JP6671204B2 - Gas separation equipment - Google Patents
Gas separation equipment Download PDFInfo
- Publication number
- JP6671204B2 JP6671204B2 JP2016060369A JP2016060369A JP6671204B2 JP 6671204 B2 JP6671204 B2 JP 6671204B2 JP 2016060369 A JP2016060369 A JP 2016060369A JP 2016060369 A JP2016060369 A JP 2016060369A JP 6671204 B2 JP6671204 B2 JP 6671204B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorbent
- adsorption
- separation device
- gas separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Gas Separation By Absorption (AREA)
Description
本発明は、温度スイング吸着法によって混合ガスから特定のガス成分を吸着・分離するためのガス分離装置に関する。 The present invention relates to a gas separation device for adsorbing and separating a specific gas component from a mixed gas by a temperature swing adsorption method.
温度スイング吸着法を採用する従来のガス分離装置としては、例えば、以下の特許文献1に記載されるものが知られている。当該ガス分離装置は、マイクロ波発振器を備えており、吸着塔内のガス吸着材にマイクロ波を照射して加熱し、これによりガス吸着材に吸着した二酸化炭素を脱離させる(例えば、特許文献1の図1参照)。
As a conventional gas separation apparatus that employs a temperature swing adsorption method, for example, the one described in
上記特許文献1に記載されるガス分離装置では、マイクロ波発振器という特殊な機器を必要とすると共に、マイクロ波を発生させるための電気エネルギーが別途必要となるため、装置運転時の省エネルギー化を図るという点において改善する余地が残されている。
In the gas separation device described in
本発明の目的は、何ら特殊な機器を必要とせずに、省エネルギー化を図ることのできるガス分離装置を提供することにある。 An object of the present invention is to provide a gas separation device that can save energy without requiring any special equipment.
本発明のガス分離装置は、混合ガス中の一つ以上のガス成分をガス吸着材に吸着させる吸着工程と、水蒸気で加熱することにより前記ガス成分を脱離させて前記ガス吸着材を再生させる再生工程とが交互に行われる吸着塔を備えるガス分離装置において、前記ガス吸着材が、前記吸着工程において前記ガス成分を吸着し、且つ、前記再生工程において前記ガス成分を脱離する吸着剤と、前記吸着工程において前記水蒸気を脱離し、且つ、前記再生工程において前記水蒸気を吸着する吸湿発熱剤とを含むことを特徴とする。 The gas separation device of the present invention includes an adsorption step of adsorbing one or more gas components in a mixed gas to a gas adsorbent, and desorbing the gas components by heating with steam to regenerate the gas adsorbent. in the gas separation apparatus comprising a adsorption tower and regeneration step are alternately performed, the gas adsorbent, the adsorbing said gas component in the adsorption step, and the adsorbent desorbs said gaseous component in said regeneration step And a moisture-absorbing exothermic agent that desorbs the water vapor in the adsorption step and adsorbs the water vapor in the regeneration step .
本構成であれば、再生工程において、ガス吸着材に含まれる吸湿発熱剤が水蒸気を吸収して発熱するため、ガス成分の脱離に要する熱エネルギーを低減することができ、省エネルギー化が図れる。また、吸湿発熱剤が吸収した水分は、その後の吸着工程において混合ガスが再導入されることによって吸熱反応を伴いながら放出されるため、吸着剤におけるガス成分の吸着が促される。即ち、吸湿発熱剤の吸熱反応及び発熱反応を利用することによって、特定のガス成分の吸着及び脱離が促され、効率良く特定のガス成分を吸着・分離することができる。
さらに本構成であれば、水蒸気を利用する従来公知の一般的な温度スイング吸着(TSA)装置に適用することができるため、ガス成分を脱離させるための特殊な機器を何ら必要としない。
According to this configuration, in the regeneration step, the moisture-absorbing heat generating agent contained in the gas adsorbent absorbs water vapor to generate heat, so that the heat energy required for desorbing the gas component can be reduced, and energy can be saved. Further, since the moisture absorbed by the moisture-absorbing exothermic agent is released with an endothermic reaction due to the re-introduction of the mixed gas in the subsequent adsorption step, the adsorption of the gas component in the adsorbent is promoted. That is, by utilizing the endothermic reaction and the exothermic reaction of the moisture-absorbing exothermic agent, adsorption and desorption of a specific gas component are promoted, and the specific gas component can be efficiently adsorbed and separated.
