[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6666670B2 - 3D shape measurement method using curved surface as reference surface - Google Patents

3D shape measurement method using curved surface as reference surface Download PDF

Info

Publication number
JP6666670B2
JP6666670B2 JP2015160644A JP2015160644A JP6666670B2 JP 6666670 B2 JP6666670 B2 JP 6666670B2 JP 2015160644 A JP2015160644 A JP 2015160644A JP 2015160644 A JP2015160644 A JP 2015160644A JP 6666670 B2 JP6666670 B2 JP 6666670B2
Authority
JP
Japan
Prior art keywords
phase value
reference plane
phase
dimensional
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160644A
Other languages
Japanese (ja)
Other versions
JP2017040482A (en
Inventor
藤垣 元治
元治 藤垣
俊雅 坂口
俊雅 坂口
涼汰 氏家
涼汰 氏家
Original Assignee
藤垣 元治
元治 藤垣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤垣 元治, 元治 藤垣 filed Critical 藤垣 元治
Priority to JP2015160644A priority Critical patent/JP6666670B2/en
Publication of JP2017040482A publication Critical patent/JP2017040482A/en
Application granted granted Critical
Publication of JP6666670B2 publication Critical patent/JP6666670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、位相シフト法と全空間テーブル化手法を用いる三次元形状計測方法に関する。   The present invention relates to a three-dimensional shape measurement method using a phase shift method and a full space table conversion method.

大型物体に対する三次元形状計測は従来の小型のものの計測と同様に、ラインLED光源から格子プレートを通して格子パターンを投影し、位相シフト法と全空間テーブル化手法を用いる。物体に投影された格子パターンのゆがみを位相解析し、物体の形状を求める(特許文献1を参照)。   The three-dimensional shape measurement for a large object is performed by projecting a grating pattern from a line LED light source through a grating plate, and using a phase shift method and a full spatial table method, similarly to the measurement of a conventional small object. The shape of the object is determined by performing phase analysis on the distortion of the lattice pattern projected on the object (see Patent Document 1).

特開2008−281491号公報JP 2008-281491 A

全空間テーブル化手法において通常、平面の基準面を用いる。基準面が平面の場合、図1のように大型物体の下端から上端まで基準面を長距離移動させなければならない問題がある(図1における距離d)。 Normally, a planar reference plane is used in the full space tabulation method. When the reference plane is a plane, there is a problem that the reference plane must be moved a long distance from the lower end to the upper end of the large object as shown in FIG. 1 (distance d 1 in FIG. 1 ).

そこで、本発明の目的は、上記従来技術の問題点に鑑み、基準面の移動が短くてすむ三次元形状計測方法を提供することである。   Accordingly, an object of the present invention is to provide a three-dimensional shape measuring method that requires only a short movement of a reference plane in view of the above-described problems of the related art.

本願の請求項1に係る発明は、表面に二次元格子模様を有する曲面を有する基準面の三次元座標を求める第1ステップと、初期位置における基準面の三次元座標を求める第2ステップと、注目画素の前記二次元格子模様上の位相値を位相解析方法により読み取る第3ステップと、前記第2ステップにより求めた三次元座標と前記第3ステップにより読み取った位相値とから、前記位相値に対して前記三次元座標を要素としてもつ基準面座標テーブルを作成する第4ステップと、を含む基準面座標テーブル作成方法である。
ここで、「表面に二次元格子模様を有する曲面」とは、二次元格子シートを貼り付けた曲面であってもよいし、二次元格子模様を印刷して設けてもよい。計測対象となる物体の形状に合わせた曲面を基準面とした場合、短い距離での移動で計測が可能となる(図2における距離d)。
The invention according to claim 1 of the present application includes a first step of obtaining three-dimensional coordinates of a reference surface having a curved surface having a two-dimensional lattice pattern on a surface, a second step of obtaining three-dimensional coordinates of the reference surface at an initial position, A third step of reading the phase value of the pixel of interest on the two-dimensional lattice pattern by a phase analysis method, and from the three-dimensional coordinates obtained in the second step and the phase value read in the third step, And a fourth step of creating a reference plane coordinate table having the three-dimensional coordinates as elements.
Here, the “curved surface having a two-dimensional lattice pattern on the surface” may be a curved surface to which a two-dimensional lattice sheet is attached, or may be provided by printing a two-dimensional lattice pattern. If a reference surface was shaped Align object to be measured curved surface, it is possible to measure in movement by a short distance (distance d 2 in FIG. 2).

