[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6671434B2 - Copper alloy for electronic materials - Google Patents

Copper alloy for electronic materials Download PDF

Info

Publication number
JP6671434B2
JP6671434B2 JP2018155640A JP2018155640A JP6671434B2 JP 6671434 B2 JP6671434 B2 JP 6671434B2 JP 2018155640 A JP2018155640 A JP 2018155640A JP 2018155640 A JP2018155640 A JP 2018155640A JP 6671434 B2 JP6671434 B2 JP 6671434B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
bending
less
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018155640A
Other languages
Japanese (ja)
Other versions
JP2020029593A (en
Inventor
祐太 中村
祐太 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018155640A priority Critical patent/JP6671434B2/en
Publication of JP2020029593A publication Critical patent/JP2020029593A/en
Application granted granted Critical
Publication of JP6671434B2 publication Critical patent/JP6671434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

この発明は、各種電子部品に用いることに好適な析出硬化型銅合金であるCu−Co−Si系合金に関するものであり、特には、曲げ加工時の寸法精度を向上させることのできる技術を提案するものである。   The present invention relates to a Cu--Co--Si alloy which is a precipitation hardening type copper alloy suitable for use in various electronic components, and particularly proposes a technique capable of improving dimensional accuracy during bending. Is what you do.

コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(熱伝導性)を両立させることが要求される。そして、近年は、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに伴って電子機器部品に使用される銅合金に対する要求はさらに高度化している。特にコネクタを大型化させないためには、550MPa以上の圧延平行方向の0.2%耐力と55%IACS以上の導電率が望まれる。   Copper alloys for electronic materials used in various electronic components such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (thermal conductivity) as basic characteristics. You. In recent years, high integration, miniaturization, and thinning of electronic components have rapidly progressed, and accordingly, requirements for copper alloys used for electronic device components have been further enhanced. In particular, in order not to increase the size of the connector, a 0.2% proof stress of 550 MPa or more in the rolling parallel direction and a conductivity of 55% IACS or more are desired.

高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に代えて、析出硬化型銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、ばね性などの機械的性質に優れ、電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, the use of precipitation hardening type copper alloys instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials is increasing. . In precipitation hardening type copper alloys, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, the strength of the alloy is increased, and the amount of solid solution elements in copper is reduced. Electric conductivity is improved. For this reason, a material having excellent mechanical properties such as spring properties and good electrical and thermal conductivity can be obtained.

析出硬化型銅合金のうち、コルソン系合金と一般に称されるCu−Ni−Si系合金は比較的高い導電性、強度、及び曲げ加工性を有する代表的な銅合金であり、当業界では現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることにより、強度と導電率の向上を図ることができる。
このようなコルソン系合金では、更なる特性の改善を目的として、NiをCoに置き換えたCu−Co−Si系合金が提案されている。
Among precipitation hardening type copper alloys, Cu-Ni-Si alloys, which are generally referred to as Corson alloys, are typical copper alloys having relatively high conductivity, strength, and bending workability. One of the alloys that are being actively developed. In this copper alloy, strength and conductivity can be improved by precipitating fine Ni-Si-based intermetallic compound particles in a copper matrix.
As such a Corson alloy, a Cu-Co-Si alloy in which Ni is replaced by Co has been proposed for the purpose of further improving the characteristics.

Cu−Co−Si系合金は一般の曲げ加工性に関し、特許文献1及び2には、Cu−Co−Si系合金で結晶方位を制御する技術が記載されている。   A Cu-Co-Si alloy relates to general bending workability, and Patent Documents 1 and 2 disclose a technique of controlling the crystal orientation using a Cu-Co-Si alloy.

具体的には、特許文献1では、EBSD(Electron Back−Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Brass方位{110}<112>の面積率が20%以下、Copper方位{121}<111>の面積率が20%以下、Cube方位{001}<100>の面積率が5〜60%であり、0.2%耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金材料が記載されている。また、特許文献2には、EBSD測定における結晶方位解析において、cube方位{001}<100>の面積率が7〜47%であることを特徴とする銅合金板材、さらには、S方位{231}<346>の面積率が5〜40%である銅合金板材が記載されている。   Specifically, in Patent Document 1, in the crystal orientation analysis in EBSD (Electron Back-Scatter Diffraction: electron backscatter diffraction) measurement, the area ratio of Brass orientation {110} <112> is 20% or less, and Copper orientation {121 The area ratio of {<111> is 20% or less, the area ratio of Cube orientation {001} <100> is 5 to 60%, the 0.2% proof stress is 500 MPa or more, and the conductivity is 30% IACS or more. Are described. Patent Document 2 discloses a copper alloy sheet material characterized in that, in a crystal orientation analysis by EBSD measurement, an area ratio of a cube orientation {001} <100> is 7 to 47%, and further, an S orientation {231銅 <346> describes a copper alloy sheet material having an area ratio of 5 to 40%.

特開2011−017072号公報JP 2011-017072 A 特許第4875768号公報Japanese Patent No. 4875768

しかしながら、特許文献1及び2に係る銅合金板材は、曲げ加工性が優れているものの、曲げ加工時におけるスプリングバックについてはなお不十分な点が存するものと考えられる。スプリングバックとは、曲げ加工において、材料から成形工具を離すと材料の変形が若干戻ってしまう現象のことである。スプリングバックは、完成部品の寸法精度に悪影響を及ぼす。   However, although the copper alloy sheets according to Patent Documents 1 and 2 are excellent in bending workability, it is considered that there is still an insufficient point in springback at the time of bending. Springback is a phenomenon in which deformation of the material slightly returns when the forming tool is separated from the material in bending. Springback adversely affects the dimensional accuracy of the finished part.

特許文献1及び2に係る銅合金板材は、Cube方位{001}<100>を発達させて曲げ加工性を改善しているが、Cube方位{001}<100>を発達させた材料のヤング率が低下する傾向にある。一方、スプリングバックの量は、材料の降伏応力に比例し、ヤング率に反比例するため、Cube方位{001}<100>を発達させればスプリングバックが大きくなってしまう。   The copper alloy sheets according to Patent Documents 1 and 2 have improved bendability by developing a Cube orientation {001} <100>, but have a Young's modulus of a material having a Cube orientation {001} <100> developed. Tends to decrease. On the other hand, the amount of springback is proportional to the yield stress of the material and inversely proportional to the Young's modulus. Therefore, if the Cube orientation {001} <100> is developed, the springback increases.

このように、特許文献1及び2に係る銅合金板材は、曲げ加工時におけるスプリングバックにより、完成部品の寸法精度が十分ではなかった。
スプリングバック対策としては、合金に曲げ加工を施す前に曲げ部にVノッチを施す方法などがあるが、不可避的に曲げ部強度が低下し、割れが生じやすくなる。
As described above, the copper alloy sheets according to Patent Literatures 1 and 2 did not have sufficient dimensional accuracy of finished parts due to springback during bending.
As a countermeasure against springback, there is a method of forming a V-notch in a bent portion before bending the alloy. However, the strength of the bent portion is inevitably reduced and cracks are easily generated.

この発明は、このような問題を解決することを課題とするものであり、その目的は、電子材料に用いて好適な0.2%耐力、導電率及び曲げ加工性を有するとともに、曲げ加工時におけるスプリングバックを抑制した信頼性の高い電子材料用銅合金を提供することにある。   An object of the present invention is to solve such a problem, and an object of the present invention is to provide a material having 0.2% proof stress, electrical conductivity, and bendability suitable for use in electronic materials, and at the time of bending. An object of the present invention is to provide a highly reliable copper alloy for electronic materials in which springback is suppressed.