Further, this configuration can be applied to a conventionally known general temperature swing adsorption (TSA) device using water vapor, and thus does not require any special device for desorbing gas components.
さらに本発明のガス分離装置は、前記ガス成分が二酸化炭素であることを特徴とする。 Furthermore, the gas separation device of the present invention is characterized in that the gas component is carbon dioxide.
本構成であれば、地球温暖化の一因である二酸化炭素を効率良く吸着することができる。 With this configuration, carbon dioxide that contributes to global warming can be efficiently adsorbed.
さらに本発明のガス分離装置は、前記吸着剤が、MOF(有機金属錯体)系吸着剤、炭素材料系吸着剤、多孔質材料にアミン類を担持させた吸着剤、ゼオライト、シリカゲル、活性炭からなる群より選択される一つ以上の吸着剤であることを特徴とする。 Further, in the gas separation device according to the present invention, the adsorbent comprises an MOF (organic metal complex) adsorbent, a carbon material adsorbent, an adsorbent obtained by supporting a porous material with amines, zeolite, silica gel, and activated carbon. It is one or more adsorbents selected from the group.
これらの吸着剤は、二酸化炭素をより効率良く吸着することができる。 These adsorbents can adsorb carbon dioxide more efficiently.
さらに本発明のガス分離装置は、前記吸湿発熱剤が、ポリアクリル酸ナトリウム又は水分を吸収可能な塩化カルシウムの水和物であることを特徴とする。
Furthermore, the gas separation device of the present invention is characterized in that the heat-absorbing heat-generating agent is sodium polyacrylate or a hydrate of calcium chloride capable of absorbing moisture .
これらの吸湿発熱剤は、混合ガス中に含まれる各種ガス成分と水蒸気との間で十分な吸着性能の差があり、水蒸気を選択的に吸収できる。 These moisture-absorbing exothermic agents have a sufficient difference in adsorption performance between various gas components contained in the mixed gas and water vapor, and can selectively absorb water vapor.
さらに本発明のガス分離装置は、前記吸着工程中の吸着塔内の相対湿度が、前記再生工程中の吸着塔内の相対湿度よりも低いことを特徴とする。 Furthermore, the gas separation device of the present invention is characterized in that the relative humidity in the adsorption tower during the adsorption step is lower than the relative humidity in the adsorption tower during the regeneration step.
本構成であれば、吸着工程中の吸湿発熱剤の吸熱反応と、再生工程中の吸湿発熱剤の発熱反応とが一層促されるため、さらに効率良く特定のガス成分を吸着・分離することができる。 With this configuration, the endothermic reaction of the hygroscopic exothermic agent during the adsorption step and the exothermic reaction of the hygroscopic exothermic agent during the regeneration step are further promoted, so that the specific gas component can be more efficiently adsorbed and separated. .
さらに本発明のガス分離装置は、前記吸着工程中の吸着塔内の相対湿度が20%以下であることを特徴とする。 Further, the gas separation device of the present invention is characterized in that the relative humidity in the adsorption tower during the adsorption step is 20% or less.
本構成であれば、吸着工程中の吸湿発熱剤の吸熱反応と、再生工程中の吸湿発熱剤の発熱反応とがより一層促されるため、さらにより効率良く特定のガス成分を吸着・分離することができる。 With this configuration, the endothermic reaction of the hygroscopic exothermic agent during the adsorption step and the exothermic reaction of the hygroscopic exothermic agent during the regeneration step are further promoted, so that the specific gas components can be more efficiently adsorbed and separated. Can be.