請求項2に係る発明は、表面に二次元格子模様を有する、短い距離での移動で計測が可能となるように、計測対象となる物体の形状に合わせた曲面を有する基準面を所定方向に微小量ずつ移動させる第1ステップと、前記基準面を前記微小量移動させたときに、注目画素が撮影されている点における投影格子の位相値を求める第2ステップと、位相解析方法により前記注目画素の前記基準面上の位相値を求める第3ステップと、を備え、前記第1〜前記第3のステップについて、格子投影による位相値が所定の値を超える範囲まで繰り返し行い、前記投影格子による位相値と前記微小量ずつ移動させた移動量との関係を求める第4ステップと、前記投影格子の位相値と前記基準面上の位相値との関係を求める第5ステップと、を含むキャリブレーション方法である。 Invention has a two-dimensional lattice pattern on the surface, short travel so as to allow measurement in the distance in a given direction the reference plane having a Align was curved to the shape of the object to be measured according to claim 2 A first step of moving the reference plane by the minute amount, a second step of calculating a phase value of the projection grating at a point where the pixel of interest is photographed when the reference plane is moved by the minute amount, and A third step of calculating a phase value of the pixel of interest on the reference plane, wherein the first to third steps are repeatedly performed until the phase value by grid projection exceeds a predetermined value, and And a fifth step of obtaining a relationship between the phase value of the projection grating and the phase value on the reference plane. It is Shon way.

請求項3に係る発明は、計測対象となる物体に格子投影し、位相解析を行う第1ステップと、注目画素に関して、前記位相解析によって得られた位相値から、前記請求項2のキャリブレーション方法によりもとめた前記関係に基づいて、移動量を求める第2ステップと、前記位相値から、前記基準面上の位相値を求める第3ステップと、前記基準面上の位相値から前記請求項1の基準面座標テーブルを用いて注目画素の三次元位置を特定する第4ステップと、前記第4ステップで特定した三次元位置に前記移動量を加算し、前記注目画素に写されている前記物体上の三次元位置の座標を求める第5ステップと、を備えることで、物体表面上の注目点の座標値を求める手法である。
請求項4に係る発明は、前記請求項3の第1〜第5のステップを、全画素について行うことで、物体の形状計測を行う方法である。
The invention according to claim 3 is the calibration method according to claim 2, wherein the first step of performing grid analysis on the object to be measured and performing phase analysis, and the phase value obtained by the phase analysis with respect to the pixel of interest, 2. A second step of obtaining a moving amount based on the relationship obtained by the following: a third step of obtaining a phase value on the reference plane from the phase value; and a step of obtaining a phase value on the reference plane from the phase value. A fourth step of specifying the three-dimensional position of the pixel of interest using the reference plane coordinate table; and adding the amount of movement to the three-dimensional position specified in the fourth step. And a fifth step of calculating the coordinates of the three-dimensional position of the object.
The invention according to claim 4 is a method for measuring the shape of an object by performing the first to fifth steps of claim 3 for all pixels.

本発明により、基準面の移動が短くてすむ三次元形状計測方法を提供できる。   According to the present invention, it is possible to provide a three-dimensional shape measurement method that requires only a short movement of the reference plane.

