[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6647498B2 - Power generation element - Google Patents

Power generation element Download PDF

Info

Publication number
JP6647498B2
JP6647498B2 JP2018195844A JP2018195844A JP6647498B2 JP 6647498 B2 JP6647498 B2 JP 6647498B2 JP 2018195844 A JP2018195844 A JP 2018195844A JP 2018195844 A JP2018195844 A JP 2018195844A JP 6647498 B2 JP6647498 B2 JP 6647498B2
Authority
JP
Japan
Prior art keywords
plate
shaped structure
flexible portion
resonance
resonance system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018195844A
Other languages
Japanese (ja)
Other versions
JP2019062736A (en
JP2019062736A5 (en
Inventor
岡田 和廣
和廣 岡田
美穂 岡田
美穂 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tri Force Management Corp
Original Assignee
Tri Force Management Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tri Force Management Corp filed Critical Tri Force Management Corp
Priority to JP2018195844A priority Critical patent/JP6647498B2/en
Publication of JP2019062736A publication Critical patent/JP2019062736A/en
Publication of JP2019062736A5 publication Critical patent/JP2019062736A5/ja
Application granted granted Critical
Publication of JP6647498B2 publication Critical patent/JP6647498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、機械的振動エネルギーを電気エネルギーに変換することによって発電を行う発電素子に関する。   The present invention relates to a power generating element that generates electric power by converting mechanical vibration energy into electric energy.

従来、図14(a)に示すように、可撓性を有した板状構造体10と、板状構造体10の変形に基づいて電荷を発生させる圧電素子12と、板状構造体10の基端部を片持ち梁構造に支持する台座14と、板状構造体10の先端部に設けられた重錘体16とで構成された発電素子18があった。発電素子18は、台座14が何らかの振動源20に取り付けられて使用され、XYZ三次元座標系を定義したとき、板状構造体10は、その板面がXY平面に平行な面になるように配置される。   Conventionally, as shown in FIG. 14A, a plate-shaped structure 10 having flexibility, a piezoelectric element 12 that generates electric charges based on deformation of the plate-shaped structure 10, and a plate-shaped structure 10 There was a power generating element 18 composed of a pedestal 14 supporting a base end in a cantilever structure and a weight body 16 provided at a distal end of the plate-shaped structure 10. The power generating element 18 is used when the pedestal 14 is attached to some vibration source 20 and defines an XYZ three-dimensional coordinate system. When the XYZ three-dimensional coordinate system is defined, the plate-like structure 10 is configured such that its plate surface is a surface parallel to the XY plane. Be placed.

圧電素子12は、例えば図14(b)に示すように、板状構造体10の上面全体を覆う下部電極層G、下部電極層Gの上面全体を覆う圧電材料層P、圧電材料層Pの上面の特定の領域に設けた上部電極層Eとで構成され、実質的には上部電極層Eを設けた領域が圧電素子12として動作する。   For example, as shown in FIG. 14B, the piezoelectric element 12 includes a lower electrode layer G covering the entire upper surface of the plate-shaped structure 10, a piezoelectric material layer P covering the entire upper surface of the lower electrode layer G, and a piezoelectric material layer P. The upper electrode layer E is provided in a specific region on the upper surface, and the region where the upper electrode layer E is provided substantially operates as the piezoelectric element 12.

台座14にZ軸方向の振動が印加されると、図15(a)に示すように、その振動が重錘体16及び板状構造体10に作用し、板状構造体10が厚み方向に撓み、この変形に基づいて圧電素子12に電荷が発生する。そして、圧電素子12に発生した電荷が、圧電素子12に接続されている図示しない整流平滑回路によって電力として取り出される。   When vibration in the Z-axis direction is applied to the pedestal 14, the vibration acts on the weight body 16 and the plate-like structure 10, as shown in FIG. The flexure causes the electric charge to be generated in the piezoelectric element 12 based on the deformation. Then, the charge generated in the piezoelectric element 12 is taken out as electric power by a rectifying and smoothing circuit (not shown) connected to the piezoelectric element 12.

発電素子18は、板状構造体10の可撓性に基づく1つの共振系(共振周波数frz)を有し、図15(b)に示すように、印加された振動の周波数fzが共振周波数frzに近いと、この振動に共鳴して板状構造体10の振幅Aが大きくなる。したがって、共振周波数frzを、印加される振動の周波数fz付近に設定し、かつ共振のQ値を高くして振幅Aのピーク値を高くすれば、発電素子18の発電量を増やすことができる。   The power generation element 18 has one resonance system (resonance frequency frz) based on the flexibility of the plate-shaped structure 10, and as shown in FIG. 15B, the frequency fz of the applied vibration is changed to the resonance frequency frz. , The amplitude A of the plate-like structure 10 increases in resonance with this vibration. Therefore, when the resonance frequency frz is set near the frequency fz of the applied vibration and the Q value of the resonance is increased to increase the peak value of the amplitude A, the power generation amount of the power generation element 18 can be increased.

なお、共振周波数frzは、板状構造体10のZ軸方向のバネ定数と、重錘体16の質量とを調節することによって設定することができ、例えば、バネ定数を大きくしたり重錘体16の質量を小さくしたりすれば、共振周波数frzを高くすることができる。また、共振のQ値は、振動を減衰させる成分を極力小さくする(例えば、真空状態にする)ことによって高くすることができる。   The resonance frequency frz can be set by adjusting the spring constant in the Z-axis direction of the plate-shaped structure 10 and the mass of the weight body 16. For example, the spring constant can be increased or the weight body can be increased. Reducing the mass of 16 makes it possible to increase the resonance frequency frz. The Q value of the resonance can be increased by minimizing the component that attenuates the vibration (for example, by making a vacuum state).

また、特許文献1には、上記発電素子18と同様に、1つの共振系を有した圧電発電装置が開示されている。   Patent Document 1 discloses a piezoelectric power generation device having one resonance system, similarly to the power generation element 18 described above.

国際公開第2012/105368号公報WO2012 / 105368

従来の発電素子18及び特許文献1の圧電発電装置は、共振系のQ値を高くすれば発電量を増やすことができるが、物理的に限界があるため、印加される振動の周波数fzに対して共振周波数frzを正確に一致させたとしても、発電効率は低いものであった。   The conventional power generation element 18 and the piezoelectric power generation device of Patent Document 1 can increase the power generation amount by increasing the Q value of the resonance system. However, since there is a physical limit, the frequency of the applied vibration fz is limited. Even if the resonance frequencies frz were accurately matched, the power generation efficiency was low.

本発明は、上記背景技術に鑑みて成されたものであり、従来よりも発電量を格段に増やすことができ、しかもシンプルな構造の発電素子を提供することを目的とする。   The present invention has been made in view of the background art described above, and has as its object to provide a power generation element having a simple structure that can significantly increase the amount of power generation as compared with the related art.

本発明は、可撓部を有した第1及び第2の板状構造体と、前記第1の板状構造体を支持する台座と、前記第1及び第2の板状構造体の中の少なくとも一方の可撓部の変形に基づいて電荷を発生させる圧電素子とを備え、XYZ三次元座標系を定義したとき、前記第1及び第2の板状構造体は、その板面がXY平面に平行な面になるように配置され、前記第1の板状構造体は、自己の基端部が直接又は間接的に前記台座に接続され、前記第2の板状構造体は、自己の基端部が前記第1の板状構造体の先端部に接続体を介して接続され、前記第1の板状構造体の可撓部のバネ定数、及び前記第1の板状構造体の先端部に接続された物体の質量により第1の共振系が形成され、前記第2の板状構造体の可撓部のバネ定数、及び前記第2の板状構造体の先端部に接続された物体の質量により第2の共振系が形成され、前記第2の板状構造体の可撓部のバネ定数は、前記第1の板状構造体の可撓部のバネ定数と異なっており、前記第2の共振系の半値幅の周波数帯は、その全部又は一部が、前記第1の共振系の半値幅の周波数帯と重なっている発電素子である。前記第2の板状構造体の可撓部のバネ定数は、前記第1の板状構造体の可撓部のバネ定数より小さい。あるいは、前記第2の板状構造体の可撓部は、前記第1の板状構造体の可撓部と比較して、長さ、幅及び撓み方向の厚みの中の少なくとも1つが異なっている   The present invention provides a first and a second plate-like structure having a flexible portion, a pedestal supporting the first plate-like structure, and a first and a second plate-like structure in the first and the second plate-like structures. A piezoelectric element that generates an electric charge based on deformation of at least one of the flexible portions. When the XYZ three-dimensional coordinate system is defined, the first and second plate-like structures have an XY plane. The first plate-shaped structure is connected directly or indirectly to the pedestal at its base end, and the second plate-shaped structure is A base end is connected to a distal end of the first plate-like structure via a connector, and a spring constant of a flexible portion of the first plate-like structure, and a spring constant of the first plate-like structure. A first resonance system is formed by the mass of the object connected to the tip, and a spring constant of a flexible portion of the second plate-like structure and the second plate-like structure A second resonance system is formed by the mass of the object connected to the tip, and the spring constant of the flexible portion of the second plate-like structure is determined by the spring constant of the flexible portion of the first plate-like structure. The frequency element having a half-width of the second resonance system, which is different from the constant, is a power generating element in which all or a part of the frequency band overlaps with the half-width frequency band of the first resonance system. The spring constant of the flexible portion of the second plate-like structure is smaller than the spring constant of the flexible portion of the first plate-like structure. Alternatively, the flexible portion of the second plate-like structure differs from the flexible portion of the first plate-like structure in at least one of a length, a width, and a thickness in a bending direction. Is

また、本発明は、可撓部を有したn個の板状構造体(nは3以上の自然数)と、前記n個の板状構造体の中の1つである第1の板状構造体を支持する台座と、前記n個の板状構造体の可撓部の変形、又は少なくとも前記第nの板状構造体の可撓部の変形に基づいて電荷を発生させる圧電素子とを備え、XYZ三次元座標系を定義したとき、前記n個の板状構造体は、その板面がXY平面に平行な面になるように配置され、前記第1の板状構造体は、自己の基端部が直接又は間接的に前記台座に接続され、前記n個の板状構造体の中の第kaの板状構造体(kaは偶数、2≦ka≦n)は、自己の基端部が第(ka−1)の板状構造体の先端部に接続体を介して接続され、前記n個の板状構造体の中の第kbの板状構造体(kbは奇数、3≦kb≦n)は、自己の基端部が第(kb−1)の板状構造体の先端部に接続体を介して接続され、前記第1の板状構造体の可撓部のバネ定数、及び前記第1の板状構造体の先端部に接続された物体の質量により第1の共振系が形成され、前記第kaの板状構造体の可撓部のバネ定数、及び前記第kaの板状構造体の先端部に接続された物体の質量により第kaの共振系が形成され、前記第kbの板状構造体の可撓部のバネ定数、及び前記第kbの板状構造体の先端部に接続された物体の質量により第kbの共振系が形成され、前記第kaの板状構造体の可撓部のバネ定数は、前記第(ka−1)の板状構造体の可撓部のバネ定数と異なり、前記第kbの板状構造体の可撓部のバネ定数は、前記第(kb−1)の板状構造体の可撓部のバネ定数と異なっており、前記n個の板状構造体の各共振系の半値幅の周波数帯は、その全部又は一部が、他の前記板状構造体の共振系の半値幅の周波数帯と重なっている発電素子である。前記第kaの板状構造体の可撓部のバネ定数は、前記第(ka−1)の板状構造体の可撓部のバネ定数より小さく、前記第kbの板状構造体の可撓部のバネ定数は、前記第(kb−1)の板状構造体の可撓部のバネ定数より小さい。あるいは、前記第kaの板状構造体は、前記第(ka−1)の板状構造体と比較して、長さ、幅及び撓み方向の厚みの中の少なくとも1つが異なり、前記第kbの板状構造体は、前記第(kb−1)の板状構造体と比較して、長さ、厚み及び幅の中の少なくとも1つが異なっている。   Further, the present invention provides n plate-like structures having a flexible portion (n is a natural number of 3 or more) and a first plate-like structure which is one of the n plate-like structures. A pedestal for supporting a body, and a piezoelectric element that generates an electric charge based on deformation of the flexible portion of the n plate-shaped structures or at least deformation of the flexible portion of the n-th plate structure. , XYZ three-dimensional coordinate system is defined, the n plate-like structures are arranged such that their plate surfaces are parallel to the XY plane, and the first plate-like structure is The base end is directly or indirectly connected to the pedestal, and the ka-th plate-like structure (ka is an even number, 2 ≦ ka ≦ n) among the n plate-like structures is a base end of itself. The part is connected to the tip of the (ka-1) -th plate-like structure via a connector, and the kb-th plate-like structure (kb is an odd number, 3 ≦ k .Ltoreq.n), its base end is connected to the distal end of the (kb-1) th plate-like structure via a connector, and the spring constant of the flexible portion of the first plate-like structure is: And a mass of an object connected to the tip of the first plate-like structure forms a first resonance system, and a spring constant of a flexible portion of the ka-th plate-like structure; The ka-th resonance system is formed by the mass of the object connected to the tip of the plate-shaped structure, and the spring constant of the flexible portion of the kb-th plate-shaped structure and the kb-th plate-shaped structure The kb-th resonance system is formed by the mass of the object connected to the tip, and the spring constant of the flexible portion of the ka-th plate-like structure is the same as that of the (ka-1) -th plate-like structure. Unlike the spring constant of the flexible portion, the spring constant of the flexible portion of the kb-th plate-like structure is equal to the spring constant of the flexible portion of the (kb-1) -th plate-like structure. The frequency band of the half-width of each resonance system of the n plate-like structures is entirely or partially overlapped with the frequency band of the half-width of the resonance system of the other plate-like structures. Power generating element. The spring constant of the flexible portion of the ka-th plate-like structure is smaller than the spring constant of the flexible portion of the (ka-1) -th plate-like structure. The spring constant of the portion is smaller than the spring constant of the flexible portion of the (kb-1) -th plate-shaped structure. Alternatively, the ka-th plate-shaped structure differs from the (ka-1) -th plate-shaped structure in at least one of a length, a width, and a thickness in a bending direction. The plate-shaped structure is different from the (kb-1) -th plate-shaped structure in at least one of length, thickness, and width.