〔実施形態〕
以下、本発明の実施の形態を説明する。
(ガス分離装置)
本発明の実施形態に係るガス分離装置は、混合ガス中の一つ以上のガス成分をガス吸着材に吸着させる吸着工程と水蒸気で加熱することにより前記ガス成分を脱離させて前記ガス吸着材を再生させる再生工程とが交互に行われる吸着塔を備える、所謂温度スイング吸着(TSA)装置であって、吸着工程と再生工程とが交互に繰り返されることによって、混合ガス中の特定のガス成分を連続的に分離・回収することができる。
[Embodiment]
Hereinafter, embodiments of the present invention will be described.
(Gas separation device)
The gas separation device according to the embodiment of the present invention includes an adsorbing step of adsorbing one or more gas components in a mixed gas to a gas adsorbent, and desorbing the gas components by heating with water vapor. Is a so-called temperature swing adsorption (TSA) apparatus comprising an adsorption tower in which a regeneration step for regenerating a gas is performed alternately, and a specific gas component in a mixed gas is obtained by repeating the adsorption step and the regeneration step alternately. Can be continuously separated and recovered.
本実施形態におけるガス分離装置1は、第1吸着塔2、第2吸着塔3、蒸気供給ライン4、混合ガス供給ライン5、ガス成分回収ライン6、排気ライン7、及びブロワー8を備えて構成されている。第1吸着塔2及び第2吸着塔3のそれぞれの内部には、後述するガス吸着材9が充填されている。
The
ガス分離装置1に適用可能な混合ガスとしては、例えば、火力発電所、製鉄所高炉、自動車等から排出される産業排出ガスが挙げられる。また分離・回収されるガス成分としては、例えば、二酸化炭素、メタンなどが挙げられる。
Examples of the mixed gas applicable to the
先ず、混合ガス供給ライン5を介して混合ガスを第1吸着塔2に所定時間供給して、混合ガス中に含まれる特定のガス成分をガス吸着材9に吸着させる。残りのガス成分は排気ライン7を介して排出される。
First, a mixed gas is supplied to the
所定時間経過後、混合ガス供給ライン5を切り替えて、混合ガスを第2吸着塔3に所定時間供給すると共に、蒸気供給ライン4を介して高温の水蒸気を第1吸着塔2に所定時間供給して加熱し、吸着したガス成分を脱離させてガス吸着材9を再生させる。このとき、第1吸着塔2のガス吸着材9に含まれる吸湿発熱剤が水蒸気を吸収して発熱するため、ガス成分の脱離に要する熱エネルギーを低減することができる。脱離したガス成分はガス成分回収ライン6を介して回収される。
After a lapse of a predetermined time, the mixed
さらに所定時間経過後、混合ガス供給ライン5を切り替えて、混合ガスを再び第1吸着塔2に所定時間供給すると共に、蒸気供給ライン4を切り替えて、水蒸気を第2吸着塔3に所定時間供給して加熱し、ガス成分を脱離させてガス吸着材9を再生させる。このとき、第2吸着塔3のガス吸着材9に含まれる吸湿発熱剤が水蒸気を吸収して発熱するため、上記第1吸着塔2のときと同様に、ガス成分の脱離に要する熱エネルギーを低減することができる。また、第1吸着塔2におけるガス吸着材9の吸湿発熱剤が吸収した水分は、混合ガスが導入されることによって吸熱反応を伴いながら排気ライン7より放出されるため、第1吸着塔2のガス吸着材9におけるガス成分の吸着が促される。
After a lapse of a predetermined time, the mixed
尚、吸着工程中の吸湿発熱剤の吸熱反応と、再生工程中の吸湿発熱剤の発熱反応とをより一層促すために、吸着工程中の吸着塔内の相対湿度が、再生工程中の吸着塔内の相対湿度よりも低いことが望ましい。特に、吸着工程中の吸着塔内の相対湿度が20%以下であることがより望ましい。 In order to further promote the endothermic reaction of the moisture-absorbing exothermic agent during the adsorption step and the exothermic reaction of the moisture-absorbing exothermic agent during the regeneration step, the relative humidity in the adsorption tower during the adsorption step is controlled by the relative humidity in the adsorption tower during the regeneration step. It is desirably lower than the relative humidity inside. In particular, it is more preferable that the relative humidity in the adsorption tower during the adsorption step is 20% or less.