平面の基準面を用いた場合の基準面の移動を説明する図である。It is a figure explaining movement of a reference plane when a plane reference plane is used. 曲面の基準面を用いた場合の基準面の移動を説明する図である。It is a figure explaining movement of a reference plane when a curved reference plane is used. 二次元格子を貼り付けた曲面の基準面を説明する図である。It is a figure explaining the reference surface of the curved surface where the two-dimensional lattice was pasted. x方向の位相値φxとy方向の位相値φyの対応関係を示す図である。FIG. 9 is a diagram showing a correspondence relationship between a phase value φx in the x direction and a phase value φy in the y direction. 格子投影の様子を説明する図である。It is a figure explaining a situation of lattice projection. 位相値θとΔzの関係を示す図である。FIG. 9 is a diagram illustrating a relationship between a phase value θ and Δz. 位相値θとφxの関係を示す図である。FIG. 6 is a diagram illustrating a relationship between a phase value θ and φx. 位相値θとφyの関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a phase value θ and φy. 物体を置いた時の格子投影の様子を示す図である。FIG. 6 is a diagram illustrating a state of grid projection when an object is placed. 物体を置いた時の位相値θとΔzの関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a phase value θ and Δz when an object is placed. 物体を置いた時の位相値θとφxの関係を示す図である。FIG. 9 is a diagram illustrating a relationship between a phase value θ and φx when an object is placed. 物体を置いた時の位相値θのφyの関係を示す図である。FIG. 9 is a diagram illustrating a relationship between φy of a phase value θ when an object is placed. 物体を置いた時のφxとφyの対応関係を示す図である。It is a figure which shows the correspondence of φx and φy when an object is placed. 二次元格子を貼り付けた基準面を示す図である。It is a figure showing a reference plane to which a two-dimensional lattice was pasted. 実験の様子を示す図である。It is a figure showing a situation of an experiment. 位相値θとΔzの関係を示す図である。FIG. 9 is a diagram illustrating a relationship between a phase value θ and Δz. 位相値θと位相値φxの関係を示す図である。FIG. 9 is a diagram illustrating a relationship between a phase value θ and a phase value φx. 位相値θと位相値φyの関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a phase value θ and a phase value φy. 位相値θから求めるΔzを説明する図である。FIG. 7 is a diagram for explaining Δz obtained from a phase value θ. 位相値θから求まる位相値φxを説明する図である。FIG. 9 is a diagram illustrating a phase value φx obtained from a phase value θ. 位相値θから求まる位相値φyを説明する図である。FIG. 9 is a diagram illustrating a phase value φy obtained from a phase value θ.

以下、本発明の実施形態を図面と共に説明する。
1.基準面の構造と基準面座標テーブルの作成<準備段階1>
(1)図3に示されるように、二次元格子シートを貼り付けた曲面を基準面とする。二次元格子のx方向,y方向の各線には順番に格子番号を割り振る。
(2)二次元格子のx方向,y方向それぞれの位相値をφx,φyとする。格子番号に2πをかけると位相値になる。また、格子線の間も位相値として細かく読み取ることができるようになる。
(3)初期位置の基準面において、あらかじめ別手法(例、カメラを使った三角法)により基準面全体のx,y,z座標を求め、また注目する1画素の格子シート上の位相値φx,φyを、位相解析方法の一つの方法であるところのサンプリングモアレ法により読み取る。それをもとに図4に示すようなφx,φyに対して(x,y,z)を要素として持つ二次元テーブル(基準面座標テーブル)を作成する。なお、サンプリングモアレ法の他に、フーリエ変換方法、あるいは、重み付け位相解析方法などの手法を用いることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1. Creation of reference plane structure and reference plane coordinate table <Preparation stage 1>
(1) As shown in FIG. 3, a curved surface to which a two-dimensional lattice sheet is attached is set as a reference surface. A grid number is sequentially assigned to each line of the two-dimensional grid in the x and y directions.
(2) The phase values of the two-dimensional grating in the x and y directions are φx and φy. Multiplying the lattice number by 2π gives the phase value. In addition, the space between the grid lines can be finely read as a phase value.
(3) On the reference plane at the initial position, the x, y, and z coordinates of the entire reference plane are obtained in advance by another method (eg, trigonometry using a camera), and the phase value φx of one pixel of interest on the grid sheet is obtained. , Φy are read by the sampling moire method which is one of the phase analysis methods. Based on this, a two-dimensional table (reference plane coordinate table) having (x, y, z) as elements for φx and φy as shown in FIG. 4 is created. In addition to the sampling moiré method, a method such as a Fourier transform method or a weighted phase analysis method can be used.