また、本発明は、可撓部を有したn個の板状構造体(nは3以上の自然数)と、前記n個の板状構造体の中の1つである第1の板状構造体を支持する台座と、前記n個の板状構造体の可撓部の変形、又は前記第2〜第nの板状構造体の板状構造体の可撓部の変形に基づいて電荷を発生させる圧電素子とを備え、XYZ三次元座標系を定義したとき、前記n個の板状構造体は、その板面がXY平面に平行な面になるように配置され、前記第1の板状構造体は、自己の基端部が直接又は間接的に前記台座に接続され、前記第1の板状構造体以外の前記板状構造体は、自己の基端部が前記第1の板状構造体の先端部に接続体を介して各々接続され、前記第1の板状構造体の可撓部のバネ定数、及び前記第1の板状構造体の先端部に接続された物体の質量により第1の共振系が形成され、前記第1の板状構造体以外の板状構造体の可撓部のバネ定数、及び前記板状構造体の先端部に接続された物体の質量により、前記第1の共振系以外の他の共振系が形成され、前記第1の板状構造体以外の板状構造体の可撓部のバネ定数は、前記第1の板状構造体の可撓部のバネ定数と異なっており、前記第1の共振系の半値幅の周波数帯は、その全部又は一部が、前記他の共振系の半値幅の周波数帯と重なっている発電素子である。前記第1の板状構造体以外の板状構造体の可撓部のバネ定数は、前記第1の板状構造体の可撓部のバネ定数より小さい。あるいは、前記第1の板状構造体以外の各板状構造体の可撓部は、前記第1の板状構造体の可撓部と比較して、長さ、幅及び撓み方向の厚みの中の少なくとも1つが異なっている。   Further, the present invention provides n plate-like structures having a flexible portion (n is a natural number of 3 or more) and a first plate-like structure which is one of the n plate-like structures. A base for supporting the body, and a charge based on the deformation of the flexible portion of the n plate-like structures or the deformation of the flexible portion of the plate-like structure of the second to n-th plate structures. When the XYZ three-dimensional coordinate system is defined, the n plate-like structures are arranged such that their plate surfaces are parallel to the XY plane, and the first plate The plate-shaped structure has its own base end directly or indirectly connected to the pedestal. The plate-shaped structure other than the first plate-shaped structure has its base end connected to the first plate. Each of which is connected to a distal end of the plate-like structure via a connector, and a spring constant of a flexible portion of the first plate-like structure, and an object connected to the distal end of the first plate-like structure. The first resonance system is formed by the quantity, and the spring constant of the flexible portion of the plate-shaped structure other than the first plate-shaped structure, and the mass of the object connected to the tip of the plate-shaped structure In addition, a resonance system other than the first resonance system is formed, and a spring constant of a flexible portion of the plate-shaped structure other than the first plate-shaped structure is set to be equal to that of the first plate-shaped structure. The power factor is different from the spring constant of the bending portion, and the whole or a part of the frequency band of the half width of the first resonance system overlaps with the frequency band of the half width of the other resonance system. . The spring constant of the flexible portion of the plate-shaped structure other than the first plate-shaped structure is smaller than the spring constant of the flexible portion of the first plate-shaped structure. Alternatively, the flexible portion of each of the plate-like structures other than the first plate-like structure has a length, a width, and a thickness in a bending direction that are different from those of the first plate-like structure. At least one of them is different.

上記各発電素子は、特定の前記板状構造体の先端部に、重錘体が設けられている。 In each of the power generating elements, a weight body is provided at the end of the specific plate-shaped structure.

本発明の発電素子は、互いに接続された2個以上の共振系を有し、各共振特性の半値幅の周波数帯が互いに重なるように設定されているので、共振系同士の相互作用により、総合的な共振のQを非常に高くすることができる。したがって、互いの半値幅が重なっている周波数帯の振動に対し、従来よりも発電量を格段に増やすことができる。しかも、構造がシンプルなので、一般的な製造プロセスを用いて容易に製造することができる。   Since the power generating element of the present invention has two or more resonance systems connected to each other and is set so that the frequency bands having the half-value widths of the respective resonance characteristics overlap each other, the interaction between the resonance systems causes Q of the typical resonance can be made very high. Therefore, it is possible to significantly increase the amount of power generation compared to the related art with respect to the vibration in the frequency band where the half widths of each other overlap. In addition, since the structure is simple, it can be easily manufactured using a general manufacturing process.

本発明の発電素子の第一の実施形態の外観を示す斜視図(a)、Z軸方向の振動が印加された時の動作を示す正面図(b)である。FIG. 3A is a perspective view illustrating an appearance of a first embodiment of the power generating element of the present invention, and FIG. 4B is a front view illustrating an operation when vibration in a Z-axis direction is applied. 第一の実施形態の発電素子が有する第1及び第2の共振系のZ軸方向の共振特性を示すグラフ(a)、発電量を示すグラフ(b)である。5A is a graph illustrating resonance characteristics in the Z-axis direction of first and second resonance systems included in the power generating element of the first embodiment, and FIG. 5B is a graph illustrating power generation. 第一の実施形態の発電素子の一変形例の外観を示す斜視図(a)、Z軸方向の振動が印加された時の動作を示す正面図(b)である。It is a perspective view (a) showing an appearance of a modification of the power generating element of the first embodiment, and a front view (b) showing an operation when vibration in the Z-axis direction is applied. 第一の実施形態の発電素子の他の変形例の外観を示す斜視図(a)、Z軸方向の振動が印加された時の動作を示す正面図(b)である。It is a perspective view (a) showing an appearance of another modification of the power generating element of the first embodiment, and a front view (b) showing an operation when vibration in the Z-axis direction is applied. 図4に示す発電素子が有する第1〜第3の共振系のZ軸方向の共振特性の一例を示すグラフ(a)、発電量を示すグラフ(b)である。5A is a graph illustrating an example of resonance characteristics of the first to third resonance systems of the power generating element illustrated in FIG. 4 in the Z-axis direction, and FIG. 5B is a graph illustrating power generation. 本発明の発電素子の第二の実施形態の外観を示す斜視図(a)、平面図(b)、正面図(c)である。It is the perspective view (a), the top view (b), and the front view (c) which show the external appearance of the 2nd embodiment of the electric power generation element of this invention. 第二の実施形態の発電素子にZ軸方向の振動が印加された時の動作を示す正面図(a)、背面図(b)である。It is the front view (a) and rear view (b) which show the operation | movement when the vibration of a Z-axis direction is applied to the power generation element of 2nd embodiment. 第二の実施形態の発電素子が有する第1〜第3の共振系のZ軸方向の共振特性の一例を示すグラフ(a)、発電量を示すグラフ(b)である。7A is a graph illustrating an example of resonance characteristics of the first to third resonance systems of the power generating element according to the second embodiment in the Z-axis direction, and FIG. 6B is a graph illustrating power generation. 第二の実施形態の発電素子の一変形例の外観を示す斜視図(a)、平面図(b)、右側面図(c)である。It is the perspective view (a), the top view (b), and the right side view (c) which show the external appearance of one modification of the power generation element of 2nd embodiment. 本発明の発電素子の第三の実施形態の外観を示す平面図(a)、正面から見た部分断面図(b)、底面図(c)である。It is the top view (a) which shows the external appearance of 3rd Embodiment of the power generation element of this invention, the partial cross section (b) seen from the front, and the bottom view (c). 第三の実施形態の発電素子の一変形例の外観を示す平面図(a)、印加される振動に対する各圧電素子の出力の極性を示す図(b)である。FIG. 9A is a plan view illustrating an appearance of a modification of the power generating element according to the third embodiment, and FIG. 9B is a view illustrating the polarity of output of each piezoelectric element with respect to applied vibration. 図11(a)に示す発電素子が有する第一及び第二の共振系の共振特性を示すグラフであって、Z軸方向のグラフ(a)、X軸方向のグラフ(b)、Y軸方向のグラフ(c)である。12A is a graph showing resonance characteristics of first and second resonance systems included in the power generation element shown in FIG. 11A, a graph in the Z-axis direction (a), a graph in the X-axis direction (b), and a Y-axis direction. (C) of FIG. 第三の実施形態の発電素子の他の変形例の外観を示す平面図(a)、印加される振動に対する各圧電素子の出力の極性を示す図(b)である。FIG. 14A is a plan view illustrating the appearance of another modification of the power generating element according to the third embodiment, and FIG. 14B is a view illustrating the polarity of the output of each piezoelectric element with respect to applied vibration. 従来の発電素子の外観を示す斜視図(a)、圧電素子の構造を示す正面図(b)である。It is a perspective view (a) showing the appearance of a conventional power generating element, and a front view (b) showing the structure of a piezoelectric element. 図14の発電素子にZ軸方向の振動が印加された時の動作を示す正面図(a)、この発電素子が有する共振系のZ軸方向の共振特性及び発電量を示すグラフ(b)である。FIG. 14A is a front view illustrating an operation when vibration in the Z-axis direction is applied to the power generating element of FIG. 14, and FIG. 14B is a graph (b) illustrating a resonance characteristic and a power generation amount of the resonance system of the power generating element in the Z axis direction. is there.

以下、本発明の発電素子の第一の実施形態について、図1、図2に基づいて説明する。この実施形態の発電素子22は、図1(a)に示すように、可撓部を有した第1の板状構造体24と、第1の板状構造体24の可撓部の変形に基づいて電荷を発生させる第1の圧電素子26と、可撓部を有した第2の板状構造体28と、第2の板状構造体28の可撓部の変形に基づいて電荷を発生させる第2の圧電素子30と、第1の板状構造体24を片持ち梁構造に支持する台座32とを備えている。発電素子22は、台座14が何らかの振動源20に取り付けられて使用され、XYZ三次元座標系を定義したとき、各板状構造体24,28は、その板面がXY平面に平行な面になるように配置される。   Hereinafter, a first embodiment of a power generating element of the present invention will be described with reference to FIGS. As shown in FIG. 1A, the power generating element 22 according to this embodiment has a first plate-like structure 24 having a flexible portion and a deformable portion of the first plate-like structure 24. A first piezoelectric element that generates electric charges based on the first piezoelectric element, a second plate-like structure having a flexible portion, and electric charges based on deformation of the flexible portion of the second plate-like structure And a pedestal 32 for supporting the first plate-shaped structure 24 in a cantilever structure. When the power generating element 22 is used with the pedestal 14 attached to some vibration source 20 and defines an XYZ three-dimensional coordinate system, each of the plate-like structures 24 and 28 has a plate surface on a surface parallel to the XY plane. It is arranged so that it becomes.