発明者は鋭意検討の結果、Cu−Co−Si系合金において、圧延直角方向の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られた所定位置の結晶方位の集積度を制御することで、曲げ加工時におけるスプリングバックを抑制することができることを見出した。そして、このような結晶方位の集積度の制御は、均質化焼鈍、熱間圧延及び溶体化処理など処理条件を調節することにより実現できるとの新たな知見を得た。   As a result of intensive studies, the inventor of the present invention has determined that, in a Cu-Co-Si alloy, a predetermined position obtained by performing equal area division used for display by a vector method on a stereo triangle representing a crystal orientation in a direction perpendicular to rolling. It has been found that by controlling the degree of integration of crystal orientation, springback during bending can be suppressed. And it has been newly obtained that the control of the degree of integration of the crystal orientation can be realized by adjusting processing conditions such as homogenization annealing, hot rolling and solution treatment.

上記の知見の下、本発明は、0.5〜3.0質量%のCoを含有し、かつSiを質量割合でCo/Siが3〜5となるように含有し、残部が銅及び不可避的不純物からなり、EBSD測定から得られる圧延直角方向(TD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、33、36の結晶方位の集積度をそれぞれS1、S33、S36としたとき、
S=S33/(S1+S36)≧0.5
の関係を満たす電子材料用銅合金である。
Based on the above findings, the present invention contains 0.5 to 3.0% by mass of Co, contains Si so that Co / Si is 3 to 5 by mass, and the balance is copper and inevitable. Nos. 1, 33, and 36 obtained by performing equal area division on a stereo triangle that is composed of chemical impurities and indicates the crystal orientation in the direction perpendicular to the rolling direction (TD) obtained from the EBSD measurement and used in the display by the vector method. When the degrees of integration of the crystal orientations are S 1 , S 33 , and S 36 , respectively,
S = S 33 / (S 1 + S 36 ) ≧ 0.5
Is a copper alloy for electronic materials that satisfies the following relationship.

本発明の電子材料用銅合金は、JIS H3130(2012)に準拠した90°BadwayW曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の実際の曲げ変形角度をθ(°)とするとき、スプリングバック角度Δθを示すθ−90°の値が5°以下であることが好ましい。   In the 90 ° Badway W bending test based on JIS H3130 (2012), the copper alloy for electronic materials of the present invention sets the actual bending deformation angle of the bent portion (the center portion among the three portions) of the bending test piece to θ (°). ), The value of θ-90 ° indicating the springback angle Δθ is preferably 5 ° or less.

本発明の電子材料用銅合金は、JIS H3130(2012)に準拠した90°BadwayW曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の外周表面におけるJIS B0601(2013)に準拠した表面平均粗さRaが1.0μm以下であることが好ましい。   The copper alloy for electronic materials of the present invention conforms to JIS B0601 (2013) on the outer peripheral surface of a bent portion (the center portion among three locations) of a bending test piece in a 90 ° Badway W bending test based on JIS H3130 (2012). It is preferable that the compliant surface average roughness Ra is 1.0 μm or less.

本発明の電子材料用銅合金は、さらにCrを0.5質量%以下で含有することが好ましい。   It is preferable that the copper alloy for electronic materials of the present invention further contains 0.5% by mass or less of Cr.

本発明の電子材料用銅合金は、さらにZn及びSnをそれぞれ0〜0.5質量%、Niを0〜0.1質量%、Mg、Mn、Fe、Ti、Al、P及びBをそれぞれ0〜0.2質量%含有し、それらのZn、Sn、Ni、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計が1.0質量%以下であることが好ましい。   The copper alloy for electronic materials of the present invention further comprises Zn and Sn in an amount of 0 to 0.5% by mass, Ni in an amount of 0 to 0.1% by mass, and Mg, Mn, Fe, Ti, Al, P and B in an amount of 0% respectively. 0.2% by mass, and the total of at least one selected from Zn, Sn, Ni, Mg, Mn, Fe, Ti, Al, P and B is 1.0% by mass or less. Is preferred.

さらに、本発明は、本発明の電子材料用銅合金を備えた電子部品も提供する。   Further, the present invention also provides an electronic component provided with the copper alloy for electronic materials of the present invention.

本発明によれば、好適な0.2%耐力、導電率及び曲げ加工性を有するとともに、曲げ加工時におけるスプリングバックを抑制した信頼性の高い電子材料用銅合金を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having suitable 0.2% proof stress, electrical conductivity, and bending workability, the copper alloy for electronic materials with high reliability which suppressed the springback at the time of bending can be provided.

図1は、結晶方位を表すWilliams法とベクトル法の回転角のステレオ投影図表示を示す。FIG. 1 shows a stereo projection display of rotation angles in the Williams method and the vector method representing the crystal orientation. 図2は、等面積分割で36個に区分したステレオ三角を示す。FIG. 2 shows a stereo triangle divided into 36 by equal area division.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態の電子材料用銅合金は、0.5〜3.0質量%のCoを含有し、かつSiを質量割合でCo/Siが3〜5となるように含有し、残部が銅及び不可避的不純物からなり、EBSD測定から得られる圧延直角方向(TD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、33、36の結晶方位の集積度をそれぞれS1、S33、S36としたとき、
S=S33/(S1+S36)≧0.5
の関係を満たす。
Hereinafter, embodiments of the present invention will be described in detail.
The copper alloy for an electronic material according to one embodiment of the present invention contains 0.5 to 3.0% by mass of Co, and contains Si so that Co / Si is 3 to 5 in a mass ratio, A box number obtained by performing an equal area division using a vector method with respect to a stereo triangle representing the crystal orientation in the direction perpendicular to the rolling direction (TD) obtained from EBSD measurement, with the balance being copper and unavoidable impurities. When the integration degrees of the crystal orientations of 1 , 33 and 36 are S 1 , S 33 and S 36 , respectively,
S = S 33 / (S 1 + S 36 ) ≧ 0.5
Satisfy the relationship.

(Coの添加量)
Co及びSiは、適当な熱処理を施すことによりCo2Siとして母相中に析出し、導電率を劣化させずに高強度化が図れる。ただし、Co濃度が0.5質量%未満の場合は析出硬化が不十分となり、他方の成分を添加しても所望とする強度が得られない。また、Co濃度が3.0質量%を超える場合は十分な強度が得られるものの、導電性や曲げ加工性、熱間加工性が低下する。
好ましくは、1.0〜2.5質量%のCoとする。
(Co addition amount)
Co and Si are precipitated in the matrix as Co 2 Si by performing an appropriate heat treatment, thereby increasing the strength without deteriorating the conductivity. However, when the Co concentration is less than 0.5% by mass, the precipitation hardening becomes insufficient, and the desired strength cannot be obtained even when the other component is added. When the Co concentration exceeds 3.0% by mass, sufficient strength is obtained, but conductivity, bending workability, and hot workability decrease.
Preferably, the content is 1.0 to 2.5 mass% Co.

(Siの添加量)
Siは質量割合でCo/Siが3〜5となるように調整する。上記割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。上記割合が5を超えると、時効処理でのCo2Siの析出が不十分になり、強度が低下する。上記割合が3未満であると、Co2Siとして析出しないSiが母相中に固溶し、導電率が低下する。
(Amount of Si added)
Si is adjusted so that Co / Si is 3 to 5 in mass ratio. With the above ratio, both strength and conductivity after precipitation hardening can be improved. If the above ratio exceeds 5, the precipitation of Co 2 Si in the aging treatment becomes insufficient, and the strength decreases. If the above ratio is less than 3, Si that does not precipitate as Co 2 Si will form a solid solution in the mother phase, and the conductivity will decrease.