2.キャリブレーション作業<準備段階2>
(1)図5中の直線Lで示すカメラで撮影した1画素(i,j)について説明する。ここでは、例として示す注目画素は基準面の初期位置Rにおける格子番号29番目付近を撮影しているものとする。
(2)格子投影の様子を図5に示す。基準面をz方向に少しずつ平行移動する。その移動量をΔzとする。x方向に振られている番号(0,1,2,・・・,28,29,30)はx方向の格子番号を示す。また、z方向に振られている番号Ri(R,R,・・・R)は平行移動させた基準面の位置番号として示す。
(3)基準面をΔzだけ移動させたときに、注目画素が撮影されている点における投影格子の位相値θを求める。さらに、サンプリングモアレ法により注目画素の格子シート上の位相値φx,φyを求める。
(4)上記(2)(3)について、格子投影による位相値θが所定の値(例えば2π)を超える範囲まで行う。
(5)これまでで得た格子投影による位相値θと基準面の移動量Δzの関係のグラフを図6に示す。また、位相値θとφxの関係のグラフを図7に、位相値θとφyの関係のグラフを図8に示す。
(6)上記(1)〜(5)をカメラの全画素について行う。
2. Calibration work <Preparation stage 2>
(1) One pixel (i, j) photographed by a camera indicated by a straight line L in FIG. 5 will be described. Here, it is assumed that the pixel of interest shown as an example is photographing the vicinity of the grid number 29 at the initial position R0 of the reference plane.
(2) FIG. 5 shows how the grid is projected. The reference plane is gradually translated in the z direction. The movement amount is defined as Δz. The numbers (0, 1, 2, ..., 28, 29, 30) assigned in the x direction indicate the grid numbers in the x direction. The numbers Ri (R 0 , R 1 ,..., R N ) assigned in the z direction are indicated as the position numbers of the reference planes that have been translated.
(3) When the reference plane is moved by Δz, the phase value θ of the projection grating at the point where the pixel of interest is photographed is obtained. Further, the phase values φx and φy of the pixel of interest on the grid sheet are obtained by the sampling moire method.
(4) The above (2) and (3) are performed until the phase value θ by the lattice projection exceeds a predetermined value (for example, 2π).
(5) FIG. 6 is a graph showing the relationship between the phase value θ obtained by the grid projection and the movement amount Δz of the reference plane obtained up to now. FIG. 7 is a graph showing the relationship between the phase value θ and φx, and FIG. 8 is a graph showing the relationship between the phase value θ and φy.
(6) The above (1) to (5) are performed for all pixels of the camera.

3.対象物の計測
(1)図9に示すように物体を置いた状態で、格子を投影し、位相解析を行う。このとき、図9では、物体上に点Sで示す位置における位相値φxにあたる格子番号は、例えば27.9を示しているものとする。
(2)注目画素に関して、得られた位相値θから図10のグラフを参照してΔzの値を求める。物体上の点Sはz方向において、例えば2.7mmの位置にあるとして、そのときの位相値θは1.58πとなる。
(3)同様に位相値θから図11を参照してφxを求め、図12を参照してφyを求める。この対応関係から参照して位相値θ=1.58πにおけるφx=27.9*2πを示し、φy=9.7*2πを示している。
(4)最後に図13に示すようにφx,φyからカメラで撮影した注目画素の(x,y,z)を特定する。これまでに得た位相値φx=27.9*2π,φy=9.7*2πはそれぞれ基準面の初期位置での位相値φx=27.9*2π,φy=9.7*2πとなるx座標,y座標と対応している。
(5)上記(4)で求めた座標中のzに、(2)で求めたΔzを加えると、注目画素に写されている物体上の1点の座標(x,y,z)が得られる(z’=z+Δz)。なお、この加算処理は、zの値を離散化することによって、テーブル化することが可能である。
(6)これを全画素について行うことで、平面ではない基準面を用いて形状を計測することが可能となる。
(7)本手法は、投影格子の位相分布を求めた後、投影格子の位相値から注目画素の格子シート上の位相値φx,φyおよび基準面移動量Δzを求めるテーブルを参照し、さらに、位相値φx,φyからx座標,y座標,z座標を求めるテーブルを参照し、z座標に関しては、さらに、基準面移動量Δzを加算することで座標値を求めることがでる手法である。この加算処理も容易にテーブル化することが可能である。すなわち、テーブル参照と短時間で計算できる加算処理のみ、もしくは、テーブル参照のみで高速に三次元座標を得ることができることになる。そのため、本手法を用いたリアルタイムに三次元形状を測定可能な三次元形状計測装置も構築できる。
3. Measurement of target object (1) With the object placed as shown in FIG. 9, a grid is projected and phase analysis is performed. At this time, in FIG. 9, it is assumed that the lattice number corresponding to the phase value φx at the position indicated by the point S on the object is, for example, 27.9.
(2) For the target pixel, the value of Δz is determined from the obtained phase value θ with reference to the graph of FIG. Assuming that the point S on the object is at a position of, for example, 2.7 mm in the z direction, the phase value θ at that time is 1.58π.
(3) Similarly, φx is determined from the phase value θ with reference to FIG. 11 and φy is determined with reference to FIG. Referring to this correspondence, φx = 27.9 * 2π and φy = 9.7 * 2π at the phase value θ = 1.58π.
(4) Finally, as shown in FIG. 13, (x, y, z) of the target pixel photographed by the camera is specified from φx, φy. The phase values φx = 27.9 * 2π and φy = 9.7 * 2π obtained so far become the phase values φx = 27.9 * 2π and φy = 9.7 * 2π at the initial position of the reference plane, respectively. It corresponds to the x coordinate and the y coordinate.
(5) By adding Δz obtained in (2) to z in the coordinates obtained in (4) above, the coordinates (x, y, z) of one point on the object captured in the target pixel can be obtained. (Z ′ = z + Δz). Note that this addition process can be tabulated by discretizing the value of z.
(6) By performing this for all pixels, it is possible to measure the shape using a reference plane that is not a plane.
(7) In this method, after obtaining the phase distribution of the projection grating, the method refers to a table for obtaining the phase values φx and φy of the pixel of interest on the grid sheet and the reference plane movement amount Δz from the phase value of the projection grating. This is a method of referring to a table for obtaining x, y, and z coordinates from the phase values φx, φy, and further obtaining a coordinate value of the z coordinate by adding a reference plane movement amount Δz. This addition process can also be easily tabulated. That is, three-dimensional coordinates can be obtained at a high speed only by adding a table and performing addition in a short time, or by only referring to a table. Therefore, a three-dimensional shape measuring apparatus that can measure a three-dimensional shape in real time using this method can be constructed.