第1の板状構造体24は、基端部が直接的に台座32に接続され、基端部から先端部へ向かう方向がY軸正方向となるように、Y軸に平行な方向に伸びている。第2の板状構造体28は、第1の板状構造体24の上方に位置し、基端部が第1の板状構造体24の先端部に接続体34を介して接続され、基端部から先端部へ向かう方向がY軸負方向となるように、Y軸に平行な方向に伸びている。その他、第2の板状構造体28の先端部には、重錘体36が設けられている。   The first plate-shaped structure 24 extends in a direction parallel to the Y axis so that the base end is directly connected to the pedestal 32 and the direction from the base end to the front end is the positive direction of the Y axis. ing. The second plate-shaped structure 28 is located above the first plate-shaped structure 24, and has a base end connected to a distal end of the first plate-shaped structure 24 via a connector 34. It extends in a direction parallel to the Y axis so that the direction from the end to the tip is the Y axis negative direction. In addition, a weight body 36 is provided at the tip of the second plate-shaped structure 28.

第1及び第2の圧電素子26,30は、図14(b)に示す圧電素子12と同様に、下部電極層G、圧電材料層P及び上部電極層Eにより各々構成されている。   The first and second piezoelectric elements 26 and 30 are each composed of a lower electrode layer G, a piezoelectric material layer P, and an upper electrode layer E, similarly to the piezoelectric element 12 shown in FIG.

上記の構造により、発電素子22には2つの共振系Re1,Re2が形成される。第1の共振系Re1は、第1の板状構造体24の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz1は、第1の板状構造体24の可撓部のZ軸方向のバネ定数と、第1の板状構造体24の先端部に接続された物体の質量(接続体34、第2の板状構造体28及び重錘体36の質量)とを調節することによって設定される。   With the above structure, two resonance systems Re1 and Re2 are formed in the power generation element 22. The first resonance system Re1 is a resonance system formed based on the flexibility of the first plate-like structure 24, and the resonance frequency frz1 in the Z-axis direction is higher than that of the first plate-like structure 24. The spring constant of the flexible portion in the Z-axis direction and the mass of the object connected to the tip of the first plate-like structure 24 (the mass of the connector 34, the second plate-like structure 28, and the weight 36) And is set by adjusting

第2の共振系Re2は、第2の板状構造体28の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz2は、第2の板状構造体28の可撓部のZ軸方向のバネ定数と、第2の板状構造体28の先端部に接続された物体の質量(重錘体36の質量)とを調節することによって設定される。   The second resonance system Re2 is a resonance system formed based on the flexibility of the second plate-like structure 28, and the resonance frequency frz2 in the Z-axis direction is higher than that of the second plate-like structure 28. It is set by adjusting the spring constant of the flexible portion in the Z-axis direction and the mass of the object (the mass of the weight body 36) connected to the tip of the second plate-shaped structure 28.

2つの共振系Re1,Re2の共振特性は、図2(a)のように表される。なお、図2(a)に示す第2の共振系Re2の共振特性は、第2の板状構造体28の基端部が台座32に直接接続された状態を想定しており、第1の共振系Re1との相互作用は含んでいない。   The resonance characteristics of the two resonance systems Re1 and Re2 are represented as shown in FIG. Note that the resonance characteristics of the second resonance system Re2 shown in FIG. 2A assume that the base end of the second plate-like structure 28 is directly connected to the pedestal 32, The interaction with the resonance system Re1 is not included.

第1の共振系Re1の共振特性は、共振周波数frz1付近に、印加された振動に共鳴して振幅A1が大きくなるピーキングが発生し、共振周波数frz1を中心とする半値幅hz1の周波数帯で、振幅A1がピーク値の1/2以上になっている。第2の共振系Re2の共振特性は、共振周波数frz2付近に、印加された振動に共鳴して振幅A2が大きくなるピーキングが発生し、共振周波数frz2を中心とする半値幅hz2の周波数帯で、振幅A2がピーク値の1/2以上になっている。ここで特徴的なのは、第1の共振系Re1の半値幅hz1の周波数帯の一部と第2の共振系Re2の半値幅hz2の周波数帯の一部とが互いに重なっている点である。   The resonance characteristic of the first resonance system Re1 is that, near the resonance frequency frz1, peaking in which the amplitude A1 increases in resonance with the applied vibration occurs, and in a frequency band of a half width hz1 centered on the resonance frequency frz1, The amplitude A1 is half or more of the peak value. In the resonance characteristic of the second resonance system Re2, peaking in which the amplitude A2 increases in resonance with the applied vibration occurs near the resonance frequency frz2, and in a frequency band of a half width hz2 centered on the resonance frequency frz2, The amplitude A2 is half or more of the peak value. What is characteristic here is that a part of the frequency band of the half width hz1 of the first resonance system Re1 and a part of the frequency band of the half width hz2 of the second resonance system Re2 overlap each other.

次に、発電素子22にZ軸方向の振動が印加されたときの動作を説明する。ここでは、説明を簡単化するため、第1及び第2の共振系Re1,Re2のQ値を各々Qz1(>>1),Qz2(>>1)とし、Qz1とQZ2とが互いに等しく、共振周波数frz1とfrz2が互いに一致していると仮定し、発電素子22に対して共振周波数frz1,frz2と同じ周波数の振動が印加された場合を考える。   Next, an operation when vibration in the Z-axis direction is applied to the power generation element 22 will be described. Here, in order to simplify the explanation, the Q values of the first and second resonance systems Re1 and Re2 are respectively Qz1 (>> 1) and Qz2 (>> 1), and Qz1 and QZ2 are equal to each other. Assuming that the frequencies frz1 and frz2 match each other, consider a case in which vibration having the same frequency as the resonance frequencies frz1 and frz2 is applied to the power generation element 22.

台座32に振動が印加されると、この振動が第1の共振系Re1に伝わり、図1(b)に示すように、第1の板状構造体24の可撓部が厚み方向に撓み、第1の板状構造体24の先端部に、台座32が変位する加速度αのQz1倍の加速度(Qz1・α)が発生する。したがって、第1の圧電素子26には、概算で、先端部と基端部の加速度の差(Qz1・α)に相当する電荷が発生する。例えば、Qz1=10とすれば、加速度(10α)に相当する電荷が発生することになる。   When vibration is applied to the pedestal 32, this vibration is transmitted to the first resonance system Re1, and as shown in FIG. 1B, the flexible portion of the first plate-shaped structure 24 bends in the thickness direction, An acceleration (Qz1 · α) that is Qz1 times the acceleration α at which the pedestal 32 is displaced is generated at the distal end of the first plate-shaped structure 24. Therefore, in the first piezoelectric element 26, an electric charge corresponding to the difference (Qz1 · α) between the acceleration of the distal end portion and the acceleration of the proximal end portion is generated. For example, if Qz1 = 10, a charge corresponding to the acceleration (10α) will be generated.

さらに、第1の板状構造体24の先端部の振動が第2の共振系Re2に伝わり、第2の板状構造体28の可撓部が第1の板状構造体24と逆向きに撓む。そして、第2の板状構造体28の先端部に、第1の板状構造体24の先端部が変位する加速度のQz2倍の加速度(Qz2・Qz1・α)が発生する。したがって、第2の圧電素子30には、概算で、先端部と基端部の加速度の差(Qz2・Qz1・α)に相当する電荷が発生する。例えば、Qz2=Qz1=10とすれば、加速度(100α)に相当する電荷が発生することになる。   Further, the vibration of the tip portion of the first plate-shaped structure 24 is transmitted to the second resonance system Re2, and the flexible portion of the second plate-shaped structure 28 is turned in the opposite direction to the first plate-shaped structure 24. Bend. Then, an acceleration (Qz2 · Qz1 · α) that is Qz2 times the acceleration at which the tip of the first plate-shaped structure 24 is displaced is generated at the tip of the second plate-shaped structure 28. Therefore, in the second piezoelectric element 30, an electric charge corresponding to a difference (Qz2 · Qz1 · α) between the acceleration of the distal end portion and the acceleration of the proximal end portion is approximately generated. For example, if Qz2 = Qz1 = 10, a charge corresponding to the acceleration (100α) will be generated.

このように、発電素子22は、第1の共振系Re1で(Qz1・α)に相当する電荷を得ることができ、第2の共振系Re2では、(Qz2・Qz1・α)に相当する電荷を得ることができ、これらを合計したものが電力として取り出される。   As described above, the power generation element 22 can obtain a charge corresponding to (Qz1 · α) in the first resonance system Re1, and a charge corresponding to (Qz2 · Qz1 · α) in the second resonance system Re2. And the sum of these is taken out as power.

Qz2=Qz1>>1と仮定すれば、第2の共振系Re2は、第1の共振系Re1よりも多くの電荷が発生するので、第2の共振系Re2の方が発電量が格段に多くなる(Qz2≠Qz1でも同様である)。例えば、上述した従来の発電素子18の場合、共振系が1つだけなので、発電素子22の第1の共振系Re1と同程度の発電しか行うことができない。これに対して、発電素子22は、第2の共振系Re2の働きにより、従来の発電素子18よりも格段に多くの発電を行うことができる。   Assuming that Qz2 = Qz1 >> 1, more charges are generated in the second resonance system Re2 than in the first resonance system Re1, so that the second resonance system Re2 generates much more electric power. (The same applies to Qz2 ≠ Qz1). For example, in the case of the conventional power generation element 18 described above, since there is only one resonance system, only the same power generation as the first resonance system Re1 of the power generation element 22 can be performed. On the other hand, the power generation element 22 can generate much more power than the conventional power generation element 18 by the function of the second resonance system Re2.

なお、発電素子22の重錘体36は、第2の板状構造体28の下面側ではなく上面側に設けても同様の動作が行われる。また、第2の共振系Re2の発電量に対して第1の共振系Re1の発電量が無視できるほど小さければ第1の圧電素子26を省略してもよく、一定以上の発電量を確保しつつ、製造プロセスを簡単化することができる。   The same operation is performed when the weight body 36 of the power generating element 22 is provided on the upper surface side of the second plate-shaped structure 28 instead of the lower surface side. Further, if the power generation amount of the first resonance system Re1 is negligibly smaller than the power generation amount of the second resonance system Re2, the first piezoelectric element 26 may be omitted, and a power generation amount equal to or more than a certain value is secured. In addition, the manufacturing process can be simplified.

ここまでは、共振周波数frz1とfrz2が互いに一致していると仮定し、発電素子22に対して共振周波数frz1,frz2と同じ周波数の振動が印加されたときの動作を説明した。しかし、量産時は製造上のバラツキ等が生じるので、共振周波数frz1,frz2を正確に一致させることは難しい。そこで、発明者が実験やシミュレーションを行って検討した結果、第1の共振系Re1の半値幅hz1の周波数帯の一部と第2の共振系Re2の半値幅hz2の周波数帯の一部とが互いに重なっていれば、図2(b)に示すように、その重なっている周波数帯において、十分に高い発電量が得られることが分かった。   Until now, it has been assumed that the resonance frequencies frz1 and frz2 coincide with each other, and the operation when the vibration having the same frequency as the resonance frequencies frz1 and frz2 is applied to the power generation element 22 has been described. However, at the time of mass production, manufacturing variations and the like occur, so that it is difficult to accurately match the resonance frequencies frz1 and frz2. Thus, as a result of an experiment or a simulation performed by the inventor, a part of the frequency band having the half width hz1 of the first resonance system Re1 and a part of the frequency band having the half width hz2 of the second resonance system Re2 are different. As shown in FIG. 2 (b), it was found that a sufficiently high power generation amount could be obtained in the overlapping frequency band if they overlapped each other.