以上より、本実施形態におけるガス分離装置1では、第1吸着塔2及び第2吸着塔3のいずれか一方において、混合ガス中の一つ以上のガス成分をガス吸着材9に吸着させる吸着工程が実施され、他方において、水蒸気で加熱することにより前記ガス成分を脱離させてガス吸着材9を再生させる再生工程が実施され、所定時間ごとに切り替わるように構成されている。
As described above, in the
上述のガス分離装置1では、第1吸着塔2及び第2吸着塔3という2つの吸着塔を備えているが、この構成に限定されるものではなく、場合によっては一つの吸着塔を備える構成でも良いし、あるいは3つ以上の吸着塔を備える構成としても良い。
Although the above-mentioned
また、上述のガス分離装置1が、さらに凝縮器を備えるように構成しても良い。回収された二酸化炭素は水分を含むため、凝縮器によって水分を除去して、ガス成分のみを分離・回収することができる。尚、取り除かれた水分は、蒸気として再利用することができる。
Further, the above-described
また、上述のガス分離装置1に対して、必要に応じて圧力スイング法を組み合わせても良い。圧力スイング法では、再生工程中に、ガス成分回収ラインをポンプで引いて吸着塔内を減圧気味にするため、ガス吸着材9の再生を促すことができる。
Further, a pressure swing method may be combined with the above
(ガス吸着材)
本発明のガス分離装置に適用されるガス吸着材は、特定のガス成分を吸着する吸着剤と、吸湿発熱剤とを含む。
(Gas adsorbent)
The gas adsorbent applied to the gas separation device of the present invention includes an adsorbent that adsorbs a specific gas component and a moisture-absorbing exothermic agent.
(吸着剤)
分離・回収するガス成分が二酸化炭素である場合、本発明に適用可能な吸着剤としては、例えば、MOF(有機金属錯体)系吸着剤、炭素材料系吸着剤、多孔質材料にアミン等を担持させた吸着剤、ゼオライト、シリカゲル、活性炭等が挙げられる。
(Adsorbent)
When the gas component to be separated / recovered is carbon dioxide, examples of the adsorbent applicable to the present invention include MOF (organic metal complex) adsorbents, carbon material adsorbents, and amines supported on porous materials. Adsorbent, zeolite, silica gel, activated carbon and the like.
MOF(有機金属錯体)系吸着剤としては、例えば、ZIF−8(Selective Gas Sorption in Metal Organic Framework,Grant White(2010)参照)、MOF−74(Selective
Gas Sorption in Metal Organic Framework,Grant White(2010)参照)、HKUST−1、PCN−16、及びMOF−5等が挙げられる。
Examples of the MOF (organic metal complex) -based adsorbent include ZIF-8 (Selective Gas Solution in Metal Organic Framework, Grant White (2010)), and MOF-74 (Selective).
Gas Solution in Metal Organic Framework, Grant White (2010)), HKUST-1, PCN-16, MOF-5, and the like.
炭素材料系吸着剤としては、例えば、Advanced Carbon Sorbents(Characteristics of an advanved carbon sorbent for CO2 capture,M.D.Hornbostel,et al.,Carbon,56,p.77(2013)参照)等が挙げられる。
As the carbon material-based adsorbent, for example, Advanced Carbon Sorbents (Characteristics of an advanved carbon sorbent for
多孔質材料にアミン等を担持させた吸着剤としては、例えば、Amine Enriched Sorbents(ADA−ES社製)、RITE固体吸収剤等が挙げられる。 Examples of the adsorbent in which an amine or the like is supported on a porous material include Amine Enriched Sorbents (manufactured by ADA-ES) and a RITE solid absorbent.
尚、吸着剤の形態は、固体状でも、水溶液以外の液状であっても良い。 The form of the adsorbent may be solid or liquid other than the aqueous solution.