次に、本発明の実施形態について説明する。
4.キャリブレーション作業<計測準備段階>
本実験では平板を用い、カメラに対して角度α(ここではα=30°と設定している)をつけて設置することで曲面を見立てて計測する。カメラの撮影している一面素のみに着目したとき、基準面の移動に伴って変化する格子投影による位相値θ、二次元格子上の位相値φx,φyとx,y,z座標の対応関係を求める。二次元格子の縦方向と横方向のピッチをそれぞれpxとpyとする。
Next, an embodiment of the present invention will be described.
4. Calibration work <measurement preparation stage>
In this experiment, a flat plate is used, and the camera is installed at an angle α (here, α = 30 °), and the measurement is performed with the curved surface set. When focusing only on one plane element photographed by the camera, the correspondence between the phase value θ by the grid projection that changes with the movement of the reference plane and the phase values φx and φy on the two-dimensional grid and the x, y, and z coordinates. Ask for. The vertical and horizontal pitches of the two-dimensional lattice are defined as px and py, respectively.

まず、本実験に用いる基準面として、縦400mm、横550mmの平板を用いる。この平板に図14のようにA4サイズの二次元格子シートを貼り付ける(格子ピッチx方向10mm,y方向10mm)。   First, a flat plate having a length of 400 mm and a width of 550 mm is used as a reference plane used in this experiment. As shown in FIG. 14, an A4 size two-dimensional lattice sheet is attached to this flat plate (grid pitch x 10 mm in the x direction, 10 mm in the y direction).

この平板を固定させ、移動ステージ上の投影装置をz方向(基準面に近づける方向)に移動させることで本手法によるキャリブレーションを行う。その実験の様子を図15に示す。
(1)初期位置において格子投影し、その位置における位相値θを求め、次に、二次元格子の最も右上に位置する格子位置を原点として、サンプリングモアレ法により二次元格子上の位相値φx,φyを求める。基準面の初期位置での座標は、1.〜3.の原理で説明したように、既知の値として扱うため、本実験では以下の数1式〜数3式より、あらかじめ算出しておく。
The flat plate is fixed, and the projection apparatus on the moving stage is moved in the z direction (a direction approaching the reference plane) to perform calibration according to the present method. FIG. 15 shows the state of the experiment.
(1) The grid is projected at the initial position, the phase value θ at that position is obtained, and then the phase value φx, Find φy. The coordinates at the initial position of the reference plane are: ~ 3. As described in the principle of the above, in order to treat as a known value, in this experiment, it is calculated in advance from the following equations (1) to (3).