(Crの添加量)
Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時にCrを主成分としたbcc構造の析出粒子又はSiとの化合物を生成する。通常のCu−Co−Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。しかしながら、Cr濃度が0.5質量%を超えると粗大な第二相粒子を形成しやすくなるため、製品特性を損なう。従って、この発明では、Crを最大で0.5質量%添加することができる。但し、0.03質量%未満ではその効果が小さいので、好ましくは0.03〜0.5質量%、より好ましくは0.09〜0.3質量%添加するのがよい。
(Cr addition amount)
Cr precipitates preferentially at the crystal grain boundaries in the cooling process at the time of melting casting, so that the grain boundaries can be strengthened, cracks are less likely to occur at the time of hot working, and a reduction in yield can be suppressed. Cr precipitated at the grain boundary during melt casting is re-dissolved by solution treatment or the like, but precipitates particles having a bcc structure containing Cr as a main component or a compound with Si during the subsequent aging precipitation. In a normal Cu-Co-Si-based alloy, of the amount of Si added, Si that did not contribute to aging precipitation suppresses an increase in electrical conductivity while being dissolved in the mother phase. By adding and further precipitating silicide, the amount of solid solution Si can be reduced, and the conductivity can be increased without impairing the strength. However, when the Cr concentration exceeds 0.5% by mass, coarse second phase particles are easily formed, which impairs product characteristics. Therefore, in the present invention, Cr can be added at a maximum of 0.5% by mass. However, if the content is less than 0.03% by mass, the effect is small. Therefore, it is preferable to add 0.03 to 0.5% by mass, more preferably 0.09 to 0.3% by mass.

(Sn及びZnの添加量)
Sn及びZnにおいても、微量の添加で、導電率を損なわずに強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮される。しかしながら、Sn及びZnの各濃度が0.5質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。また製品において目的の方位が得られず、曲げ加工性が低下する。従って、この発明では、Sn及びZnはそれぞれ最大0.5質量%添加することができる。但し、Sn及びZnの合計が0.05質量%未満ではその効果が小さいので、Sn及びZnの合計は、好ましくは0.05〜1.0質量%、より好ましくは0.1〜0.5質量%とすることができる。
(Amount of Sn and Zn added)
Addition of a small amount of Sn and Zn also improves the product characteristics such as strength, stress relaxation characteristics and plating properties without impairing the conductivity. The effect of addition is exerted mainly by solid solution in the parent phase. However, when the respective concentrations of Sn and Zn exceed 0.5% by mass, the effect of improving characteristics is saturated, and the productivity is impaired. In addition, the desired orientation cannot be obtained in the product, and the bending workability decreases. Therefore, in the present invention, Sn and Zn can each be added at a maximum of 0.5% by mass. However, since the effect is small when the total of Sn and Zn is less than 0.05% by mass, the total of Sn and Zn is preferably 0.05 to 1.0% by mass, more preferably 0.1 to 0.5%. % By mass.

(Niの添加量)
Niは適当な熱処理を施すことでNi2Siとして母相中に析出し、合金の強度を向上させる。ただしNiの濃度が0.1質量%を超えると導電率が損なわれるため、Niの添加量は好ましくは0.02〜0.1質量%とする。
(Addition amount of Ni)
Ni is precipitated in the mother phase as Ni 2 Si by performing an appropriate heat treatment, thereby improving the strength of the alloy. However, if the concentration of Ni exceeds 0.1% by mass, the conductivity is impaired, so the amount of Ni added is preferably 0.02 to 0.1% by mass.

(Mg、Mn、Fe、Ti、Al、P及びBの添加量)
Mg、Mn、Fe、Ti、Alは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Mg、Mn、Fe、Ti、Al、P及びBの各濃度が0.2質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、この発明では、Mg、Mn、Fe、Ti、Al、P及びBをそれぞれ最大0.2質量%添加することができる。但し、Mg、Mn、Fe、Ti、Al、P及びBの合計が0.01質量%未満ではその効果が小さいので、Mg、Mn、Fe、Ti、Al、P及びBの合計は、好ましくは0.01〜0.5質量%、より好ましくは0.04〜0.2質量%とすることができる。
(Addition amounts of Mg, Mn, Fe, Ti, Al, P and B)
Mg, Mn, Fe, Ti, and Al, when added in small amounts, improve product properties such as strength and stress relaxation properties without impairing conductivity. P has a deoxidizing effect, B has an effect of refining the cast structure, and has an effect of improving hot workability. The effect of the addition is mainly exhibited by the solid solution in the mother phase, but further effects can be exhibited by being contained in the second phase particles. However, when the respective concentrations of Mg, Mn, Fe, Ti, Al, P and B exceed 0.2% by mass, the effect of improving characteristics is saturated, and the productivity is impaired. Therefore, in the present invention, Mg, Mn, Fe, Ti, Al, P and B can be added in a maximum of 0.2% by mass. However, since the effect is small when the total of Mg, Mn, Fe, Ti, Al, P and B is less than 0.01% by mass, the total of Mg, Mn, Fe, Ti, Al, P and B is preferably It can be 0.01 to 0.5% by mass, more preferably 0.04 to 0.2% by mass.

上述したZn、Sn、Ni、Mg、Mn、Fe、Ti、Al、P及びBを含有する場合、それらのZn、Sn、Ni、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計は1.0質量%以下とする。この合計を1.0質量%以下とすることで、導電率を良好に維持できる。   When containing Zn, Sn, Ni, Mg, Mn, Fe, Ti, Al, P and B described above, they are selected from those Zn, Sn, Ni, Mg, Mn, Fe, Ti, Al, P and B. The total of at least one type is 1.0% by mass or less. By setting the total to 1.0% by mass or less, the electric conductivity can be favorably maintained.

(0.2%耐力)
コネクタ等の所定の電子材料で要求される特性を満たすため、圧延平行方向の0.2%耐力は好ましくは550MPa以上、より好ましくは580MPa以上とする。0.2%耐力の上限値は、特に規制されないが、55%IACS以上の導電率となるには、典型的には800MPa以下である。
0.2%耐力は、引張試験機を用いてJIS Z2241に準拠して測定する。
(0.2% proof stress)
In order to satisfy the characteristics required for a predetermined electronic material such as a connector, the 0.2% proof stress in the rolling parallel direction is preferably 550 MPa or more, more preferably 580 MPa or more. Although the upper limit of the 0.2% proof stress is not particularly limited, it is typically 800 MPa or less to achieve a conductivity of 55% IACS or more.
The 0.2% proof stress is measured using a tensile tester according to JIS Z2241.

(導電率)
導電率は55%IACS以上とする。これにより、電子材料として有効に用いることができる。導電率はJIS H0505に準拠して4端子法で測定することができる。導電率は、60%IACS以上であることが好ましい。
(conductivity)
The conductivity is 55% IACS or more. Thereby, it can be effectively used as an electronic material. The conductivity can be measured by a four-terminal method according to JIS H0505. The conductivity is preferably 60% IACS or more.