(吸湿発熱剤)
本発明における吸湿発熱剤とは、水分を吸収することによって発熱する物質を意味するものであって、混合ガス中に含まれる各種ガス成分と水蒸気との間で十分な吸着性能の差があり、尚且つ水蒸気を選択的に吸収できるものが好ましい。そのような吸湿発熱剤としては、例えば、ポリアクリル酸ナトリウム等の吸湿性高分子、塩化カルシウムの水和物等が挙げられる。
(Hygroscopic heating agent)
The moisture-absorbing exothermic agent in the present invention means a substance that generates heat by absorbing moisture, and has a sufficient difference in adsorption performance between various gas components and water vapor contained in the mixed gas, In addition, those which can selectively absorb water vapor are preferable. Examples of such a moisture-absorbing heat generating agent include a hygroscopic polymer such as sodium polyacrylate, a hydrate of calcium chloride, and the like.
吸湿発熱剤は、必要に応じてカプセル剤や多孔質材などと複合化されていても良い。 The moisture-absorbing heat-generating agent may be compounded with a capsule, a porous material, or the like, if necessary.
吸湿発熱剤の形状・大きさは、上記吸着剤と同じ形状・大きさにすることが望ましく、例えば、吸湿発熱剤及び吸着剤を、同じ形状・大きさのペレット状にすることがより望ましい。 The shape and size of the moisture-absorbing exothermic agent are desirably the same shape and size as the adsorbent. For example, it is more desirable that the moisture-absorbing exothermic agent and the adsorbent are formed into pellets having the same shape and size.
ガス吸着材中における吸湿発熱剤の混合割合(質量%)は、5質量%〜50質量%が望ましい。 The mixing ratio (% by mass) of the moisture-absorbing exothermic agent in the gas adsorbent is preferably 5% by mass to 50% by mass.
尚、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified without departing from the object of the present invention.
吸着・分離するガス成分として二酸化炭素を想定し、以下の実施例1〜3のそれぞれのガス吸着材について、再生工程中に二酸化炭素を脱離するために要する、外部からの投入熱量(二酸化炭素1t当たりの熱量)を計算した。 Assuming carbon dioxide as a gas component to be adsorbed and separated, for each of the gas adsorbents in Examples 1 to 3 below, the amount of heat input from the outside (carbon dioxide required to desorb carbon dioxide during the regeneration process) Calorie per ton) was calculated.
(実施例1)
実施例1のガス吸着材では、以下の化学的性質をもつZIF−8を吸着剤とし、また以下の化学的性質をもつ塩化カルシウム二水和物を吸湿発熱剤とした。
(Example 1)
In the gas adsorbent of Example 1, ZIF-8 having the following chemical properties was used as the adsorbent, and calcium chloride dihydrate having the following chemical properties was used as the moisture-absorbing exothermic agent.
ZIF−8の化学的性質
(1)再生熱:二酸化炭素1moLあたり59kJ(吸着熱:二酸化炭素1moLあたり19kJ、顕熱:二酸化炭素1moLあたり40kJ)
(2)比熱:1kJ/(kg・K)
(3)1kgあたりの二酸化炭素吸着量:0.044kg(1.0moL)
Chemical properties of ZIF-8 (1) Regeneration heat: 59 kJ per 1 mol of carbon dioxide (heat of adsorption: 19 kJ per 1 mol of carbon dioxide, sensible heat: 40 kJ per 1 mol of carbon dioxide)
(2) Specific heat: 1 kJ / (kg · K)
(3) Carbon dioxide adsorption amount per kg: 0.044 kg (1.0 mol)
塩化カルシウム二水和物の化学的性質
(1)発熱量:水分子1moLあたり50kJ
(2)比熱:2.64kJ/(kg・K)
(3)1kgあたりの水吸着量:0.24kg
Chemical properties of calcium chloride dihydrate (1) Calorific value: 50 kJ per 1 mol of water molecule
(2) Specific heat: 2.64 kJ / (kg · K)
(3) Water adsorption amount per kg: 0.24 kg
ガス吸着材中における塩化カルシウム二水和物の混合割合を0質量%、5質量%、10質量%、15質量%、20質量%、25質量%、30質量%、35質量%、40質量%、45質量%、50質量%に設定し、さらに吸着塔の充填量を1000kg、及び吸着工程と再生工程との温度差を40Kに設定した。 0 mass%, 5 mass%, 10 mass%, 15 mass%, 20 mass%, 25 mass%, 30 mass%, 35 mass%, 40 mass% of the mixing ratio of calcium chloride dihydrate in the gas adsorbent , 45% by mass and 50% by mass, the filling amount of the adsorption tower was set to 1000 kg, and the temperature difference between the adsorption step and the regeneration step was set to 40K.