この式と二次元格子の位相値φx,φyより求めたx,y,z座標を基準面の初期位置での座標とする。
(2)次に投影装置をΔz(ここでは20mmに設定している)だけ移動させた。
(3)これを格子投影による位相値θが2πを超える範囲までN枚目まで(ここでは0mmから80mmまで20mm間隔で計5回の撮影を行った)繰り返しを行う。
The x, y, z coordinates obtained from this equation and the phase values φx, φy of the two-dimensional lattice are coordinates at the initial position of the reference plane.
(2) Next, the projector was moved by Δz (here, set to 20 mm).
(3) This operation is repeated for the N-th sheet (here, photographing is performed five times at intervals of 20 mm from 0 mm to 80 mm) until the phase value θ of the lattice projection exceeds 2π.

そして得られた基準面の0枚目からN枚目までに基準面ごとにそれぞれ得られた位相値θと移動量Δz,位相値φx,位相値φyの対応関係ができる。本実験では、一画素のみに着目しているためその対応関係を表1に表すことができる。   Then, a correspondence relationship between the phase value θ and the movement amount Δz, the phase value φx, and the phase value φy obtained for each of the 0th to Nth reference planes is obtained. In this experiment, attention is paid to only one pixel, and the correspondence can be shown in Table 1.

(4)位相値θに対するΔzと位相値φx,φyのそれぞれの対応を表1から参照したデータをプロットし、グラフとして図16,図17,図18にそれぞれ示す。位相値θと位相値φxの対応関係を示すグラフは、微小変位であるために誤差によりこのような変化を示していると考えられる。なお、図16,図17,図18の横軸は位相値θを表している。 (4) Data obtained by referring to Table 1 for the correspondence between Δz and the phase values φx and φy with respect to the phase value θ are plotted, and are shown as graphs in FIGS. 16, 17, and 18, respectively. The graph showing the correspondence between the phase value θ and the phase value φx is considered to show such a change due to an error because of a small displacement. The horizontal axis in FIGS. 16, 17, and 18 represents the phase value θ.

5.対象物上の一点の座標計測<計測段階>
前記4.で一画素のみに着目したキャリブレーションを行い、格子投影による位相値θからΔzと位相値φx,φyの対応を求めることができた。
5. Coordinate measurement of one point on the object <measurement stage>
4. The calibration was performed by focusing on only one pixel, and the correspondence between Δz and the phase values φx and φy could be obtained from the phase value θ by the grid projection.

次に、先ほど撮影しなかった50mmの位置に移動させ、基準面を対象と仮定し、格子を投影する。対象物と見立てて基準面上に投影された位相から、対象物上での着目する一画素の位相値θは1.06となった。その位相値θからΔz,位相値φx,φyをそれぞれ線形補完して求めた値を表2に示す。また、前記4.のキャリブレーションで得た図16から図18のグラフを参照して位相値から得られるΔz,位相値φx,φyを図19,図20,図21に示す。   Next, the grid is moved to a position of 50 mm where imaging was not performed earlier, and a grid is projected assuming a reference plane as a target. The phase value θ of one pixel of interest on the target object was 1.06 from the phase projected on the reference plane as if the target object was considered. Table 2 shows values obtained by linearly complementing Δz and phase values φx and φy from the phase value θ. In addition, 4. 19, 20, and 21 show Δz and phase values φx and φy obtained from the phase values with reference to the graphs of FIGS. 16 to 18 obtained by the above calibration.

こうして得たΔzと数3式より初期位置で求めたz座標を加算して数4式より、対象物上のz座標z’を求める。   Δz thus obtained is added to the z coordinate obtained at the initial position from equation (3), and the z coordinate z ′ on the object is obtained from equation (4).

また、対象物上の位相値θから得た位相値φxからは、ここでは数1式を用いて対象物上のx座標x’を求めることができる。同様にして位相値φyと数2式から対象物上のy座標y’を求めることができる(なお、全画素においてこのキャリブレーションを行う場合、x,y座標は初期位置での位相値φx,φyと対応していることから求まる)。
z’=-10*(-98.941)*sin30°/(2π)+49.52=128.3
x’=10*(-98.941)*cos30°/(2π)=-136.4
y’=10*(-33.95)/(2π)=-54.0
ここで、x座標におけるx’,y座標におけるy’は二次元格子から求められる座標であり、全画素計測の場合位相値マッピングより求める。そのため本実験では、Δzのみ実計測との比較となり、50mmの移動に対しその計測結果は49.52mmとなり、誤差は0.48mmであった。
Further, from the phase value φx obtained from the phase value θ on the object, the x coordinate x ′ on the object can be obtained by using Equation 1 here. Similarly, the y coordinate y ′ on the object can be obtained from the phase value φy and Equation 2 (when this calibration is performed on all pixels, the x and y coordinates are the phase values φx, It is determined from the fact that it corresponds to φy).
z ′ = − 10 * (− 98.941) * sin 30 ° / (2π) + 49.52 = 18.3
x ′ = 10 * (− 98.941) * cos 30 ° / (2π) = − 136.4
y ′ = 10 * (− 33.95) / (2π) = − 54.0
Here, x 'on the x coordinate and y' on the y coordinate are coordinates obtained from a two-dimensional grid, and are obtained from phase value mapping in the case of all pixel measurement. Therefore, in this experiment, only Δz was compared with the actual measurement, and the measurement result was 49.52 mm for a movement of 50 mm, and the error was 0.48 mm.