以上説明したように、発電素子22は、互いに接続された2つの共振系Re1,Re2を有し、各共振特性の半値幅hz1,hz2の周波数帯が互いに重なるように設定されているので、共振系同士の相互作用により、総合的な共振のQが非常に高くなる。したがって、半値幅hz1,hz2が重なっている周波数帯の振動に対し、従来よりも発電量を格段に増やすことができる。しかも、構造がシンプルなので、一般的な製造プロセスを用いて容易に製造することができる。   As described above, the power generation element 22 has the two resonance systems Re1 and Re2 connected to each other, and is set so that the frequency bands of the half-value widths hz1 and hz2 of the respective resonance characteristics overlap each other. Due to the interaction between the systems, the overall resonance Q is very high. Therefore, it is possible to significantly increase the amount of power generation with respect to the vibration in the frequency band where the half widths hz1 and hz2 overlap each other. In addition, since the structure is simple, it can be easily manufactured using a general manufacturing process.

次に、第一の実施形態の発電素子22の2つの変形例を説明する。ここで、発電素子22と同様の構成は同一の符号を付して説明を省略する。   Next, two modified examples of the power generation element 22 of the first embodiment will be described. Here, the same components as those of the power generation element 22 are denoted by the same reference numerals, and description thereof will be omitted.

1つ目の変形例である発電素子38は、図3(a)、(b)に示すように、構成部材は発電素子22と同様であり、異なるのは、第2の板状構造体28が第1の板状構造体24の下方に配置されている点であり、これに伴い、第2の圧電素子30が第2の板状構造体28の下面側に設けられ、接続体34が第1の板状構造体24の先端部の下面側に設けられ、重錘体36が第2の板状構造体28の上面側に設けられている。   As shown in FIGS. 3A and 3B, the power generating element 38 of the first modified example has the same components as the power generating element 22 except for the second plate-like structure 28. Is disposed below the first plate-shaped structure 24. Accordingly, the second piezoelectric element 30 is provided on the lower surface side of the second plate-shaped structure 28, and the connecting body 34 is The weight body 36 is provided on the lower surface side of the distal end of the first plate-shaped structure 24, and the weight body 36 is provided on the upper surface side of the second plate-shaped structure 28.

発電素子38は、第1及び第2の共振系Re1,Re2の上下方向の配置が発電素子22と逆になっているが、各共振系の共振特性は図2(a)に示すグラフと同様であり、発電性能も図2(b)に示すグラフと同様である。したがって、発電素子38においても、発電素子22と同様の優れた効果を得ることができる。なお、発電素子38の重錘体36は、第2の板状構造体28の下面側ではなく上面側に設けても同様の動作が行われる。   In the power generation element 38, the arrangement of the first and second resonance systems Re1 and Re2 in the vertical direction is opposite to that of the power generation element 22, but the resonance characteristics of each resonance system are the same as the graph shown in FIG. The power generation performance is also the same as the graph shown in FIG. Therefore, also in the power generating element 38, the same excellent effects as those of the power generating element 22 can be obtained. The same operation is performed when the weight body 36 of the power generating element 38 is provided on the upper surface side of the second plate-shaped structure 28 instead of the lower surface side.

2つ目の変形例である発電素子40は、図4(a)、(b)に示すように、発電素子22の構成から重錘体36が削除され、新たに第3の板状構造体42、第3の圧電素子44、接続体46及び重錘体48が追加された構成になっている。   As shown in FIGS. 4A and 4B, the power generating element 40 according to the second modified example has a configuration in which the weight body 36 is deleted from the configuration of the power generating element 22, and a third plate-shaped structure is newly added. 42, a third piezoelectric element 44, a connecting body 46, and a weight 48 are added.

第3の板状構造体42は、第2の板状構造体28の上方に位置し、基端部が第2の板状構造体28の先端部に接続体46を介して接続され、基端部から先端部へ向かう方向がY軸正方向となるように、Y軸に平行な方向に伸びている。そして、第3の板状構造体42の先端部には、重錘体48が設けられている。その他の構成は、発電素子22と同様である。   The third plate-like structure 42 is located above the second plate-like structure 28, and has a base end connected to a distal end of the second plate-like structure 28 via a connector 46. It extends in a direction parallel to the Y axis so that the direction from the end to the tip is the positive direction of the Y axis. A weight 48 is provided at the tip of the third plate-like structure 42. Other configurations are the same as those of the power generation element 22.

上記の構造により、発電素子40には3つの共振系Re1,Re2,Re3が形成される。第1の共振系Re1は、第1の板状構造体24の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz1は、第1の板状構造体24の可撓部のZ軸方向のバネ定数と、第1の板状構造体24の先端部に接続された物体の質量(接続体34、第2の板状構造体28、接続体46、第3の板状構造体42及び重錘体48の質量)とを調節することによって設定される。   With the above structure, three resonance systems Re1, Re2, and Re3 are formed in the power generation element 40. The first resonance system Re1 is a resonance system formed based on the flexibility of the first plate-like structure 24, and the resonance frequency frz1 in the Z-axis direction is higher than that of the first plate-like structure 24. The spring constant of the flexible portion in the Z-axis direction and the mass of the object connected to the distal end of the first plate-shaped structure 24 (connecting body 34, second plate-shaped structure 28, connecting body 46, third body (The mass of the plate-like structure 42 and the weight body 48).

第2の共振系Re2は、第2の板状構造体28の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz2は、第2の板状構造体28の可撓部のZ軸方向のバネ定数と、第2の板状構造体28の先端部に接続された物体の質量(接続体46、第3の板状構造体42及び重錘体48の質量)とを調節することによって設定される。   The second resonance system Re2 is a resonance system formed based on the flexibility of the second plate-like structure 28, and the resonance frequency frz2 in the Z-axis direction is higher than that of the second plate-like structure 28. The spring constant of the flexible portion in the Z-axis direction and the mass of the object connected to the tip of the second plate-like structure 28 (the mass of the connector 46, the third plate-like structure 42, and the weight 48) And is set by adjusting

第3の共振系Re3は、第3の板状構造体42の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz3は、第3の板状構造体42の可撓部のZ軸方向のバネ定数と、第3の板状構造体42の先端部に接続された物体の質量(重錘体48の質量)とを調節することによって設定される。なお、重錘体48は共振特性調節用の部材であり、他の方法(例えば、3つの板状構造体24,28,42のヤング率や形状を変更してバネ定数を調節する方法)で共振特性の調節が可能であれば、省略することができる。   The third resonance system Re3 is a resonance system formed based on the flexibility of the third plate-like structure 42. The resonance frequency frz3 in the Z-axis direction is higher than that of the third plate-like structure 42. It is set by adjusting the spring constant of the bending portion in the Z-axis direction and the mass of the object (the mass of the weight 48) connected to the distal end of the third plate-shaped structure 42. The weight body 48 is a member for adjusting resonance characteristics, and is formed by another method (for example, a method of adjusting the spring constant by changing the Young's modulus or the shape of the three plate-like structures 24, 28, 42). If the resonance characteristic can be adjusted, it can be omitted.

3つの共振系Re1,Re2,Re3の共振特性は、例えば図5(a)のように設定される。なお、図5(a)に示す第2の共振系Re2の共振特性は、第2の板状構造体28の基端部が台座32に直接接続された状態を想定しており、他の共振系との相互作用は含んでいない。同様に、第3の共振系Re3の共振特性は、第3の板状構造体42の基端部が台座32に直接接続された状態を想定しており、他の共振系との相互作用は含んでいない。   The resonance characteristics of the three resonance systems Re1, Re2, Re3 are set, for example, as shown in FIG. The resonance characteristics of the second resonance system Re2 shown in FIG. 5A assume a state in which the base end of the second plate-like structure 28 is directly connected to the pedestal 32. Does not include interaction with the system. Similarly, the resonance characteristics of the third resonance system Re3 are based on the assumption that the base end of the third plate-like structure 42 is directly connected to the pedestal 32, and the interaction with the other resonance system is Not included.

特徴的なのは、第1の共振系Re1の半値幅hz1の周波数帯の一部が第3の共振系Re3の半値幅hz3の周波数帯の一部に重なり、第2の共振系Re2の半値幅hz1の周波数帯の一部も第3の共振系Re3の半値幅hz3の周波数帯の一部に重なっている点である。ここでは、半値幅hz2とhz3の周波数帯は重なっていない。   Characteristically, a part of the frequency band of the half width hz1 of the first resonance system Re1 overlaps a part of the frequency band of the half width hz3 of the third resonance system Re3, and the half width hz1 of the second resonance system Re2. The point is that a part of the frequency band of the third resonance system Re3 also overlaps a part of the frequency band of the half width hz3 of the third resonance system Re3. Here, the frequency bands of the half widths hz2 and hz3 do not overlap.

発電素子40は、各共振系の共振特性が図5(a)のように設定されているので、図5(b)に示すように、上記と同様の多くの発電量を、2つの周波数帯で得ることができる。半値幅hz1とhz2の周波数帯を重なる設定にすることも可能であり、その場合、発電量がピークを示す周波数帯が1つになり、発電量のピーク値はより高くなる。   Since the power generation element 40 has the resonance characteristics of each resonance system set as shown in FIG. 5A, as shown in FIG. Can be obtained at It is also possible to set the frequency bands of the half-value widths hz1 and hz2 to overlap. In this case, the frequency band where the power generation amount shows a peak becomes one, and the peak value of the power generation amount becomes higher.

次に、本発明の発電素子の第二の実施形態について、図6〜図8に基づいて説明する。この実施形態の発電素子50は、図6(a)に示すように、可撓部を有した第1の板状構造体52と、第1の板状構造体52の可撓部の変形に基づいて電荷を発生させる第1の圧電素子54と、可撓部を有した第2の板状構造体56と、第2の板状構造体56の可撓部の変形に基づいて電荷を発生させる第2の圧電素子58と、可撓部を有した第3の板状構造体60と、第3の板状構造体60の可撓部の変形に基づいて電荷を発生させる第3の圧電素子62とを備えている。そして、第1の板状構造体52を片持ち梁構造に支持する台座64を備えている。発電素子50は、台座64が何らかの振動源20に取り付けられて使用され、XYZ三次元座標系を定義したとき、各板状構造体52,56,60は、その板面がXY平面に平行な面になるように配置される。   Next, a second embodiment of the power generating element of the present invention will be described with reference to FIGS. As shown in FIG. 6A, the power generating element 50 according to this embodiment includes a first plate-like structure 52 having a flexible portion and a deformation of the flexible portion of the first plate-like structure 52. A first piezoelectric element that generates electric charges based on the first piezoelectric element, a second plate-like structure having a flexible portion, and electric charges based on deformation of the flexible portion of the second plate-like structure A second piezoelectric element 58, a third plate-like structure 60 having a flexible portion, and a third piezoelectric member that generates electric charges based on the deformation of the flexible portion of the third plate-like structure 60. And an element 62. Further, a pedestal 64 for supporting the first plate-shaped structure 52 in a cantilever structure is provided. When the power generating element 50 is used with the pedestal 64 attached to some vibration source 20 and defines an XYZ three-dimensional coordinate system, each of the plate-like structures 52, 56, and 60 has a plate surface parallel to the XY plane. It is arranged so that it may become a surface.

第1の板状構造体52は、基端部が直接的に台座64に接続され、基端部から先端部へ向かう方向がY軸正方向となるように、Y軸に平行な方向に伸びている。第2及び第3の板状構造体56,60は、第1の板状構造体52を間に挟むように、第1の板状構造体52の側方に配置され、各基端部が第1の板状構造体52の先端部に接続体66を介して接続され、基端部から先端部へ向かう方向がY軸負方向となるように、Y軸に平行な方向に伸びている。その他、接続体66の下面側に重錘体68が設けられ、第2の板状構造体56の先端部の下面側に重錘体70が設けられ、第3の板状構造体60の先端部の下面側に重錘体72が設けられている。   The first plate-like structure 52 has a base end directly connected to the pedestal 64 and extends in a direction parallel to the Y axis so that the direction from the base end to the front end is the positive direction of the Y axis. ing. The second and third plate-like structures 56 and 60 are arranged on the side of the first plate-like structure 52 so as to sandwich the first plate-like structure 52 therebetween, and the respective base ends thereof It is connected to the distal end of the first plate-like structure 52 via a connector 66, and extends in a direction parallel to the Y axis so that the direction from the proximal end to the distal end is the Y axis negative direction. . In addition, a weight body 68 is provided on the lower surface side of the connecting body 66, a weight body 70 is provided on the lower surface side of the distal end of the second plate-like structure 56, and the distal end of the third plate-like structure 60 is provided. The weight body 72 is provided on the lower surface side of the portion.