(結晶方位の集積度)
圧延直角方向(TD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、33、36の結晶方位の集積度をそれぞれS1、S33、S36としたとき、
S=S33/(S1+S36)≧0.5
の関係を満たせば、曲げ加工性が良好となり、また曲げ加工時におけるスプリングバックを有効に抑制することができる。
ここで、S1は<001>方向、S33は<221>方向、S36は<111>方向の集積度に相当する。
理由は必ずしも明らかではなくあくまでも推定であるが、結晶の塑性変形のしやすさを表すシュミット(Schmid)因子が、S33:<221>では0.41であり、S36:<111>方向では0.27であることから、シュミット因子の小さいS36の集積度を減らし、Schmid因子の大きいS33の集積度を大きくすることで、曲げ加工性を向上させることができると考えられる。またS1:<001>はスプリングバックに悪影響をもたらすCube方位{001}<100>の集積に従って増加するため、S1の集積度を小さくすることでスプリングバックを低減させられると考えられる。この観点から、Sは、好ましくは 1.0以上、さらに好ましくは2.0以上とする。
結晶方位の集積度は、EBSD測定から得られる。図1は、銅合金の結晶方位を表すベクトル法(2軸極点図法)の回転角のステレオ投影図表示である。図1において、銅合金板表面の圧延直角方向(TD)を表す点TDは、それが載っているステレオ三角(T1)上の座標(ψ、λ)で示されている。このステレオ三角を、等面積分割(Ruerらによる)で36個に区分したものが図2である。この図2のステレオ三角における結晶方位のうち、番号1で示された領域にあるものが「ボックス番号1の結晶方位」である(古林、「再結晶と材料組織」、第1版、内田老鶴圃、第88〜89頁参照)。また、「ボックス番号1の結晶方位の集積度」は、ボックス番号1に相当する方位で表される極点図上の区画の平均強度を表す。ボックス番号33、36の結晶方位についても同様に規定する。
(Degree of integration of crystal orientation)
The degree of integration of the crystal orientations of box numbers 1, 33, and 36 obtained by performing equal area division used in the display by the vector method on the stereo triangle indicating the crystal orientation in the direction perpendicular to the rolling direction (TD) is S 1. , S 33 and S 36 ,
S = S 33 / (S 1 + S 36 ) ≧ 0.5
Is satisfied, the bending workability is improved, and springback during bending can be effectively suppressed.
Here, S 1 corresponds to the <001> direction, S 33 corresponds to the <221> direction, and S 36 corresponds to the <111> direction.
Although the reason is not always clear and is presumed to the last, the Schmid factor representing the easiness of plastic deformation of the crystal is 0.41 in S 33 : <221>, and in the S 36 : <111> direction. Since it is 0.27, it is considered that the bendability can be improved by reducing the degree of integration of S 36 having a small Schmid factor and increasing the degree of integration of S 33 having a large Schmid factor. The S 1: <001> is to increase according to the accumulation of Cube orientation {001} <100> to bring an adverse effect on the spring-back is believed to be reduce spring back by reducing the degree of integration S 1. In this respect, S is preferably set to 1.0 or more, and more preferably 2.0 or more.
The degree of integration of the crystal orientation is obtained from the EBSD measurement. FIG. 1 is a stereo projection display of a rotation angle of a vector method (biaxial pole diagram) representing a crystal orientation of a copper alloy. In FIG. 1, a point TD representing the rolling perpendicular direction (TD) on the surface of the copper alloy sheet is indicated by coordinates (ψ, λ) on the stereo triangle (T1) on which the point TD is placed. FIG. 2 shows this stereo triangle divided into 36 by equal area division (by Ruer et al.). Among the crystal orientations in the stereo triangle of FIG. 2, the one in the region indicated by number 1 is “the crystal orientation of box number 1” (Furubayashi, “Recrystallization and Material Structure”, 1st edition, Ryo Uchida) Crane field, see pages 88-89). Further, “the degree of integration of the crystal orientation of box number 1” represents the average intensity of the section on the pole figure represented by the orientation corresponding to box number 1. The crystal orientations of box numbers 33 and 36 are similarly defined.

(スプリングバック角度Δθ)
スプリングバック角度Δθが小さいことは、曲げ加工時におけるスプリングバックが有効に抑制されたことの現れである。この観点から、スプリングバック角度Δθは5°以下とし、好ましくは 4.0°以下、さらに好ましくは 3.5°以下とする。
スプリングバック角度Δθは、JIS H3130(2012)に準拠した90°BadwayW曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の実際の曲げ変形角度をθ(°)とするとき、θ−90°の式にて測定することができる。
(Spring back angle Δθ)
The fact that the springback angle Δθ is small indicates that springback during bending is effectively suppressed. From this viewpoint, the springback angle Δθ is set to 5 ° or less, preferably 4.0 ° or less, and more preferably 3.5 ° or less.
The springback angle Δθ is defined as θ (°) in a 90 ° Badway W bending test based on JIS H3130 (2012), where the actual bending deformation angle of a bent portion (the center portion among three locations) of a bending test piece is defined as θ (°). , Θ-90 °.

(曲げ加工部外周表面粗さRa)
材料表面の微小な凹凸が起点となって亀裂へと成長していく現象があるため、曲げ加工部外周表面粗さRaが小さければ、亀裂への成長がしにくく、曲げ加工しやすい。この観点から、曲げ加工部外周表面粗さRaは1.0μm以下とし、好ましくは0.8μm以下、さらに好ましくは0.6μm以下とする。
曲げ加工部外周表面粗さRaは、JIS H3130(2012)に準拠した90°BadwayW曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の外周表面につき、JIS B0601(2013)に準拠して測定することができる。
(Round surface roughness Ra of the bent part)
Since there is a phenomenon in which minute irregularities on the surface of the material start to grow into cracks, if the surface roughness Ra of the outer peripheral surface of the bent portion is small, growth into cracks is difficult and bending is easy. From this viewpoint, the outer peripheral surface roughness Ra of the bent portion is set to 1.0 μm or less, preferably 0.8 μm or less, and more preferably 0.6 μm or less.
In the 90 ° BadwayW bending test based on JIS H3130 (2012), the outer peripheral surface roughness Ra of the bent portion is JIS B0601 (2013) for the outer peripheral surface of the bent portion (the center portion among three places) in the bent test piece. Can be measured in accordance with

(製造方法)
上述したようなCu−Co−Si系合金は、インゴットを製造する工程、均質化焼鈍工程、熱間圧延工程、冷間圧延工程、溶体化処理工程、時効処理工程、最終冷間圧延工程を順次に行うことにより製造することができる。なお熱間圧延後、必要に応じて面削を行うことが可能である。
(Production method)
As described above, the Cu-Co-Si-based alloy is formed by sequentially performing an ingot manufacturing process, a homogenizing annealing process, a hot rolling process, a cold rolling process, a solution treatment process, an aging treatment process, and a final cold rolling process. Can be produced. In addition, after hot rolling, it is possible to perform facing as needed.

具体的には、まず大気溶解炉等を用いて電気銅、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そしてこの溶湯をインゴットに鋳造する。その後、熱間圧延を行い、溶体化処理、時効処理(450〜550℃で1〜24h)、最終冷間圧延(加工度10〜50%)を行う。最終冷間圧延後に歪取焼鈍を行ってもよい。歪取焼鈍は、通常Ar等の不活性雰囲気中で400〜600℃で0.5〜5minにわたって行うことができる。なお、溶体化処理後に冷間圧延、時効処理の順に行ってもよい。   Specifically, first, raw materials such as electrolytic copper, Co, and Si are melted using an air melting furnace or the like to obtain a molten metal having a desired composition. And this molten metal is cast into an ingot. After that, hot rolling is performed, and solution treatment, aging treatment (450 to 550 ° C. for 1 to 24 hours), and final cold rolling (deformation degree of 10 to 50%) are performed. After the final cold rolling, strain relief annealing may be performed. The strain relief annealing can be usually performed in an inert atmosphere such as Ar at 400 to 600 ° C. for 0.5 to 5 minutes. After the solution treatment, cold rolling and aging may be performed in this order.

ここで、この製造方法では、インゴット製造の後に、所定の条件の均質化焼鈍、熱間圧延及び溶体化処理を行うことが肝要である。従来技術では、これらの工程の条件が最適化されていなかったため、この発明のような特性を得ることができず、特にスプリングバックを有意に抑制し得なかった。
以下に、これらの均質化焼鈍、熱間圧延及び溶体化処理の各工程を中心に詳細に述べる。なおその他の工程は、Cu−Co−Si系合金の製造工程において通常採用される条件とすることが可能である。
Here, in this manufacturing method, it is important to perform homogenizing annealing, hot rolling and solution treatment under predetermined conditions after manufacturing the ingot. In the prior art, since the conditions of these steps were not optimized, characteristics such as those of the present invention could not be obtained, and in particular, springback could not be significantly suppressed.
Hereinafter, the respective steps of the homogenization annealing, hot rolling, and solution treatment will be described in detail. Note that the other steps can be performed under the conditions usually employed in the manufacturing process of the Cu—Co—Si alloy.

<インゴット製造>
溶解鋳造は一般的には大気溶解炉で行うが、真空中又は不活性ガス雰囲気中で行うことも可能である。電気銅を溶解した後に、Co、Si等各試料の組成に応じて原料を添加し、撹拌後一定時間保持して、所望の組成の溶湯を得る。そして、この溶湯を1250℃以上に調整した後、インゴットに鋳造する。Co、Si以外、Crを0.5質量%以下、Zn、Sn、Ni、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上を合計1.0質量%以下になるように添加することもできる。
<Ingot production>
Melt casting is generally performed in an atmospheric melting furnace, but can be performed in a vacuum or in an inert gas atmosphere. After dissolving the electrolytic copper, raw materials are added according to the composition of each sample such as Co, Si, etc., and the mixture is kept for a certain period of time after stirring to obtain a molten metal having a desired composition. Then, after the molten metal is adjusted to 1250 ° C. or higher, it is cast into an ingot. Other than Co and Si, Cr is 0.5% by mass or less, and at least one selected from Zn, Sn, Ni, Mg, Mn, Fe, Ti, Al, P and B is 1.0% by mass or less in total. Can also be added.

<均質化焼鈍>
均質化焼鈍を適切な温度・時間で行うことで、鋳造時に生じた粗大なCo−Si粒子を母相に固溶させ、積層欠陥エネルギーを低い状態にすることができる。積層欠陥エネルギーが低い材料では交差すべりが困難なために、動的回復が起こりにくく、転位が蓄積されやすい。続く熱間圧延において、この蓄積された転位を駆動力として動的再結晶が起こり、結晶粒が微細化される。製品において目的の結晶方位の集積度(S33/(S1+S36)≧0.5)を得るためには、この熱間圧延終了時の結晶粒径が小さい方が好ましい。均質化焼鈍の温度が高すぎる場合、材料が溶解する可能性があるほか、動的再結晶が進行しすぎて熱間圧延終了時の結晶粒が粗大になり、製品において目的の結晶方位の集積度が得られない。均質化焼鈍の温度が低すぎる場合、粗大なCo−Si粒子を母相に固溶させることができず、製品において目的の方位が得られない。具体的には均質化温度は950〜1025℃が好ましく、時間は1〜24hが好ましい。
<Homogenizing annealing>
By performing the homogenization annealing at an appropriate temperature and for an appropriate time, coarse Co—Si particles generated at the time of casting can be solid-dissolved in the matrix and the stacking fault energy can be reduced. A material having low stacking fault energy is difficult to cross-slip, so that dynamic recovery hardly occurs and dislocations are easily accumulated. In the subsequent hot rolling, dynamic recrystallization occurs using the accumulated dislocations as a driving force, and the crystal grains are refined. In order to obtain a desired degree of crystal orientation (S 33 / (S 1 + S 36 ) ≧ 0.5) in the product, it is preferable that the crystal grain size at the end of the hot rolling be small. If the temperature of the homogenization annealing is too high, the material may be melted, and the dynamic recrystallization proceeds too much and the crystal grains at the end of hot rolling become coarse, resulting in the accumulation of the desired crystal orientation in the product. I can not get the degree. If the temperature of the homogenization annealing is too low, coarse Co—Si particles cannot be dissolved in the matrix, and the desired orientation cannot be obtained in the product. Specifically, the homogenization temperature is preferably 950 to 1025 ° C, and the time is preferably 1 to 24 hours.

<熱間圧延>
均質化焼鈍終了後のインゴットを炉から抽出して熱間圧延を行う。熱間圧延の最終パスにおける圧延ひずみ速度ε(sec-1)を大きくすることによって、より大きなエネルギーで強加工することができ、動的再結晶により熱間圧延終了時の結晶粒径を小さくすることができる。ここで圧延ひずみ速度εは次式で表される。
式中、n:ロール回転速度(rpm)、r:圧下率、R:ロール半径(mm)、H0:入側板厚(mm)である。ひずみ速度εが小さすぎる場合、熱間圧延終了時の結晶粒の微細化が不十分となり、製品において目的の結晶方位の集積度が得られない。ひずみ速度εが大きすぎる場合は、圧延機の負荷荷重が過大となり現実的ではない。具体的にはひずみ速度は30〜60sec-1、好ましくは40〜60sec-1とする。
また熱間圧延終了後から400℃までの冷却速度は7〜15℃/secが望ましい。これを満たさない場合、製品の曲げ加工性が低下し、スプリングバックが大きくなる。冷却速度はより好ましくは10〜15℃/secとする。
<Hot rolling>
The ingot after the completion of the homogenization annealing is extracted from the furnace and subjected to hot rolling. By increasing the rolling strain rate ε (sec −1 ) in the final pass of hot rolling, it is possible to perform strong working with larger energy, and to reduce the crystal grain size at the end of hot rolling by dynamic recrystallization. be able to. Here, the rolling strain rate ε is expressed by the following equation.
In the formula, n: roll rotation speed (rpm), r: reduction ratio, R: roll radius (mm), H 0 : entry side plate thickness (mm). If the strain rate ε is too low, the crystal grains at the end of the hot rolling are insufficiently refined, and the product cannot have the desired degree of integration of the crystal orientation. If the strain rate ε is too high, the load applied to the rolling mill becomes excessive, which is not practical. Specifically, the strain rate is 30 to 60 sec -1 , preferably 40 to 60 sec -1 .
The cooling rate from the end of hot rolling to 400 ° C. is preferably 7 to 15 ° C./sec. If this is not satisfied, the bending workability of the product will decrease, and the springback will increase. The cooling rate is more preferably 10 to 15 ° C./sec.