1 カメラ
2 プロジェクタ
3 基準面
1 camera 2 projector 3 reference plane

Claims (4)

表面に二次元格子模様を有する、短い距離での移動で計測が可能となるように、計測対象となる物体の形状に合わせた曲面を有する基準面の三次元座標を求める第1ステップと、
初期位置における基準面の三次元座標を求める第2ステップと、
注目画素の前記二次元格子模様上の位相値を位相解析方法により読み取る第3ステップと、
前記第2ステップにより求めた三次元座標と前記第3ステップにより読み取った位相値とから、前記位相値に対して前記三次元座標を要素としてもつ基準面座標テーブルを作成する第4ステップと、
を含む基準面座標テーブル作成方法。
Has a two-dimensional lattice pattern on the surface, so that it is possible to measure at movement in a short distance, a first step of obtaining a three-dimensional coordinates of the reference plane having a Align was curved to the shape of the object to be measured,
A second step of obtaining three-dimensional coordinates of the reference plane at the initial position;
A third step of reading a phase value of the pixel of interest on the two-dimensional lattice pattern by a phase analysis method;
A fourth step of creating a reference plane coordinate table having the three-dimensional coordinate as an element with respect to the phase value from the three-dimensional coordinate obtained in the second step and the phase value read in the third step;
Method of creating reference plane coordinate table including
表面に二次元格子模様を有する、短い距離での移動で計測が可能となるように、計測対象となる物体の形状に合わせた曲面を有する基準面を所定方向に微小量ずつ移動させる第1ステップと、
前記基準面を前記微小量移動させたときに、注目画素が撮影されている点における投影格子の位相値を求める第2ステップと、
位相解析方法により前記注目画素の前記基準面上の位相値を求める第3ステップと、
を備え、前記第1〜前記第3のステップについて、格子投影による位相値が所定の値を超える範囲まで繰り返し行い、前記投影格子による位相値と前記微小量ずつ移動させた移動量との関係を求める第4ステップと、
前記投影格子の位相値と前記基準面上の位相値との関係を求める第5ステップと、
を含むキャリブレーション方法。
Has a two-dimensional lattice pattern on the surface, short travel so as to allow measurement in the distance, first to a reference surface having a Align was curved to the shape of the object to be measured is moved little by little in a predetermined direction Steps and
A second step of calculating a phase value of a projection grating at a point where a pixel of interest is photographed when the reference plane is moved by the minute amount;
A third step of obtaining a phase value of the pixel of interest on the reference plane by a phase analysis method;
The first to third steps are repeatedly performed until the phase value by the grid projection exceeds a predetermined value, and the relationship between the phase value by the projection grid and the amount of movement by the small amount is determined. The fourth step to seek;
A fifth step of determining a relationship between the phase value of the projection grating and the phase value on the reference plane;
Calibration method including:
計測対象となる物体に格子投影し、位相解析を行う第1ステップと、
注目画素に関して、前記位相解析によって得られた位相値から、前記請求項2のキャリブレーション方法によりもとめた前記関係に基づいて、移動量を求める第2ステップと、
前記位相値から、前記基準面上の位相値を求める第3ステップと、
前記基準面上の位相値から前記請求項1の基準面座標テーブルを用いて注目画素の三次元位置を特定する第4ステップと、
前記第4ステップで特定した三次元位置に前記移動量を加算し、前記注目画素に写されている前記物体上の三次元位置の座標を求める第5ステップと、
を備える、座標算出方法。
A first step of projecting a grid on an object to be measured and performing a phase analysis;
A second step of calculating a movement amount of a target pixel from a phase value obtained by the phase analysis, based on the relationship obtained by the calibration method of claim 2;
A third step of obtaining a phase value on the reference plane from the phase value;
A fourth step of specifying a three-dimensional position of the pixel of interest from the phase value on the reference plane using the reference plane coordinate table of claim 1;
A fifth step of adding the movement amount to the three-dimensional position specified in the fourth step, and obtaining coordinates of the three-dimensional position on the object, which is mapped to the target pixel;
A coordinate calculation method comprising:
前記請求項3の第1〜第5のステップを、全画素について行うことで、物体の形状計測を行う方法。   A method for measuring the shape of an object by performing the first to fifth steps of claim 3 for all pixels.
JP2015160644A 2015-08-17 2015-08-17 3D shape measurement method using curved surface as reference surface Active JP6666670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160644A JP6666670B2 (en) 2015-08-17 2015-08-17 3D shape measurement method using curved surface as reference surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160644A JP6666670B2 (en) 2015-08-17 2015-08-17 3D shape measurement method using curved surface as reference surface