したがって、台座64にZ軸方向の振動が印加され、第1の板状構造体52が厚み方向に撓むと、図7(a)に示すように、第2の板状構造体56は第1の板状構造体52と逆向きに撓む。同様に、第1の板状構造体52が厚み方向に撓むと、図7(b)に示すように、第3の板状構造体60は第1の板状構造体52と逆向きに撓む。   Therefore, when the vibration in the Z-axis direction is applied to the pedestal 64 and the first plate-like structure 52 is bent in the thickness direction, the second plate-like structure 56 becomes the first plate-like structure 56 as shown in FIG. Of the plate-like structure 52 in the opposite direction. Similarly, when the first plate-like structure 52 bends in the thickness direction, the third plate-like structure 60 bends in the opposite direction to the first plate-like structure 52 as shown in FIG. No.

第1、第2及び第3の圧電素子54,58,62は、図14(b)に示す圧電素子12と同様に、下部電極層G、圧電材料層P及び上部電極層Eにより各々構成されている。   The first, second, and third piezoelectric elements 54, 58, and 62 are each composed of a lower electrode layer G, a piezoelectric material layer P, and an upper electrode layer E, similarly to the piezoelectric element 12 shown in FIG. ing.

上記の構造により、発電素子50には3つの共振系Re1,Re2,Re3が形成される。第1の共振系Re1は、第1の板状構造体52の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz1は、第1の板状構造体52の可撓部のZ軸方向のバネ定数と、第1の板状構造体52の先端部に接続された物体の質量(接続体66、第2及び第3の板状構造体56,60、及び重錘体68,70,72の質量)とを調節することによって設定される。   With the above structure, three resonance systems Re1, Re2, and Re3 are formed in the power generation element 50. The first resonance system Re1 is a resonance system formed based on the flexibility of the first plate-like structure 52, and the resonance frequency frz1 in the Z-axis direction is higher than that of the first plate-like structure 52. The spring constant of the flexible portion in the Z-axis direction and the mass of the object connected to the distal end of the first plate-like structure 52 (connector 66, second and third plate-like structures 56 and 60, and weight (Mass of weights 68, 70, 72).

第2の共振系Re2は、第2の板状構造体56の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz2は、第2の板状構造体56の可撓部のZ軸方向のバネ定数と、第2の板状構造体28の先端部に接続された物体の質量(重錘体70の質量)とを調節することによって設定される。   The second resonance system Re2 is a resonance system formed based on the flexibility of the second plate-like structure 56. The resonance frequency frz2 in the Z-axis direction is higher than that of the second plate-like structure 56. It is set by adjusting the spring constant in the Z-axis direction of the flexible portion and the mass of the object (the mass of the weight body 70) connected to the distal end of the second plate-shaped structure 28.

第3の共振系Re3は、第3の板状構造体60の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz3は、第3の板状構造体60の可撓部のZ軸方向のバネ定数と、第3の板状構造体60の先端部に接続された物体の質量(重錘体72の質量)とを調節することによって設定される。   The third resonance system Re3 is a resonance system formed based on the flexibility of the third plate-like structure 60, and the resonance frequency frz3 in the Z-axis direction is higher than that of the third plate-like structure 60. It is set by adjusting the spring constant of the flexible portion in the Z-axis direction and the mass of the object (the mass of the weight 72) connected to the distal end of the third plate-shaped structure 60.

この3つの共振系Re1,Re2,Re3の共振特性は、例えば図8(a)のように設定される。特徴的なのは、第2の共振系Re2の半値幅hz2の周波数帯の一部が第1の共振系Re1の半値幅hz1の周波数帯の一部に重なり、第3の共振系Re3の半値幅hz3の周波数帯の一部も第1の共振系Re1の半値幅hz1の周波数帯の一部に重なっている点である。ここでは、半値幅hz2とhz3の周波数帯は重なっていない。   The resonance characteristics of the three resonance systems Re1, Re2, Re3 are set, for example, as shown in FIG. Characteristically, a part of the frequency band of the half width hz2 of the second resonance system Re2 overlaps with a part of the frequency band of the half width hz1 of the first resonance system Re1, and the half width hz3 of the third resonance system Re3. Is also overlapped with a part of the frequency band having the half width hz1 of the first resonance system Re1. Here, the frequency bands of the half widths hz2 and hz3 do not overlap.

発電素子50は、各共振系の共振特性が図8(a)のように設定されているので、図8(b)に示すように、2つの周波数帯で多くの発電量を得ることができる。半値幅hz1とhz2の周波数帯を重なる設定にすることも可能であり、その場合、発電量がピークを示す周波数帯は1つになるが、発電量のピーク値はもっと高くなる。   In the power generation element 50, since the resonance characteristics of each resonance system are set as shown in FIG. 8A, a large amount of power generation can be obtained in two frequency bands as shown in FIG. 8B. . It is also possible to set the frequency bands of the half widths hz1 and hz2 to overlap. In this case, the frequency band where the power generation amount shows a peak becomes one, but the peak value of the power generation amount becomes higher.

なお、先に説明した発電素子40(図4)も3つの共振系を有しているが、発電素子40の場合は、3つの共振系が順に直列に配置されているので、直接接続されていない2つの共振系Re1とRe3の間にも相互作用が生じる。これに対して、この発電素子50は、第1及び第2の共振系Re1,Re2が直列で、第1及び第3の共振系Re1,Re2が直列であるが、第2及び第3の共振系Re2,Re3は直列になっていない。そのため、直接接続されていない2つの共振系Re2とRe3の間には相互作用がほとんど生じない。したがって、発電素子50は、2台の発電素子22(図1)を並列に使用するのとほぼ同様の動作を行う。   Although the power generation element 40 (FIG. 4) described above also has three resonance systems, in the case of the power generation element 40, since the three resonance systems are sequentially arranged in series, they are directly connected. Interaction also occurs between the two resonance systems Re1 and Re3. On the other hand, in the power generating element 50, although the first and second resonance systems Re1 and Re2 are in series and the first and third resonance systems Re1 and Re2 are in series, the second and third resonance systems System Re2, Re3 are not in series. Therefore, almost no interaction occurs between the two resonance systems Re2 and Re3 that are not directly connected. Therefore, the power generating element 50 performs substantially the same operation as using two power generating elements 22 (FIG. 1) in parallel.

発電素子50は、発電素子22よりも多くの発電量を得ることができる。また、発電素子22の場合は、板状構造体24,28が上下に重なるように配置されているので互いに接触しやすいが、発電素子50は、板状構造体52,56,60が上下方向に重ならないよう配置され、板状構造体52,56,60が互いにぶつからない構造なので、板状構造体52,56,60の最大撓み量を大きくすることができ、発電量をさらに増やすことができる。   The power generation element 50 can obtain more power generation than the power generation element 22. Further, in the case of the power generating element 22, the plate-like structures 24, 28 are arranged so as to overlap vertically, so that they are easily in contact with each other. Since the plate-like structures 52, 56, and 60 do not collide with each other, the maximum amount of deflection of the plate-like structures 52, 56, and 60 can be increased, and the amount of power generation can be further increased. it can.

次に、第二の実施形態の発電素子50の一変形例である発電素子74について、図9に基づいて説明する。ここで、発電素子50と同様の構成は同一の符号を付して説明を省略する。発電素子74は、発電素子50の構成から重錘体70,72が削除され、新たにU字状の重錘体76が設けられた構成になっている。その他の構成は、発電素子50と同様である。   Next, a power generation element 74 which is a modification of the power generation element 50 of the second embodiment will be described with reference to FIG. Here, the same components as those of the power generating element 50 are denoted by the same reference numerals, and description thereof will be omitted. The power generating element 74 has a configuration in which the weights 70 and 72 are removed from the configuration of the power generating element 50, and a U-shaped weight 76 is newly provided. Other configurations are the same as those of the power generation element 50.

重錘体76は、重錘体70,72の先端部同士を横梁で連結して一体化させたような形状である。したがって、板状構造体56,60の各先端部が重錘体76を介して連結される形になり、2つの板状構造体56,60が協働して第2の板状構造体(1つの板状構造体)の役割をする。以下、2つの板状構造体56,60の特性を合成したものを第2の板状構造体56xと称して説明する。   The weight body 76 has such a shape that the distal ends of the weight bodies 70 and 72 are connected to each other by a cross beam and integrated. Therefore, each end of the plate-like structures 56 and 60 is connected via the weight body 76, and the two plate-like structures 56 and 60 cooperate to form the second plate-like structure ( (A single plate-like structure). Hereinafter, a combination of the characteristics of the two plate-like structures 56 and 60 will be described as a second plate-like structure 56x.

上記の構造により、発電素子74には2つの共振系Re1,Re2が形成される。第1の共振系Re1は、第1の板状構造体52の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz1は、第1の板状構造体52の可撓部のZ軸方向のバネ定数と、第1の板状構造体52の先端部に接続された物体の質量(接続体66、重錘体68、第2の板状構造体56x及び重錘体76の質量)とを調節することによって設定される。   With the above structure, two resonance systems Re1 and Re2 are formed in the power generating element 74. The first resonance system Re1 is a resonance system formed based on the flexibility of the first plate-like structure 52, and the resonance frequency frz1 in the Z-axis direction is higher than that of the first plate-like structure 52. The spring constant of the flexible portion in the Z-axis direction and the mass of the object connected to the distal end of the first plate-like structure 52 (connector 66, weight 68, second plate-like structure 56x and weight) (The mass of the body 76).

第2の共振系Re2は、第2の板状構造体56xの可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz2は、第2の板状構造体56xの可撓部のZ軸方向のバネ定数と、第2の板状構造体56xの先端部に接続された物体の質量(重錘体76の質量)とを調節することによって設定される。   The second resonance system Re2 is a resonance system formed based on the flexibility of the second plate-like structure 56x, and the resonance frequency frz2 in the Z-axis direction is higher than the resonance frequency frz2 of the second plate-like structure 56x. It is set by adjusting the spring constant in the Z-axis direction of the flexible portion and the mass (mass of the weight body 76) of the object connected to the tip of the second plate-shaped structure 56x.

各共振系の共振特性は、図2(a)に示す発電素子22のグラフと同様である。したがって、発電素子74も発電素子22と同様の動作を行い、発電素子50と同様の効果を得ることができる。   The resonance characteristic of each resonance system is the same as the graph of the power generation element 22 shown in FIG. Therefore, the power generating element 74 also performs the same operation as the power generating element 22 and can obtain the same effect as the power generating element 50.

次に、本発明の発電素子の第三の実施形態について、図10に基づいて説明する。この実施形態の発電素子78は、可撓部を有した第1の板状構造体80と、第1の板状構造体80の可撓部の変形に基づいて電荷を発生させる第1の圧電素子82と、可撓部を有した第2の板状構造体84と、第2の板状構造体84の可撓部の変形に基づいて電荷を発生させる第2の圧電素子86と、第1の板状構造体80を片持ち梁構造に支持する台座88を備えている。発電素子78は、台座88が何らかの振動源20に取り付けられて使用され、XYZ三次元座標系を定義したとき、各板状構造体80,84は、その板面がXY平面に平行な面になるように配置される。   Next, a third embodiment of the power generating element of the present invention will be described with reference to FIG. The power generation element 78 of this embodiment includes a first plate-shaped structure 80 having a flexible portion, and a first piezoelectric element that generates electric charges based on deformation of the flexible portion of the first plate-shaped structure 80. An element 82, a second plate-like structure 84 having a flexible portion, a second piezoelectric element 86 that generates electric charges based on deformation of the flexible portion of the second plate-like structure 84, A pedestal 88 for supporting the one plate-like structure 80 in a cantilever structure is provided. When the power generating element 78 is used with the pedestal 88 attached to some vibration source 20 and defines an XYZ three-dimensional coordinate system, each of the plate-like structures 80 and 84 has a plate surface parallel to the XY plane. It is arranged so that it becomes.

