝食をとる(いつ)、バランス良く栄養をとる(何を)、カロリーを摂取し過ぎない(どれだけ)、塩分は控える(何を)といった項目が挙げられている。
ここで、例えば、「いつ」食べたのかという記録があれば、不規則な食習慣を検知し、予防のアドバイスを提供するなどのサービスを実施することもできる。
例えば、食事判定を行う技術の一例として、食行動検知システム、発話・飲食状態検出システムや食事行動検出装置などが提案されている。例えば、食行動検知システムでは、食物摂取の際の、腕を上げて降ろす動作を加速度センサを用いて検出することにより、食事判定を行う。また、発話・飲食状態検出システムでは、物を食べる際に咀嚼する事を利用し、体内音の咀嚼特有の周波数パターンを検出する。また、食事行動検出装置の場合、食卓上などに赤外線センサを設置した状況の下、食卓付近で人体を検出した後に人体が頻繁に動いているかどうかを閾値処理する。
ところが、これらの技術のいずれにおいても、食事行動を推定するために、食事の仕方が制限されたり、あるいは食事行動を推定する場所に制約があったりするので、汎用性に欠ける面がある。例えば、食行動検知システムで想定される加速度の傾向は、あくまでも食物摂取時になされる腕の動作の一面にしか対応しておらず、それ以外の腕の動作がなされる場合には加速度の傾向が異なるので、検出漏れが発生する。また、発話・飲食状態検出システムの場合、食事時にマイクを首に装着させることになるので、身体に負担がかかり、かつ見栄えも悪くなってしまう。また、食事行動検出装置の場合、赤外線センサが設置された場所のみの、固定された環境での食事しか認識することはできない。
また、食事判定に脈波を用いる技術の一例として、生活管理端末装置も提案されている。この生活管理端末装置では、食事時に起る咀嚼特徴が現れることに加え、脈拍数が上昇し、かつ皮膚導電率に急激な上昇がない場合に食事中であると判断する。
特開2011−4968号公報 特開2003−173375号公報 特開2011−115508号公報 特開2004−81471号公報 特開2008−61790号公報
しかしながら、上記の技術では、次に説明するように、食事時間に誤判定が起こる場合がある。
すなわち、上記の生活管理端末装置では、食事判定に皮膚導電率が用いられる。かかる皮膚導電率は、発汗時等にその計測精度が低下するので、食事判定にも誤判定が発生する可能性が高まる。また、上記の生活管理端末装置において皮膚導電率を用いずに脈拍数だけを用いたとしても、食事以外の原因、例えば精神の緊張、環境温度の変化や運動行為などにより脈拍数が上昇するので、この場合にも誤判定が起こる。
1つの側面では、本発明は、食事時間の精度低下を抑制できる食事時間推定方法、食事時間推定装置及び食事時間推定プログラムを提供することを目的とする。
一態様の食事時間推定方法は、コンピュータが、呼吸信号を取得し、呼吸の強度と周期を検出し、前記呼吸の強度と周期が所定の閾値から変動した頻度から食事時間を推定する処理を実行する。
食事時間の精度低下を抑制できる。
図1は、実施例1に係るヘルスケア支援システムに含まれる各装置の機能的構成を示すブロック図である。 図2は、人体における喉頭蓋の働きの一例を示す図である。 図3は、呼吸信号の一例を示す図である。 図4は、呼吸信号の一例を示す図である。 図5は、呼吸信号の一例を示す図である。 図6は、呼吸信号の一例を示す図である。 図7は、呼吸信号管理表の一例を示す図である。 図8は、呼吸信号管理表の一例を示す図である。 図9は、呼吸信号管理表の一例を示す図である。 図10は、呼吸信号管理表の一例を示す図である。 図11は、呼吸信号管理表の一例を示す図である。 図12は、嚥下の判定結果の統合例を示す図である。 図13は、嚥下管理表の一例を示す図である。 図14は、食事時間管理表の一例を示す図である。 図15は、実施例1に係る食事時間推定処理の手順を示すフローチャートである。 図16Aは、呼吸信号の一例を示す図である。 図16Bは、呼吸信号の微分波形の一例を示す図である。 図16Cは、嚥下の検出方法の一例を示す図である。 図17は、応用例に係る食事時間推定処理の手順を示すフローチャートである。 図18は、実施例1及び実施例2に係る食事時間推定プログラムを実行するコンピュータのハードウェア構成例を示す図である。
以下に添付図面を参照して本願に係る食事時間推定方法、食事時間推定装置及び食事時間推定プログラムについて説明する。なお、この実施例は開示の技術を限定するものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
[システム構成]
図1は、実施例1に係るヘルスケア支援システムに含まれる各装置の機能的構成を示すブロック図である。図1に示すヘルスケア支援システム1は、各種のヘルスケア支援サービスを提供するものである。例えば、ヘルスケア支援サービスの一例として、センサ端末10により採取されたセンシングデータを用いてセンサ端末10のユーザの生活行動、例えば食事時間を記録するサービス、さらには、その記録を活用する派生のサービスなどが挙げられる。
かかるヘルスケア支援サービスの一環として、ヘルスケア支援システム1は、ユーザの食事時間を呼吸により推定する場合に、呼吸信号に現れる嚥下の特徴を持つ区間が連続する頻度によって食事時間を推定する食事時間推定サービスを実現する。これによって、例えば、食事以外の外乱、例えば発声、深呼吸や運動などの場面で嚥下と誤認識されるのを抑制し、もって食事時間の誤判定を抑制する。加えて、呼吸のセンシングに絞ることで、食事の仕方が制限させること、あるいは食事行動を推定する場所に制約が生じるのを抑制し、その汎用性を高める。
図1に示すように、ヘルスケア支援システム1には、センサ端末10と、情報処理装置100とが収容される。なお、図1には、センサ端末が1つである場合を図示したが、ヘルスケア支援システム1には、複数のセンサ端末が収容されることとしてもかまわない。
これらセンサ端末10及び情報処理装置100の間は、相互に通信可能に接続される。ここでは、センサ端末10及び情報処理装置100がBLE(Bluetooth(登録商標) Low Energy)などの近距離無線通信により接続される場合を想定するが、有線または無線を問わず、任意のネットワークを介して互いを接続することができる。例えば、LAN(Local Area Network)やVPN(Virtual Private Network)などの構内通信網を始め、インターネット(Internet)などの任意の種類の通信網を採用できる。
センサ端末10は、センサを実装する端末装置である。