Publications (2)

Publication Number Publication Date
JP2017040482A JP2017040482A (en) 2017-02-23
JP6666670B2 true JP6666670B2 (en) 2020-03-18

Family

ID=58206212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160644A Active JP6666670B2 (en) 2015-08-17 2015-08-17 3D shape measurement method using curved surface as reference surface

Country Status (1)

Country Link
JP (1) JP6666670B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308637B1 (en) * 2017-05-08 2018-04-11 国立大学法人福井大学 3D measurement method and apparatus using feature quantity
CN112815873B (en) * 2020-12-16 2022-07-12 南京玻璃纤维研究设计院有限公司 Positioning detection device and detection method for complex curved surface body
JP7045116B1 (en) 2021-07-30 2022-03-31 国立大学法人福井大学 Displacement measurement method using phase analysis by optical cutting method and its device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873485B2 (en) * 2007-05-11 2012-02-08 国立大学法人 和歌山大学 Shape measuring method and shape measuring apparatus using a number of reference surfaces
JP6035031B2 (en) * 2012-02-28 2016-11-30 藤垣 元治 Three-dimensional shape measuring device using multiple grids
JP2015099050A (en) * 2013-11-18 2015-05-28 セイコーエプソン株式会社 Calibration method and shape measuring device

Also Published As

Publication number Publication date
JP2017040482A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4831703B2 (en) Object displacement measurement method
US9322643B2 (en) Apparatus and method for 3D surface measurement
JP6534147B2 (en) Method and apparatus for measuring displacement and vibration of object with single camera, and program therefor
WO2013136620A1 (en) Phase distribution analysis method and device for fringe image using high-dimensional brightness information, and program therefor
US10551177B2 (en) Apparatus and method for measuring 3D form or deformation of an object surface using a grid pattern and reference plane
JP5818341B2 (en) Shape measuring apparatus and shape measuring method
US9441959B2 (en) Calibration method and shape measuring apparatus
JP2012058076A (en) Three-dimensional measurement device and three-dimensional measurement method
JP2011064482A (en) Device and method of high-speed three-dimensional measurement
CN105579809B (en) Measuring method, measuring apparatus, and computer-readable recording medium
TW201439498A (en) System and method of adjusting matching image
JP6666670B2 (en) 3D shape measurement method using curved surface as reference surface
JP6035031B2 (en) Three-dimensional shape measuring device using multiple grids
JP5466325B1 (en) Method to measure physical quantity of object from image of grid attached to object
JP5956296B2 (en) Shape measuring apparatus and shape measuring method
JP6560547B2 (en) Boundary point extraction method and measurement method using total station
JP5795095B2 (en) Phase analysis method of lattice image using weighting
KR101436403B1 (en) Shadow Moire Method using Sine Wave Grationg and Measuring Apparatus using the same
JP5667891B2 (en) Shape measurement method
JPWO2019087605A1 (en) X-ray phase contrast imaging system
JP6486010B2 (en) Shape measuring apparatus and shape measuring method
JP2016170113A (en) Three dimensional shape measuring device
JP6884393B2 (en) A method and device for performing phase analysis by converting a deformation grid into a rectangular grid or a square grid using projective transformation.
JP2887517B2 (en) High-sensitivity three-dimensional measurement method using real lattice type moire topography
JP6041855B2 (en) Subpixel absolute positioning method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6666670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250