<溶体化処理>
溶体化処理の目的は、熱間圧延時に析出したCo−Si粒子を固溶させ、溶体化処理以降の時効硬化能を高めることである。溶体化処理の温度が低すぎると、これらの析出物を十分に固溶させることができず、所定の強度が得られない。またボックス番号33に相当する方位の集積度が十分に発達せず、曲げ加工性が低下する。溶体化処理の温度が高すぎると、析出物による粒界のピン止め効果がなくなり、結晶粒が粗大化して強度が低下する。またボックス番号1に相当する方位の集積度が大きくなり、曲げ加工時のスプリングバックが大きくなる。溶体化処理の温度としては、溶体化処理前の銅合金素材が、第二相粒子組成の固溶限付近の温度になるまで加熱することが好ましい。具体的には、850〜1000℃で0.5〜10min加熱する。また、第二相粒子の析出や再結晶粒の粗大化を防止する観点から、溶体化処理後の冷却速度はできるだけ高い方が好ましい。具体的には、材料温度が溶体化処理温度から400℃まで低下するときの平均冷却速度を15℃/sec以上とするのが好ましく、50℃/sec以上とするのがより好ましい。
<Solution treatment>
The purpose of the solution treatment is to increase the age hardening ability after the solution treatment by dissolving the Co-Si particles precipitated during hot rolling. If the temperature of the solution treatment is too low, these precipitates cannot be sufficiently solid-dissolved, and a predetermined strength cannot be obtained. In addition, the degree of integration in the direction corresponding to the box number 33 does not sufficiently develop, and the bending workability decreases. If the temperature of the solution treatment is too high, the effect of pinning the grain boundaries by the precipitates is lost, and the crystal grains become coarse and the strength decreases. In addition, the degree of integration in the direction corresponding to box number 1 is increased, and the springback during bending is increased. As the temperature of the solution treatment, it is preferable to heat the copper alloy material before the solution treatment to a temperature near the solid solubility limit of the second phase particle composition. Specifically, it heats at 850-1000 degreeC for 0.5 to 10 minutes. Further, from the viewpoint of preventing precipitation of the second phase particles and coarsening of recrystallized grains, it is preferable that the cooling rate after the solution treatment is as high as possible. Specifically, the average cooling rate when the material temperature decreases from the solution treatment temperature to 400 ° C. is preferably 15 ° C./sec or more, and more preferably 50 ° C./sec or more.

<時効処理>
溶体化処理に引き続いて、適切な大きさの析出物が均一に分布するように時効処理を行うことで、所望の強度及び導電率が得られる。時効処理の温度は、450℃より低いと導電率が低くなり、550℃より高いと強度が低下するので、450〜550℃とすることが好ましい。また時効処理の時間は1〜24hが好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging treatment>
Subsequent to the solution treatment, a desired strength and electrical conductivity can be obtained by performing an aging treatment so that precipitates of an appropriate size are uniformly distributed. When the temperature of the aging treatment is lower than 450 ° C., the conductivity is low, and when the temperature is higher than 550 ° C., the strength is low. The time of the aging treatment is preferably 1 to 24 hours. The aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the formation of an oxide film.

<最終冷間圧延>
時効処理後に引き続いて最終の冷間圧延を行うことで、転位を導入し強度上昇をはかる。圧延加工度が高いほど高強度の材料が得られるが、圧延加工度が高すぎるとせん断帯の存在する結晶粒の割合が多くなり曲げ加工性が悪化する。そこで、強度と曲げ加工性の良好なバランスを得るために、最終冷間圧延加工度を10〜50%、好ましくは20〜40%とする。
<Final cold rolling>
By performing final cold rolling after the aging treatment, dislocations are introduced to increase the strength. The higher the degree of rolling, the higher the strength of the material. However, if the degree of rolling is too high, the proportion of crystal grains having shear bands increases, and the bending workability deteriorates. Therefore, in order to obtain a good balance between strength and bending workability, the final degree of cold rolling is set to 10 to 50%, preferably 20 to 40%.

<歪取焼鈍>
最終の冷間圧延に引き続いて、歪取焼鈍を行うことによって、加工中に材料に生じた残留応力を取り除くことができ、ばね性が向上する。歪取焼鈍の保持温度が高すぎると、また保持時間が長すぎると粗大なCo−Si粒子が析出して強度低下を招く。保持温度は400〜600℃、好ましくは450〜550℃とする。また保持時間は0.5〜5min、好ましくは1〜3minとする。
<Strain removal annealing>
By performing strain relief annealing subsequent to the final cold rolling, residual stress generated in the material during processing can be removed, and the spring property is improved. If the holding temperature of the strain relief annealing is too high, or if the holding time is too long, coarse Co—Si particles are precipitated and the strength is reduced. The holding temperature is 400 to 600 ° C, preferably 450 to 550 ° C. The holding time is 0.5 to 5 min, preferably 1 to 3 min.

なお、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行うことができる。   In addition, steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

この発明のCu−Co−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、このCu−Co−Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。特に、コネクタを製造する際のプレス時において高い寸法精度を得ることができる。   The Cu-Co-Si-based alloy of the present invention can be processed into various copper products, for example, plates, strips, tubes, rods, and wires. , Pins, terminals, relays, switches, and electronic components such as foil materials for secondary batteries. In particular, high dimensional accuracy can be obtained at the time of pressing when manufacturing a connector.

次に、この発明の電子材料用銅合金を試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。   Next, a copper alloy for an electronic material according to the present invention was experimentally manufactured and its performance was confirmed. However, the description here is for the purpose of illustration only, and is not intended to be limiting.

表1に示す成分組成の銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを表1に示す条件で均質化した後、表1に記載の圧延ひずみ速度で板厚10mmまで熱間圧延し、熱間圧延終了温度を900℃とした。熱間圧延終了後は材料温度が400℃となるまで表1に示す平均冷却速度で水冷却し、その後は空気中に放置して冷却した。そして、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延を行い、表1に示す条件で溶体化処理を実施した後、500℃で12hの時効処理を行い、10〜50%の加工度で最終冷間圧延を施すことにより厚さ0.1mmの板とした。最後に、500℃で1minの歪取焼鈍を行った。
このようにして得られた各試験片に対し、以下の特性評価を行った。その結果を表2に示す。
A copper alloy having a component composition shown in Table 1 was melted at 1300 ° C. using a high-frequency melting furnace, and cast into an ingot having a thickness of 30 mm. Next, the ingot was homogenized under the conditions shown in Table 1, and then hot-rolled to a thickness of 10 mm at a rolling strain rate shown in Table 1, and the hot-rolling termination temperature was set to 900 ° C. After the completion of the hot rolling, the material was cooled with water at an average cooling rate shown in Table 1 until the material temperature reached 400 ° C., and then left standing in air for cooling. After removing the surface to 9 mm in thickness for scale removal, cold rolling was performed, solution treatment was performed under the conditions shown in Table 1, and then aging treatment was performed at 500 ° C. for 12 hours. A plate having a thickness of 0.1 mm was obtained by performing final cold rolling at a working ratio of 5050%. Finally, strain relief annealing was performed at 500 ° C. for 1 minute.
The following characteristics were evaluated for each of the test pieces thus obtained. Table 2 shows the results.