上述の条件を基にして、再生工程中に二酸化炭素を脱離するために要する、外部からの投入熱量(二酸化炭素1t当たりの熱量)を計算し、得られたデータをグラフにした。結果を図2に示す。図2に示すように、吸湿発熱剤(塩化カルシウム二水和物)の混合量を増やすほど投入熱量が減少した。 Based on the above conditions, the amount of heat input from the outside (the amount of heat per t of carbon dioxide) required to desorb carbon dioxide during the regeneration step was calculated, and the obtained data was graphed. The results are shown in FIG. As shown in FIG. 2, the amount of heat input decreased as the mixing amount of the moisture-absorbing exothermic agent (calcium chloride dihydrate) was increased.
(実施例2)
実施例2のガス吸着材では、以下の化学的性質をもつMOF−74を吸着剤とし、また以下の化学的性質をもつ塩化カルシウム二水和物を吸湿発熱剤とした。
(Example 2)
In the gas adsorbent of Example 2, MOF-74 having the following chemical properties was used as the adsorbent, and calcium chloride dihydrate having the following chemical properties was used as the moisture-absorbing exothermic agent.
MOF−74の化学的性質
(1)再生熱:二酸化炭素1moLあたり71kJ(吸着熱:二酸化炭素1moLあたり31kJ、顕熱:二酸化炭素1moLあたり40kJ)
(2)比熱:1kJ/(kg・K)
(3)1kgあたりの二酸化炭素吸着量:0.044kg(1.0moL)
Chemical properties of MOF-74 (1) Heat of regeneration: 71 kJ per 1 mol of carbon dioxide (heat of adsorption: 31 kJ per 1 mol of carbon dioxide, sensible heat: 40 kJ per 1 mol of carbon dioxide)
(2) Specific heat: 1 kJ / (kg · K)
(3) Carbon dioxide adsorption amount per kg: 0.044 kg (1.0 mol)
塩化カルシウム二水和物の化学的性質
(1)発熱量:水分子1moLあたり50kJ
(2)比熱:2.64kJ/(kg・K)
(3)1kgあたりの水吸着量:0.24kg
Chemical properties of calcium chloride dihydrate (1) Calorific value: 50 kJ per 1 mol of water molecule
(2) Specific heat: 2.64 kJ / (kg · K)
(3) Water adsorption amount per kg: 0.24 kg
ガス吸着材中における塩化カルシウム二水和物の混合割合を0質量%、5質量%、10質量%、15質量%、20質量%、25質量%、30質量%、35質量%、40質量%、45質量%、50質量%に設定し、さらに吸着塔の充填量を1000kg、及び吸着工程と再生工程との温度差を40Kに設定した。 0 mass%, 5 mass%, 10 mass%, 15 mass%, 20 mass%, 25 mass%, 30 mass%, 35 mass%, 40 mass% of the mixing ratio of calcium chloride dihydrate in the gas adsorbent , 45% by mass and 50% by mass, the filling amount of the adsorption tower was set to 1000 kg, and the temperature difference between the adsorption step and the regeneration step was set to 40K.
上述の条件を基にして、再生工程中に二酸化炭素を脱離するために要する、外部からの投入熱量(二酸化炭素1t当たりの熱量)を計算し、得られたデータをグラフにした。結果を図3に示す。図3に示すように、吸湿発熱剤(塩化カルシウム二水和物)の混合量を増やすほど投入熱量が減少した。 Based on the above conditions, the amount of heat input from the outside (the amount of heat per t of carbon dioxide) required to desorb carbon dioxide during the regeneration step was calculated, and the obtained data was graphed. The results are shown in FIG. As shown in FIG. 3, the amount of heat input decreased as the mixing amount of the moisture-absorbing exothermic agent (calcium chloride dihydrate) was increased.