一実施形態として、センサ端末10には、ウェアラブルガジェットの他、ヘルスケア専用のセンサなどを採用できる。かかるセンサ端末10には、呼吸センサが実装される。この呼吸センサを用いて、センサ端末10は、センサ端末10を利用するユーザの呼吸信号を測定する。このように呼吸センサが実装される場合、一例として、ユーザの生体部位、例えば胸や鼻などの呼吸器の近傍に装着する装着型の呼吸センサを採用することができる。この場合、呼吸器の体表の膨張や収縮を測定するタイプのものでもよいし、骨伝導により呼吸音を測定するタイプのものであってもかまわない。また、装着型の呼吸センサに限らず、肌が撮像された画像の輝度変化から呼吸の検出をユーザの生体部位に非接触の状態で実現することとしてもかまわない。
ここで、センサ端末10から情報処理装置100へは、上記の呼吸信号が伝送される。このように呼吸信号を伝送する場合、センサ端末10は、呼吸信号をリアルタイムで情報処理装置100へ伝送することもできるし、所定の期間、例えば日次、週次や月次にわたって蓄積された呼吸信号を情報処理装置100へ伝送することもできる。
情報処理装置100は、上記のヘルスケア支援サービスを提供するコンピュータである。かかる情報処理装置100には、携帯端末装置、据置き型やノート型のパーソナルコンピュータを含む計算機全般を採用できる。なお、上記の携帯端末装置には、スマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末のみならず、タブレット端末やスレート端末などがその範疇に含まれる。
一実施形態として、情報処理装置100は、パッケージソフトウェアやオンラインソフトウェアとして上記のヘルスケア支援サービスを実現する食事時間推定プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、情報処理装置100は、センサ端末10から受け付けた呼吸信号を用いて、センサ端末10のユーザの食事時間を推定する。その上で、情報処理装置100は、食事時間を記録することができる他、それまでに記録された食事時間から所定期間、例えば1週間などにわたる食事時間帯の一覧表を生成した上で出力したり、それまでに記録された食事時間から食習慣またはダイエットに関する分析を行った上で各種のアドバイスを出力したりすることもできる。例えば、情報処理装置100が有する表示デバイス、音声出力デバイス、印字デバイスなどの出力デバイスを通じて、上記の各種の情報を出力させることができる。また、情報の出力先は、必ずしも情報処理装置100に限定されず、ユーザが使用する他の端末装置とすることもできるし、その関係者、例えばユーザの親族、医療または介護の担当者などが使用する端末装置とすることもできる。これによって、上記のヘルスケア支援サービスが実現される。
[センサ端末10の構成]
次に、本実施例に係るセンサ端末10の機能的構成について説明する。図1に示すように、センサ端末10は、呼吸信号測定部11と、通信I/F(InterFace)部12とを有する。なお、センサ端末10は、図1に示した機能部以外にも既知のコンピュータが有する機能部を有することとしてもよい。例えば、ウェアラブルガジェットがセンサ端末10として実行される場合、ウェアラブルガジェットが標準装備するハードウェア及びソフトウェアを実装できるのは言うまでもない。
呼吸信号測定部11は、上記の呼吸信号を測定する処理部である。
一実施形態として、呼吸信号測定部11は、呼吸センサを制御して、所定のサンプリング周期で呼吸に関連する物理量をセンシングさせる。ここでは、一例として、呼吸器の体表の膨張や収縮が現れる体積が電気信号に変換される場合を想定する。この場合、呼吸センサのサンプリング間隔に対応する時間ごとに呼吸センサによりセンシングされた体積の測定結果を表す電圧が得られる。これら時間及び電圧の時系列データが呼吸信号として通信I/F部12へ出力されることになる。なお、ここで言う「時間」は、センサ端末10上でローカルに管理されるシステム時間、例えば任意の開始時点からの経過時間であってもよいし、年月日時分秒等のカレンダ上の暦で表現される時間であってもかまわない。
通信I/F部12は、他の装置、例えば情報処理装置100などとの間で通信制御を行うインタフェースである。
一実施形態として、センサ端末10及び情報処理装置100間がBLE等の近距離無線通信により接続される場合、通信I/F部12には、BLEの通信モジュールを採用できる。また、LAN等により接続される場合、通信I/F部12には、LANカードなどのネットワークインタフェースカードを採用できる。例えば、通信I/F部12は、呼吸信号測定部11により測定された呼吸信号などを情報処理装置100へ送信したり、また、呼吸信号の送信間隔や呼吸信号のサンプリングレートに関する指示などを受信したりする。
[情報処理装置100の構成]
次に、本実施例に係る情報処理装置100の機能的構成について説明する。図1に示すように、情報処理装置100は、通信I/F部110と、第1検出部121と、第2検出部122と、第3検出部123と、嚥下行動判定部130と、嚥下頻度算出部140と、推定部150と、サービス提供部160とを有する。なお、情報処理装置100は、図1に示した機能部以外にも既知のコンピュータが有する機能部、例えば各種の入出力デバイスなどを有することとしてもよい。
通信I/F部110は、他の装置、例えばセンサ端末10などとの間で通信制御を行うインタフェースである。
一実施形態として、情報処理装置100及びセンサ端末10間がBLE等の近距離無線通信により接続される場合、通信I/F部110には、BLEの通信モジュールを採用できる。また、LAN等により接続される場合、通信I/F部110には、LANカードなどのネットワークインタフェースカードを採用できる。例えば、通信I/F部110は、センサ端末10から呼吸信号などを受信したり、また、呼吸信号の送信間隔や呼吸信号のサンプリングレートに関する指示などをセンサ端末10へ送信したりする。
上記の呼吸信号は、センサ端末10から受信してからリアルタイムで後段の機能部に入力することもできるが、食事時間の推定や記録は必ずしもリアルタイムで実行されずともかまわないので、ここでは、一例として、上記の呼吸信号が所定の期間、例えば日次、週次や月次にわたって蓄積された後に呼吸信号が後段の機能部へ入力される場合を想定することとする。
また、上記の呼吸信号は、一例として、呼吸成分に対応する周波数帯の信号成分、例えば10bpm以上60bpm未満の周波数帯を通過させてそれ以外の周波数帯の信号成分を除去するバンドパスフィルタ(Band-Pass Filter)により、ノイズが除去された呼吸信号が後段の機能部へ入力されることとする。なお、ここでは、BPFにより呼吸信号のノイズを除去する場合を例示したが、BPF等による信号処理を実行せずにそのまま後段の機能部に入力することとしてもかまわない。
第1検出部121、第2検出部122及び第3検出部123は、いずれも呼吸信号に現れる嚥下の特徴を検出する処理部である。
ここで、第1検出部121、第2検出部122及び第3検出部123の処理内容について説明するのに先立って、第1検出部121、第2検出部122及び第3検出部123が呼吸信号から検出する嚥下の特徴について説明する。
図2は、人体における喉頭蓋の働きの一例を示す図である。図2には、喉頭蓋20の周辺部が拡大された拡大図20A及び拡大図20Bが併せて示されている。図2に示す拡大図20Aには、ON状態の喉頭蓋20が示されており、図2に示す拡大図20Bには、OFF状態の喉頭蓋20が示されている。図2の拡大図20Aに示すように、呼吸が行われる場合、喉頭蓋20が開くことにより、口、気管及び肺の気道が通じる。一方、図2の拡大図20Bに示すように、食物等を飲み込む場合、喉頭蓋20が閉じることにより、口、食道及び胃が通じる。
このような喉頭蓋20の働きの下、嚥下が行われる場合、呼気、停止、吸気の順に一連の動作が発生する。かかる嚥下は、食事時に断続的に繰り返されるので、喉頭蓋のON及びOFFも断続的に発生する。このことから、一連の動作の発生を検出することにより嚥下を検知し、その結果から食事開始時刻、食事終了時刻もしくはこれらの両方を食事時間として推定することが可能になる。
図3〜図6は、呼吸信号の一例を示す図である。図3〜図6に示すグラフでは、縦軸に振幅(電圧)が示されると共に横軸に時刻が示されている。図3には、食事前、食事区間(食事中)、食事後にセンシングされた呼吸信号が示されている。図3に示す食事区間の呼吸信号が横軸、すなわち時間方向に拡大されたグラフが図4に示されている。図4には、咀嚼中の呼吸に対応する区間が細線で示される一方で、嚥下に対応する区間が太線で示される。図4に示すように、食事中には、食べ物の咀嚼及び嚥下が断続的に繰り返されることにより、呼吸信号の振幅が変化する。具体的には、咀嚼から嚥下へ遷る過程で呼気により振幅が減少し、嚥下中に呼吸が一時的に停止することにより振幅が微少な状態で遷移した後、嚥下後に吸気により振幅が増加するといった現象が起こることがわかる。
図5には、食事開始時刻前後の呼吸信号が示される一方で、図6には、食事終了時刻前後の呼吸信号が示されている。図5及び図6には、BPFによりノイズが除去される前後の呼吸信号が示されており、フィルタ通過前の呼吸信号が破線で示される一方でフィルタ通過後の呼吸信号が実線で示されている。なお、フィルタ通過後の呼吸信号には、フィルタにより遅延が発生している。
図5及び図6に示すように、食事区間と食事前の区間または食事後の区間との比較により、食事区間では、次のような傾向が特徴として現れることがわかる。一側面として、(1)嚥下に伴って呼吸信号が微少になること、すなわち呼吸が浅くなる区間が発生する。他の側面として、(2)嚥下に伴って呼吸信号の振幅が乱れる区間が発生する。更なる側面として、(3)呼気に連動して嚥下動作が行われやすく呼吸が一時的に停止する区間が発生する。
これら(1)、(2)及び(3)の傾向から、呼吸の浅さ、呼吸の乱れ、呼吸停止を検出することが嚥下の検知につながり、呼吸の浅さ、呼吸の乱れ及び呼吸停止が複合するほど嚥下が行われている可能性が高いとの推定が可能になる。
第1検出部121は、上記の呼吸信号から呼吸の浅さを検出する。
一実施形態として、第1検出部121は、所定の時間長の窓を設定する。かかる窓の時間長には、呼吸のサイクルに対応する期間を設定できる。一般に、正常な呼吸が行われる場合、呼吸の1サイクルは、約4秒から5秒の間で行われることから、一例として、窓の時間長には4秒間を採用できる。このような窓の設定の下、第1検出部121は、呼吸信号に設定された窓内の振幅値のうち最大値及び最小値を抽出し、最大値及び最小値の振幅差を求める。その上で、第1検出部121は、先のようにして求めた振幅差が所定の閾値未満であるか否かを判定する。かかる閾値には、一例として、固定値を用いることもできるし、呼吸信号における振幅の統計値、例えば平均値、中央値などを基準に定めることができる。このとき、振幅差が所定の閾値未満である場合には、一呼吸において呼吸が浅いことがわかる。この場合、当該窓における呼吸の浅さの検出結果は、「有り」と判定される。このようにして呼吸の浅さの検出は、呼吸信号の開始時刻から終了時刻まで上記の窓をシフトさせることにより、窓ごとに繰り返し実行される。
図7及び図8は、呼吸信号管理表の一例を示す図である。図7及び図8には、一例として、1日分の呼吸信号のうち一部の区間が抜粋して例示されると共に、説明の便宜上、サンプリング間隔として1秒間が例示されているが、呼吸信号の時間長やサンプリング間隔は任意の長さであってかまわない。このうち、図7には、呼吸の浅さ検出が実行される前の呼吸信号管理表が示される一方で、図8には、呼吸の浅さの検出結果が記録された後の呼吸信号管理表が示されている。なお、図7及び図8に示す呼吸信号管理表は、図示しない内部メモリ上のワークエリアに保持される。かかるワークエリアには、図1に示した第1検出部121、第2検出部122、第3検出部123、嚥下行動判定部130、嚥下頻度算出部140及び推定部150が共通してアクセスできることとする。
図7に示すように、呼吸信号管理表には、ノイズ除去が行われた呼吸信号の時刻及び振幅が記入されている。このような状況の下、図8に示すように、時間長が4秒間である窓が呼吸信号の開始時刻から順に時刻を1つずつシフトさせて設定される。すなわち、1つ目の窓は、図8に実線で示される通り、12時00分00秒から12時00分03秒までの区間に設定され、2つ目の窓は、図8に破線で示される通り、12時00分01秒から12時00分04秒までの区間に設定される。このような窓の設定が呼吸信号の終了時刻と窓の終了時刻とが一致するまで繰り返し実行される。
例えば、1つ目の窓、すなわち図8に実線で示す窓の場合、振幅の最大値として200mvが抽出されると共に振幅の最小値として0mvが抽出されるので、振幅差は200となる。また、2つ目の窓、すなわち図8に破線で示す窓の場合も、振幅の最大値として200mvが抽出されると共に振幅の最小値として0mvが抽出されるので、振幅差は200となる。ここで、一例として、振幅差が100未満である場合に呼吸が浅いと判定されるとしたとき、いずれの窓においても、呼吸は浅くないと判定される。この場合、呼吸の浅さの検出結果として「0」が呼吸信号管理表に記録される。なお、以下では、窓に対応する検出結果は、窓の終了時刻に対応する時刻に対応付けて記録されることとする。また、8つ目の窓、すなわち12時00分07秒から12時00分10秒までの区間に設定される窓の場合、振幅の最大値として100mvが抽出されると共に振幅の最小値として10mvが抽出されるので、振幅差は90となる。この場合、閾値を下回ることになるので、呼吸は浅いと判定される。この結果、呼吸の浅さの検出結果として「1」が呼吸信号管理表に記録される。
第2検出部122は、上記の呼吸信号から呼吸の乱れを検出する。