<強度(0.2%耐力)>
各試験片に対し、JIS Z2241に基づいて圧延平行方向の引張試験を行って、0.2%耐力(YS:MPa)を測定した。
<導電率>
導電率(EC:%IACS)については、JIS H0505に準拠し、ダブルブリッジによる体積抵抗率測定により求めた。
<結晶方位の集積度>
結晶方位の集積度はEBSD測定を用いて評価した。まず試験片を20mm四方に切り出し、圧延面表面をリン酸67%+硫酸10%溶液中において電圧15Vで60sec電解研磨して、組織を現出させた。測定には日本電子株式会社製JXA8500Fを用い、試験片の圧延面法線方向(ND)を入射電子線に対して70°傾け、圧延直角方向(TD)を試料ホルダーの傾斜方向に合わせて設置し、その傾斜面にフォーカスした電子線を照射した。加速電圧:15.0kV、照射電流量:5×10-8A、ワーキングディスタンス:15mmとし、観察視野500μm×500μm(ステップ幅1μm)でn=5で測定を行い、その平均値を算出して測定値とした。測定プログラムはTSL OIM data collection、解析プログラムはTSL OIM Analysisを用いた。圧延直角方向(TD)から逆極点図を撮影した場合に得られるステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、33、36の結晶方位の集積度をそれぞれS1、S33、S36とし、S=S33/(S1+S36)の値を評価した。
<曲げ加工性(曲げ加工後の表面平均粗さRa)>
JIS H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と平行)、R/t=1.0(t=0.1mm)で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS B0601(2013)に準拠)を測定し、比較した。なお、曲げ加工前の試料表面をコンフォーカル顕微鏡を用いて観察したところ、平均粗さRaはいずれも0.2μm以下であった。
曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
<スプリングバック角度Δθ>
JIS H3130(2012)に準拠してBadway方向に90°W曲げ加工を行った試験片について、KEYENCE社製マイクロスコープVW−6000を用いて曲げ断面を観察し曲げ角度θ(deg)を測定した。この曲げ角度と、金型で負荷した時の曲げ角度(=90°)の差θ−90°をスプリングバック角度Δθ(deg)とした。
<Strength (0.2% proof stress)>
Each test piece was subjected to a tensile test in the rolling parallel direction based on JIS Z2241 to measure a 0.2% proof stress (YS: MPa).
<Conductivity>
The conductivity (EC:% IACS) was determined by measuring the volume resistivity using a double bridge in accordance with JIS H0505.
<Degree of integration of crystal orientation>
The degree of integration of crystal orientation was evaluated using EBSD measurement. First, a test piece was cut into a square of 20 mm, and the surface of the rolled surface was electropolished in a solution of 67% phosphoric acid + 10% sulfuric acid at a voltage of 15 V for 60 seconds to reveal a structure. JXA8500F manufactured by JEOL Ltd. was used for the measurement. The normal direction (ND) of the rolling surface of the test piece was inclined by 70 ° with respect to the incident electron beam, and the perpendicular direction (TD) of the test piece was set according to the tilt direction of the sample holder. Then, the focused electron beam was irradiated on the inclined surface. Acceleration voltage: 15.0 kV, irradiation current amount: 5 × 10 −8 A, working distance: 15 mm, measurement is performed at n = 5 in an observation visual field of 500 μm × 500 μm (step width: 1 μm), and the average value is calculated. Measured values. The measurement program used TSL OIM data collection, and the analysis program used TSL OIM Analysis. Integration of crystal orientations of box numbers 1, 33, and 36 obtained by performing equal area division used for display by the vector method on a stereo triangle obtained when an inverse pole figure is photographed from the direction perpendicular to the rolling direction (TD). The degrees were S 1 , S 33 and S 36 , respectively, and the value of S = S 33 / (S 1 + S 36 ) was evaluated.
<Bendability (surface average roughness Ra after bending)>
According to JIS H3130 (2012), a W bending test was performed with Badway (bending axis parallel to the rolling direction) and R / t = 1.0 (t = 0.1 mm), and the outer peripheral surface of the bending portion of the test piece was observed. did. As the observation method, the outer peripheral surface of the bent portion was photographed using a confocal microscope HD100 manufactured by Lasertec, and the average roughness Ra (based on JIS B0601 (2013)) was measured using attached software, and compared. When the sample surface before bending was observed using a confocal microscope, the average roughness Ra was 0.2 μm or less in all cases.
The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as ○, and the case where Ra exceeded 1.0 μm was evaluated as x.
<Spring back angle Δθ>
With respect to a test piece subjected to 90 ° W bending in the Badway direction in accordance with JIS H3130 (2012), a bending section was observed using a microscope VW-6000 manufactured by KEYENCE, and a bending angle θ (deg) was measured. The difference [theta] -90 [deg.] Between this bending angle and the bending angle (= 90 [deg.]) When a load was applied by the mold was defined as the springback angle [Delta] [theta] (deg).

表1、2に示すように、発明例1〜20はいずれも、所定の条件の均質化焼鈍、熱間圧延及び溶体化処理等を行ったことにより、S=S33/(S1+S36)≧0.5となった。その結果、良好なBW方向の曲げ加工性を有し、かつスプリングバックの小さい材料を得ることができた。 As shown in Tables 1 and 2, in all of Invention Examples 1 to 20, S = S 33 / (S 1 + S 36) by performing homogenization annealing, hot rolling, solution treatment, and the like under predetermined conditions. ) ≧ 0.5. As a result, it was possible to obtain a material having good bending workability in the BW direction and small springback.

比較例1は、熱間圧延のひずみ速度が小さすぎるため、S=S33/(S1+S36)が小さくなり、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例2は、熱間圧延のひずみ速度が大きすぎるため、熱間板に割れが生じてしまい、製品を得ることができなかった。
比較例3は、均質化処理における温度が低すぎたことにより、粗大なCo−Si粒子を母相に固溶させることができず、S=S33/(S1+S36)が小さくなり0.2%耐力、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例4は、均質化処理における温度が高すぎたことにより、熱間圧延後の結晶粒が粗大になり、S=S33/(S1+S36)が小さくなり、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例5、6は、熱間圧延後の冷却速度が適切でなかったため、S=S33/(S1+S36)が小さくなって、0.2%耐力、曲げ加工部外周表面粗さRa及びスプリングバック角度Δθが悪化した。
比較例7は、溶体化処理における温度が高すぎたため、0.2%耐力が悪化し、またS=S33/(S1+S36)が小さくなり、スプリングバック角度Δθが悪化した。
比較例8は、溶体化処理における温度が低すぎたため、0.2%耐力が悪化し、またS=S33/(S1+S36)が小さくなり、曲げ加工部外周表面粗さRaが悪化した。
比較例9、10は、Co量が所定の範囲から外れたことにより、0.2%耐力、導電率又は曲げ加工部外周表面粗さRaが悪化した。
比較例11、12は、質量割合でCo/Siが所定の範囲から外れたことにより0.2%耐力又は導電率が低くなった。
比較例13は、Co、Si以外の添加元素の質量が大きすぎたことにより導電率が悪化した。またS=S33/(S1+S36)が小さくなって、曲げ加工部外周表面粗さRaが悪化した。
In Comparative Example 1, since the strain rate of the hot rolling was too low, S = S 33 / (S 1 + S 36 ) was small, and the outer peripheral surface roughness Ra and the springback angle Δθ of the bent portion were deteriorated.
In Comparative Example 2, since the strain rate of hot rolling was too high, cracks occurred in the hot plate, and a product could not be obtained.
In Comparative Example 3, since the temperature in the homogenization treatment was too low, coarse Co—Si particles could not be dissolved in the matrix, and S = S 33 / (S 1 + S 36 ) was reduced to 0. .2% proof stress, the surface roughness Ra of the outer periphery of the bent portion and the springback angle Δθ were deteriorated.
In Comparative Example 4, since the temperature in the homogenization treatment was too high, the crystal grains after hot rolling became coarse, S = S 33 / (S 1 + S 36 ) became small, and the outer peripheral surface roughness of the bent portion was reduced. Ra and the springback angle Δθ deteriorated.
In Comparative Examples 5 and 6, since the cooling rate after hot rolling was not appropriate, S = S 33 / (S 1 + S 36 ) was reduced, and the 0.2% proof stress and the outer peripheral surface roughness Ra of the bent portion were reduced. And the springback angle Δθ deteriorated.
In Comparative Example 7, since the temperature in the solution treatment was too high, the 0.2% proof stress was deteriorated, S = S 33 / (S 1 + S 36 ) was reduced, and the springback angle Δθ was deteriorated.
In Comparative Example 8, since the temperature in the solution treatment was too low, the 0.2% proof stress deteriorated, S = S 33 / (S 1 + S 36 ) became small, and the outer peripheral surface roughness Ra of the bent portion deteriorated. did.
In Comparative Examples 9 and 10, the Co content deviated from the predetermined range, and thus the 0.2% proof stress, the electrical conductivity, or the surface roughness Ra of the bent portion deteriorated.
In Comparative Examples 11 and 12, 0.2% proof stress or electrical conductivity was low due to Co / Si falling out of a predetermined range in mass ratio.
In Comparative Example 13, the conductivity was deteriorated because the mass of the additional element other than Co and Si was too large. In addition, S = S 33 / (S 1 + S 36 ) became small, and the outer peripheral surface roughness Ra of the bent portion deteriorated.

以上より、この発明によれば、電子材料に用いて好適な0.2%耐力、導電率及び曲げ加工性を有するとともに、曲げ加工時におけるスプリングバックを抑制した信頼性の高い電子材料用銅合金が得られることが分かった。   As described above, according to the present invention, a highly reliable copper alloy for electronic materials having 0.2% proof stress, electrical conductivity, and bendability suitable for use in electronic materials and suppressing springback during bending. Was obtained.

Claims (6)

0.5〜3.0質量%のCoを含有し、かつSiを質量割合でCo/Siが3〜5となるように含有し、残部が銅及び不可避的不純物からなり、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定から得られる圧延直角方向(TD)の結晶方位を表したステレオ三角に対し、ベクトル法による表示で用いられる等面積分割を行って得られたボックス番号1、33、36の結晶方位の集積度をそれぞれS1、S33、S36としたとき、
S=S33/(S1+S36)≧0.5
の関係を満たす電子材料用銅合金。
It contains 0.5 to 3.0% by mass of Co, contains Si so that Co / Si becomes 3 to 5 by mass, and the balance consists of copper and unavoidable impurities, and EBSD (Electron Back Scatter). (Diffraction: electron backscatter diffraction) Box numbers 1 and 33 obtained by performing equal area division on a stereo triangle representing the crystal orientation in the direction perpendicular to the rolling direction (TD) obtained from the measurement, using the vector method. Assuming that the degrees of integration of the crystal orientations of 36 are S 1 , S 33 , and S 36 respectively,
S = S 33 / (S 1 + S 36 ) ≧ 0.5
Copper alloys for electronic materials that satisfy the following relationship.
JIS H3130(2012)に準拠した90°BadwayW曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の実際の曲げ変形角度をθ(°)とするとき、スプリングバック角度Δθを示すθ−90°の値が5°以下である請求項1に記載の電子材料用銅合金。   In a 90 ° Badway W bending test based on JIS H3130 (2012), when an actual bending deformation angle of a bending portion (center portion among three places) of a bending test piece is defined as θ (°), a springback angle Δθ is defined as: The copper alloy for electronic materials according to claim 1, wherein the value of θ-90 ° shown is 5 ° or less. JIS H3130(2012)に準拠した90°BadwayW曲げ試験において、曲げ試験片における曲げ加工部(3箇所のうち中央部)の外周表面におけるJIS B0601(2013)に準拠した表面平均粗さRaが1.0μm以下である請求項1又は2に記載の電子材料用銅合金。   In the 90 ° Badway W bending test based on JIS H3130 (2012), the surface average roughness Ra based on JIS B0601 (2013) on the outer peripheral surface of the bent portion (the center part among three places) of the bending test piece is 1. The copper alloy for electronic materials according to claim 1, wherein the thickness is 0 μm or less. さらにCrを0.5質量%以下で含有する請求項1〜3のいずれか一項に記載の電子材料用銅合金。   The copper alloy for an electronic material according to any one of claims 1 to 3, further containing 0.5% by mass or less of Cr. さらにZn及びSnをそれぞれ0〜0.5質量%、Niを0〜0.1質量%、Mg、Mn、Fe、Ti、Al、P及びBをそれぞれ0〜0.2質量%含有し、それらのZn、Sn、Ni、Mg、Mn、Fe、Ti、Al、P及びBから選択される少なくとも一種類以上の合計が1.0質量%以下である請求項1〜4のいずれか一項に記載の電子材料用銅合金。   Furthermore, Zn and Sn are each contained in an amount of 0 to 0.5% by mass, Ni is contained in an amount of 0 to 0.1% by mass, and Mg, Mn, Fe, Ti, Al, P and B are each contained in an amount of 0 to 0.2% by mass. The total of at least one selected from Zn, Sn, Ni, Mg, Mn, Fe, Ti, Al, P and B is 1.0% by mass or less according to any one of claims 1 to 4. The copper alloy for an electronic material according to the above. 請求項1〜5のいずれか一項に記載の電子材料用銅合金を備えた電子部品。   An electronic component comprising the copper alloy for an electronic material according to claim 1.
JP2018155640A 2018-08-22 2018-08-22 Copper alloy for electronic materials Active JP6671434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018155640A JP6671434B2 (en) 2018-08-22 2018-08-22 Copper alloy for electronic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155640A JP6671434B2 (en) 2018-08-22 2018-08-22 Copper alloy for electronic materials

Publications (2)

Publication Number Publication Date
JP2020029593A JP2020029593A (en) 2020-02-27
JP6671434B2 true JP6671434B2 (en) 2020-03-25

Family

ID=69623918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155640A Active JP6671434B2 (en) 2018-08-22 2018-08-22 Copper alloy for electronic materials

Country Status (1)

Country Link
JP (1) JP6671434B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228725B2 (en) * 2011-11-02 2017-11-08 Jx金属株式会社 Cu-Co-Si alloy and method for producing the same
JP6306632B2 (en) * 2016-03-31 2018-04-04 Jx金属株式会社 Copper alloy for electronic materials
JP2016199808A (en) * 2016-07-12 2016-12-01 Jx金属株式会社 Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP2017082335A (en) * 2016-12-19 2017-05-18 Jx金属株式会社 Copper alloy sheet excellent in conductivity and bending deflection coefficient
JP6618945B2 (en) * 2017-03-24 2019-12-11 Jx金属株式会社 Copper alloy for electronic materials

Also Published As

Publication number Publication date
JP2020029593A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP6306632B2 (en) Copper alloy for electronic materials
KR20110088595A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
US10157694B2 (en) Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP6618945B2 (en) Copper alloy for electronic materials
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP6671434B2 (en) Copper alloy for electronic materials
JP6671416B2 (en) Copper alloy for electronic materials
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP7046032B2 (en) Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials
JP2019077889A (en) Copper alloy for electronic material
JP2018062705A (en) Copper alloy for electronic material
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211077A (en) Titanium copper
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2019077890A (en) Copper alloy for electronic material
JP7311651B1 (en) Copper alloys for electronic materials and electronic parts
JP2013117060A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL
JP6522677B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2019203202A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R150 Certificate of patent or registration of utility model

Ref document number: 6671434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250