(実施例3)
実施例3のガス吸着材では、以下の化学的性質をもつAdvanced Carbon Sorbentsを吸着剤とし、また以下の化学的性質をもつ塩化カルシウム二水和物を吸湿発熱剤とした。
(Example 3)
In the gas adsorbent of Example 3, Advanced Carbon Sorbents having the following chemical properties were used as the adsorbent, and calcium chloride dihydrate having the following chemical properties was used as the moisture-absorbing exothermic agent.
Advanced Carbon Sorbentsの化学的性質
(1)再生熱:二酸化炭素1moLあたり125kJ(吸着熱:二酸化炭素1moLあたり27kJ、顕熱:二酸化炭素1moLあたり98kJ)
(2)比熱:1kJ/(kg・K)
(3)1kgあたりの二酸化炭素吸着量:0.018kg(0.409moL)
Chemical Properties of Advanced Carbon Sorbents (1) Heat of regeneration: 125 kJ per 1 mol of carbon dioxide (heat of adsorption: 27 kJ per 1 mol of carbon dioxide, sensible heat: 98 kJ per 1 mol of carbon dioxide)
(2) Specific heat: 1 kJ / (kg · K)
(3) Carbon dioxide adsorption amount per kg: 0.018 kg (0.409 mol)
塩化カルシウム二水和物の化学的性質
(1)発熱量:水分子1moLあたり50kJ
(2)比熱:2.64kJ/(kg・K)
(3)1kgあたりの水吸着量:0.24kg
Chemical properties of calcium chloride dihydrate (1) Calorific value: 50 kJ per 1 mol of water molecule
(2) Specific heat: 2.64 kJ / (kg · K)
(3) Water adsorption amount per kg: 0.24 kg
ガス吸着材中における塩化カルシウム二水和物の混合割合を0質量%、5質量%、10質量%、15質量%、20質量%、25質量%、30質量%、35質量%、40質量%、45質量%、50質量%に設定し、さらに吸着塔の充填量を1000kg、及び吸着工程と再生工程との温度差を40Kに設定した。 0 mass%, 5 mass%, 10 mass%, 15 mass%, 20 mass%, 25 mass%, 30 mass%, 35 mass%, 40 mass% of the mixing ratio of calcium chloride dihydrate in the gas adsorbent , 45% by mass and 50% by mass, the filling amount of the adsorption tower was set to 1000 kg, and the temperature difference between the adsorption step and the regeneration step was set to 40K.
上述の条件を基にして、再生工程中に二酸化炭素を脱離するために要する、外部からの投入熱量(二酸化炭素1t当たりの熱量)を計算し、得られたデータをグラフにした。結果を図4に示す。図4に示すように、吸湿発熱剤(塩化カルシウム二水和物)の混合量を増やすほど投入熱量が減少した。 Based on the above conditions, the amount of heat input from the outside (the amount of heat per t of carbon dioxide) required to desorb carbon dioxide during the regeneration step was calculated, and the obtained data was graphed. FIG. 4 shows the results. As shown in FIG. 4, the amount of heat input decreased as the mixing amount of the moisture-absorbing exothermic agent (calcium chloride dihydrate) was increased.
本発明は、混合ガスから特定のガス成分を吸着・分離する技術の分野において好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used in the field of technology for adsorbing and separating a specific gas component from a mixed gas.