台座88は、四角形の角筒状に形成され、他の部材を囲むように設けられている。第1の板状構造体80は、基端部が直接的に台座88の内壁に接続され、基端部から先端部へ向かう方向がY軸正方向となるように、Y軸に平行な方向に伸びている。そして、第1の板状構造体80の先端部には、四角形の枠板状に形成された接続体90がY軸正方向に延設されている。   The pedestal 88 is formed in the shape of a quadrangular prism, and is provided so as to surround other members. The first plate-shaped structure 80 has a base end directly connected to the inner wall of the pedestal 88 and a direction parallel to the Y axis so that the direction from the base end to the front end is the positive direction of the Y axis. Is growing. At the tip end of the first plate-shaped structure 80, a connector 90 formed in the shape of a rectangular frame plate is extended in the Y-axis positive direction.

第2の板状構造体84は、接続体90の内側に位置し、基端部が接続体90の内縁部(第1の板状構造体80が接続されて部分に対向する一辺の内縁部)に接続されている。つまり、第2の板状構造体84は、接続体90を介して第1の板状構造体80に接続され、基端部から先端部へ向かう方向がY軸負方向となるように、Y軸に平行な方向に伸びている。その他、接続体90の下面側に、接続体90と同じ大きさの角筒状に形成された重錘体92が設けられ、第2の板状構造体84の先端部の下面側に、重錘体92に囲まれるように重錘体94が設けられている。したがって、台座88にZ軸方向の振動が印加され、第1の板状構造体80が厚み方向に撓むと、第2の板状構造体84は、第1の板状構造体80と逆向きに撓む。   The second plate-shaped structure 84 is located inside the connection body 90, and has a base end located at an inner edge of the connection body 90 (an inner edge of one side facing the portion to which the first plate-shaped structure 80 is connected). )It is connected to the. In other words, the second plate-like structure 84 is connected to the first plate-like structure 80 via the connector 90, and the Y-axis negative direction is set so that the direction from the base end to the distal end is the Y-axis negative direction. It extends in a direction parallel to the axis. In addition, a weight 92 formed in the shape of a rectangular tube having the same size as the connecting body 90 is provided on the lower surface side of the connecting body 90, and the weight is formed on the lower surface side of the distal end of the second plate-like structure 84. A weight body 94 is provided so as to be surrounded by the weight body 92. Therefore, when vibration in the Z-axis direction is applied to the pedestal 88 and the first plate-like structure 80 is bent in the thickness direction, the second plate-like structure 84 is oriented in the opposite direction to the first plate-like structure 80. To bend.

第1及び第2の圧電素子82,86は、図14(b)に示す圧電素子12と同様に、下部電極層G、圧電材料層P及び上部電極層Eにより各々構成されている。   The first and second piezoelectric elements 82 and 86 are each composed of a lower electrode layer G, a piezoelectric material layer P, and an upper electrode layer E, similarly to the piezoelectric element 12 shown in FIG.

上記の構造により、発電素子78には2つの共振系Re1,Re2が形成される。第1の共振系Re1は、第1の板状構造体80の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz1は、第1の板状構造体80の可撓部のZ軸方向のバネ定数と、第1の板状構造体80の先端部に接続された物体の質量(接続体90、重錘体92、第2の板状構造体84及び重錘体94の質量)を調節することによって設定される。   With the above structure, two resonance systems Re1 and Re2 are formed in the power generation element 78. The first resonance system Re1 is a resonance system formed based on the flexibility of the first plate-shaped structure 80, and the resonance frequency frz1 in the Z-axis direction is higher than that of the first plate-shaped structure 80. The spring constant of the flexible portion in the Z-axis direction and the mass of the object connected to the distal end of the first plate-like structure 80 (connector 90, weight 92, second plate-like structure 84 and weight) Of the body 94).

第2の共振系Re2は、第2の板状構造体84の可撓性に基づいて形成される共振系であり、Z軸方向の共振周波数frz2は、第2の板状構造体84の可撓部のZ軸方向のバネ定数と、第2の板状構造体84の先端部に接続された物体の質量(重錘体94の質量)を調節することによって設定される。   The second resonance system Re2 is a resonance system formed based on the flexibility of the second plate-like structure 84, and the resonance frequency frz2 in the Z-axis direction is higher than that of the second plate-like structure 84. It is set by adjusting the spring constant of the flexible portion in the Z-axis direction and the mass of the object (the mass of the weight body 94) connected to the distal end of the second plate-shaped structure 84.

各共振系の共振特性は、図2(a)に示す発電素子22のグラフと同様であり、発電素子78においても、発電素子22と同様の作用効果を得ることができる。さらに、発電素子78では、台座88に、重錘体92が過剰に変位するのを防止するストッパの働きをさせ、重錘体92に、重錘体94が過剰に変位するのを防止するストッパの働きをさせることができるので、発電素子78に強い衝撃が加わった時、第1及び第2の板状構造体80,84が破損するのを容易に保護することができる。また、第1の板状構造体80の先端部と第2の板状構造体84の基端部は、接続体90の両端部(互いに離れた位置)に接続されているので、第2の共振系Re2により大きな加速度を作用させることができる。   The resonance characteristic of each resonance system is the same as the graph of the power generation element 22 shown in FIG. 2A, and the same effect as the power generation element 22 can be obtained in the power generation element 78. Furthermore, in the power generating element 78, the pedestal 88 functions as a stopper for preventing the weight body 92 from being excessively displaced, and the weight body 92 has a stopper for preventing the weight body 94 from being excessively displaced. Therefore, when a strong impact is applied to the power generation element 78, the first and second plate-like structures 80 and 84 can be easily protected from being damaged. Further, since the distal end of the first plate-shaped structure 80 and the base end of the second plate-shaped structure 84 are connected to both ends (positions separated from each other) of the connecting body 90, the second A large acceleration can be applied to the resonance system Re2.

次に、第三の実施形態の発電素子78の2つの変形例を説明する。ここで、発電素子78と同様の構成は同一の符号を付して説明を省略する。   Next, two modified examples of the power generating element 78 of the third embodiment will be described. Here, the same components as those of the power generating element 78 are denoted by the same reference numerals, and description thereof will be omitted.

1つ目の変形例である発電素子96は、図11(a)に示すように、発電素子78の第1の圧電素子82を第1の圧電素子98に置き換え、第2の圧電素子86を第2の圧電素子100に置き換えたものであり、その他の構成は発電素子78と同様である。   As shown in FIG. 11A, a power generating element 96 according to a first modification replaces the first piezoelectric element 82 of the power generating element 78 with a first piezoelectric element 98 and replaces the second piezoelectric element 86 with the first piezoelectric element 98. The second piezoelectric element 100 is replaced with the second piezoelectric element 100, and the other configuration is the same as that of the power generating element 78.

上記発電素子78は、第1の圧電素子82が1個の圧電素子で構成され、第2の圧電素子86が1個の圧電素子で構成されており、Z軸方向の振動だけを電気エネルギーに変換することができる。これに対して、この発電素子96は、第1の圧電素子98が4個の圧電素子Ea1〜Ea4で構成され、第2の圧電素子100が4個の圧電素子Eb1〜Eb4で構成されており、XYZの各軸方向の振動をすべて電気エネルギーに変換できるという特徴がある。   In the power generating element 78, the first piezoelectric element 82 is formed by one piezoelectric element, and the second piezoelectric element 86 is formed by one piezoelectric element. Only the vibration in the Z-axis direction is converted into electric energy. Can be converted. On the other hand, in the power generation element 96, the first piezoelectric element 98 is configured by four piezoelectric elements Ea1 to Ea4, and the second piezoelectric element 100 is configured by four piezoelectric elements Eb1 to Eb4. , XYZ can be converted into electric energy.

発電素子96は、発電素子78と基本構造が同じであり、図10(b)に示すように、重錘体92,94の重心が第1及び第2の板状構造体80,84の先端部よりも低い位置に偏っているので、重錘体92,94にXYの各軸方向の振動が作用すると、第1及び第2の板状構造体80,84に対して曲げモーメントが作用する。そして、第1及び第2の板状構造体80,84の可撓部が変形し、図11(b)に示すように、8つの圧電素子Ea1〜Ea4,Eb1〜Eb4に、正又は負電荷がそれぞれ発生する。したがって、Z軸方向の振動だけでなく、XYの各軸方向の振動も電気エネルギーに変換できる。なお、図11(b)の中の「+」「−」は、各圧電素子に発生する電荷の極性を相対的に表したものであり、「+」と「−」をすべて逆に置き換えて表してもよい。   The power generating element 96 has the same basic structure as the power generating element 78, and as shown in FIG. 10B, the center of gravity of the weight bodies 92, 94 is the tip of the first and second plate-like structures 80, 84. When the vibrations in the respective XY axial directions act on the weight bodies 92 and 94, a bending moment acts on the first and second plate-like structures 80 and 84. . Then, the flexible portions of the first and second plate-like structures 80 and 84 are deformed, and as shown in FIG. 11B, positive or negative charges are applied to the eight piezoelectric elements Ea1 to Ea4 and Eb1 to Eb4. Respectively occur. Therefore, not only the vibration in the Z-axis direction but also the vibration in each of the XY axes can be converted into electric energy. Note that “+” and “−” in FIG. 11B relatively represent the polarity of the charge generated in each piezoelectric element, and “+” and “−” are all interchanged. May be represented.

発電素子96の第1の共振系Re1は、Z軸方向の共振周波数frz1及び半値幅hz1の他、X軸方向の共振周波数frx1及び半値幅hx1、Y軸方向の共振周波数fry1及び半値幅hy1を有している。同様に、第2の共振系Re2は、Z軸方向の共振周波数frz2及び半値幅hz2の他、X軸方向の共振周波数frx2及び半値幅hx2、Y軸方向の共振周波数fry2及び半値幅hy2を有している。   The first resonance system Re1 of the power generation element 96 includes a resonance frequency frz1 and a half width hz1 in the Z-axis direction, a resonance frequency frx1 and a half width hx1 in the X-axis direction, a resonance frequency fry1 and a half width hy1 in the Y-axis direction. Have. Similarly, the second resonance system Re2 has a resonance frequency frz2 and a half width hz2 in the Z-axis direction, a resonance frequency frx2 and a half width hx2 in the X-axis direction, a resonance frequency fry2 and a half width hy2 in the Y-axis direction. are doing.

Z軸方向は、図12(a)に示すように、半値幅hz2の周波数帯の一部が、半値幅hz1の周波数帯の一部と重なるように設定されている。したがって、2つの共振系Re1,Re2の相互作用により、この重なっている周波数帯で多くの発電量を得ることができる。   In the Z-axis direction, as shown in FIG. 12A, a part of the frequency band having the half width hz2 is set so as to overlap a part of the frequency band having the half width hz1. Therefore, a large amount of power generation can be obtained in the overlapping frequency band due to the interaction between the two resonance systems Re1 and Re2.

X軸方向も同様であり、図12(b)に示すように、半値幅hx2の周波数帯の一部が、半値幅hx1の周波数帯の一部と重なるように設定されている。したがって、2つの共振系Re1,Re2の相互作用により、この重なっている周波数帯で多くの発電量を得ることができる。   The same applies to the X-axis direction. As shown in FIG. 12B, a part of the frequency band having the half width hx2 is set so as to overlap a part of the frequency band having the half width hx1. Therefore, a large amount of power generation can be obtained in the overlapping frequency band due to the interaction between the two resonance systems Re1 and Re2.

Y軸方向も同様であり、図12(c)に示すように、半値幅hy2の周波数帯の一部が、半値幅hy1の周波数帯の一部と重なるように設定されている。したがって、2つの共振系Re1,Re2の相互作用により、この重なっている周波数帯で多くの発電量を得ることができる。   The same applies to the Y-axis direction. As shown in FIG. 12C, a part of the frequency band having the half width hy2 is set so as to overlap a part of the frequency band having the half width hy1. Therefore, a large amount of power generation can be obtained in the overlapping frequency band due to the interaction between the two resonance systems Re1 and Re2.

このように、発電素子96によれば、XYZの各軸方向の振動をすべて効率よく電気エネルギーに変換することができるので、発電素子78より多くの発電量を得ることができる。   As described above, according to the power generation element 96, all vibrations in the X, Y, and Z axial directions can be efficiently converted to electric energy, so that a larger amount of power generation can be obtained than the power generation element 78.

2つ目の変形例である発電素子102は、図13(a)に示すように、発電素子78の第1の圧電素子82を第1の圧電素子104に置き換え、第2の圧電素子86を第2の圧電素子106に置き換えたものであり、その他の構成は発電素子78と同様である。   As shown in FIG. 13A, a power generation element 102 according to a second modification replaces the first piezoelectric element 82 of the power generation element 78 with the first piezoelectric element 104 and replaces the second piezoelectric element 86 with the first piezoelectric element 104. It is replaced with the second piezoelectric element 106, and the other configuration is the same as that of the power generating element 78.

上記発電素子78は、第1の圧電素子82が1個の圧電素子で構成され、第2の圧電素子86が1個の圧電素子で構成されており、Z軸方向の振動だけを電気エネルギーに変換することができる。これに対して、この発電素子102は、第1の圧電素子104が2個の圧電素子Ea1,Ea2で構成され、第2の圧電素子106が2個の圧電素子Eb1,Eb2で構成されており、YZの2軸方向の振動を電気エネルギーに変換することができるという特徴がある。   In the power generating element 78, the first piezoelectric element 82 is formed by one piezoelectric element, and the second piezoelectric element 86 is formed by one piezoelectric element. Only the vibration in the Z-axis direction is converted into electric energy. Can be converted. On the other hand, in the power generating element 102, the first piezoelectric element 104 is configured by two piezoelectric elements Ea1 and Ea2, and the second piezoelectric element 106 is configured by two piezoelectric elements Eb1 and Eb2. , YZ can be converted into electric energy.

上記のように、発電素子102の重錘体92,94にY軸方向の振動が作用すると、第1及び第2の板状構造体80,84に対して曲げモーメントが作用する。そして、第1及び第2の板状構造体80,84の可撓部が変形し、図13(b)に示すように、4つの圧電素子Ea1,Ea2,Eb1,Eb2に、正又は負電荷がそれぞれ発生する。したがって、Z軸方向の振動だけでなく、Y軸方向の振動も電気エネルギーに変換できる。   As described above, when the vibration in the Y-axis direction acts on the weights 92 and 94 of the power generating element 102, a bending moment acts on the first and second plate-like structures 80 and 84. Then, the flexible portions of the first and second plate-like structures 80 and 84 are deformed, and as shown in FIG. 13B, four piezoelectric elements Ea1, Ea2, Eb1, and Eb2 are charged with positive or negative charges. Respectively occur. Therefore, not only the vibration in the Z-axis direction but also the vibration in the Y-axis direction can be converted into electric energy.

発電素子102の第1の共振系Re1は、Z軸方向の共振周波数frz1及び半値幅hz1の他、X軸方向の共振周波数frx1及び半値幅hx1、Y軸方向の共振周波数fry1及び半値幅hy1を有している。同様に、第2の共振系Re2は、Z軸方向の共振周波数frz2及び半値幅hz2の他、X軸方向の共振周波数frx2及び半値幅hx2、Y軸方向の共振周波数fry2及び半値幅hy2を有している。これは、発電素子96と同様である。   The first resonance system Re1 of the power generating element 102 includes a resonance frequency frz1 and a half width hz1 in the Z-axis direction, a resonance frequency frx1 and a half width hx1 in the X-axis direction, a resonance frequency fry1 and a half width hy1 in the Y-axis direction. Have. Similarly, the second resonance system Re2 has a resonance frequency frz2 and a half width hz2 in the Z axis direction, a resonance frequency frx2 and a half width hx2 in the X axis direction, a resonance frequency fry2 and a half width hy2 in the Y axis direction. are doing. This is similar to the power generating element 96.

Z軸方向は、発電素子96と同様に、半値幅hz2の周波数帯の一部が、半値幅hz1の周波数帯の一部と重なるように設定されている(図12(a))。したがって、2つの共振系Re1,Re2の相互作用により、この重なっている周波数帯で多くの発電量を得ることができる。   In the Z-axis direction, similarly to the power generation element 96, a part of the frequency band with the half width hz2 is set to overlap with a part of the frequency band with the half width hz1 (FIG. 12A). Therefore, a large amount of power generation can be obtained in the overlapping frequency band due to the interaction between the two resonance systems Re1 and Re2.

Y軸方向も、発電素子96と同様に、半値幅hy2の周波数帯の一部が、半値幅hy1の周波数帯の一部と重なるように設定されている(図12(c))。したがって、2つの共振系Re1,Re2の相互作用により、この重なっている周波数帯で多くの発電量を得ることができる。   In the Y-axis direction, similarly to the power generation element 96, a part of the frequency band having the half-value width hy2 is set so as to overlap a part of the frequency band having the half-value width hy1 (FIG. 12C). Therefore, a large amount of power generation can be obtained in the overlapping frequency band due to the interaction between the two resonance systems Re1 and Re2.

しかし、X軸方向の共振特性は特に重要ではなく、半値幅hx2の周波数帯が半値幅hx1の周波数帯に重なっていなくても構わない。発電素子102は、X軸方向の発電を行わない素子だからである。   However, the resonance characteristics in the X-axis direction are not particularly important, and the frequency band of the half width hx2 does not have to overlap the frequency band of the half width hx1. This is because the power generating element 102 does not generate power in the X-axis direction.

発電素子102によれば、YZの2軸方向の振動を効率よく電気エネルギーに変換することができるので、発電素子78より多くの発電量を得ることができる。また、第1及び第2の共振系Re1,Re2の設計を行うとき、発電素子96の場合は3方向の共振特性を考慮する必要があるが、発電素子102の場合は2方向だけを考慮すればよいので、発電素子102の方が設計が容易である。   According to the power generation element 102, the vibration in the YZ biaxial directions can be efficiently converted into electric energy, so that a larger amount of power generation than the power generation element 78 can be obtained. Further, when designing the first and second resonance systems Re1 and Re2, it is necessary to consider the resonance characteristics in three directions in the case of the power generation element 96, but only in the two directions in the case of the power generation element 102. For this reason, the power generation element 102 is easier to design.

なお、本発明の発電素子は、上記実施形態及び変形例に限定されるものではない。例えば、図4に示す発電素子40は、3個の板状構造体を直列に接続して合計3個の共振系を設けているが、直列に配置する板状構造体の数及び共振系の数をもっと増やすことによって、発電量を指数関数的に多くすることができる。また、第1〜第nの板状構造体を直列に配置した場合、第1〜第nの共振系が形成され、各共振系の半値幅の周波数帯が重なったとき、台座から最も離れている第nの共振系の発電量が最大になる。したがって、発電量を多くするためには、第nの共振系と他の共振系との間に相互作用が生じることが重要になるので、第nの共振系の半値幅の周波数帯が他の共振系(できるだけ多くの共振系)の半値幅の周波数帯と重なるように設定するとよい。   Note that the power generating element of the present invention is not limited to the above-described embodiment and modified examples. For example, the power generating element 40 shown in FIG. 4 has a total of three resonance systems provided by connecting three plate-like structures in series, and the number of plate-like structures arranged in series and the resonance system By increasing the number more, the power generation can be increased exponentially. When the first to n-th plate-shaped structures are arranged in series, the first to n-th resonance systems are formed, and when the frequency bands of the half-value widths of the respective resonance systems overlap, the first to n-th resonance systems are furthest from the pedestal. The generated power of the n-th resonance system is maximized. Therefore, in order to increase the amount of power generation, it is important that an interaction occurs between the n-th resonance system and another resonance system. The frequency band should be set so as to overlap the frequency band of the half width of the resonance system (as many resonance systems as possible).

図6に示す発電素子50は、第1の板状構造体の先端部に他の板状構造体を2個接続し合計3個の共振系を設けているが、他の板状構造体の数をもっと増やして共振系の数をもっと増やすことによって、発電量をさらに多くすることができる。また、発電量を多くするためには、第1の共振系と他の共振系との間に相互作用が生じることが重要であり、第1の共振系の半値幅の周波数帯が他の共振系(できるだけ多くの共振系)の半値幅の周波数帯と重なるように設定するとよい。   The power generating element 50 shown in FIG. 6 is provided with a total of three resonance systems by connecting two other plate-like structures to the end of the first plate-like structure. By further increasing the number and the number of resonance systems, the amount of power generation can be further increased. In order to increase the amount of power generation, it is important that an interaction occurs between the first resonance system and another resonance system. The frequency band should be set so as to overlap the frequency band of the half width of the system (as many resonance systems as possible).

また、図6に示す発電素子50は、Z軸方向の振動だけを電気エネルギーに変換することができる構成であるが、第1及び第2の圧電素子82,86を、図11に示す第1及び第2の圧電素子98.100のような構成に変更すれば、XYZの各軸方向の振動をすべて電気エネルギーに変換することができ、発電量をさらに多くすることができる。あるいは、第1及び第2の圧電素子82,86を、図13に示す第1及び第2の圧電素子104,106のような構成に変更すれば、YZの2軸方向の振動を電気エネルギーに変換することができ、発電量をさらに多くすることができる。   The power generating element 50 shown in FIG. 6 has a configuration capable of converting only the vibration in the Z-axis direction into electric energy. If the configuration is changed to the configuration of the second piezoelectric element 98.100, all the vibrations in each of the X, Y, and Z directions can be converted into electric energy, and the amount of power generation can be further increased. Alternatively, if the first and second piezoelectric elements 82 and 86 are changed to a configuration such as the first and second piezoelectric elements 104 and 106 shown in FIG. Can be converted, and the amount of power generation can be further increased.

その他、発電素子の製造プロセスは特に限定されず、個々の構造に合わせて自由に選択することができる。例えば、上記の発電素子50,74,78,96,102(図6、図9、図10、図11、図13)は、複数の共振系がXY平面に沿ってほぼ面一に並設される構成なので、Si基板やSOI基板等を用いたMEMS技術を使用すれば、容易に製造することができる。また、圧電素子の具体的な構造は、図14(b)に示す圧電素子18の構造に限定されず、同様の機能を実現できる他の構造を用いてもよい。   In addition, the manufacturing process of the power generation element is not particularly limited, and can be freely selected in accordance with each structure. For example, in the above-described power generation elements 50, 74, 78, 96, and 102 (FIGS. 6, 9, 10, 11, and 13), a plurality of resonance systems are arranged substantially flush with each other along the XY plane. The structure can be easily manufactured by using the MEMS technology using a Si substrate, an SOI substrate, or the like. Further, the specific structure of the piezoelectric element is not limited to the structure of the piezoelectric element 18 shown in FIG. 14B, and another structure that can realize the same function may be used.

22,38,40,50,74,78,96,102 発電素子
24,52,80 第1の板状構造体
26,54,82,98,104 第1の圧電素子
28,56,56x,84 第2の板状構造体
30,58,86,100,106 第2の圧電素子
32,64,88 台座
34,46,66,90 接続体
36,48,68,70,72,76,92,94 重錘体
42,60 第3の板状構造体
44,62 第3の圧電素子
frx1,fry1,frz1 共振周波数(第1の共振系)
frx2,fry2,frz2 共振周波数(第2の共振系)
frz3 共振周波数(第3の共振系)
hx1,hy1,hz1 半値幅(第1の共振系)
hx2,hy2,hz2 半値幅(第2の共振系)
hz3 半値幅(第3の共振系)
Re1 第1の共振系
Re2 第2の共振系
Re3 第3の共振系
22, 38, 40, 50, 74, 78, 96, 102 Power generating elements 24, 52, 80 First plate-like structures 26, 54, 82, 98, 104 First piezoelectric elements 28, 56, 56x, 84 Second plate-shaped structure 30, 58, 86, 100, 106 Second piezoelectric element 32, 64, 88 Pedestal 34, 46, 66, 90 Connector 36, 48, 68, 70, 72, 76, 92, 94 Weights 42, 60 Third plate-like structures 44, 62 Third piezoelectric element
frx1, fry1, frz1 resonance frequency (first resonance system)
frx2, fry2, frz2 resonance frequency (second resonance system)
frz3 resonance frequency (third resonance system)
hx1, hy1, hz1 half width (first resonance system)
hx2, hy2, hz2 half width (second resonance system)
hz3 Half width (third resonance system)
Re1 First resonance system
Re2 Second resonance system
Re3 Third resonance system

Claims (9)

可撓部を有した第1及び第2の板状構造体と、前記第1の板状構造体を支持する台座と、前記第1及び第2の板状構造体の中の少なくとも一方の可撓部の変形に基づいて電荷を発生させる圧電素子と、特定の前記板状構造体の先端部に設けられた重錘体とを備え、
前記第1の板状構造体は、自己の基端部が直接又は間接的に前記台座に接続され、
前記第2の板状構造体は、自己の基端部が前記第1の板状構造体の先端部に接続体を介して接続され、
前記第1の板状構造体の可撓部、及び前記第1の板状構造体の先端部に接続された物体の質量により第1の共振系が形成され、
前記第2の板状構造体の可撓部、及び前記第2の板状構造体の先端部に接続された物体の質量により第2の共振系が形成され、
前記第2の共振系の半値幅の周波数帯は、その全部又は一部が、前記第1の共振系の半値幅の周波数帯と重なっていることを特徴とする発電素子。
First and second plate-like structures having a flexible portion, a pedestal supporting the first plate-like structure, and at least one of the first and second plate-like structures. A piezoelectric element that generates an electric charge based on the deformation of the flexible portion, and a weight provided at the tip of the specific plate-shaped structure,
The first plate-shaped structure has its own base end directly or indirectly connected to the pedestal,
The second plate-shaped structure has its own base end connected to the front end of the first plate-shaped structure via a connector,
A first resonance system is formed by a flexible portion of the first plate-shaped structure and a mass of an object connected to a distal end of the first plate-shaped structure;
A second resonance system is formed by a flexible portion of the second plate-shaped structure and a mass of an object connected to a tip of the second plate-shaped structure;
The power generation element according to claim 1, wherein a half-width frequency band of the second resonance system entirely or partially overlaps a half-width frequency band of the first resonance system.
前記第2の板状構造体のバネ定数は、前記第1の板状構造体のバネ定数より小さい請求項1記載の発電素子。   The power generating element according to claim 1, wherein a spring constant of the second plate-like structure is smaller than a spring constant of the first plate-like structure. 前記第2の板状構造体の可撓部は、前記第1の板状構造体の可撓部と比較して、長さ、幅、及び撓み方向の厚みの中の少なくとも1つが異なっている請求項1記載の発電素子。   The flexible portion of the second plate-shaped structure differs from the flexible portion of the first plate-shaped structure in at least one of a length, a width, and a thickness in a bending direction. The power generating element according to claim 1. 可撓部を有したn個の板状構造体(nは3以上の自然数)と、前記n個の板状構造体の中の1つである第1の板状構造体を支持する台座と、前記n個の板状構造体の可撓部の変形、又は少なくとも前記第nの板状構造体の可撓部の変形に基づいて電荷を発生させる圧電素子と、特定の前記板状構造体の先端部に設けられた重錘体とを備え、
前記第1の板状構造体は、自己の基端部が直接又は間接的に前記台座に接続され、
前記n個の板状構造体の中の第kaの板状構造体(kaは偶数、2≦ka≦n)は、自己の基端部が第(ka−1)の板状構造体の先端部に接続体を介して接続され、
前記n個の板状構造体の中の第kbの板状構造体(kbは奇数、3≦kb≦n)は、自己の基端部が第(kb−1)の板状構造体の先端部に接続体を介して接続され、
前記第1の板状構造体の可撓部、及び前記第1の板状構造体の先端部に接続された物体の質量により第1の共振系が形成され、
前記第kaの板状構造体の可撓部、及び前記第kaの板状構造体の先端部に接続された物体の質量により第kaの共振系が形成され、
前記第kbの板状構造体の可撓部、及び前記第kbの板状構造体の先端部に接続された物体の質量により第kbの共振系が形成され、
前記n個の板状構造体の各共振系の半値幅の周波数帯は、その全部又は一部が、他の前記板状構造体の共振系の半値幅の周波数帯と重なっていることを特徴とする発電素子。
N plate-like structures having a flexible portion (n is a natural number of 3 or more), and a pedestal supporting a first plate-like structure that is one of the n plate-like structures A piezoelectric element that generates an electric charge based on deformation of a flexible portion of the n plate-like structures, or at least deformation of a flexible portion of the n-th plate structure, and a specific plate-like structure And a weight provided at the tip of the
The first plate-shaped structure has its own base end directly or indirectly connected to the pedestal,
Among the n plate-like structures, the ka-th plate-like structure (ka is an even number, 2 ≦ ka ≦ n) has a base end of the (ka−1) -th plate-like structure. Connected to the unit via a connector,
The kb-th plate-like structure (kb is an odd number, 3 ≦ kb ≦ n) among the n plate-like structures is a base end of the (kb-1) -th plate-like structure. Connected to the unit via a connector,
A first resonance system is formed by a flexible portion of the first plate-shaped structure and a mass of an object connected to a distal end of the first plate-shaped structure;
The ka-th resonance system is formed by the flexible portion of the ka-th plate-shaped structure and the mass of the object connected to the tip of the ka-th plate-shaped structure,
The kb-th resonance system is formed by the flexible portion of the kb-th plate-like structure and the mass of the object connected to the tip of the kb-th plate-like structure,
A half-width frequency band of each resonance system of the n plate-like structures is entirely or partially overlapped with a half-width frequency band of another resonance system of the plate-like structures. Power generating element.
前記第kaの板状構造体のバネ定数は、前記第(ka−1)の板状構造体のバネ定数より小さく、
前記第kbの板状構造体の可撓部のバネ定数は、前記第(kb−1)の板状構造体の可撓部のバネ定数より小さい請求項4記載の発電素子。
A spring constant of the ka-th plate-shaped structure is smaller than a spring constant of the (ka-1) -th plate-shaped structure;
The power generating element according to claim 4, wherein a spring constant of a flexible portion of the kb-th plate-shaped structure is smaller than a spring constant of a flexible portion of the (kb-1) -th plate-shaped structure.
前記第kaの板状構造体は、前記第(ka−1)の板状構造体と比較して、長さ、幅及び撓み方向の厚みの中の少なくとも1つが異なり、
前記第kbの板状構造体は、前記第(kb−1)の板状構造体と比較して、長さ、厚み及び幅の中の少なくとも1つが異なっている請求項4記載の発電素子。
The ka-th plate-shaped structure is different from the (ka-1) -th plate-shaped structure in at least one of a length, a width, and a thickness in a bending direction,
The power generation element according to claim 4, wherein the kb-th plate-shaped structure is different from the (kb-1) -th plate-shaped structure in at least one of length, thickness, and width.
可撓部を有したn個の板状構造体(nは3以上の自然数)と、前記n個の板状構造体の中の1つである第1の板状構造体を支持する台座と、前記n個の板状構造体の可撓部の変形、又は前記第2〜第nの板状構造体の板状構造体の可撓部の変形に基づいて電荷を発生させる圧電素子と、特定の前記板状構造体の先端部に設けられた重錘体とを備え、
前記第1の板状構造体は、自己の基端部が直接又は間接的に前記台座に接続され、
前記第1の板状構造体以外の前記板状構造体は、自己の基端部が前記第1の板状構造体の先端部に接続体を介して各々接続され、
前記第1の板状構造体の可撓部、及び前記第1の板状構造体の先端部に接続された物体の質量により第1の共振系が形成され、
前記第1の板状構造体以外の板状構造体の可撓部、及び前記板状構造体の先端部に接続された物体の質量により、前記第1の共振系以外の他の共振系が形成され、
前記第1の共振系の半値幅の周波数帯は、その全部又は一部が、前記他の共振系の半値幅の周波数帯と重なっていることを特徴とする発電素子。
N plate-like structures having a flexible portion (n is a natural number of 3 or more), and a pedestal supporting a first plate-like structure that is one of the n plate-like structures A piezoelectric element that generates an electric charge based on the deformation of the flexible portion of the n plate-shaped structures or the deformation of the flexible portion of the plate-shaped structure of the second to n-th plate structures; A weight provided at the tip of the specific plate-like structure,
The first plate-shaped structure has its own base end directly or indirectly connected to the pedestal,
The plate-like structures other than the first plate-like structure have their own base ends connected to the distal end of the first plate-like structure via a connector, respectively.
A first resonance system is formed by a flexible portion of the first plate-shaped structure and a mass of an object connected to a distal end of the first plate-shaped structure;
Due to the flexible portion of the plate-like structure other than the first plate-like structure and the mass of the object connected to the tip of the plate-like structure, a resonance system other than the first resonance system is formed. Formed,
The power generating element according to claim 1, wherein a half-width frequency band of the first resonance system entirely or partially overlaps a half-width frequency band of the another resonance system.
前記第1の板状構造体以外の板状構造体のバネ定数は、前記第1の板状構造体のバネ定数より小さい請求項7記載の発電素子。   The power generating element according to claim 7, wherein a spring constant of a plate-shaped structure other than the first plate-shaped structure is smaller than a spring constant of the first plate-shaped structure. 前記第1の板状構造体以外の各板状構造体の可撓部は、前記第1の板状構造体の可撓部と比較して、長さ、幅及び撓み方向の厚みの中の少なくとも1つが異なっている請求項7記載の発電素子。   The flexible portion of each plate-like structure other than the first plate-like structure has a length, a width, and a thickness in a bending direction that are different from the flexible portion of the first plate-like structure. The power generating element according to claim 7, wherein at least one is different.
JP2018195844A 2018-10-17 2018-10-17 Power generation element Active JP6647498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195844A JP6647498B2 (en) 2018-10-17 2018-10-17 Power generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195844A JP6647498B2 (en) 2018-10-17 2018-10-17 Power generation element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017164789A Division JP6474868B1 (en) 2017-08-29 2017-08-29 Power generation element

Publications (3)

Publication Number Publication Date
JP2019062736A JP2019062736A (en) 2019-04-18
JP2019062736A5 JP2019062736A5 (en) 2019-07-25
JP6647498B2 true JP6647498B2 (en) 2020-02-14

Family

ID=66177841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195844A Active JP6647498B2 (en) 2018-10-17 2018-10-17 Power generation element

Country Status (1)

Country Link
JP (1) JP6647498B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626852Y2 (en) * 1988-06-09 1994-07-20 株式会社トーキン Accelerometer
JP3973742B2 (en) * 1997-07-04 2007-09-12 日本碍子株式会社 Vibrating gyroscope
JPH11101816A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Angular acceleration sensor and method for detecting angular acceleration
CN103460592B (en) * 2011-04-07 2016-04-06 株式会社村田制作所 piezoelectric generating device
JP5954729B2 (en) * 2012-01-30 2016-07-20 株式会社ミツバ Power generator
WO2014170922A1 (en) * 2013-04-15 2014-10-23 Politecnico Di Torino Multi-frequency vibration piezoelectric harvester device
US10033305B2 (en) * 2013-11-22 2018-07-24 Agency For Science, Technology And Research Energy harvesting device and method for forming the same
US10463864B2 (en) * 2015-09-15 2019-11-05 The Regents Of The University Of Michigan Energy harvesting for leadless pacemakers

Also Published As

Publication number Publication date
JP2019062736A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6474868B1 (en) Power generation element
EP2662971B1 (en) Piezoelectric power generator
JP5720703B2 (en) Piezoelectric generator
US10033305B2 (en) Energy harvesting device and method for forming the same
JP6197251B2 (en) Energy collector
JP5529328B1 (en) Power generation element
EP3264796A1 (en) Vibration transmission structure, and piezoelectric speaker
TWI848234B (en) Mems device
US10834508B2 (en) Reinforced actuators for distributed mode loudspeakers
US20180262130A1 (en) Power generating element
JP2015050935A (en) Power generation element
Naval et al. Bandwidth increment of piezoelectric energy harvester using multi-beam structure
JP6647498B2 (en) Power generation element
JP5674973B1 (en) Power generation element
Magdy et al. Design methodology of a micro-scale 2-DOF energy harvesting device for low frequency and wide bandwidth
JP2015130794A (en) Power generation device
JP5833790B2 (en) Power generation element
WO2020149265A1 (en) Mems beam structure and mems vibration power generation element
JP6309698B1 (en) Power generation device and power generation element
JP6380944B1 (en) Power generation element
KR101789170B1 (en) Piezoelectric actuator for electrical device
JP5887457B2 (en) Power generation element
JP6671660B2 (en) Power generation element
Vijayan et al. Design of compliant mechanism for vibration isolation using topology optimization and flexible building blocks
JP6884377B2 (en) Power generation circuit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190614

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6647498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250