一実施形態として、第2検出部122は、所定の時間長の基準窓と、基準窓の前後に隣接させて基準窓と同一の時間長の窓幅を持つ比較窓を設定する。これらの窓の時間長には、第1検出部121で設定される窓と同様の期間、例えば4秒間を設定できる。これら基準窓及び比較窓の設定の下、第2検出部122は、基準窓、基準窓の前後に隣接する2つの比較窓ごとに、窓内の振幅値のうち最大値及び最小値を抽出し、最大値及び最小値の振幅差を求める。以下では、基準窓の前後に隣接する2つの比較窓のうち、基準窓の前に隣接する比較窓のことを「第1の比較窓」と記載し、基準窓の後に隣接する比較窓のことを「第2の比較窓」と記載する場合がある。その上で、第2検出部122は、基準窓における振幅差と、各比較窓における振幅差との窓間の振幅差の差分が所定の閾値以上であるか否かを判定する。このとき、第1の比較窓または第2の比較窓のうち少なくともいずれか一方との間で窓間の振幅差の差分が所定の閾値以上である場合、隣接する呼吸に乱れがあることがわかる。この場合、当該基準窓における呼吸の乱れの検出結果は、「有り」と判定される。このようにして呼吸の乱れの検出は、呼吸信号の開始時刻から終了時刻まで上記の基準窓及び2つの比較窓をシフトさせることにより、繰り返し実行される。なお、ここでは、一例として、基準窓の前後で2つの比較窓を設ける場合を例示したが、いずれか一方の比較窓に絞って設定することとしてもかまわない。
図9は、呼吸信号管理表の一例を示す図である。図9には、図8に示した呼吸信号管理表に呼吸の乱れの検出結果がさらに記録された後の呼吸信号管理表が示されている。図9に示すように、1度目の基準窓及び比較窓は、図9に実線及び破線で示される通りに設定される。すなわち、基準窓は、図9に実線で示された通り、12時00分04秒から12時00分07秒までの区間に設定される。一方、第1の比較窓は、図9に破線で示された通り、12時00分00秒から12時00分03秒までの区間に設定されると共に、第2の比較窓は、図9に破線で示された通り、12時00分08秒から12時00分11秒までの区間に設定される。
これら第1の比較窓、基準窓及び第2の比較窓が設定された場合、基準窓では、振幅の最大値として200mvが抽出されると共に振幅の最小値として0mvが抽出されるので、振幅差は200となる。また、第1の比較窓においても、振幅の最大値として200mvが抽出されると共に振幅の最小値として0mvが抽出されるので、振幅差は200となる。一方、第2の比較窓では、振幅の最大値として30mvが抽出されると共に振幅の最小値として10mvが抽出されるので、振幅差は20となる。ここで、一例として、振幅差が100以上である場合に呼吸に乱れがあると判定されるとしたとき、このうち、基準窓と第1の比較窓との間では、窓間の振幅差の差分が閾値未満となる一方で、基準窓と第2の比較窓との間では、窓間の振幅差の差分が閾値以上となる。この場合、呼吸の乱れの検出結果として「1」が呼吸信号管理表に記録されることになる。
第3検出部123は、上記の呼吸信号から呼吸停止を検出する。
一実施形態として、第3検出部123は、所定の時間長の窓を設定する。かかる窓の時間長には、第1検出部121で設定される窓と同様の期間、例えば4秒間を設定できる。このような窓の設定の下、第3検出部123は、呼吸信号に設定された窓内で標準偏差を求める。ここでは、一例として、標準偏差を求める場合を例示するが、他の統計値、例えば分散を求めることとしてもかまわない。その上で、第3検出部123は、先のようにして求めた窓内の標準偏差が所定の閾値以下であるか否かを判定する。このとき、窓内の標準偏差が所定の閾値以下である場合には、呼吸が一時的に停止するか、あるいは微弱な呼吸しか行われていないことがわかる。この場合、当該窓における呼吸停止の検出結果は、「有り」と判定される。このようにして呼吸停止の検出は、呼吸信号の開始時刻から終了時刻まで上記の窓をシフトさせることにより、窓ごとに繰り返し実行される。
図10は、呼吸信号管理表の一例を示す図である。図10には、図9に示した呼吸信号管理表に呼吸停止の検出結果がさらに記録された後の呼吸信号管理表が示されている。例えば、1つ目の窓、すなわち図10に実線で示す窓の場合、窓内の標準偏差は81.65となる。これとは対照に、9つ目の窓、すなわち12時00分08秒から12時00分11秒までの区間に設定される窓の場合、窓内の標準偏差は8.16となる。この場合、1つ目の窓では、呼吸停止ではないと判定される一方で、9つ目の窓では、呼吸停止と判定される。この結果、1つ目の窓には、呼吸停止の検出結果として「0」が呼吸信号管理表に記録される一方で、9つ目の窓には、呼吸停止の検出結果として「1」が呼吸信号管理表に記録される。
嚥下行動判定部130は、第1検出部121、第2検出部122及び第3検出部123のうち少なくともいずれか1つの検出結果から嚥下行動を判定する処理部である。
一実施形態として、嚥下行動判定部130は、各時刻に対応付けられた呼吸の浅さ、呼吸の乱れ及び呼吸停止の検出結果を参照し、3つの検出結果のうち1つ以上で検出結果が「有り」である場合に、当該時刻で嚥下有りと判定する。図11は、呼吸信号管理表の一例を示す図である。図11には、図10に示した呼吸信号管理表に嚥下判定の結果がさらに記録された後の呼吸信号管理表が示されている。例えば、図11に示す時刻「12時00分03秒」の場合、すなわち図11に実線で示された時刻の場合、3つの検出結果のうちいずれの検出結果も「無し」であるので、嚥下無しと判定される。一方、図11に示す時刻「12時00分10秒」の場合、すなわち図11に破線で示された時刻の場合、3つの検出結果のうち呼吸の浅さ及び呼吸の乱れの2つの検出結果が「有り」であるので、嚥下有りと判定される。この結果、図11に示す時刻「12時00分03秒」には、嚥下の判定結果として「0」が呼吸信号管理表に記録される一方で、図11に示す時刻「12時00分10秒」には、嚥下の判定結果として「1」が呼吸信号管理表に記録される。なお、ここでは、3つの検出結果のうち1つ以上で検出結果が「有り」である場合に当該時刻で嚥下有りと判定する場合を例示したが、2つ以上で検出結果が「有り」である場合に嚥下有りと判定することとしてもよいし、3つとも検出結果が「有り」である場合に嚥下有りと判定することとしてもよい。
このように嚥下の判定を行った後、嚥下行動判定部130は、互いに連続する嚥下の判定結果「有り」の区間を探索し、当該嚥下の判定結果「有り」が連続する区間を1度の嚥下行動として統合する。図12は、嚥下の判定結果の統合例を示す図である。図12の左側には、図11に示した呼吸信号管理表が示されると共に、図12の右側には、嚥下管理表への嚥下行動の記録結果が示されている。図12の例では、一例として、互いに連続する嚥下の判定結果「有り」の区間を当該区間の開始時刻に代表させることにより1つの嚥下行動としてまとめる場合が示されている。図11に示した呼吸信号管理表の場合、12時00分10秒から12時00分12秒の区間で嚥下の判定結果「有り」が連続する。この場合、図12に示す嚥下管理表の通り、当該区間の開始時刻である12時00分10秒に嚥下の判定結果「有り」を代表させることにより1つの嚥下行動として記録される。このように、互いに連続する嚥下の判定結果「有り」を1つの嚥下行動に統合することにより、1度の嚥下が複数回の嚥下として計上されるのを抑制することができる。
嚥下頻度算出部140は、嚥下行動の頻度を算出する処理部である。
一実施形態として、嚥下頻度算出部140は、所定の時間長の窓を設定する。かかる窓の時間長には、散発的な嚥下、例えば唾の飲み込みや飲料の摂取を食事と誤判定しない程度の期間を設定できる。一例として、窓の時間長には、3分間を採用できる。このような窓の設定の下、嚥下頻度算出部140は、嚥下行動判定部130により判定された嚥下行動の判定結果のうち窓内の嚥下行動の判定結果を参照し、嚥下行動の判定結果が有りである時刻の個数を計数することにより、当該窓における嚥下頻度を算出する。このようにして嚥下頻度の算出は、呼吸信号の開始時刻から終了時刻まで上記の窓をシフトさせることにより、窓ごとに繰り返し実行される。
図13は、嚥下管理表の一例を示す図である。図13に実線で示された窓、すなわち12時00分03秒から12時03分02秒までの区間の窓の場合、嚥下行動の判定結果が有りである個数「4」が計数される。この場合、当該窓に対応する嚥下頻度は、窓の終了時刻に対応する時刻「12時03分02秒」に対応付けて「4」が記録される。
推定部150は、嚥下頻度から食事時間を推定する処理部である。
一実施形態として、推定部150は、嚥下頻度算出部140により算出された嚥下頻度の算出結果のうち嚥下頻度がゼロを超え、かつ互いが連続する嚥下頻度の算出結果をグループ化する。その上で、推定部150は、グループ化により得られた区間を食事区間と推定する。このとき、推定部150は、先の食事区間に含まれる最初の時刻を食事開始時刻とし、先の食事区間に含まれる最後の時刻を食事終了時刻として、これらのうち少なくとも一方を食事時間として出力することができるが、食事終了時刻については嚥下行動の判定結果をさらに加味して推定することもできる。例えば、推定部150は、先の食事区間のうち嚥下行動の判定結果が最後に検知された時刻を食事終了時刻と推定して出力することもできる。
図14は、食事時間管理表の一例を示す図である。図14の左側には、図13に示した嚥下管理表において12時00分10秒から12時10分00秒までの区間、すなわち図示の実線で囲われた箇所が食事区間としてグループ化された例を示している。かかる食事区間の場合、食事区間に含まれる最初の時刻「12時00分10秒」が食事開始時刻として推定される。さらに、当該食事区間のうち嚥下行動の判定結果が最後に検知された時刻「12時09分01秒」が食事終了時刻として推定される。この結果、食事時間管理表には、食事開始時刻として「12時00分10秒」が記録される一方で、食事終了時刻として「12時09分01秒」が食事時間管理表に記録される。
サービス提供部160は、上記のヘルスケア支援サービスを提供する処理部である。
一実施形態として、サービス提供部160は、推定部150により推定された食事時間、例えば食事開始時刻、食事終了時刻、もしくは、食事開始時刻及び食事終了時刻の両方のうち少なくともいずれか1つを記録したり、それまでに記録された食事時間から所定期間、例えば1週間などにわたる食事時間帯の一覧表を生成した上で出力したり、それまでに記録された食事時刻から食習慣またはダイエットに関する分析を行った上で各種のアドバイスを出力したりする。なお、サービス提供部160で実装される機能は、外部のサーバ装置等などにより実現されることとしてもよい。
なお、上記の第1検出部121、第2検出部122、第3検出部123、嚥下行動判定部130、嚥下頻度算出部140、推定部150及びサービス提供部160などの機能部は、次のようにして実装できる。例えば、中央処理装置、いわゆるCPU(Central Processing Unit)などに、上記の各機能部と同様の機能を発揮するプロセスをメモリ上に展開して実行させることにより実現できる。これらの機能部は、必ずしも中央処理装置で実行されずともよく、MPU(Micro Processing Unit)に実行させることとしてもよい。また、上記の各機能部は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードワイヤードロジックによっても実現できる。
また、上記の各機能部が用いる主記憶装置には、一例として、各種の半導体メモリ素子、例えばRAM(Random Access Memory)やフラッシュメモリを採用できる。また、上記の各機能部が参照する記憶装置は、必ずしも主記憶装置でなくともよく、補助記憶装置であってもかまわない。この場合、HDD(Hard Disk Drive)、光ディスクやSSD(Solid State Drive)などを採用できる。
[処理の流れ]
図15は、実施例1に係る食事時間推定処理の手順を示すフローチャートである。この処理は、一定期間、例えば日次、週次や月次などにわたる呼吸信号が取得された場合に実行される。図15に示すように、呼吸信号が取得されると(ステップS101)、ステップS101で取得された呼吸信号に含まれるノイズ成分がBPF等により除去される(ステップS102)。
続いて、第1検出部121は、ステップS102でノイズが除去された呼吸信号から呼吸の浅さを検出し(ステップS103)、第2検出部122は、ステップS102でノイズが除去された呼吸信号から呼吸の乱れを検出し(ステップS104)、第3検出部123は、ステップS102でノイズが除去された呼吸信号から呼吸停止を検出する(ステップS105)。
そして、嚥下行動判定部130は、ステップS103、ステップS104及びステップS105で検出された検出結果のうち少なくともいずれか1つの検出結果を用いて、嚥下の有無を時刻ごとに判定する(ステップS106)。その後、嚥下行動判定部130は、互いに連続する嚥下の判定結果「有り」の区間を探索し、当該嚥下の判定結果「有り」が連続する区間を1度の嚥下行動として統合する(ステップS107)。
続いて、嚥下頻度算出部140は、ステップS107で判定された嚥下行動が有りと判定された時刻の個数を計数することにより嚥下頻度を算出する(ステップS108)。その上で、推定部150は、ステップS108で算出された嚥下頻度の算出結果のうち嚥下頻度がゼロを超え、かつ互いが連続する嚥下頻度の算出結果をグループ化する(ステップS109)。
その後、推定部150は、ステップS109のグループ化により得られた食事区間に含まれる最初の時刻を食事開始時刻として推定し(ステップS110)、また、当該食事区間のうち嚥下行動の判定結果が最後に検知された時刻を食事終了時刻と推定し(ステップS111)、処理を終了する。
[効果の一側面]
上述してきたように、本実施例に係る情報処理装置100は、ユーザの食事時間を呼吸により推定する場合に嚥下の特徴として呼吸信号に現れる呼吸の浅さを検出し、呼吸の浅い区間が検出される頻度によって食事時間を推定する。したがって、本実施例に係る情報処理装置100によれば、食事時間の誤判定を抑制できる。
さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。
[応用例]
上記の実施例1では、呼吸の浅さ、呼吸の乱れや呼吸停止の検出結果を用いて食事時間を推定する場合を例示したが、他の方法により食事時間を推定することもできる。ここでは、一例として、呼気と吸気の時間間隔が所定の閾値以上であるか否かにより嚥下を検出し、その嚥下の頻度によって食事時間を推定する場合を例示する。
図16Aは、呼吸信号の一例を示す図であり、図16Bは、呼吸信号の微分波形の一例を示す図であり、また、図16Cは、嚥下の検出方法の一例を示す図である。このうち、図16Aに示すグラフでは、縦軸に振幅(電圧)が示されると共に横軸に時刻が示されている。また、図16B及び図16Cに示すグラフでは、縦軸に呼吸信号の振幅値の傾きが示されると共に横軸に時刻が示されている。
図16Aに示す呼吸信号の通り、嚥下が行われる場合、呼気、停止、吸気の順に一連の動作が発生する。この呼吸信号が微分された場合、図16Bに示す通り、呼吸信号の振幅値の傾きを表す微分波形が得られる。かかる微分波形では、その値が正の符号である区間を「吸気」に分類し、その値が負の符号である区間を「呼気」に分類できる。ここで、呼気と吸気の時間間隔は、通常の呼吸が行われる場合よりも嚥下が行われる場合の方が長くなる。この生理現象の傾向を利用し、呼気と吸気の時間間隔が所定の閾値以上であるか否かにより嚥下を検出し、その嚥下の頻度から食事時間を推定できる。例えば、図16Cに示すように、微分波形の極小点と微分波形の極大点との間で時間差を算出し、その時間差が所定の閾値、例えば固定値、あるいは微分波形全体での時間差の平均値以上である場合、極小点及び極大点の区間で嚥下を検出できる。
図17は、応用例に係る食事時間推定処理の手順を示すフローチャートである。この処理は、一例として、所定のフレーム長の呼吸信号が取得される度に繰り返し実行される。図17に示すように、所定のフレーム長の呼吸信号が取得されると(ステップS201)、ステップS201で取得された呼吸信号に含まれるノイズ成分がBPF等により除去される(ステップS202)。その上で、ステップS202でノイズが除去された呼吸信号からその微分波形が算出される(ステップS203)。
続いて、情報処理装置100は、ステップS203で得られた呼吸信号の微分波形から極大点及び極小点を検出し(ステップS204)、ステップS204で極小点が検出された時刻を呼気時刻t1として検出する(ステップS205)。また、情報処理装置100は、ステップS204で極大点が検出された時刻を吸気時刻t2として検出する(ステップS206)。
その後、情報処理装置100は、ステップS205で検出された呼気時刻t1と、当該呼気時刻t1に後続する吸気時刻t2とによりペアリングされるペアごとに呼気時刻t1及び吸気時刻t2の時間差、すなわち呼吸間隔tintを算出する(ステップS207)。
ここで、ステップS207で算出された呼吸間隔tintが所定の閾値以上である場合(ステップS208Yes)、情報処理装置100は、嚥下の回数をカウントする嚥下カウンタの値をインクリメントする(ステップS209)。一方、呼吸間隔tintが所定の閾値以上でない場合(ステップS208No)、嚥下カウンタのインクリメントは実行されずに、ステップS210の処理へ移行する。なお、嚥下カウンタのインクリメントは、上記のペアの判定結果ごとに実行される。
その後、前回に嚥下カウンタの判定を行ってから所定の期間、例えば3分間が経過するまで(ステップS210No)、上記のステップS201〜ステップS209の処理を繰り返す。そして、前回に嚥下カウンタの判定を行ってから所定の期間が経過すると(ステップS210Yes)、情報処理装置100は、嚥下カウンタの値が所定の閾値以上であるか否かを判定する(ステップS211)。
そして、嚥下カウンタの値が所定の閾値以上である場合(ステップS211Yes)には、上記の期間、すなわち3分間あたりの嚥下回数、すなわち嚥下頻度が食事中と判定できる頻度に達していると判定できる。この場合、情報処理装置100は、当該期間を食事区間と推定し、その旨を記録する(ステップS212)。このようにして記録された食事区間が連続する場合には、その先頭を食事開始時刻とし、その最後尾を食事終了時刻として記録することもできる。一方、嚥下カウンタの値が閾値未満である場合(ステップS211No)には、ステップS212を飛ばしてステップS213へ移行する。
その後、嚥下カウンタの値を初期値、例えばゼロに初期化し(ステップS213)、上記のステップS201へ戻り、上記のステップS201以降の処理を繰り返し実行する。
このように、呼気と吸気の時間間隔が所定の閾値以上であるか否かにより嚥下を検出し、その嚥下の頻度によって食事時間を推定する場合にも、上記の実施例1と同様に、食事時間の誤判定を抑制できる。
[他の実装例]
また、図示した各装置の各構成要素は、必ずしも物理的に図示の如く構成されておらずともよい。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、上記の実施例1では、図15に示した食事時間推定処理を情報処理装置100が実行する場合を例示したが、処理の実行主体はこれに限定されない。例えば、センサ端末10からの呼吸信号を中継する中継装置として情報処理装置100を機能させ、上記のヘルスケア支援サービスを提供するWebサーバやアウトソーシングによって上記のヘルスケア支援サービスを提供するクラウドに、上記の食事時間推定処理を実行させることとしてもかまわない。
[食事時間推定プログラム]
また、上記の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、図18を用いて、上記の実施例と同様の機能を有する食事時間推定プログラムを実行するコンピュータの一例について説明する。
図18は、実施例1及び実施例2に係る食事時間推定プログラムを実行するコンピュータのハードウェア構成例を示す図である。図18に示すように、コンピュータ1000は、操作部1100aと、スピーカ1100bと、カメラ1100cと、ディスプレイ1200と、通信部1300とを有する。さらに、このコンピュータ1000は、CPU1500と、ROM1600と、HDD1700と、RAM1800とを有する。これら1100〜1800の各部はバス1400を介して接続される。
HDD1700には、図18に示すように、上記の実施例1で示した第1検出部121、第2検出部122、第3検出部123、嚥下行動判定部130、嚥下頻度算出部140、推定部150及びサービス提供部160と同様の機能を発揮する食事時間推定プログラム1700aが記憶される。この食事時間推定プログラム1700aは、図1に示した第1検出部121、第2検出部122、第3検出部123、嚥下行動判定部130、嚥下頻度算出部140、推定部150及びサービス提供部160の各構成要素と同様、統合又は分離してもかまわない。すなわち、HDD1700には、必ずしも上記の実施例1で示した全てのデータが格納されずともよく、処理に用いるデータがHDD1700に格納されればよい。
このような環境の下、CPU1500は、HDD1700から食事時間推定プログラム1700aを読み出した上でRAM1800へ展開する。この結果、食事時間推定プログラム1700aは、図18に示すように、食事時間推定プロセス1800aとして機能する。この食事時間推定プロセス1800aは、RAM1800が有する記憶領域のうち食事時間推定プロセス1800aに割り当てられた領域にHDD1700から読み出した各種データを展開し、この展開した各種データを用いて各種の処理を実行する。例えば、食事時間推定プロセス1800aが実行する処理の一例として、図15や図17に示す処理などが含まれる。なお、CPU1500では、必ずしも上記の実施例1で示した全ての処理部が動作せずともよく、実行対象とする処理に対応する処理部が仮想的に実現されればよい。
なお、上記の食事時間推定プログラム1700aは、必ずしも最初からHDD1700やROM1600に記憶されておらずともかまわない。例えば、コンピュータ1000に挿入されるフレキシブルディスク、いわゆるFD、CD−ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に各プログラムを記憶させる。そして、コンピュータ1000がこれらの可搬用の物理媒体から各プログラムを取得して実行するようにしてもよい。また、公衆回線、インターネット、LAN、WANなどを介してコンピュータ1000に接続される他のコンピュータまたはサーバ装置などに各プログラムを記憶させておき、コンピュータ1000がこれらから各プログラムを取得して実行するようにしてもよい。
1 ヘルスケア支援システム
10 センサ端末
11 呼吸信号測定部
12 通信I/F部
100 情報処理装置
110 通信I/F部
121 第1検出部
122 第2検出部
123 第3検出部
130 嚥下行動判定部
140 嚥下頻度算出部
150 推定部
160 サービス提供部

Claims (9)

  1. コンピュータが、
    呼吸信号を取得し、
    呼吸の強度と周期を検出し、
    前記呼吸の強度と周期が所定の閾値から変動した頻度から食事時間を推定する
    処理を実行し、
    前記検出する処理は、呼吸が浅い区間を検出し、
    前記推定する処理は、前記呼吸が浅い区間が検出される頻度が所定の閾値以上である場合に食事時間であると推定する、
    とを特徴とする食事時間推定方法。
  2. 前記呼吸が浅い区間は、前記呼吸信号の振幅値の差が所定の閾値未満である区間を探索することで検出されることを特徴とする請求項に記載の食事時間推定方法。
  3. コンピュータが、
    呼吸信号を取得し、
    呼吸の強度と周期を検出し、
    前記呼吸の強度と周期が所定の閾値から変動した頻度から食事時間を推定する
    処理を実行し、
    前記検出する処理は、呼吸が乱れた区間を検出し、
    前記推定する処理は、前記呼吸が乱れた区間が検出される頻度が所定の閾値以上である場合に食事時間と推定する、
    ことを特徴とする食事時間推定方法。
  4. 前記呼吸が乱れた区間は、1呼吸ごとに前記呼吸信号の振幅値の差を所定数の呼吸分算出し、該呼吸ごとの差の変動が所定の閾値以上である区間を探索することで検出されることを特徴とする請求項に記載の食事時間推定方法。
  5. 前記検出する処理は、呼吸が停止した区間をさらに検出し、
    前記推定する処理は、前記呼吸が浅い区間が検出され、かつ前記呼吸が停止した区間が検出される頻度が前記閾値以上である場合に食事時間と推定する処理を実行することを特徴とする請求項1に記載の食事時間推定方法。
  6. 前記呼吸が停止した区間は、前記呼吸信号のばらつきが閾値未満である区間を探索することで検出されることを特徴とする請求項に記載の食事時間推定方法。
  7. コンピュータが、
    呼吸信号を取得し、
    呼吸が浅い区間を検出し、
    前記呼吸信号を呼気と吸気に分類し、
    前記呼吸が浅い区間が検出され、かつ前記呼気と当該呼気に後続する吸気との時間差が第1の閾値以上となる頻度が前記第1の閾値と異なる第2の閾値以上である場合に食事時間と推定する
    処理を実行することを特徴とする食事時間推定方法。
  8. 呼吸信号を取得する取得部と、
    呼吸の強度と周期を検出する検出部と、
    前記呼吸の強度と周期が所定の閾値から変動した頻度から食事時間を推定する推定部とを有し、
    前記検出部は、呼吸が浅い区間を検出し、
    前記推定部は、前記呼吸が浅い区間が検出される頻度が所定の閾値以上である場合に食事時間であると推定する、
    とを特徴とする食事時間推定装置。
  9. コンピュータに、
    呼吸信号を取得し、
    呼吸の強度と周期を検出し、
    前記呼吸の強度と周期が所定の閾値から変動した頻度から食事時間を推定する
    処理を実行させ、
    前記検出する処理は、呼吸が浅い区間を検出し、
    前記推定する処理は、前記呼吸が浅い区間が検出される頻度が所定の閾値以上である場合に食事時間であると推定する、
    とを特徴とする食事時間推定プログラム。
JP2015046237A 2015-03-09 2015-03-09 食事時間推定方法、食事時間推定装置及び食事時間推定プログラム Active JP6676877B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046237A JP6676877B2 (ja) 2015-03-09 2015-03-09 食事時間推定方法、食事時間推定装置及び食事時間推定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046237A JP6676877B2 (ja) 2015-03-09 2015-03-09 食事時間推定方法、食事時間推定装置及び食事時間推定プログラム

Publications (2)

Publication Number Publication Date
JP2016165362A JP2016165362A (ja) 2016-09-15
JP6676877B2 true JP6676877B2 (ja) 2020-04-08

Family

ID=56897081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046237A Active JP6676877B2 (ja) 2015-03-09 2015-03-09 食事時間推定方法、食事時間推定装置及び食事時間推定プログラム

Country Status (1)

Country Link
JP (1) JP6676877B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037803B2 (ja) * 2017-12-26 2022-03-17 株式会社タニタ 腸蠕動音測定装置及び腸蠕動音測定プログラム
JPWO2022224599A1 (ja) * 2021-04-20 2022-10-27

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353479B2 (ja) * 2009-06-25 2013-11-27 学校法人兵庫医科大学 嚥下活動モニタリング装置、嚥下活動モニタリングシステムおよび嚥下活動モニタリングプログラム
JP5703090B2 (ja) * 2011-03-30 2015-04-15 株式会社日立製作所 健康管理システム
EP3639733B1 (en) * 2012-05-30 2022-10-26 ResMed Sensor Technologies Limited Apparatus for monitoring cardio-pulmonary health
SG11201601484QA (en) * 2013-08-26 2016-04-28 Hyogo College Medicine Swallowing estimation device, information terminal device, and program

Also Published As

Publication number Publication date
JP2016165362A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6489130B2 (ja) 食事推定プログラム、食事推定方法及び食事推定装置
JP7284782B2 (ja) 慢性疾患の監視および管理のためのシステムおよび方法
US20230190140A1 (en) Methods and apparatus for detection and monitoring of health parameters
US20160026767A1 (en) Non-invasive nutrition monitor
Juen et al. Health monitors for chronic disease by gait analysis with mobile phones
Kalantarian et al. A survey of diet monitoring technology
Borazio et al. Towards benchmarked sleep detection with wrist-worn sensing units
Dafna et al. Sleep-wake evaluation from whole-night non-contact audio recordings of breathing sounds
Wang et al. Eating detection and chews counting through sensing mastication muscle contraction
Rohrmeier et al. The nasal cycle during wakefulness and sleep and its relation to body position
JP6638734B2 (ja) 食事時間推定方法、食事時間推定プログラム及び食事時間推定装置
Dong et al. Meal-time and duration monitoring using wearable sensors
Grifantini How's My Sleep?: Personal sleep trackers are gaining in popularity, but their accuracy is still open to debate
Perez-Macias et al. Comparative assessment of sleep quality estimates using home monitoring technology
JP2020510947A (ja) 身体行動パターンの分析による健康予測の方法および装置
Ahanathapillai et al. Assistive technology to monitor activity, health and wellbeing in old age: The wrist wearable unit in the USEFIL project
JP6676877B2 (ja) 食事時間推定方法、食事時間推定装置及び食事時間推定プログラム
WO2020100258A1 (ja) 患者状況予測装置、予測モデル生成装置、患者状況予測用プログラムおよび患者状況予測方法
JP6390783B2 (ja) 食事時間推定方法及び食事時間推定装置
Dong et al. Analyzing breathing signals and swallow sequence locality for solid food intake monitoring
Mertes et al. Detection of chewing motion in the elderly using a glasses mounted accelerometer in a real-life environment
Ramos-Garcia et al. Recognizing cigarette smoke inhalations using hidden Markov models
JP2017012249A (ja) 食事時間推定方法、食事時間推定プログラム及び食事時間推定装置
CN110236557B (zh) 现象预测系统、传感器信号处理系统、现象预测方法、非瞬时性记录介质及计算机记录介质
US11832935B2 (en) Device, system and method for caloric intake detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6676877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150