1 ガス分離装置
2 第1吸着塔
3 第2吸着塔
4 蒸気供給ライン
5 混合ガス供給ライン
6 ガス成分回収ライン
7 排気ライン
8 ブロワー
9 ガス吸着材
DESCRIPTION OF
Claims (6)
前記ガス吸着材が、前記吸着工程において前記ガス成分を吸着し、且つ、前記再生工程において前記ガス成分を脱離する吸着剤と、前記吸着工程において前記水蒸気を脱離し、且つ、前記再生工程において前記水蒸気を吸着する吸湿発熱剤とを含むことを特徴とするガス分離装置。 An adsorption step of adsorbing one or more gas components in the mixed gas to the gas adsorbent and a regeneration step of desorbing the gas components by heating with steam to regenerate the gas adsorbent are performed alternately. In a gas separation device having an adsorption tower,
The gas adsorbent, the adsorbing said gas component in the adsorption step, and the adsorbent desorbs said gaseous component in said regeneration step, the said water vapor desorbed in the adsorption step, and, in the regeneration step A gas separation device comprising: a moisture-absorbing heating agent that adsorbs water vapor .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016060369A JP6671204B2 (en) | 2016-03-24 | 2016-03-24 | Gas separation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016060369A JP6671204B2 (en) | 2016-03-24 | 2016-03-24 | Gas separation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017170359A JP2017170359A (en) | 2017-09-28 |
JP6671204B2 true JP6671204B2 (en) | 2020-03-25 |
Family
ID=59969914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016060369A Active JP6671204B2 (en) | 2016-03-24 | 2016-03-24 | Gas separation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6671204B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021010597A1 (en) * | 2019-07-16 | 2021-01-21 | 삼성전자주식회사 | Carbon dioxide adsorbent and air purification apparatus comprising same |
KR102365539B1 (en) * | 2019-07-16 | 2022-02-22 | 삼성전자주식회사 | Carbon dioxide absorbent and air purifier including the same |
JP7104339B2 (en) * | 2020-03-31 | 2022-07-21 | ダイキン工業株式会社 | Air quality adjustment system |
JP7524609B2 (en) | 2020-05-29 | 2024-07-30 | 株式会社Ihi | Hydrocarbon production system and method |
KR102536960B1 (en) * | 2021-07-26 | 2023-05-26 | 목포대학교산학협력단 | n-Octane Adsorbent and High Purity 1-Octene Purification Method Using The Same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04104812A (en) * | 1990-08-23 | 1992-04-07 | Osaka Gas Co Ltd | Adsorbing element |
JP3983440B2 (en) * | 1999-11-08 | 2007-09-26 | 月島環境エンジニアリング株式会社 | Cooling method of activated carbon layer in solvent recovery |
CA3045687A1 (en) * | 2010-08-27 | 2012-03-01 | Inventys Thermal Technologies Inc. | Method of adsorptive gas separation using thermally conductive contactor structure |
-
2016
- 2016-03-24 JP JP2016060369A patent/JP6671204B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017170359A (en) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6575050B2 (en) | Carbon dioxide recovery method and recovery apparatus | |
JP6671204B2 (en) | Gas separation equipment | |
JP6743433B2 (en) | Carbon dioxide recovery method and recovery device | |
Bos et al. | Production of high purity CO2 from air using solid amine sorbents | |
Lee et al. | Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process | |
Thiruvenkatachari et al. | Application of carbon fibre composites to CO2 capture from flue gas | |
JP3237795U (en) | Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle | |
Cho et al. | LiOH-embedded zeolite for carbon dioxide capture under ambient conditions | |
MX2011001089A (en) | Recovery of carbon dioxide from flue gas. | |
JP2012149138A (en) | Method and device for recovering methane | |
BRPI0910303B1 (en) | method and apparatus for separating blast furnace gas | |
JP2010184229A (en) | Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same | |
TW201241366A (en) | Apparatus and system for NOx reduction in wet flue gas | |
JP5319140B2 (en) | Blast furnace gas separation method and blast furnace gas separation system | |
CN101081361A (en) | Adsorbent bed circulating desorption distributary recovery regeneration process and device thereof | |
CN105032113B (en) | Process for capturing carbon dioxide in flue gas based on wet reclamation technology | |
JP2018115828A (en) | Recovery method and recovery device for carbon dioxide | |
CN102266702A (en) | Method for capturing ammonia in industrial waste gas and equipment and application thereof | |
US10029205B2 (en) | Two stage adsorbent and process cycle for fluid separations | |
Chen et al. | Desorption performance of commercial zeolites for temperature-swing CO2 capture | |
JP4180991B2 (en) | Carbon dioxide adsorption method | |
JP6941111B2 (en) | Temperature swing adsorption method | |
JP2004344703A (en) | Method and apparatus for treating carbon dioxide | |
CN111093800B (en) | Temperature swing adsorption process | |
CN108367230A (en) | Temperature swing adsorption process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6671204 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |